
Inside
Macintosh,"

Promotional Edition

A Letter from the Macintosh Developers Group
Dear Reader:

15 March 1985

After many months of work the Macintosh Division's User Education Group (responsible for all the Macintosh
documentation) has completed the manuscript for Inside Macintosh. We've finalized production arrangements
with a major publisher and you can expect to see the final edition at better bookstores everywhere by late summer
'85. However, we can't wait that long and don't expect you to either. We've therefore produced this special
Promotional Edition to handle the demand for Inside Macintosh until the final edition becomes available. The
contents of this edition are still preliminary and subject to change; the final edition will include many updates and
corrections. The production quality of the final edition will be significantly improved from this inexpensive edition.

Now, here are answers to some questions we anticipate:
Q. I purchased the three-ring binder version of Inside Macintosh from your mail-house for
$100 and also bought the Software Supplement for $100. Is this Promotional Edition the
final copy I'm supposed to receive for purchasing the Software Supplement?
A. No. As promised, Supplement owners will receive a copy of the final version when it's available.

Q. How can I get Macintosh developer utilities, example programs, example source code, the
libraries I need to do Lisa Pascal/Macintosh cross-development work, and additional copies of
this manual?
A.The Software Supplement consists of: 1) useful Macintosh utilities, example programs, and example source code,
2) the interface files, equate files, and trap definitions in both Macintosh and Lisa readable format, 3) all of the
libraries required for Lisa Pascal/Macintosh cross-development, 4) a new Lisa Pascal Compiler, which supports
SANE numerics, and 5) a copy of the final published edition of Inside Macintosh (this will be sent to you when
available). The price for the Software Supplement is $100. As of April '85 the Software Supplement has been
frozen to correspond to Inside Macintosh and automatic updates will no longer be included in the Software
Supplement price. We will, however, inform Supplement owners of other products and utilities as they become
available. You may also order additional copies of this special Promotional Edition of Inside Macintosh for $25
per copy.

You can order the Software Supplement and/or copies of this Promotional Edition of Inside Macintosh by
writing to (California residents please add 6.5% sales tax) :

Apple Computer, Inc.
467 Saratoga Avenue Suite 621
San Jose, CA 95129
(408) 988-6009

Q. Is there a good way to keep up-to-date with new utilities and technical notes and at the
same time stay in touch with other developers?
A. We've found that electronic distribution is a very cost-effective, timely way to keep the developer world
up-to-date. At least two major on-line services, Delphi and Compuserve, host the MicroNetworked Apple Users'
Group (MAUG)--an electronic service open to all people who are interested in or have information to share about
Apple products. MAUG is an independently run service and is not affiliated with Apple Computer, Inc. If you have a
modem and communication software you can sign-on and download the latest developer utilities from the Macintosh
Software Supplement, example programs, technical notes, and documentation. You can also carryon electronic
conversations with hundreds of other Macintosh developers. For more information on these services please write to
either:

Delphi
3 Blackstone Street
Cambridge, MA 02139
(617) 491-3393
(800) 544-4005 (toll-free outside of Massachusetts)

Compuserve
5000 Arlington Centre Boulevard
Columbus, OH 43220
(614) 457-8600

All of us in the Macintosh Division would like to thank you for your support of Macintosh development. We'll
continue to provide the programs, tools, and documentation to assist your efforts.

We'd love to hear from you on any topic related to Macintosh Development. Send your letters to Apple Computer,
Macintosh Developers Group, Mail Stop 4T, 20525 Mariani Avenue, Cupertino CA 95014.

Jlnside
Macintosh

Promotional Edition

Copyright
Copyright © 1982, 1983, 1984, 1985 Apple Computer, Inc. All Rights Reserved.
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

This manual is copyrighted. Und~r the Copyright laws, this manual may not be copied, in whole
or in part, without written consent of Apple. Under the law, copying includes translating into
another language or format.

Macintosh is a trademark licensed to Apple Computer, Inc.

Apple, the Apple logo, the Macintosh logo, MacWrite, MacDraw, and MacPaint are trademarks of
Apple Computer, Inc.

Lisa' i~ a registered trademark of Apple Computer, Inc.

Simultaneously published in the U.S.A. and Canada.

Limitation on Warranty and Liabilities
Inside Macintosh is a working document used by Apple's own programmers and developers
which describes the hardware and software associated with the Macintosh computer. This is a
preliminary edition that is incomplete and may contain errors. Apple itself does not rely solely on
this document, but rather subjects all of its products to extensive testing prior to introduction.
Further, Apple is continuing to improve its products and the contents of this manual may ,be
obsoleted as a result of changes to Apple products. Accordingly, Apple makes no warranty that
this manual is accurate or complete and notifies all readers that the specifications of its products are
subject to change without notice.

APPLE MAKES NO WARRANTY OR REPRESENT A TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL, ITS ACCURACY, CONTENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD" AS IS" AND YOU, THE PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO THE USE OF AND RELIANCE ON THIS MANUAL.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENT AL, OR CONSEQUENTIAL DAMAGES RESULTING FROM,ANY DEFECT OR
OMISSION IN THIS MANUAL, even if advised of th,e possibility of possible damages resulting
therefrom.

No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition
to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental
or consequential damages, so the above limitation may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from state to state.

Contellts

1. Road Map
2. Macintosh User Interface Guidelines
3. Introduction to Melnory Management
4. Progralnming in Asselnbly Language
5. Resource Ma~ager
6. QuickDraw
7. Font Manager
8. Toolbox Event Manager
9. Windo,v Manager'
10. Control Manager
11. Menu Manager
12. TextEdit
13. Dialog Manager
14. Desk Manager
15. Scrap Manager
16. Toolbox Utilities
17. Macintosh Packages
~i8~- Memory Manager .
19. Segment Loader
20. Operating Systenl Event Manager
21. File Manager
22. Printing froln a Macinto~h Application
23. Device Manager
24. Disk Driver
25. Sound Driver
26. Serial Drivers
27. AppleTalk Manager
28. Vertical Re~race Manager
29. S ystenl Error Handler
30. Operating Systeln Utilities
31. Structure of a Macintosh Application
32. Apple Nunlerics Manual (SANE)
33. Index to Technical DOCUll1entation

MACINTOSH USER EDUCATION

INSIDE MACINTOSH: A ROAD MAP /ROAD.MAP/ROAD

See Also: Macintosh User Interface Guidelines
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Resource Manager: A Programmer's Guide
QuickDraw: 'A Programmer's Guide
The Font Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Desk ~nager: A Programmer's. Guide
The Scrap Manager: A Progra~er's Guide
The"Toolbox'Utilities: A Programmer's Guide
Macintosh Packages: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
The File Manager: A Programmer's Guide
Printing from Macintosh Applications
The Device Manager: A Programmer's Guide
The Sound Driver: A Programmer's Guide
The Vertical Retrace Manager: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide
The Structure of a Macintosh Application
Putting Together a Macintosh Application
Index to Technical Documentation

Modification History: First Draft (ROM 4.4)
Second Draft (ROM 7)
Third Draft

Caroline Rose
Caroline Rose
Caroline Rose

8/8/83
12/22/83
9/10/84

ABSTRACT

This manual introduces you to the Macintosh technical documentation and
the "inside" of Macintosh: the Operating System and other routines that
your application program will call. It will help you figure out which
software you need to learn more about and how to proceed with the rest
of the documentation. It also presents a simple example program.

Since the last draft, changes and additions have been made to the "
overviews, a~ example program has been added, and the structure of a
typical Inside Macintosh manual is discussed.

2 Inside Macintosh Road Map

TABLE OF CONTENTS

3 About This Manual
3 About Inside" Macintosh
4 Everything You Know Is Wrong
4 Conventions
5 The Structure of a Typical Manual
6 Overview of the Software
6 The Toolbox and Other High-Level Software
10 The Operating System and Other Low-Level Software
11 A Simple Example Program
18 Where to Go From Here
19 Appendix: Resource Compiler Input for Exa~ple Program
20 Glossary

/

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS "MANUAL

This manual introduces you to the Macintosh technical documentation and
the "inside" of Macintosh: the Operating System and User Interface
Toolbox routines that your application program will call. It will help
you figure out which software you need to learn more about and how to
proceed with the rest of the documentation. To orient you to the
software, it presents a simple example program. *** Eventually it will
become the preface"and introductory chapter in the comprehensive Inside
Macintosh manual. ***

ABOUT INSIDE MACINTOSH

Inside Macintosh *** (currently a set of separate manuals) *** tells
you what you need to know to write software for the Macintosh.
Although directed mainly toward programmers writing standard Macintosh
applications, it also contains the information necessary for writing
simple utility .programs, desk accessories, device drivers, or any other
Macintosh software. It includes:

- the user interface guidelines for applications on the Macintosh

- a complete description of the routines available for your program
to call-(both those built into the Macintosh and others on disk),
along with related concepts and background information

- a description of the Macintosh hardware *** (forthcoming) ***

It does not include:

- information about getting started as a developer (for that, see
the Apple ~ Developer's Handbook, available from Apple Computer's
Software Industry Relations)

- any information that's specific to the development system being
used, except where indicated *** (The manual Putting Together a
Macintosh Application will not be part of the fina~ Inside
Macintosh.) ***

The routines you'll need to call are written in assembly language, but
they're also accessible from high-level languages. The development
system currently available from Apple supports Lisa Pascal and includes
Pascal interfaces to all the routines (except for a few that are called
only from assembly language). Inside Macintosh documents these Pascal
interfaces; if you're using a development system that supports a
different high-level language, its documentation should tell ,you how to
apply the information 'presented "here to that system.

Inside Macintosh is intended to serve the needs of both Pascal and
assembly-language programmers. Every routine is shown in its Pascal
form (if it has one), but assembly-language programmers are told how to

9/10/84 Rose /ROAD.MAP/ROAD.2

4 Inside Macintosh Road Map

r
translate this to assembly code. Info~mation of interest only to
assembly-language programmers is isolated and labeled so that Pascal
programmerS can conveniently skip it.

Familiarity with Lisa Pascal is recommended for all readers, since it's
used for most examples. Lisa Pascal is described in the Pascal
Reference Manual for the Lisa. You should also be familiar with the
basic information that's in Macintosh, the owner's guide, and have some
experience usihg a standard Macintosh application (such as MacWrite).

Everything You Know Is Wrong

On an innovative system like the Macintosh, programs don't look quite
the way they do on other systems. For example, instead of carrying out
a sequence of steps in a predetermined order, your program is driven
primarily by user actions (such as clicking and typing) whose- order
cannot be predicted. You'll probably find that many of your
preconceptions about how to write application~ don't apply h~re.
Because of this, and because of the sheer volume of information in
Inside Macintosh, it's essential that you read the Road Map *** (the
rest of this man~al) .~**. It will h~lp you get oriented and figure-out
where to go next.

Conventions

The following notations are used in Inside Macintosh to draw your
attention to p~rticular items of information:

(note)
A note that may be interesting or useful

(warning)
A point you need to be cautious about

Assembly-language note: A note of interest to assembly-language
programmers only *** (in final manual, may instead be a shaded
note or warning) ***

[No trap macro]

This notation is of interest only to assembly-language
programmers *** (may be shaded in final manual) ***; it's
explained along with other general information on using assembly
language in the manual Programming Macintosh Applications in
Assembly Language.

9/10/84 Rose /ROAD.MAP/ROAD.2

ABOUT INSIDE MACINTOSH 5

The Structure of a TyRical Manual

*** This section refers to "manuals" for the time being; when the
individual manuals become chapters of Inside Macintosh, this will be
changed to "chapters". ***

Most manuals of Inside Macintosh have the same structure~ as described
below. Reading through this now will s~ve you a lot of time. and effort
later on. It contains important hints on how to find what you're
looking for within this vast amount of technical documentation.

Every manual begins with a very brief description of its subject and a
list of what you should already know before reading that manual. Then

. there's a section called, for example, "About the Window Manager",
which gives you more information about the subject, telling you what
you can do with it in general, elaborating on ~elated user interface
guidelines, and introducing terminology that will be used in the
manual. This is followed by a series of sections describing important
related concepts and background information; unless they're noted to be
for advanced programmers only, you'll have to read them in order to
understand how to use the r'outines described la'ter.

Before the routine descriptions themselves, there's a section called,
for example, "Using the Window Manager". It introduces you to the
routines, telling you how they fit into the general flow of an
application program and, most important, giving you an idea of which
ones you'll need to use. Often you'll need only a few routines out of
many to do basic o~erations; by reading this section, you can save
yourself the trouble of learning routines you'll never use.

Then, for the details about the routines, read on to the next section.
It gives the calling sequence for each routine and describes all the
parameters, effects, side effects, and so on.

Following the routine descriptions, there may be some sections that
won't be of interest to all readers. Usually these contain information
about advanced techniques, or behind-the-scenes details for the
curious.

For review and quick reference, each manual ends with a summary of the
subject matter, including the entire Pascal interface and a subsection
for assembly-language programmers. *** For now, this is f9llowed by a
glossary of terms used in the manual. Eventually, all the individual
glossaries will be combined into one. ***

9/10/84 Rose /ROAD.MAP/ROAD.2

6 Inside Macintosh Road Map

OVERVIEW OF THE SOFTWARE

The routines available for use in Macintosh programs are divided
according to function t into what are in most cases called "managers" of
the application feature that they support. As shown in Figure 1 on the
following page, most are part of either the Operating System or the
User Interface Toolbox and are in the Macintosh ROM.

The Operating System is at the lowest level; it does bas.ic tasks such
as input and output t memory management t and interrupt handling. The
User Interface Toolbox is a level above the Operating System; it helps,
you implement the standard Macintosh user interface in your
application. The Toolbox calls the Operating System to do low-level
operations, and you'll also call the Operating System directly
yourself.

RAM-based software is available as well. In most cases this software
performs specialized operations that aren't integral to the user
interface but may be useful to some applications (such as printing and
floating-point arithmetic).

The Toolbox and Other High-Level Software

The Macintosh User Interface Toolbox provides a simple means of
constructing application programs that conform to the standard
Macintosh user interface. By offering a common set of routines that
every application calls to implement the user int~rfacet the Toolbox
not, only ensures familiarity and consistency for the user but also
helps reduce the application's code size and development time. At the
same timet it allows a great deal of flexibility: an application can
use its own code ins tead of a Toolbox call wherever app'ropriate t" and

I can define its own types of windows t menus t controls t and desk
accessories.

Figure 2 shows the various parts of the Toolbox in rough order of their
relative level. There are many interconnections between these parts;
the higher ones often call those at the lower levels. A brief
description of each part is given below t to help you figure out which
ones you'll need to learn more about. Details are given in the Inside
Macintosh documentation on that part of the Toolbox. The basic
Macintosh terms used below are explained in the Macintosh owner's
guide.

9/10/84 Rose /ROAD.MAP/ROAD.2

O~RVIEW OF THE SOFTWARE 7

r A MACINTOSH APPLICA liON PROGRAM I

THE USER INTERFACE TOOLBOX
(in ROM)

Resource Meneger
QuickDraw

, Font Meneger
Too I box E vent Manager
Window Menager
Contro I Manager
Menu Maneger
TextEdit
Dialog Maneger
Desk Meneger
Scrap Manage,.
Toolbox Util ities
Package Menager

THE OPERATING SYSTEM
(in AOM)

Memory Manager
Segment Loeder
Operat i ng System Event Maneger
File Meneger
De" ice Manager
Disk Driver
Sound Dr i ver
Seriel Driver,
Vertical Retrace Manager
System Error Handler
Operating System Utilities

OTHER HIGH-LEVEL SOFTWARE
(not in ROM)

B i nary- Dec i mal Convers i on Package
International Uti I ities Package
Standard. Fi Ie Package

OTHER LOW-LEVEL SOFTWARE
(not in ROM)

Pr i nt i ng Manager
Printer Driver
App I eBus Maneger
Disk Initial ization Package
F I oat i ng·Po i nt Ar i thmet i c Package
Transcendenta I Funct (ons PaCkage

I THE MACINTOSH HARDWARE I
Figure 1. Overview

9/10/84 Rose /ROAD.MAP/ROAD.2

8 In~ide Macintosh Road Map

Dialog Manager I
Control Menager Menu Maneger II TextEdit

Window Maneger I
Toolbox Uti lities J

Toolbox Event Maneger I
~ ___ D_e_s_k_M_e_n_eg_e_r ____ '1 ~ ____ Sc_r_e~p_M_e_n_e~g~e_r __ ~

QuickDrew

L..-_P_e_c_k8_g;...e"",!""M_en_a_g_e_r ___ , "",I __ Fo_n_t_M_B_n_e.;;;.ge_r_

Resource Meneger

Figure 2. Parts of the Toolbox

To keep the data of an application separat,e' from its code, making· the
data easier to modify and easier to share among applications, the
Toolbox includes the Resource Manager. The Resource Manager lets you,
for example, store menus separately from your code so that they can'be
edited or translated without requiring recompilation of the code. It
also allows you to get standard data, such as the I-beam pointer for
inserting text, from a shared system file. When you call other parts
of the Toolbox that need access to the data, they call the Resource
Manager. Although most applications never need to call the Resource
Manager directly, an understanding of the concepts' behind it is
essential because they're basic to so many other Toolbox operations.

Graphics are an important part of every Macintosh application. All
graphic operations on the Macintosh are performed by QuickDraw. To
draw something on the screen, you'll often call one of the other parts
of the Toolbox, but it will in turn call QuickDraw. You'll also call
QuickDraw directly, usually to draw inside a window, or just to set up
constructs like rectangles that you'll need when making other Toolbox
calls. QuickDraw's underlying concepts, like those of the Resource
Manager, are important for you to understand.

Graphics include text as well as pictures. To draw text, QuickDraw
calls the Font Manager, which does the background work necessary to
make a variety of character fonts available in various sizes and
styles. Unless your,application includes a font menu, you need to know
only a minimal amount about the Font Manager.

An application decides what to do from moment to moment by examining
input from the user in the form of mouse and keyboard actions. It
learns of such actions by repeatedly calling the Toolbox Event Manager
(which in turn calls another, lower-level Event Manager in the
Operating System). The Toolbox Event Manager also reports occurrences
within the application that may require a response, such as when a

9/10/84 Rose /ROAD.MAP/ROAD.2

OVERVIEW OF THE SOFTWARE 9

window that was overlapped becomes exposed and needs to be redrawn.

All information preseqted by a standard Macintosh application appears
in windows. To create windows. activate them. move them. resize them,
or close them. you 'Ii call the Window Manager. It keeps track of
overlapping windows. so you can manipulate windows without concern for
how they overlap. For example. the Window Manager tells the Toolbox
Event Manager when to oinform your application that a window ,has to be
redrawn. Also, when the user presses the mouse button. you call the
Window Manager to learn which part of which window it was pressed in.
or whether it was pressed in the menu bar or a desk accessory.

Any window may contain controls. such as buttons. check boxes. and
scroll bars. You create and manipulate controls with the Control
Manager. When you learn from the Window Manager that the user pressed
the mouse button inside a window containing controls. you call the
Control Manager to find out which control it was pressed in, if any.

A common place for the user to press the mouse button is, of course. in
the menu bar. You set up menus in the menu bar by calling the Menu
Manager. When the user gives a command. either from a menu with the
mouse or from the keyboard with the Command key. you call the Menu
Manager to f,ind out which command was given.

To accept text typed by th~ user and allow the standard editing
capabilities. including cutting and pasting text within a document via
the Clipboard, your application can call TextEdit. TextEdit also
handles basic formatting such as word wraparound and justification.
You can use it just to display text if you like.

When an application needs more informatoion from the user about a
command, it presents a dialog box. In case of errors or potentially
dangerous situations. it alerts the user with a box containing a
message or with sound from the Macintosh's speaker (or both). To
create and present dialogs and alerts. and find out the user's
responses to them. you call the Dialog Manager.

Every Macintosh application should support the use of desk accessories.
The user opens desk accessories 'through the Apple menu. which you set
up by calling the Menu Manager. When you learn that the user has
pressed the mouse button in a desk accessory. you pass that information
on to the accessory by calling the Desk Manager. The Desk Manager also
includes routines that you must call to ensure that desk,accessories'
work properly.

As mentioned above, you can use TextEdit to implement the standard text
editing capability of cutting and pasting via the Clipboard in your
application. To allow the use of the Clipboard for cutting and pasting
text,or graphics between your application and another application or a
desk accessory, you need to call the Scrap Manager.

Some generally useful operations such as fixed-point arithmetic, string
manipulation. and logical operations on bits may be performed with the
Toolbox Utilities.

9/10/84 Rose /ROAD.MAP/ROAD.2

10 Inside Macintosh Road Map

The final part of the Toolbox, the Package Manager, lets you use RAM
based sofrware called-packages. The Standard File Package will be
called by every application whose File menu includes the standard
commands for saving and opening documents; it presents the standard
user interface for specifying the document. Some of the Macintosh
packages can be seen as extensions to the Toolbox Utilities: the
Binary-Decimal Conversion Package converts integers to decimal strings
and vice versa, and'the International Utilities Package gives you
access to country-dependent information such as the formats for
numbers, currency, dates, and times.

The Operating System and Other Low-Level Software

The Macintosh Operating System provides the low-level support that
applications need in order to use the Macintosh hardware. As the
Toolbox is your program's interface to the user, the Operating System
is its interface to the Macintosh. '

The Memory Manager dynamically allocates and releases memory for use by
applications and by the other parts of the Operating System. Most of
the memory that you·r pT:ogram uses is in an area called .the heap;' tne
code of the program itself occupies space in the heap. Memory space in
the heap must be obtained from the Memory Manager.

The Segment Loader is the part of the Operating System that loads
program code into memory to be executed. Your program can be loaded
all at once, or you can divide it up into dynamically loaded segments
to economize on memory usage. The Segment Loader also serves as a
bridge between the Finder and your application, letting you know
whether the application has to open or print a document on the desktop
when it starts up.

Low-level, hardware-related events such as mouse-button presses and
keystrokes are reported by the Operating System Event Manager. (The
Toolbox Event Manager then passes them to the application, along with
higher-levei, software-generated events added at the Toolbox level.)
Your program will ordinarily deal only with the Toolbox Event Manager
and rarely call the Operating System Event ~nager directly.

File I/O is supported by the File Manager, and device I/O by the Device
Manager. The task of making the various types of devices present the
same interface to the application is performed by specialized device
drivers. The Operating System includes three built-in drivers:

- The Disk Driver controls data storage and retrieval on 3 1/2-inch
diskS:--

- The Spund Driver controls sound generation, including music
composed of up to four simultaneous tones.

- The Serial Driver reads and writes asynchronous data through the
two serial ports, providing communication between applications and
serial peripheral,devices such as a modem or printer.

9/10/84 Rose /ROAD.MAP/ROAD.2

OVERVIEW OF TIlE SOFTWARE 11

The above drivers are all in ROM; other drivers are RAM-based. There's
a Serial Driver in RAM as well as the one in ROM, and there's a Printer
Driver in aAM that enables applications to print information on any
variety of p'rinter via the same interface (called the Printing
Manager). The AppleBus Manager is an interface to a pair of RAM
drivers that enable programs to send and receive information via an
AppleBus network. More RAM drivers can be added independently or built
on the existing drivers. For example, the Printer Driver was built on
the Serial Driver, and a music driver could be built on the Sound
Driver.

The Macintosh video circuitry generates a vertical retrace interrupt 60
times a second. An application can schedule routines to be executed at
regular intervals based on this "heartbeat" of the system. The
Vertical Retrace Manager handles the scheduling and execution of tasks
during the vertical retrace interrupt.

'>

If a fatal error occurs while your application is running (for example,
if it runs out of memory), the System Er.ror lfandler assumes control.
The System Error Handler displays a box containing an error message and
provides a mechanism for the user to start up the system again or
resume execution of the application.

The Operating System Utilities perform miscellaneous operations such as
getting the date and time, finding out the user's preferred speaker
volume and other preferences~ and doing simple string comparison.
(More sophisticated string comparison routines are available in the
International Utilities Package.) ,

Finally, there are three Macintosh packages that perform low-level
operations: the Disk Initialization Package, which the Standard File
Package calls to initialize and name disks; the Floating-Point
Arithmetic Package; and the Transcendental Functions Package.

A SIMPLE EXAMPLE PROGRAM

To illustrate various commonly used parts of the software, this section
presents an extremely simple example of a Macintosh application
program. Though too simple to be practical, this example shows the
overall structure that every application program will have, and it does
many of the basic things every application will do. By looking it
over, you can become more familiar with the software and see how your
own program code will be structured.

The example program's source code is shown in Figure 4, which begins on
page 15. A lot of comments are included so that you can see which part
of the- Toolbox or Operating System is being called and what operation
is being performed. These comments, and those that follow below, may
contain terms that are unfamiliar to you, but for now just read along
to get the ge~eral idea. All the terms are explained at length within
Inside Macintosh. If yo~ want more information right away, you can
look up the terms in the Glossary or the Index *** (currently the

9/ 10/84 Ros~ /ROAD.MAP/ROAD.3

12 Inside Macintosh Road Map

individual glossaries in the various manuals, and the manual Index to
Technical Documentation) ***
The application, called Samp, displays a single, fixed-size window in
which the user can enter and edit text (see Figure 3). It has three
menus: the standard Apple menu, from which desk accessories can be
chosen; a File menu, containing only a Quit command; and an Edit menu,
containing the standard editing commands Undo, Cut, Copy, Paste, and
Clear. The Backspace key may be used tq delete, and Shift-clicking
will extend or -shorten a selection. The user can move the document
window around the desktop by dragging it by its title bar.

Cut
Copy
Paste
Clear ,

Figure 3. The Samp Application

The Undo command doesn't work in the application's document window, but
it and all the other editing commands do work in any desk accessories
that allow them (Note Pad, for example). Some standard features this
simple example doesn't support are as follows:

- Text cannot be cut (or copied) and pasted between the document and
a desk accessory.

- The pointer remains an arrow rather than changing to an 'I-beam
within the document.

- The standard keyboard equiva1ents--Command-Z, X, C, and V for
Undo, Cut, Copy, and Paste--a-ren't in the Edit menu. They won't
work in the document window (but they will work in desk
accessories that allow those commands).

Because the File menu contains only a Quit command, the document can't
be saved or printed. Also, the application doesn't have an "About

9/10/84 Rose /ROAD.MAP/ROAD.3

A SIMPLE EXAMPLE PROGRAM 13

Samp" command as the first item in its Apple menu, nor does it present
any dialog'Doxes or al~rts. All of the'se features and more are
illustrated in programs in the Sample Macintosh Programs manual ***
(forthcoming) ***.

In addition to the code shown in Figure 4, the Samp application has a
resource file that includes the data listed below. The program uses
the numbers in the second column to identify the resources; for
example, it makes a Menu Manager call td get menu number 128 from the
resource file.

Resource
Menu

Menu
Menu

Window
template

Resource 'ID
128

129
130

128

Description
Menu with the apple symbol as its
title and no commands in it
File menu with one command, Quit
Edit menu with the commands Undo
(dimmed), Cut, Copy, Paste, and
Clear, in that order, with a
dividing line between Undo and Cut
Document window without a size box;
top left corn~r of (50,40) on
QuickDraw's coordinate 'plane,
bottom right corner of (300,450);
title "A Sample"; no close box

Each menu resource also contains a "menu iD" that's used to identify
the menu when the user chooses a command from it; for all three menus,
this ID is the same as the resource ID.

(note)
To create a resource file with the above contents, you
can use the Resource Editor *** (for now, the Resource
Compiler) *** or any similar program that may be
available on the development system you're using; for
more information, see the documentation for that program.
*** The Resource Compiler is documented in Putting
Together ~ Macintosh application. The Resource Compiler
input file for the Samp application is shown in the
appendix of this manual. All these ftles will eventually
be provided to'developers by Macintosh Technical Support.

The program-starts with a USES clause that specifies all the necessary
Pascal interface files. (The names shown are for the Lisa Workshop
development system, and may be different for other systems.) This is
followed by declarations of some useful constants, to make the source
code more readable. Then there are a number of variable declarations,
some having simple Pascal data types and others with data types defined
in the Pascal interface files '(like Rect and WindowPtr). Variables
used in the program that aren't declared here are global variables
defined in the interface to QuickDraw.

The variable declarations are followed by two procedure declarations:
_SetUpMenus and DoCommand. You can understand them better after looking

9/10/84 Rose /ROAD.MAP/ROAD.3

14 Inside Macintosh Road Map

at the main program and seeing where they're called.

The program begins with a standard initialization sequence. Every
application will need to do this same initialization (in the order
shown), or something close to it.

Additional initialization needed by the program follows. This includes
setting up the menus and the menu bar (by calling SetUpMenus) and
~reating the application's document window (reading its description
from the resource file and displaying it on the screen).

The heart of every application program is .its maIn event loop, which
repeatedly calls the Toolbox Event Manager to get events and then
responds to them as appropriate. The most common event is a press of
the mouse button; depending on where it was pressed, as reported by the
Window Manager, the sample program may execute a command, move the
document window, make the window active, or pass the event on to a desk
accessory. The DoCommand procedure takes care of executing a command;
it looks at information received by the Menu Manager to determine which
command to execute.

Besides events reSUlting dire~tly from'user actions such as pressing
the mouse button or a key on the keyboard, events are detected by the
Window Manager as a side effect of those actions. For example, when a
window changes from active to inactive or vice versa, the Window
Manager tells the Toolbox Event Manager to report it to the application
program. A similar process happens when all or part of a window needs
to be updated (redrawn). The internal mechanism in each case is
invisible to the program, which simply responds to the event when
notified.

The main event loop terminates when the user takes some action to leave
the program--in this case, when the Quit command is chosen.

That ,Is it! Of course, the program structure and level of detail will
get more complicated as the application becomes more complex, and every
actual application will be more complex than this one. But each will
be based on the structure illustrated here.

9/10/84 Rose /ROAD.MAP/ROAD.3

A SIMPLE EXAMPLE PROGRAM 15

PROGrulK SCIl'lp;

{ SaMP -- A snaIl sanple application written in Pascal by Macintosh User Education}
{ I t displays a single, f~xed-size window in which the user can enter and edi t text. }

USES fSU Obj/Mel'lTypes } MenTypes, {basic Me1'lOry Manager data types}
SU Obj/QuickDraw} QuickDraw, {interface to QuickDraw}
SU Obj/OSIntf } OSIntf, {interface to the Operating Systen}

{SU Obj/Toollntf } ToolIntf; {interface to the Toolbox}

CONST appleID = 128;
fileID = 129;
edi tID = 130;
appleK := 1;
fileM = 2;

{resource IDs/l'lenu IDs for Apple, File, and Edit l'lenus}

{index for each nenu in array of l'lenu handles}

{total OUl'lber of l'lenus}
editM = J;
l'lenuCount = J;
windowID = 128;
undoCo1'Jl'1and = 1;
cutCo1'J1'1and = J;
copyCo1'J1'1and = 4;

{resource ID for application's window}
{l'lenu i ten nUl'lbers identifying cOl'1l'1ands in Edit l'lenu}

pasteCoI'lI'1and = 5;,
clearCofll'land = 6;

VAR ~lyMenus: ARRRY [1. .1'lenuCount] OF MenuHandle;
.dragRect, txRect: Rect;
extended, doneFlag: BOOLEAN;
l'lyEvent: EventRecord;
wRecord: WindowRecord;
AyWindow, whichWindow:' WindowPtr;
textH: TEHandle;

PROCEDURE SetUpMenus;
{ Set up l'lenus and l'lenu bar }

VAR i: INTEGER;

BEGIN '
l'lyMenus[appleM] := GetMenu(appleID); {read Apple l'lenu frol'l resource file} ,
AdclResMenu(~lyMenus[appleK], 'DRVR'); {add desk accessory nanes to Rpple l'lenu}
l'lyMenus[fileK) := GetMenu(fileID); {read File nenu frol'l resource file}
l'lyMenus[editM] := GetMenu(editID); {read Edit l'1enu frol'l resource file}
FOR i:=1 TO l'lenuCount DO InsertMenu(AyMenus[i],O); {installl'lenus in l'lenu bar }
DrawMenuBar; { and draw l'1enu bar}
END; {of SetUpMenus}

PROCEDURE DoCo1'l:l'1and (nResul t: LONGINT);
{ Execute c01'Jl'1and specified by nResult, the result of MenuSelect }

VAR thelten,' tenp: INTEGER;
nCIl'le: ~tr255;

BEGIN
theItel'1 : = LoWord(rlResul t);

Figure 4.

9/10/84 Rose

{call Toolbox Utility routine to get}
{ nenu iten nUMber fron low-order word}

Example Program

/ROAD.MAP/ROAD.3

16 Inside Macintosh R02d Map

casE HiWord(I'lResult) OF {case on nenu ID in high-order word}

appleID:
BEGIN
GetIten(nyMenus[appleM],theIteM,nane);
tenp := OpenDeskRcc(nane);
SetPort(nyWindow);

call Menu Manager to get desk accessory }
nane, and call Desk Manager to open }
accessory (OpenDeskRcc;: result not used)}

call OuickDraw to restore application }
'window as grafPort to draw in (nay have }
been changed during OpenDeskRcc)}

END; {of appleID}

fileID:
doneFlag := TRUE; {quit (nain loop repeats until doneFlag is TRUE)}

editID:
BEGIN {call Desk Manager to handle editing cOHnan~ if }
IF NOT Syster~dit(theltel'l-l) \ { desk accessory window is the active window}

THEN ' {application window is the active window}
CASE theltel'l OF {case on nenu iten (connand) n~er}

cutCol'll'land:
copyCoMand:
pas teCol'l1'land:
clearCol'l1'land:

reCut (textH);
recopy (textH);
TEPaste(textH);
TEDelete(textH);

{call TextEdi t to handle cOl'l1'land}

END; {o(iten case}
END; {of editID} .

END; {of I'lenu case}
HiliteMenu(O);

END; {of DoCo1'l1'1and}

BEGIN { l'lain progran }
1nitGraf(wthePort);
Ini tFonts;
FlushEvents(everyEvent,O);
1ni tWindows;
1nitMenus;
TElni t;
1nitDialogs(NIL);
lnitCursor;

{to indicate cOl'lpletion of cOMand, call'}
{ Menu Manager to unhighlight I'lenu title }
{ (highlighted by MenuSelect)}

{initialize QuickDraw}
{initialize Font Manager}
{callOS Event Manager to discard any previous events}
{initialize Window Manager}
{initialize Menu Manager}
{initialize TextEdit}
{initialize Dialog Manager}
{call OuickDraw to I'lake cursor (pointer) an arrow}

SetUpMenus; {set up I'lenus and I'lenu bar} \
WITH screenBi ts. bounds DO {call OuickDraw to set dragging bO\mdaries; ensure at }

SetRect(dragRect,4,24,right-4,botton-4); { least 4 by 4 pixels will rel'lain visible}
doneFlag : = FALSE; {flag to detect when Quit cOl'Jl'land is chosen}

l'lyWindow := GetNewYindow(windowID,wwRecord,POINTER(-l»; {put up application win~ow}
SetPort(l'lyYindow); {call OuickDraw to set current grafPort to this window}
txRect := thePort-.portRect; {rectangle for text in window; call OuickDraw to bring}
InsetRect(txRect,4,O); { it in 4 pixels fron left and right edges of window}
textH := TENew(txRect,txRect);, {call TextEdit to prepare for receiving text}

{ Main event loop }
REPERT

SystenTask;
TE1dle(textH);

9/10/84 Rose

{call Desk Manager to perforl'l any periodic }
{ actions defined for desk accessories}
{call TextEdi t to nake vertical bar blink}

Figure 4. ,Example Program (continued)

'/ROAD.MAP/ROAD.3

A SIMPLE EXAMPLE PROGRAM 17

IF GetNextEvent(everyEvent,nyEvent) {call Toolbox Event Manager to get the next}
!HEN { event that the application should handle}

CASE l'ly£Vent. what OF {case on event type} .

1'1OuseDown: {1'1Ouse button down: call Window Manager to learn where}
CRSE FindYindow(l'lyEvent.where,whichWindow) OF

inMenuBar: {l'lenu bar: call Menu Manager to learn which comand; }
DoCol'lftand(MenuSelect(nyEvent.where»); { then execute it}

inSysWindow: {desk accessory window: call Desk Manager to handle it}
SystenClick(nyEvent,whichWindow); .

inDrag: {ti tIe bar: call Window Manager to drag}
DragWindow(whichWindow, l'lyEvent. where, dragRect);

inContent: {body of application window: }

I call Window Manager to check whether }
it's the active window and l'lake it}
active if not }

BEGIN
IF whichWindow <> FrontWindow

THEN SelectWindow(whichWindow)
ELSE

BEGIN {i t' s already active: call QuickDraw to }
GlobalToLocal(l'lyEvent. where); { convert to window coordinates for}

{ TEClick, use Toolbox Utility BitHnd to }
ex~ended· : ~ Bi tHnd(nyEvent.1'1Odifiers, shi.ftKey) <> Q~ {test for Shift }
TEClick(l'lyEvent.whe~e,extended,textH); {key down,' and call TextEdit }
END; { to process the event}

END; {of inContent}

END; {~f 1'1OuseDown}

keyDown, autoKey: {key pressed: pass character to TextEdi t}
IEKey(CHR(BitAnd(1'1yEvent.l'lessage,charCodeMask),textH);

activateEvt:
BEGIN
IF BitHnd(nyEvent.1'1Odifiers,activeFlag) <> 0 .

THEN {application window is becoAing active: }
BEGIN { call TextEdi t to highlight selection }
TEHctivate(textH); { or display blinking vertical bar, and call}
DisableI tel'l(nyMenus [edi tM], undoComand); {Menu Manager to disable }
END { Undo (since application doesn't support Undo)}

ELSE '
BEGIN . {application window is becoAing inactive: }
TEDeactivate(textH); {unhighlight selection or re1'1Ove blinking}
EnableIte1'1(nyMenus[editM], undoCo1'J1lland); {vertical bar, and enable}
END; { Undo (since desk accessory 1'1ay support it)}

END; {of activateEvt} .

updateEvt:
BEGIN
BeginUpdate(WindowPtr(1'1yEvent.l'lessage»;
EraseRect(thePortA.portRect);,
TEUpdate(thePort A.portRect6 textH);
EndUpdate(WindowPtr(AYEvent.1'1essage»;
END; {of updateEvt}

END; {of event case}

UNTIL doneFlag;
END. .

{window appearance needs updating}

{call Window Manager to begin update}
{call QuickDraw to erase text area}
{call TextEdi t to update the text}
{call Window Manager to end update}

Figure 4. Example Program (continued)

9/10/84 Rose /ROAD.MAP/ROAD.3

18 Inside Macintosh Road Map

WHERE TO GO FROM HERE

*** This section refers to "manuals" for t-he time being; when the
individual manuals b'ecome chapters of Inside M~iclntosh, this will be
changed to "chapters". It also refers to the "order" of the manuals;
this means the order of the documentation when it's combined into a
single manual. For a list of what's been distributed so far and how it
will be ordered, see the cover page of this manual. Anything not
listed there'hasn't been distributed yet by Macintosh User Education,
but programmer's notes or other preliminary documentation may be
available. ***

This section contains important directions for every reader of Inside
Macintosh. It will help you figure out which manuals to read next.

The Inside Macintosh documentation is ordered in such a way that you
can follow it if you read through it sequentially. Forward references
are given wherever necessary to any additional information that you'll
need in order to understand what's being discussed. Special-purpose
Information that can possibly be skipped is indicated as such. Most
likely you won't need to read everything in each manual and can even
skip entire manuals. -

You should begin by reading the following:

1. Macintosh User Interface Guidelines. All Macintosh applications
should follow these guidelines to ensure that the end user is
presented w~th a consistent, familiar interface.

2. Macintosh Memory Management: An Introduction.

3. Programming Macintosh Applications in Assembly Language, if you're
using assembly language. Depending on the debugging tools
available on the development system you're using, it may also be
helpful or necessary for Pascal programmers to read this manual.
You'll also have to read it if you're creating your own
development system and want to know how to write interfaces to the
routines.

4. The documentation of the parts of the Toolbox that deal with the
fundamental aspects of the user interface: the Resource Manager,
QuickDraw, the Toolbox Event Manager, the Window Manager, and the
Menu Manager.

Read the other manuals if you're interested in what they discuss, which
you should be able to tell from the overviews in this "road map" and
from the introductions to the manuals themselves. Each manual's
introduction will also tell you what you should already know before
reading that manual.

When you're ready to try something out, refer to the appropriate
documentation for the development system you'll be using. *** (Lisa
Workshop users, see Putting Together ~ Macintosh Application.) ***

9/10/84 Rose /ROAD.MAP/ROAD.3

APPENDIX: RESOURCE COMPILER INPUT FOR EXAMPLE PROGRAM 19

APPENDIX: RESOURCE COMPILER INPUT FOR EXAMPLE PROGRAM

For Lisa Workshop users, this appendix shows the Resource Compiler
input file used with the example program presented earlier. For more
information on the format of the file, see Putting Together ~ Macintosh
Application.

(note)
This entire appendix is temporary; it will not be part of
the final Inside Macintosh manual, because all the
information in that manual will be independent of the
development system being used. Authors of the
documentation for a particular development system may
choose to show how the resource file for Samp would be
created on that system~

*
*

SampR -- Resource Compiler input file for Samp application
written by Macintosh User Educarion

Work/Samp.Rsrc

Type MENU
,128 (4)

* the apple symbol
\14

,129 (4)
File

Quit

,130 (4)
Edit

(Undo
(-
Cut
Copy
Paste
Clear

Type WIND
,128 (36)
A Sample
50 40 300 450
Vist ble NoGoAway
4
o

Type SAMP = STR
,0

Samp Version 1.0 -- September 4, 1984

Type CODE
Work/SampL,0

9/10/84 Rose IROAD.MAP/ROAD.3

20 Inside Macintosh Road Map

GLOSSARY

AppleBus Manager: An interface to a pair of RAM drivers that enable
programs to send and receive information via an AppleBus network.

Binary-Decimal Conversion Package: A Macintosh package for converting
integers to decimal strings and vice versa.

Control Manager: The part of the Toolbox that provides routines for
creating and manipulating controls (such as buttons, check boxes, and
scroll bars).

Desk Manager: The part of the Toolbox that supports the use of desk
accessories from an application.

device driver: A piece of software that controls a peripheral device
and makes it present a standard interface to the application.

Device Manager: The part of the Operating System that supports device
I/O.

Dialog Manager: The part of the Toolbox that provides routines for
implementing dialogs and alerts.

Disk Driver: The device driver that controls data storage and
retrieval on 3 l/2-inch disks.

Disk Inityalization Package: A Macintosh package for initializing and
naming new disks; called by the Standard File Package.

Event Manager: See Toolbox Event Manager or Operating System Event
Manager.

File Manager: The part of the Operating System that supports file I/O.

Font Manager: The part of the Toolbox that supports the use of various
character fonts for QuickDraw when it draws text.

heap: An area of memory. in which space can be allocated and released
on demand, using the Memory Manager •.

In~ernational Utilities Package: A Macintosh package that gives you
access to country-dependent information such as the formats for
numbers, currency, dates, and times.

main event loop: In a standard Macintosh application program, a loop
that repeatedly calls the Toolbox Event Manager to get events and then
responds to them as appropriate.

Memory Manager: The part of the Operating System that dynamically
allocates and releases memory space in the heap.

9/10/84 Rose IROAD.MAP/R9AD.G

GLOSSARY 21

Menu Manager: The part of the Toolbox that deals with setting up menus
and lettiPg the user_choose from them.

Operating System: The lowest-level software in the Macintosh. It does
basic tasks such as I/O, memory management, and interrupt handling.

Operating System Event Manager: The part of the Operating System that
reports hardware-related events such as mouse-button presses and
keystrokes.

Operating System Utilities: Operating System routines that perform
miscellaneous tasks such as getting the date and time, finding out the _
user's preferred speaker volume and other preferences, and doing simple
string comparison.

package: A set of routines and data types that's stored as a resource
and brought into memory only when needed.

Package Manager: The part of the Toolbox that lets you access
Macintosh RAM-based packages.

Printer Driver: The device driver for the currently installed printer.

Printing Manager: The routines and data types that enable applications
to communicate with the Printer Driver to print on any variety of
printer via the same interface.

QuickDraw: The part of the Toolbox that performs all graphic
operations on the Macintosh screen.

resource: Data used by an application (such as menus, ,fonts, and
icons), and also the application code itself.

Resource Manager: The part of the Toolbox that reads and writes
resources.

Scrap Manager: The part of the Toolbox that enables cutting and
pasting between applications, desk accessories, or an application and a
desk accessory.

Segment Loader: The part of the Operating System that loads the code
of/an application into memory, either as a single unit or divided into
dynamically loaded segments.

Serial Driver: The device driver that controls communication, via
serial ports, between applications and serial peripheral devices.

Sound Driver: The device driver that controls sound generation in an
application.

Standard File Package: A Macintosh package for presenting the standard
user interface when a file is to be saved or opened.

9/10/84 Rose /ROAD.MAP/ROAD.G

22 Inside Macintosh Road Map

System Error Handler: The part of the Operating System that assumes
control when a fatal error (such as running out of ~emory) occurs.

TextEdit: The part of the Toolbox that support~ the basic text entry
and editing capabilities of a standard Macintosh application.

Toolbox: Same as User Interface Toolbox.

Toolbox Event Manager: The part of the Toolbox that allows your
application program to monitor the us~r's ~ctions with the mouse,
keyboard, and keyp~d.

Toolbox Utilities: The part of the Toolbox that performs generally
useful operations such as fixed-point arithmetic, string manipulation,
and logical operations on bits.

User Interface Toolbox: The software in the Macintosh ROM that helps
you implement the standard Macintosh user interface in your
application.

vertical retrace interrupt: An interrupt generated 60 times a second
by the Macintosh video circuitry while the beam of the display tube
returns from the bottom of. the screen to the top.

Vertical Retrace Manager: The part of the Operating System that ,
\ ~

schedules and executes tasks during the vertical retrace interrupt.

Window Manager: The part of the Toolbox that provides routines for
creating and manipulating windows.

9/10/84 Rose /ROAD.MAP/ROAD.G

Macintosh User Interface Guidelines

Modification History: First Draft
Rearranged and Revised
Total Redesign
Second Draft Prerelease
Second Draft
Third Draft
Fourth Draft

MACINTOSH USER EDUCATION

/INTF/USER

Joanna Hoffman
Chris Espinosa
Chris Espinosa
Chris Espinosa
Chris Espinosa
Andy Averill
Andy Averill

3/17/82
5/11/82
5/21/82
7/11/82

10/11/82
7/31/84

11/30/84

ABSTRACT

The User Interface Guidelines describe the most basic common features
of Macintosh applications. Unlike the rest of Inside Macintosh, t.hese
guidelines describe these features as seen by the user~

Since the last draft, this manual has been reorganized and mostly
rewritten. Some new recommendations have been added, and some previous
recommendations have been clarified or amplified. '

)

2 User Interface Guidelines

TABLE OF CONTENTS

4 About This Manual
4 Introduction
5 Avoiding Modes
7 Types of Applications
8 Using Graphics
10 Icons
10 Palettes
10 Components of the Macintosh System
11 The Keyboard
12 Character Keys
12 Modifier Keys: Shift, Caps Lock, Option, and Command
13 Typeahead and Auto-Repeat

-14 Versions of the Keyboard
14 The Numeric Keypad ~
15 The Mouse
15 Mouse Actions
16 Multiple-Clicking
17 Changing Pointer Shapes
17 Selecting
18 Selection by Clicking
19 Range Selection
19 Extending a Selection'
20 Making a Discontinuous Selection
21 Selecting Text
22 Insertion Point
22 Selecting Words
23 Selecting a Range of Text
24 Graphics Selections
24 Selections in Arrays
25 Windows
26 Multiple Windows
27 Opening and Closing Windows
28 The Active Window
28 Moving a Window
28 Changing the Size of a Window
29 Scroll Bars
30 Automatic Scrolling
31 Splitting a Window
33 Panels
33 Commands
34 The Menu Bar
34 Choosing a Menu Command
35 Appearance of Menu Commands
35 Command Groups
36 Toggles
36 Special Visual Features
37 Standard Menus
37 The Apple Menu
38 The File Menu '
39 New
39 Open

40
40
41
41
41
41
41
41
42
42
43
44
44
44
44
44
45
45
45
45
46
47
47
47
47
47
49
50
50
51
51
52
52
53
54
54
56

Close
Save
Save As
Revert to Saved
Page Setup
Print
Quit
Other Commands

The Edit Menu
The Clipboard
Undo
Cut
Copy
Paste
Clear
Show Clipboard
Select All

Font-Related Menus
Font Menu
FontSize Menu
Style Menu

Text Editi~g
Inserting 'Text
Backspace
Replacing Text
Intelligent Cut and Paste
Editing Fields

Dialogs and Alerts
Controls

Buttons

\

Check Boxes and Radio Buttons
Dials

Dialogs
Modal Dialog Boxes
Modeless Dialog Boxes

Alerts

TABLE OF CONTENTS 3

Do's and Don'ts of a Friendly User Interface

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

4 User I~terface Guidelines

ABOUT THI S MANUAL

This manual describes the Macintosh user interface, for the benefit of
people who want to develop Macintosh applications. *** Eventually it
will become part of the comprehensive Inside Macintosh manual. ***
More details about many of these features can be found in the "About"
sections of the other chapters of Inside Macintosh.

Unlike the rest of Inside Macintosh, this manual describes applications
from the outside, not the inside. The terminology used is the
terminology users are familiar with, which is not necessarily the same
as that used elsewhere in Inside Macintosh.

The Macintosh user interface consists of those features that are
generally applicable to a variety of applications. Not all of the
features are -found in every application. In fact, some features are
hypothetical, and may not be found in any current applications.

\,)

The best time to familiarize yourself with the user interface is before
beginning to design an application. Good application design on the
Macintosh hap'pens when a developer has absorbed the spirit as w~ll as
the details of the user inte'rface.

Before reading this manual, you should have read Inside Macintosh: A
Road Map and have som~ experience using one or more applications,
preferably one each ofa word processor, spreadsheet or data base, and
graphics application. You should also have read Macintosh; the owner·s
guide, or at least be familiar with the terminology used in that
manual.

INTRODUCTION

The Macintosh is designed to appeal to an audience of nonprogrammers,
including people who have previously feared and distrusted computers.
To achieve this goal, Macintosh applications should be easy to learn
and to use. To help people feel more comfortable with the
applications, the applic-ations should build on skills that people
already have, not force them to learn new ones. The user should feel
in control of the computer, not the other way around. This is achieved
in applications that embody three qualities: ~esponsiveness,

permissiveness, and consistency.

Responsiveness means that the user's actions tend to have direct
results. The user should be able to accomplish what needs to be done
spontaneously and intuitively, rather than having to think: "Let's
see; to do C, first I have to do A and B and then ••• ". For example,
with pull-down menus, the user can choose the desired command directly
and instantaneously. This is a typical Macintosh operation: The user
moves the pointer to a location on the screen and presses the mouse
button.

11/30/84 Averill
\

/INTF/INTRO

INTRODUCTION 5

Permissiveness means that the application tends to allow the user to do
anything reasonable. The user, not the system, decides what to do
next. Also, error messages tend to come up infrequently. If the user
is constantly subjected to a barrage of error messages, something is
wrong somewhere.

The most important way in which an application is permissive is ,in
avoiding modes., This idea is so important that it's 'dealt wi,th in a
separate, section, "Avoiding Modes", below.

The third and most important principle is consistency. Since Ma'cintosh
users usually divide their time among several applications, they would
be confused and irritated if they had to learn a completely new ,
interface for each application. The main purpose of this manual is to
describe the shared interface ideas of Macintosh applications, so that
developers of new applications can gain leverage from the time spent
developing and testing existing applications.

Fortunately, consistency is easier to achieve on the Macintosh than on
many other computers. This is because many of the routines used to
implement the user interface are supplied in the Macintosh Operating

(

System and User Interface Toolbox. However, you should be aware that
impiementing the use.r interface guidelines in their full glory often
requires writing additional code that isn't supplied.

Of course, you shouldn't feel that· you're restricted to, using existing
features. The Macintosh is a growing system, and new ideas are
essential. But the bread-and-butter features, the kind that every
application has, should certainly work the same way so that the user
can move easily back and forth between applications. The best rule to
follow is that if your application has a feature that's described in
these guidelines, you should' implement the feature 'exactly as the
guidelines describe it. It's better to do something completely
different than to half-agre~ with the guidelines.

Illustrations of most of the features described in this manual can be
found in various already-released applications. However, there is
probably no one application that illustrates' these guidelines in every
particular. Although it's useful and important for you to get the
feeling of the Macintosh user interface by looking at existing
applications, the guidelines in this manual are the ultimate authority.
Wherever an existing application disagrees with the guidelines, follow
the guidelines.

Avoiding Modes

"But, gentlemen, you overdo the mode."

11/30/84 Averill

-- John Dryden, The
Assignation, or Love in ~
Nunnery, 1672

/INTF/INTRO

6 User Interface Guidelines

A mode is a part of an application that the user has to formally enter
and leave, and that restricts the operations that can be performed
while it's in effect. Since people don't usually operate modally in
real life, having to deal with modes in computer software reinforces
the idea that computers are unnatural and unfriendly.

Modes are most confusing when you're in the wrong one. Unfortunately,
this is the most common case. Being in a mode is confusing because it
makes future actions contingent upon past ones; it changes the behavior
of familiar objects and commands; and it makes habitual actions .cause
unexpected results.

It's tempting to use modes in a Macintosh application" since most
existing software leans on them heavily. If you yield to the
temptation too frequently, however, users. will consider spending time
with your application a chore rather than a satisfying experience.

This is not to say that modes are never used in Macintosh applications.
Sometimes a mode is the best way out of a particular problem. Most of
these modes fall into one of the following categories:

- Long-term modes with. a procedural basis,. such as doing word
processing as opposed to graphics editing. Each application
program is a mode in this sense.

- Short-term "spring-loaded" modes, in which the user is constantly
doing something to perpetuate the mode. Holding down the mouse
button or a key is the most common example of this kind of mode.

- Alert modes; where the user must rectify an unusual situation
before proceeding. These modes should be kept to a minimum.

Other modes are acceptable if they meet one of the following
requirements:

- They emulate a familiar real-life model that is itself modal, like
picking up different-sized paintbrushes in a graphics editor.
MacPaint and other palette-based applications are examples of this
use of modes.

- They change only the attributes of something, and not its
behavior, like the boldface and underline modes of text entry.

- They block most other normal operations of the ~ystem to emphasize
the modality, as in error conditions incurable through software
("There's no disk in the disk drive", for example).

If an appl~cation uses modes, there must be a clear visual indication
of the current mode, and the indication should be. near the object being
most affected by the mode. It should also be very easy to get into or
out of the mode (such as by clicking on a palette symbol).

11/30/84 Averill /INTF/INTRO

TYPES OF APPLICATIONS 7

TYPES OF APPLICATIONS

Everything on a Macintosh screen is displayed graphically; the
Macintosh has no text mode. Nevertheless, it's useful to make a
distinction among three types of 'objects that an application deals
with: text, graphics, and arrays. Examples of each of these are shown
in Figure 1.

T he rest to some fei nt meani ng make pretence
But Shedvell never deviates into sense.
Some beams ,of 'w'it on other soul,- me", fall,
Stri ke throuoh end make a 1 ucid interval;
But Shactw'ell"s genui ne n19ht admits no ray,
His risl ng fogs prevail upon the de",.

Text

Advertising 132.9

Manufacturi flCJ 121.3

R&D 18.7

I ntere,t 12.2

Total 285.1

Figure 1. Ways of Structuring Information

11/30/84 Averill /INTF/APPS

8 User Interface Guidelines

Text can be arranged in a variety of ways on the screen. Some
applications, ~uch as word processors, might consist of nothing but
text, while others, such as graphics-oriented applications, use text
almost incidentally. It's useful to consider all the text appearing
together in a particular context as a block of text. The size of the
block can range from a single field, as in a dialog box, to the whole
document, as in a word processor. Regardless of its size or
arrangement, the application sees each block as a one-dimensional
string of characters. Text is edited the same way regardless of where
it appears.

Graphics are pictures, drawn either by the user or by the application.
Graphics in a document tend to consist of discrete objects, which can
be selected individually. Graphics are discussed further below, under
"Using Graphics".

Arrays are one- or two-dimensional arrangements of fields. If the
array is one-dimensional, it's called a form; if it's two-dimensional
it's called a table. Each field, in turn, contains a collection of
information, usually text, but conceivably graphics. A table can be
readily identified on the screen, since it consists of rows and columns
of fields (ofteri·called cells), separated by. horizontal and vertical
lines. . A form is sO'mething you fill out, like a credi i-card '
application. A form may not be as obvious to the user as a table,
since the fields can be arranged in any appropriate way. Nevertheless,
the application regards the fields as in a definite iinear order.

Each of these three ways of presenting information retains its
integrity, regardless of the context in which it appears. For example,
a field in'an array can contain text. When the user is manipulating
the field as a whole, the field is treated as part 'of the array. When
the user wants to change the contents of the field, the contents are
edited in the same way as any other text.

Another case is text that appears in a graphics application. Depending
on the circumstances, the text can be treated as text or as graphics.
In MacDraw, for example, the way text is treated depends on which
palette symbol is in effect. If the text symbol is in effect, text can
be edited in the usual way, but cannot be moved around on the screen.
If the selecting arrow is in effect, a block of text can be moved
around, or even stretched or shrunk, but cannot be edited •

. USING GRAPHICS

A key feature of the Macintosh is its high-resolution graphics screen.
To use this screen to its best advantage, Macintosh applications use
graphics copiously, even in places where other applications use text.
As much as possible, all commands, features, and parameters of an
application, and all the user's data, appear as graphic objects on the
screen. Figure 2 shows some of the ways in which applications can use
graphics to communicate with the user.

11/30/84 Averill /INTF/GRAPHICS

USING GRAPHICS

'?
r-,
• • .. -~

0 A
& ::·m

Palette, with
paintbrush

" 17
symbol selected

~ LJ D D II
0 III

~ ~ (!g] rum
0 -.1.

e:? -
Icons a III

Figure 2. Objects on the Screen

Objects, whenever applicable, resemble the familiar material objects .,
they resemble. Objects that act like pushbuttons "light up" when
pressed; the Trash icon looks like a trash can.

Objects are designed to look good on the screen. Predefined graphics
patterns can give objects a shape and texture beyond simple line
graphics. Placing a drop-shadow slightly below and to the right of an
object can give it a three-dimensional appearance.

9

Generally, when the user clicks on an object, it's highlighted to
distinguish it from its peers. The most common way to show this
highlighting is by inverting. the object: reversing its black and white
pixels.' In some situations, other forms of highlighting, such as the
knobs used in MacDraw, may be more appropriate. The important thing is
that there should always be some sort of feedback, so that the user
knows that the click had an effect.

One special aspect of the appearance of a document on the screen is
visual fidelity. This principle is also known as "what you see is what
'you get". It primarily refers to printing: The version of a, document
shown on the screen should be ~s close as possible to its printed
version, taking into account inevitable differences due to different
media.

11/30/84 Averill /INTF/GRAPHICS

10 User Interface Guidelines

Icons

A fundamental object in Macintosh software is the icon, a small graphic
object that is usually symbolic of an operation or of a larger entity
such as a document.

Icons should be sprinkled liberally over the screen. Wherever an
e~planation or label is needed, first consider using an icon instead of
using text as the label or explanation. Icons not only contribute to
the clarity and attractiveness of the system, they don't need to be
translated into foreign languages.

Palettes

Some applications use palettes as a quick way for the user to change
from one operation to another. A palette is a collection of small
squares, each containing a symbol. A symbol can be an icon, a pattern,
a character, or just a drawing, that stands for an operation. When the
user clicks on one of the symbols, it's distinguished from the other
'Symbols, such as by highlighting, and-the previous symbol goes back to
its normal state.

Typically, the symbol that's selected dete'rmines what operations the
user can perform.~ Selecting a palette symbol puts the user into a
mode. This use of modes can be justified because changing from one
mode to another is almost instantaneous, and the use can always see at
a glance which mode is in effect. Like all modal features, palettes
should be used only when they're the most natural way to structure an
application.

A palette can either be part of a window (as in MacDraw), or a s~parate
window (as in MacPaint). ' Each system has its disadvantages. If the
palette is part of the window, then parts of the palette might be
c'oncealed if the user makes the window smalle'r. On the other hand t if
it's not part 'of the window, then it takes up extra space on the
desktop. If an application supports multiple documents open at the
same time, it might be better to put a separate palette in each window,
so that a different palette symbol can be in effect in each document.

COMPONENTS OF THE MACINTOSH SYSTEM

This section explains the relationship among the principal large-scale
components of the Macintosh system (from an external point of view).

The main vehicle for ~he interaction of the user and the system is the
application. Only one application is active at a time. When an
application is active, ,it's in control of all communications between
the user and the system. The application's menus are in the menu bar,
and the application is in charge of all windows as well as the desktop.

11/30/84 Averill /INTF/STRUC

,I

COMPONENTS OF THE MACINTOSH SYSTEM 11

To the user, the main unit of information is the document. Each
document is a unified collection of information--a single business
letter or spreadsheet or chart. A complex application, such as a data
base, might require several related documents. Some documents can be
processed by more than one application, but each document has a
principal application, which is usually the one that created it. The
other applicat~ons that process the document are called secondary
applications.

The only way the user can actually see the document (except by printing
it) is through a window. The application puts one or more windows on
the screen; each window shows a view of a document or of auxiliary
information used in processing the document. The part of the screen
underlying all the windows is called the desktop.

The user returns to the Finder to change applications. When the Finder
is active, if the user double-clicks on either the application's icon
or the icon of a document belonging to that application (or ,opens the
document or application by choosing Open from the File menu), the
application becomes active and displays the document window.

Internally, applications and documents are both kept in files.
However, the user never sees files as such, so they dofi't really enter
into the user interface.

THE KEYBOARD

The Macintosh keyboard is used primarily for entering text. Since
commands are chosen from menus or by clicking somewhere on the screen,
the keyboard is not needed for this function, although it can be used
for alternative ways to enter commands.

The keys on the keyboard are arranged in familiar typewriter fashion.
The U.S. keyboard is shown in Figure 3.

Figure 3. The Macintosh U.S. Keyboard

11/30/84 Averill /INTF/KEY

-\

12 User Interface Guidelines

There are two kinds of keys: character keys and modifier keys. A
character key sends characters to the computer; a modifier key alters
the meaning of a character key if it's held down while the character
key is pressed.

Character Keys

Character keys include keys for letters, numbers, and symbols, as well
as the space bar. ,If the user presses one of these keys while entering
text, the corresponding character is added to the text. Other keys,
such as the Enter, _Tab, Return, Backspace, and Clear keys, are also
considered character keys. However, the result of pressing one of
these keys depends on the application and the context.

The Enter key tells the application that the user is through entering
information in a particular area of the document, such as a field in an
array. Most applications add information to a document as soon as the
user types or draws it. However, the application may need to wait
until a whole collection of information is available before processing
it. In this cas~, the user presses the Enter key to signal that the
information is complete.

The Tab key is a signal to proceed: It signals movement tq the next
item in a sequence. Tab often implies an Enter operation before the
Tab motion is performed.

The Return key is another signal to proceed, but it defines a different
type of motion than Tab. A press of the Return key signals movement to
the leftmost field one step ~own (just like a carriage return on a
typewriter). Return can also imply an Enter operation before the
Return operation.

(note)
Return and Enter also dismiss dialog and alert boxes (see
"Dialogs and Alerts").

Backspace is used to delete text or graphics. The exact use of
Backspace in text is described in the section on text editing.

The Clear key on the keypad has the same effect as the Clear command in
the Edit menu; that is, it removes the selection from the document
without putting it on the Clipboard. This is also explained in the
section on text editing. Because the keypad is optional equipment, no
application should ever require use of the Clear key or any other key
on the pad.

Modifier Keys: Shift, Caps Lock, Option, and Command

There are six keys on the keyboard that change the interpretation of
keystrokes: two labeled Shift, two labeled Option, one labeled
Caps Lock, and one labeled with the "freeway interchange" symbol, which
is usually called the Command key. These keys change the

11/30/84 Averill /INTF/KEY

THE KEYBOARD 13

interpretation of keys_trokes, and sometimes mouse actions. When one of
these keys is held down, the effect of the other keys (or the mouse
button) may change.

The Shift and Option keys choose among the characters on each character
key. Shift gives the upper character on two-character keys, or the
uppercase letter on alphabetic keys. The Shift key is also used in
conjunction with the mouse for extending a selection; see "Selecting".
Option gives ~n alternate character set interpretation, including
international characters, special symbols, and so on. Shift and Option
can be used in combination.

Caps Lock latches in the down position when pressed, and releases when
pressed again. When down it gives the uppercase letter on alphabetic
keys. The operation of Caps Lock on alphabetic keys is parallel to
that of the Shift key, but the Caps Lock key has no effect whatsoever
on any of the other keys. Caps Lock and Option can be used in
combination on alphabetic keys.

Pressing a character key while holding down the Command key usually
tells the application to interpret the key as a command, not as a
character (see "Commands").

Typeahead and Auto-Repeat

If the user types when the Macintosh is unable to process the
keystrokes immediately, or types more quickly than the Macintosh can
handle, the extra keystrokes are queued, to be processed later. This
queuing is called typeahead. There's a limit to the number of
keystrokes that can be queued, but the limit is usually not a problem
unless the user types while the application is performing a lengthy
operation.

When the user holds down a character key for a certain amount of time,
it starts repeating automatically. The delays and the rates of
repetition are global preferences that the user can set through the
Control Panel desk accessory. An application can tell whether a series
of n keystrokes wa.s generated by auto-repeat or by pressing the same
key n times. It can choose to disregard keystrokes generated by
auto-repeat; this is usually a good idea for menu commands chosen with
the Command key.

Holding down a modifier -key has the same effect as pressing it once.
However, if the user holds down a modifier key and a charac ter key- at
the same time, the effect is the same as if the user held down the
modifier key while pressing the character key repeatedly.

Auto-repeat does not function during typeahead; it operates only when
the application is ready to accept keyboard input.

11/30/84 Averill /INTF/KEY

14 User Interface Guidelines

Versions of the Keyboard \

There are two physical versions of the keyboard: U.s. and European.
The European version has one more key than the U.s. version. The
standard layout on the European version is designed to conform to the
ISO (Internation Standards-Organization) standard; the U.S. key layout
mimics that of common American office typewriters. European keyboards
have different labels on the keys in different countries, but the
overall layout is the same.

The Numeric Keypad

An optional numeric keypad can be hooked up between the main unit and
the standard keyboard; see Figure 4.

Figure 4. Numeric Keypad

The keypad contains 18 keys, some of which duplicate keys on the main
keyboard, and some of which are unique to the keypad. The application-
can tell whether the keystrokes have come from the main keyboard or the
numeric keypad.

The character keys on the keypad are labeled with the digits 0 through
9, a decimal point, the four standard arithmetic operators for
addition, subtraction, multiplication, and division, and a comma. The
keypad also contains the Enter and Clear keys; it has no modifier keys.

The keys on the numeric keypad follow the same rules for typeahead and
auto-repeat as the main keyboard.

Four keys on the numeric keypad are labeled with "field-motion"
symbols: small rectangles with arrows pointing in various directions.

11/30/84 Averill /INTF/KEY

THE KEYBOARD 15

Some applications may use these keys to select objects in the direction
indicated by the key; the most likely use for this feature is in
tables. When a key is used this way, the user must use the Shift key
to obtain the four characters (+ * / ,) normally available on those
keys.

Since the numeric keypad is optional equipment, no application should
require it or any keys available on it in order to perform standard
functions. Specifically, since the Clear key is not available on the
main keyboard, a Clear function may be implemented with this key only
as the equivalent of the Clear command in the Edit menu.

THE MOUSE

The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There's a button
on the top of the mouse. The user holds the mouse and rolls it on a
flat, smooth surface. A pointer on the ,screen follows the motion of
the mouse.

Simply moving the mouse results only in a correspo~ding movement of the
pointer and no other action. Most actions take place when the user
positions the "hot spot" of the pointer over an object on the screen
and presses and releases the mouse button. The hot spot should be
intuitive, like the point of an arrow or the center of a crossbar.

Mouse Actions

The three basic mouse actions are:

- clicking: positioning the pointer with the mouse, and briefly
pressing and releasing the mouse button without moving the mouse

- pressing: positioning the pointer with the mouse, and holding
down the mouse button without moving the mouse

- dragging: positioning the pointer with the mouse, holding down
the mouse button, moving the mouse to a new position, and
releasing the button

The system provides "mouse-ahead"; that is, any mouse actions the user
performs when the application isn't ready to process them are saved in
a buffer and can be processed at the application's convenience.
Alternatively, the application can choose to ignore saved-up mouse
actions, but should do so only to protect the user from possibly
damaging consequences. -

Clicking something with the mouse performs an instantaneous action,
such as selecting a location within the user's document or activating
an object.

11/30/84 Averill /INTF/MOUSE

16 User Interface Guidelines

For certain kinds of objects, pressing on the object has the same
effect as clicking it repeatedly. For example, clicking a scroll arrow
causes a document to scroll one line; pressing on a scroll arrow causes
the document to scroll repeatedly until the mouse button is released or
the end of the document is reached.

Dragging can have different effects, depending on what's under the
pointer when the mouse button is pressed. The uses of dragging include
choosing a menu item, selecting a range of objects, moving an object
from one place to another, and shrinking or expanding an object.

Some objects, especially graphic objects, can be moved by dragging. In
this case, the application attaches a dotted outline of the object to
the pointer and redraws the outline continually as the user moves the
pointer. When the user releases the mouse button, the application
redraws the complete object at the new location.

An object being moved can be restricted to certain boundaries, such as
the edges of a window frame. If the user moves the pointer outside of
the boundaries, the 'application stops drawing the dotted outline of the
object. If the user releases ~he mouse button while the pointer is
outside of the boundaries, the object isn't moved. If, on the pther
hand, the user moves the pointer back within the boundaries again
before releasing the mouse bu~ton, the outline is drawn again.

In general, moving the mouse changes nothing except the location, and
possibly the shape, of the pointer. Pressing the mouse button
indicates the intention to do something, and releasing the button
completes the action. Pressing by itself should have no effect except
in well-defined areas, such.as scroll arrows, where it has the same
effect as repeated clicking.

Multiple-Clicking

A variant of clicking involves performing a second click shortly after
the end of an initial click. If the downstroke of the second click
follows the upstroke of the first by a short amount of time (as set by
the user in the Control Panel), and if the locations of the two clicks
are reasonably close together, the two clicks constitute a
double-click. Its most common use is as a faster or easier way to
perform an action that can also be performed in another way. For
example, clicking twice on an icon is a faster way 'to open it than
choosing Open; clicking twice on a word to select it is faster than
dragging through it.

To allow the software to distinguish efficiently between single clicks
and double-clicks on objects that respond to both, an operation invoked
by double-clicking an object must be an enhancement, superset, or
extension of the feature invoked by single-clicking that object.

Triple-clicking is also possible; it should similarly represent an
extension of a dQuble-click. _

11/30/84 Averill /INTF/MOUSE

THE MOUSE 17

Changing Pointer Shapes

The pointer may change shape to give feedback on the range of
activities that make sense in a particular area of the screen, in a .
current mode, or both.

- The result of any mouse action depends on the item under the
pointer when the mouse button is pressed. To emphasize the
differences among mouse actions, the pointer may assume different
appearances in different areas to indicate the actions possible in
each area.

- Where an application uses modes for different functions, the
pointer .can be a different shape in each mode. For example, in
MacPaint, the pointer shape always reflects the 'active palette
symbol.

Figure 5 shows some examples of pointers and their effect. An
application can design additional pointers for other contexts.

Pointer

I

+

SELECTING

Used for

Scroll ber and"other controls~ size box
tit leber, menu ber, desktop} and so on

Selecting text

Drawing, shrinking, or stretching
, graphic objects

Selecting fields in an array

Showingthet e lengthy operation is
in progress

Figure 5. Pointers

The user selects an object to distinguish it from other objects, just
be'fore performing an operation on it. Selecting the object of an
operation before identifying the operation is a fundamental
characteristic of the Macintosh system.

Selecting an object has no effect on the contents of a document.
Making a selection shouldn't commit the user to anything; the user is

11/30/84 Averill /INTF/SELECT

18 User Interface Guidelines

never penalized for making an fncorrect selection. The user fixes an
incorrect selection by making the' correct selection.

Although there is a variety of ways to select objects. they fall into
easily recognizable groups. Users get used to doing specific things to
seiect objects. and applications that use these methods are therefore
easier to learn. Some of, these methods apply to every type of
application. and some only to particular types of applications.

This section discusses first the general methods, and then the specific
methods that apply to text applications, graRhicsapplications, and
arrays. Figure 6 shows a comparison of some of the general methods.

Clicking on B
selects B

B

...
Range
selection 01
A through C
selects A, 8,
endC

I I~ ~
Extending
selection to E
selects A, a C"
end e

, _ .. ,

Figure 6. Selection Methods

Selection by Clicking

The most straightforward method of selecting an object is by clicking
on it once. Most things that can be selected ,in Macintosh applications
can be selected this way.

Some applications support selection by double-clicking and triple
clicking. As always with multiple clicks, the second click extends the
effect of the first click, and the third click extends the effect of
the second click. In the case of selection, this means that the second
click selects the same sort of thing as the first click, only more of
them. The same holds true for the third click.

For example, in text, the first click selects an insertion point, '
whereas the second click selects a whole word. The third click might
select a whole block or paragraph of text. In graphics, the first
click selects a single object, and double- and triple-clicks might
select increasingly larger groups of objects.

11/30/84 Averill - /INTF/SELECT

SELECTING 19

Range Selection

The user selects a range of objects by dragging through them. Although
the exact meaning of the selection depends on the type of application,
the procedure i~ always the same:

1. The user positions the pointer at one corner of the range and
presses the mouse button. This position is called the anchor
point of the range.

2. The user moves the pointer in any direction. As the pointer is
moved" visual feedback keeps the user informed of the objects that
would be selected if the mouse button were released. For text and
arrays, the selected area is continually h~ghlighted. For
graphics, a dotted rectangle expands or contracts to show the
range that will be selected.

3. When the feedback shows the desired range, the user releases the
mouse button. The point at which the button is released is called
the endpoint of the range.

Extending a Selection

A user can change the extent of an existing selection by holding down
the Shift key and clicking the mouse button. 'Exactly what happens next
depends on the context.

In text or an array, the result of a Shift-click is always a range.
The position where the button is clicked becomes the new endpoint or
anchor point of the range; the selection can be extended in any
direction. If the user clicks within the current range, the new range
will be smaller than the old range.

In graphics, a selection is extended by adding objects to it; the added
objects do not have to be adjacent to the objects already selected.
The user can add either an individual object or a range of objects to
the selection by holding down the Shift key before making the"
additional selection. If the user holds down the Shift key and selects
one or more objects that are already highlighted, the objects are
deselected.

Extended selections can be made across the panes of a split window.
(See "Splitting Windows".)

11/30/84 Averill /INTF/SELECT

~

20 User Interface Guidelines

Making a Discontinuous Selection
I,

In graphics applications, objects aren't usually considered to be in 1

I any particular sequence. T~erefore, the user can use Shift-click to I

extend a selection ~y a single object, even if that object is nowhere i
near the current selection. When this happens, the objects between the
current selection and the new object are not automatically included in
t~e selection. This kind of selection is called a discontinuous
selection. In the case of graphics, all selections are discontinuous
selections.

This is not the case with arrays and text, however. In these two kinds \
of applications, an extended selection made by a Shift-click-'always
includes everything betw~en the old selection and the new endpoint. To \
provide the possibility of a.discontinuous selection in these
applications, Command-click is included in the user interface.

To make a discontinuous selection in a text or array application, the
user selects the first piece in the normal way, then holds doWn the
Command key before selecting the remaining pieces. Each piece is
sel~~ted in the ,same way as. if it were the whole selection, but be(::ause
the Command key is held doWn, the new pieces are added to the existing
selection instead of supplanting it.

If one' of the pieces selected is already within an existing part of the
selection, then instead of being added to the selection it's removed
from the selection. Figure 7 shows a sequence in which several pieces
are selected and deselected.

11/30/84 Averill /INTF/SELECT

Cell s 82, 83" e2, and C3
are selected

The user hords down the
Commend key end cl icks in
OS

The user holds down the·
Commend key end cl icts in
C3

1
2
3 ..
S

1
2
3 ..
S

1
2
3 ..
S

A B

A B

A B

Figure 7. Discontinuous Selection

SELECTING 21

c o

C o

c o

Not all applications support discontinuous selections, and those that
do might restrict the operations that a user can perform on them. For
example, a word processor might allow the user to choose a font after
making a discontinuous selection, but not to choose Cut or Paste.

Selecting Text

Text"is used in most applications; it's selected and edited in a
consis'tent way, regardless of where it appears.

A block of text is a string of characters. A text selection is a
substring of this string, which can have any length from zero
characters to the whole block. Each of the text selection methods
selects a different kind of substring. Figure 8 shows different kinds
of text selections.

11/30/84 Averill /INTF/SELECT

22· User Interface Guidelines

Insertion point Andl spri ngth tne wude nu.

Range of characters AII_Dngth the wude nu.

Word aJ sprlngth the wude nu.

Range of words the wude nu.

Discontinuous AII_Dngth the MuO nu.
Selection

, Figure 8. Text Selections

Insertion Point

The insertion point. is a zero-length text selection. The user
establishes the location of the insert"ion point by clicking between two
characters. The insertion PQint then appears at the nearest character
boundary. If the user clicks to the right of the last character on a
line. the insertion point appears immediately after the last character.
The converse is true if the user clicks to the left of the first
character in the line.

The insertion point shows where text will be inserted when the user
begins typing, or where the contents of. the Clipboard will be pasted.
After each character is typed, the insertion point is relocated to the
right of the insertion.

If, between the mouse-down and the mouse-up, the user moves the pointer
more than about half the width of a character, the selection is a range
selection rather than an insertion point.

Selecting Words

The user selects a whole word by double-clicking somewhere within that
word., If the use~ begins a double-click sequence, but then drags the
mouse between the mouse-down and the mouse-up of the second click, the
selection becomes a range of words rather than a single word. As the
pointer moves, the application highlights or unhighlights a whole word
at a time.

A word, or range of words, can also be selected in the same way as any
other range; whether this type of selection is treated as a range of
characters or as a range of words depends on the operation. For
example. in MacWrite, a range of individual characters that happens to
coincide with a range ~f wor~s is treated like characters for purposes

11/30/84 Averill /INTF/SELECT

SELECTING 23

of extending a selection, but is treated like words for purposes of
intelligent cut and paste.

A'word is defined as any continuous substring that contains only the
following characters:

- a letter (including letters with diacritical marks)

- a digit

- a nonbreaking space (Option-space)

- a dollar sign, cent sign, English pound symbol, or yen symbol

- a percent sign

- a comma be'tween. digi ts

- a period before a digit

- an apostrophe between letters or digits

- a hyphen, but not a minus sign (Option-hyphen) or a dash
(Option-Shift-hyphen)

This is the definition in the United States and Canada; in other
count-ries, it would have to be changed to reflect local formats for
numbers, dates, and currency.

If the user double-clicks over any character not on the list above,
only that character is selected.

Examples of words:

$123,456.78
shouldn't
3 1/2 [with a nonbreaking space]
.5%

Examples of nonwords:

7/10/6
blue cheese [with i breaking space]
"Yoicks!" [the quotation

marks and ,exclamation point aren't part of the word]

Selecting a Range of Text

The user selects a range of text by dragging through the range. A
range is either a range of words or a range of individual characters,
as described under "Selecting Words", above.

11/30/84 Averill / INTF I. SELECT,

24 User Interface Guidelines

If the user extends the range, the way the range is extended depends on
what kind of range it is. If it's a range of individual characters, it
can be extended one character at a time. If it's a range of words
(including a single word), it's extended only by whole words.

j~'

.Graphics Selections

There are several different ways to select graphic objects and to show
selection feedback in existing Macintosh applications. MacDraw,
MacPaint, and t~e Finder all illustrate different possibili~ies. This
section describes the MacDraw paradigm, which is the most extensible to
other kinds of applications.

A MacDraw document is a collection of individual graphic objects. To
select one of these objects, the user clicks once on the object, which
is then shown with knobs. (The knobs are used to stretch or shrink the
object, and won't be discussed in this manual.) Figure 9 shows some
examples of selection in MacDraw.

• •

• • •
• ThlS 1S D block o~
text 1 n MDcOrew. • •

Figure 9. Graphics Selections in MacDraw

To select more than one object, the user can select either a range or a
multiple selection. A range selection includes every object completely
contained within the dotted rectangle that encloses the range, while an
extended selection includes only those objects explicitly selected.

Selections in Arrays

As described above, under "Types of Applications", an array is a one
or two-dimensional arrangement of fields. If the array is
one-dimensional, it's called a form; if it's two-dimensional, it's
called a table. The user can select one or more fields, or part of the
contents of a field.

To select a single field, the user clicks in the field. The user can
also implicitly select a field by moving into it with the Tab or Return
key.

11/30/84 Averill /INTF/SELECT

SELECTING 25

The Tab key cycles through the fields in an order determined by the
application. From each field, the Tab' key selects the "next" field.
Typically, the sequence of .fields is first from left to right, and then
from top to bottom. When the last field in a form is selected,
pressing the Tab key selects the first field in the form. In a form,
an application might prefer to select the fields in logical, rather
than physical, order.

T~e Return key selects the first field in the next row. If the idea of
rows doesn't make sense in a particular context, then the Return key
should have the same effect as the Tab key.

Tables are more likely than forms to support range selections and
extended selections. A table can also support selection of rows and
columns. The most convenient way for the user to select a column is to
click in the column header. To select more than one column, the user
drags through several column headers. The same applies to rows.

To select part of the contents of a field, the user must first select
the field. The user then clicks 'again to select the desired part of
the field. Since the contents of a field are either text or graphics,
this. type of selection follows the rules outlined above. Figure 1~
shows some selections in an array.

Column

WINDOWS

Range

-+----.....-Per1 of e
field

_____ _+0_ Discontinuous
Selection

Figure 10. Array Selections

Windows are the rectangles on the desktop that 'display information.
The most commmon types of windows are document windows, desk
accessories, dialog boxes, and alert boxes. (Dialog and alert boxes

11/30/84 Averill /INTF/WINDOW

26 User Interface Guidelines

are discussed under "Dialogs and Alerts".) Some of the features
described in this section are applicable only to document windows.
Figure 11 shows a typical active window and some of' its components.

Close box
~- - - - - ---~-:::

---- ------- -- -- - Title bar Title

Scroll bar

- Size box
lilllMiilillil ~ ..

Scroll bar

Figure 11. An Active Wtndow

Multiple Windows

Some applications may be able to keep several windows on the desktop at
the same time. Each window is in a different plane. Windows can be
moved around on the Macintosh's desktop much like pieces of paper can
be moved around on a real desktop. Each window can overlap those
behind it, and can be overlapped by those in front of it. Even when
windows don't overlap, they retain their front-to-back ordering.

Different windows can represent:

- different parts of the same document, such as the beginning and
eud of a long report

- different interpretations of the same document, such as the
tabular and chart forms of a set of numerical data

- related 'parts of a logical whole, like the listing, ~xecution, and
debugging of a program

- separate do~uments being viewed or edited simultaneously

Each application may deal with the meaning and creation of mUltiple
windows in its own way.

The advantage of multiple windows is that the user can isolate
unrelated chunks of information from each other. The disadvantage is
that the desktop can becpme cluttered, especially if some of the

11/30/84 Averill /INTF/WINDOW

WINDOWS 27

windows can't be moved. Figure 12 shows multiple windows.

-

Figure 12. Multiple Windows

Opening and Closing Windows

Inactive
windows

The
active

""indOw

Windows come up onto the screen in different ways as appropriate to the
purpose of the window. The application controls' at least the initial
size and placement of its windows.

Most windows have a close box that, when clicked, makes the window go
away. The application in control of the window determines what's done
with the window visually and logically when the close box is clicked.
Visually, the windo~ can either shrink to' a smaller object such as an
icon ,. or leave no trace behind when it closes. Logically, the
information in the window is either retained and then restored when the
window is reopened (which is the usual case), or else the window is
reinitialized each time it's opened. When a document is closed, the
user is given the choice whether to save any changes made to the
document since the last time it was saved.

If an application doesn't support closing a window with a close box, it
should not include a close box on the window.

11/30/84 Averill /INTF/WINDOW

28 User Interface Guidelines

The Active Window

Of all the windows that are open on the desktop, the user can work in
only one window at a time. This window is called the active window.
All other open windows are inactive. To make a window active, the user
clicks in it. Making a w~ndow active has two immediate consequences:

- The window's title bar is highlighted, the scroll bars and size
box are shown, and any controls inside the window become active.
If the window is being reactivated, the selection that was in
effect when it was deactivated is rehighlighted.

- The window is moved to the frontmost plane, so that it's shown in
front of any windows that it overlaps.

Clicking in a window does nothing except activate it. To make a
selection in the window, the user must click again. When the user
clicks in a window that has been deactivated, the window should be
reinstated just the way it was when it was deactivated, with the same
position of the scroll box, and the same selection highlighted.

When a w'indow becomes inactive, all the visual changes that took place
when it was activated are reversed. ' The title bar becomes
unhigh1ighted, the scroll bars and size box aren't shown, any controls
inside the window are dimmed, and no selection is shown in the window.

Moving a Window

Each application initially places windows on the screen wherever it
wants them. The user can move a window--to make more room on the
desktop or to uncover a window it's over1apping--by dragging it by its
title bar. As soon as the user presses in the title bar, that window
becomes the active window. A dotted outline of the window follows the
pointer until the user releases the mouse button. At the release of
the but'ton the full window is drawn in its new location. Moving a
window doesn't affect the appearance of the document within the window.

If the user holds down the Command key while moving the window, the
window isn't made active; it moves in the same plane.

i

The application should ensure that a window can never be moved
completely off the screen.

Changing the Size of a Window

If a window has a size box in its bottom right corner, where the scroll
bars come together, the user can change the size of the window-
enlarging or reducing it to the desired size.

Dragging the size box attaches a dotted' outline, of the window to the
pointer. The outline's top left corner stays fixed, while the bottom

,
11/30/84 Averill /INTF/WINDOW

WINDOWS 29

right corner follows the pointer. When the mouse button is released,
the entire window is redrawn in the shape of the dotted outline.

Moving windows and sizing them go hand in hand. If a window can be
moved, but not sized, then the user ends up constantly moving windows
on and off the screen. The reason for this is that if the user moves
the window off the right or bottom edge of the screen, the scroll bars
are the first thing to disappear. To scroll the window, the user must
move the window back onto the screen again. If, on the other hand" the
window can be resized, then the user can change its size instead of
moving it off the screen, and will still be able to scroll.

Sizing a window doesn't change the position of the top left corner of
the window over the document or the appearance of the part of the view
that's still showing; it changes only how much of the view is visible
inside the window •. One 'exception to this rule is a command such as
Reduce to Fit in MacDraw, which changes the scaling of the view to fit
the size of the window. If, after choosing this command, the user
resizes the window, the application changes the scaling of the view.

The application can define a minimum window size. Any attempt to
shrink the window below this size is ignored.

Scroll Bars

Scroll bars are used to change which part of a document view is shown
in a window. Only the active window can be scrolled.

A scroll bar (see Figure 11 above) is a light gray shaft, capped on
each end with square boxes labeled with arrows; inside the shaft is a
white rectangle. The shaft represents one dimension of the entire
document; the white rectangle (called the scroll box) represents the
location of the portion of the document currently visible inside the
window. As the user moves the document under the window, the position
of the rectangle in the scroll bar moves correspondingly. If the
document is no larger than the window, the scroll bars are inactive
(the scrolling apparatus isn't shown in them). If the document wipdow
is inactive, the scroll bars aren't shown at all.

There are three ways to move the document under the window: by
sequential scrolling, by "paging" windowful by windowful through t,he
document, and by directly positioning the scroll box.

Clicking a scroll arrow moves the document in the opposite direction
from the scroll arrow. For example, when the user clicks the top
scroll arrow, the document moves down, bringing the view closer to the
top of the document. The scroll box moves towards the arrow being
clicked.

Each click in a scroll arrow causes movement a distgnce of one unit in
the chosen direction, with the unit of distance being appropriate to
the application: one lin~ for a word processor, one row or column ~or ,
a spreadsheet, and so on. Within a document, units should always be

11/30/84 Averill /INTF/WINDOW

30 User Interface Guidelines

the same size, for.smooth scrolling. Pressing the scroll arrow causes
continuous movement in its direction.

Clicking the mouse anywhere in the gray area of the scroll bar advances
the document by windowfu1s. The scroll box, and the document view,
move toward the place where the user clicked. C1ickipg below the
scroll box. for example, brings the user the next windowfu1 towards the
bottom of the document. Pressing in the gray area keeps windowfu1s
flipping by until the user releases the button, or until the location
of the scroll box catches up to the location of the pointer. Each
windowfu1 is the height or width of the window, min~s one unit overlap
(where a unit is the distance the view scrolls when the scroll arrow is
clicked once).

In both the above schemes the user moves the document incrementally
until it's in the proper position under the window; as the document
moves, the scroll box moves accordingly. The user can also move the
document directly to any position simply by ~oving the scroll box to
the corresponding position in the. scroll bar. To move the scroll box,
the user drags it along the scroll bar; an outline of the scroll box
follows the pointer. When the mouse button is released, the scroll box
jumps to the position last held by the outline, and the document jumps
to the position corresponding to the new position of tQe scroll box.

If the user starts dragging the scroll box, and then moves the pointer
a certain distance outside the scroll bar, the scroll box detaches
itself from the pointer and stops following it; if the user releases
the mouse button, the scroll box returns to its original position and
the document remains unmoved. But if the user still holds the mouse
button and drags the pointer back into the scroll bar, the scroll box
reattaches itself to the pointer and can be dragged as usual.

If a document has a fixed size, and the user scrolls to the right or
bottom edge of the document, the application displays a small amount of
gray background (the same pattern as the desktop) between the edge of
the document and the window frame.

Automatic Scrolling

There are several instances when the application, rather than the user,
scrolls the document. These instances involve some potentially sticky
problems about how to position the document within the window after
scrolling.

The first case is when the user moves the pointer out of the window
while selecting by dragging. The window keeps up with the selection by
scrolling automatically in the direction the pointer has been moved.
The rate of scrolling is the same as if the user were pressing on the
corresponding scroll arrow or arrows.

The second case is when the selection isn't currently showing in the
window, and the user performs an operation on it. When this happens,
it's usually because the user has scrolled the document after making a

11/30/84 Averill /INTF/WINDOW

WINDOWS 31

selection. In this case, the application scrolls the window so that
the selection is showing before performing the operation.

The third case is when the application performs an operation whose side
effect is to make a new selection. An example is a search operation,
after which the object of the search is selected. If this object isn't
showing in the window, the application must scroll the window so as to
show it.

The second and t6ird cases present the same problem: Where should the
selection be positioned within the window after scrolling? The primary
rule is that the application should avoid unnecessary scrolling; users
prefer to retain control over the ,positioning of a document. The
following guidelines should be helpful:

- ~f part of the new selection is already showing in the window,
don ',t scroll at all. An exception to this rule is when the part
of the selection that isn't showing is more important 'than the
part that's showing.

- If scrolling in one orientation (horizontal or vertical) is
sufficient to reveal the selection, don't scroll in both
orientations.

- If the selection is smaller than the window, position the
selection so that some of its context is showing on each side.
It's better to put the selection somewhere' near the middle of the
window than right up against the corner.

- Even if the selection is too large to show in the window, it might
be preferable to show some context rather than to try to 'fit as
much as possible of the selection in'the,window.

Splitting a Window

Sometimes it's desirable to be able to see disjoint parts of a document
simultaneously. Applications that accommodate such a capability allow
the window to be split into independently scrollable panes.

Applications that support splitting a window into panes place split
bars at the top of the vertical, scroll bar and to the left of the
horizontal one. Pressing a split bar attaches it to the pointer.
Dragging the split bar positions it anywhere along the scroll bar;
releasing the mouse button moves the split bar to a new position,
splits the window at'that location, and divides the appropriate scroll
bar (horizontal or vertical) into separate scroll bars for each pane.
Figure 13 shows the ways a window can be split. .

11/30/84 Averill /INTF/WINDOW

32 User Interface Guidelines

Horizontal Split Vertical Spl it 80th Splits

Figure 13. Types of Split" Windows

After a split, the document appears the same"except for the split line
lying across it. But there are now separate scroll bars for each pane.
The panes are still scrolled together in the orientation of the split,
but can be~crolled independently in the other orientation. For
example, if the split is horizontal, then horizontal scrolling (using
the scroll bar along the bottom of the window), is still synchronous.
Vertical scrolling is controlled separately for each pane, using the
two scroll bars along the right of the window. This is shown in Figure
14.

C=Rl =) (=81 =)

C=A2=)

C=A3=)

(=82=)

C=83=)

,

C=M2~)

C-M3-) ---

C-N2 -) i:i!ii

C~-N3~) ii!1

C~N4~) j:!i!

The panes scroll independently
in the horizontal orientation

Figure 14. Scrolling a Split Window

The pene~ ~cro II
together in
the vertical
orientation

To remove a split, the user drags the split bar to the bottom or the
right of the window.

The number of views in a document doesn't alter the number of
selections per document: that is, one. The active selection appears
highlighted in all views that show it. If the application has to

11/30/84 Averill /INTF/WINDOW

WINDOWS 33

scroll automatically to show the selection, the pane that should be
scrolled is the last one that the user clicked in. If the selection is
already showing in one of the panes, no automatic scrolling takes
place.

Panels

If a document window is more or less permanently divided into different
regions, each of which has different content, these regions are called
panels. Unlike panes, which show different parts of the same document
but are functionally identical, panels are' functionally different from
each other but might show different interpretations of the same part of
the document. For example, one panel might show a graphic version of
the document while another panel shows a textual version.

Panels can behave much like subwindows; they can have scroll bars, and
can even be split into more than one pane. An example of a panel with
scroll bars is the list of files in the Open dialog box.

Whether to use panels instead of separate windows is up to the
application. Multiple panels in the same window are more compact than
separate windows, but they have to be moved, opened, and closed as a
unit.

COMMANDS

Once the information to be operated on has been selected, a command to
operate on that information can be chosen from lists of "commands called
menus.

Macintosh's pull-down menus have the "advantage that they're not visible
until the user wants to see them; at the same time they're easy for the
user to see and choose items from.

Most commands either do something, in which case they're verbs or verb
phrases, or else they specify an attribute of an object, in which case
they're adjectives. They usually apply to the current selection,
although some commands ~pply to the whole document or window.

When you're designing your application, don't assume that everything
has to be done through menu commands. Sometimes it's more appropriate
for an operation to take place as a result of direct user manipulation
of a graphic object on the screen, such as a control or icon.
Alternatively, a single command can execute complicated instructions if
it brings up a dialog box for the user to fill in.

11/30/84 Averill /INTF/COMMANDS

34 User Interface Guidelines

The Menu Bar

The menu bar is displayed at the top of the .screen. It contains a
number of words and phrases: These are the titles of the menus
associated with the current application. Each application has its own
menu bar. The names of the menus do not change, except when the user
calls for a desk accessory that uses different menus.

Only menu titles appear in the menu bar. If all of the commands in a
menu are currently disabled (that is, the user can't choose them), the
menu title should be dimmed (in gray type). The user can pull down the
menu to see the commands, but can't choose any of them.

Choosing a Menu Command

To'choose a command, the user positions the pointer over the menu title
and presses the mouse button. The application highlights the title and
displays the menu, as shown in Figure 15.

CommllOd group {

Show Rulers
Cus. am Rulers •.• - ~ Ell ipsis

"'Normal Size Checked commend
Reduce To fit .R-~Keyboard equivalent
Reduce

----+--Dimmed commend

Turn Grid Off
Hide Grid Lines

Show Size
Hide Page Breaks
Drawing Size •••

Figure 15. Menu

While holding down the mouse button, the user moves the pointer down
the menu. As the pointer moves to each command, the command is
highlighted. The command that's highlighted when the user releases the
mouse button is chosen. As soon as the mouse button is released, the
command blinks briefly, the menu disappears, and the command is
executed. (The user can set the number of times the command blinks' in
the Control Panel ·desk accessory.) The menu title in the menu bar

11/30/84 Averill /INTF/COMMANDS

COMMANDS 35

remains highlighted until the command has completed execution.

Nothing actually happens until the user chooses the command; the user
can look at any of the menus without making a commitment to do
anything.

The most frequently used commands should be at the top of a menu;
research shows that the easiest item for the user to choose is the
s~cond item from the top. The most dangerous commands should be at the
bottom of the menu, preferably isolated from the frequently used,
commands.

Appearance of Menu Commands

The commands in a particular menu should be logically related to the
title of the menu. In addition to command names, three features of
menus help the user understand what each command does: command groups,
toggles, and special visual features.

Command Groups

,As mentioned above, menu commands can be divided into two kinds: verbs
and adjectives, or actions and attributes. An important difference
between the two kinds of commands is that an attribute' stays in effect
until it's cancelled, while an action ceases to be relevant after it
has been performed. Each of these two kinds can be grouped within a
menu. Groups are separated by gray lines, which are implemented as
disabled commands.

The most basic reason to group commands is to break up a menu so it's
easier to read. Commands grouped for this reason are logically
related, but independent. Commands that are actions are usually
grouped this way, such as Cut, Copy, Paste, and Clear in the Edit menu.

Attribute commands that are interdependent are grouped to show this
interdependence. Two kinds of attribute command groups are mutually
exclusive groups and accumulating groups •

. In a mutually exclusive attribute group, only one command in the group
is in effect at the same time. The command that's in effect is
preceded by a check mark. If the user chooses a different command in
the group, the check mark is moved to the new command. Ari example is
the Font menu in MacWrite; no more than one font can be in effect at a
time.

In an accumulating attribute group, any number of attributes can be in
effect at the same time. One special command in the group cancels all
the other commands. An example is the Style menu in MacWrite: the
user can choose any combination of Bold, Italic, Underline, Outline, or
Shadow, but Plain Text cancels all the other commands.

11/30/84 Averill /INTF/COMMANDS

36 User Interface Guidelines

Toggles

Another way to show the presence or absence of an attribute is by a
toggled command. In this case, the attribute has two states, and a
single command allows the user to toggle between the states. For
example, when rulers are showing in MacWrite, a command in the Format
menu reads "Hide Rulers". If the user chooses this command, the rulers
are hidden, and the command is changed to read "Show Rulers". This
kind of, group should be used only when the wording of the commands
makes it obvious that they're opposites.

~pecial Visual Features

,In addition to the command names and how they're grouped, several other
features of commands communicate information to the user:

- A check mark indicates whether an' attribute command is currently
in effect.

An ellipsis (•••) after a command name means that choosing that
command. brings up a dialog box·. "The command isn't actually
executed until the user has finished filling in the dialog box and
has clicked the OK button or its equivalent.

- The application dims a command when the user can't choose i~. If
the user moves the pointer over a dimmed item, it isn't
highlighted.

- If a command can be chosen from the ~eyboard, it's followed by the
Command key symbol and the character used to choose it. To choose
a command this way, the user holds down the Command key and then
presses the character key.

Some characters are reserved for special purposes, but there are
different degrees of stringency. Since almost every application has a
·File menu and an Edit menu, the keyboard equivalents in those menus are
strongly reserved, and should never be used for any other purpose:

Character

C
Q

V
X
Z

Command

Copy (Edit menu)
Quit (File menu)
Paste (Edit menu)
Cut (Edit menu)
Undo (Edit menu)

The keyboard equivalents in the Style menu are conditionally reserved.
If an application has this menu, it shouldn't use ~hese characters for
any other purpose, but if it doesn't, it can use them however it likes:

11/30/84 Averill /INTF/COMMANDS

CO~u\NDS 37

Character Command

B Bold
I Italic
0 Outline
I

P Plain text
S Shadow
U Underline

One keyboard command doesn't have a menu equivalent:

Character Command

Stop current .operation

Several other menu features are also supported:

- A command can be shown in Bold, Italic, Outline, Underline, or
Shadow type style.

- A command can be preceded by an icon.)

- The application can draw its own type of menu. An example of this
is the Fill menu in MacDraw.

STANDARD MENUS

One of the strongest ways in which Macintosh applications can take (
advantage of the consistency of the user interface is by using standard
menus. The operations controlled by these menus occur so frequently
that it saves considerable time for users if they always match exactly.
Three of these menus, the Apple, File, and Edit menus, appear in almost
every application. The Font, FontSize, and Style menus affect the
appearance of text, and appear only in applications where they're
relevant.

The Apple Menu

Macintosh doesn't allow two applications to be running at once. Desk
accessories, however, are mini-applications that are available while
using any application.

At any time the user can issue a command to call up one of several
desk accessories; the available accessories are listed in the Apple
menu, as shown in Figure 16.

11/30/84 Averill /INTF/SMENUS

38 User Interface Guidelines

Scrapbook
Rlarm Clock
Note Ped.·
Calculator
lCey Caps
Control Panel
Puzzle

Figure 16. Apple Menu

Accessories are disk-based: Only those accessories on an available
disk can be.u~ed. The list of accessories is expanded or reduced
according to what's available. More than one accessory can be on the
desktop at a time.

For a description of these desk accessories, see Macintosh, the owner's
guide. An application can also pr.ovide its own desk accessories.

The Apple menu also contains the "About xxx" menu item, where "xxx" is
the· name of the application. Choosing this item brings up a dialog box
with the name and copyright information for the application, as well as
any other information the application wants to display.

The File Menu

The File menu allows the user to perform certain simple filing
operations without" leaving the application and returning to the Finder.
It also contains the commands for printing and for leaving the
application. The standard File menu includes the commands shown in
Figure 17..

11/30/84 Averill /INTF/SMENUS

Close
Seue
Seue Rs ...
Reuert to Saued

Pege Setup ...
Print

1 .. ·········,····· ···••··•• .. · •• ••• ··••• .. , .. 1

Figure 17. File Menu

STANDARD MENUS 39

Other frequently used commands are Print Draft, Print Final, and Print
One. All of these commands are described below.

New

New opens a new, untitled document. The user names the document the
first time it's saved. This command is disabled when the maximum
number of documents allowed by the application is already open.

Open opens an existing document. To select the document" the user is
presented with a dialog box (Figure 18). This dialog box shows' a list
of all the documents on the disk whose name is displayed that can be
handled by the current application. The user can scroll this list
forward and backward. The dialog box also gives the user the chance to
look at the documents on the disk in the other disk drive that belong
to the current application, or to eject either disk.

\, ..

11/30/84 Averill /INTF/SMENUS

40 User Interface Guidelines

Letter , Marth figures ((lJ)(~n) Current

Marketing II!*
iiiiii) Memo ~i:i:i (Eject' ~ihh

Messages :1:;:1
lilili () New Totels (Cencel 1 Drlue

Old Totels 5

Figure 18. Op~n Dialog Box

Using the Open command, the user can only open a document that can be
processed by the current application. Opening a document that can only
be processed by a different application requires leaving the
application and returning to the Finder.

This command ·is disabled when the maximum Inumber of documents allowed
by the application is already open.

Close

Close closes the active document or desk accessory. If the user has
changed the document since the last time it was saved, the command
pre~ents an alert box giving the user the choice of whether or not to
save the changes.

Clicking in the close box of a window is the same as choosing Close.

Save

Save makes permanent any changes to the active document since the last
time it was saved. It leaves the document open.

If the user chooses Save for a new document that hasn't been named yet,
the application presents the Save As dialog (see below) to name the
document, and then continues with the save. The active document
remains active.

If there's not enough room on the disk to save the document, the
application asks if the' user wants to save the document on another
disk. If the answer is yes, the application goes through the Save As
dialog to find out" which disk.

11/30/84 Averill /INTF/SMENUS

STANDARD MENUS 41

Save As

Save As saves a copy of the active document under a file name provided
by the user.

If the document already has a name, Save As closes the old version of
the document, creates a copy, and displays the copy in the window.

If the document is untitled, Save As saves the original document under
the specified name. The active document remains activ.e.

Revert to Saved

Revert to Saved returns the document to the state it was in the last
time it was saved. Before doing so, it puts up an alert box to confirm
that this is what the user wants.

Page Setup

Page Setup lets the user specify printing parameters such as what its
paper size and printing orientation are. These parameters remain with
the document.

Print

Print lets the user specify various parameters such as print quality
and number of copies, and then prints the document. The parameters
apply only to the current printing operation.

Quit leaves the application and returns to the Finder. If ~ny open
documents have been changed since the last time they were saved, the
application presents the same alert box as for Close, once for each
document.

Other Commands

Other commands that are in the File menu in some applications include:

- Print Draft. This command prints one copy of a rough version of a
document more' quickly than Prin-t. It I S useful in applications
where ordinary printing is slow. If an application has this
command, it should change the pame of the Print command to Print
Final.

- Print One. This command saves time by printing one copy using
default parameters without bringing up the Print dialog box.

11/30/84 Averill /INTF/SMENUS

42 User Interface Guidelines

The Edit Menu

The Edit menu contains the commands that delete, move, and copy
objects, as well as commands such as Undo, Show Clipboard, and Select
All. This section also discusses the Clipboard, which is controlled by
the Edit menu commands. Text editing methods that don't use menu
commands are discussed under "Text Editing".

If the. application supports desk access~ries, the order of commands in
the Edit menu shoul,d be exactly as sl:t0wn here. This is because, by
default, the application passes the numbers, not the names, of the menu
commands to the desk accessories. (For more details, see the Desk
Manager manual.) In particular, your application must provide an Undo
command for the benefit of the desk accessories, even if it doesn't
support the command (in which case it can disable the command until a
desk accessory is opened).

The standard order of commands in the Edit menu is shown in Figure 19.

The Clipboard

Cut
Copy
Paste
Cleer

••••· • ••• · .. · · ••• .. · 1

Show Clipboard
Select All

Figure 19. Edit Menu

The Clipboard is a special kind of window with a well-defined function:
it holds whatever is cut or copied from a document. Its contents stay
intact when the user change's documents, opens a desk accessory, or

. leaves the application. An application can choose whether to have the
Clipboard open or closed when the application starts up.

The Clipboard looks like a document window, with a close box but with
no scroll bars. Its contents cannot be edited.

Every time the user performs a Cut or Copy on the current selection, a
copy of the selection replaces the previous contents of the Clipboard.
The previous contents are kept around in case the user chooses Undo.

11/30/84 Averill /INTF/SMENUS

STANDARD MENU S 43

The user can see the contents of the Clipboard but can't edit them. In
most 'other ways the Clipboard behaves just like any other window.

There is only one Clipboard, which is present for all applications that
support Cut, Copy, and Paste. The user can see the Clipboard window by
choosing Show Clipboard from the Edit menu. If the window is already
showing, it's hidden by choOSing Hide Clipboard. (Show Clipboard and
Hide Clipboard are a single toggled command.)

Because the contents of the' Clipboard remain unchanged when
applications begin and end, or when the user opens a desk accessory,
the Clipboard can be used for transferring data among mutually
compatible applications and desk accessories.

Undo

Undo reverses the effect of the previous operation. Not all operations
can be undone; the definition of an undoable operation is somewhat
application-dependent. The general rule is that operations that change
the contents of the document are undoable, and operations that don't
are not. MbS~ menu items ar~ undoable, and so are typing sequences.

A typing sequence is any sequence of characters typed from the keyboard
or numeric keypad, including Backspace, Return, and Tab, but not
including keyboard equivalents of commands.

Operations that aren't undoable include selecting, scrolling, and
splitting the window or changing its size or location. None of these
operations interrupts a typing sequence. That is, if the user types a
few characters and then scrolls the document, the Undo command still
undoes the typing. Whenever the location affected by the Undo
operation isn't currently showing on the screen, the application should
scroll the document so the user can see the effect of the Undo.

An application should also allow the user to undo any operations that
are initiated directly on the screen, without a menu command. This
includes operations controlled by setting dials, clicking check boxes,
and so on, as well as drawing graphic objects with .the mouse.

The actual wording of the Undo command as it appears in the Edit menu
is "Undo xxx", where xxx is the name of the last operation. If the -
last operation isn't a menu command, use some suitable term after the
word Undo. If the last operation can't be undone, the command reads
"Undo", but is disabled.

If the last operation was Undo, the menu command says "Redo xxx", where
xxx is the operation that was undone. If this command is chosen, the
Undo is undone.

11/30/84 Averill /INTF/SMENUS

44 User Interface Gu!delines

Cut

The user chooses Cut either to delete the current selection or to move
it. If it's a move, it's eventually completed by choosing Paste.

When the user chooses Cut, the application removes the current
selection from the document and puts it in the Clipboard, replacing the
Clipboard's previous contents. The place where the selection used to
be becomes the new selection; the visual implications of this vary
among applications. For example, in text, the new selection is an
insertion point, while in an array, it's an empty but highlighted cell.
If the user chooses Paste immediately after choosing Cut, the document
should be just as it was ,before the cut; the Clipboard is unchanged.

When the user chooses Cut, the application doesn't know if it's a
deletion or the first step of a move. Therefore, it must be prepared
for either possibility.

Copy is the first st"age of a copy operation. Copy puts a copy of the
selection in the Clipboard, but the selection also remains in the
document.

Paste

Paste is the last stage of a copy or move operation. It pastes the
contents of the Clipboard to the document, replacing the current
selection. The user can choose Paste several times in a row to paste
multiple copies. After a paste, the new selection is the object that
was pasted, except i~ text, where it's an insertion point immediately
after the pasted text. The Clipboard remains unchanged.

Clear

When the user chooses Clear, or presses the Clear key on the numeric
keypad, the application removes the selection, but doesn't put it on
the Clipboard. The new selection is the same as it would be after a
Cut •

. Show Clipboard

Show Clipboard is a toggled command. Initially, the Clipboard isn't
displayed, and the command is "Show Clipboard". If the user chooses
the command, the Clipboard is displayed and the command changes to
"Hide Clipboard".

11/30/84 Averill /INTF/SMENUS

STANDARD MENUS 45

Select All

Select All selects every object in the document.

Font-Related Menus

Three standard menus affect the appearance of text: Font, which
determines the font of a text selection; FontSize, which determines the
,size of the characters; and Style, which determines aspects of its
appearance s~ch 'as boldface, italics, and so on.

Font Menu

A font is a set of typographical characters created-with a consistent
design. Things that relate characters in a font include the thickness
of vertical and horizontal lines, the degree and position of curves and
swirls, and the use of serifs. A font has the same general appearance,
regardless of the size of the characters. The Font menu always lists
the fonts that are cur'ren~ly available. Figure 20 shows ,a Font, menu
with some of the most. common fonts.

FontSize Menu

Chicago
&eneua

~New York
Monaco
Uenice
london
Rthens

Figure 20. FQnt Menu

Font sizes are measured in points; a point is about 1/72 of an inch.
Each font is available in predefined sizes. The numbers of these sizes
for each font are shown outlined in the FontSize menu. The font can
also be scaled to other sizes, but it may not look as good. Figure 21
shows a FontSize menu with the standard font sizes.

11/30/84 Averill /INTF/SMENUS

46 User Interface Guidelines

J ont\llP

9 point
10

~UI
14
18
24
56
48
12

Figure 21. FontSize Menu

If there's insufficient room.in the menu bar for the word FontSize, it
can be abbreviated to Size. 1£ there's insufficient toom for both a
Font menu and a Size menu, the sizes can be put at the end of the Font
or Style menu.

Style Menu

The commands in the Style menu are Plain Text, Bold, Italic, Underline,
Outline, and Shadow. All the commands except Plain Text are
accumulating attributes; the user can choose any combination. They are
also toggled commands; a command that's in effect for the current
selection is preceded by a check mark. Plain Text cancels all the
other choices. Figure 22 shows these styles.

~PI.ln TeHt .P
•• I~ .a 1,.,1(: XI
Underline .U
0l0J0IDDD .0
DIbCDdIaIlU .5

Figure 22. Style Menu

11/30/84 Averill /I~TF/sMENUS

\

TEXT EDITING 47

TEXT EDITING

In addition to the operations described under "The Edit Menu" above,
there are other ways to edit text that don't use menu items~

Inserting Text

To insert text, the user selects an insertion point by clicking where
the text is to go, and then starts typing it. As the user types, the
application continually moves the insertion point to the right of each
new character.

Applications with multiline text blocks should support word wraparound,
according to the definition of a word given above. The intent is that
no word be broken between lines.

Backspace

When 'the user presses the Backspace key, one, of two things happens:

If the current selection is one o~ more characters, it's deleted.

- If the current selection is an insertion point, the previous
character is deleted.

In both cases, the deleted'characters don't go into the Clipboard, and
the insertion point replaces the d~leted characters in the document.

Replacing Text

If the user starts typing when the selection is one or more characters,
the characters that are typed replace the selection. The deleted
characters don't go into the Clipboard, but the replacement can be
undone by immediately 'choosing Undo.

Intelligent Cut and Paste

An application that lets the user select a word by double-clicking
should also see t~ it that the user doesn't regret using this feature.
The only way to do this is by providing "intelligent" cut and paste.

To understand why this feature is necessary, consider the following
sequence of events in an application that doesn't provide it:

'I. A sentence in the user's document reads: "Returns' are only
accepted if the merchandise is damaged." The user wants to change
this to: "Returns are accepted only if the merchandise is
damaged."

11/30/84 Averill /INTF/EDIT

48 User Interface Guidelines

2. The user selects the word "only" by double-clicking. The letters
are highlighted, but not eit~er of the adjacent spaces.

3. The user chooses Cut, -clicks just before the word "if", and
chooses Paste.

4. The sentence now reads: "Returns are accepted onlyif the
merchandise is damaged." To correct the sentence, the user has to
remove a space between "are" and "accepted", and add one between
"only'" and "if". At this point he or she may be wondering why the
Macintosh is supposed to be easier to use than other computers.

If an application supports intelligent cut and paste, the rules to
follow are:

- If the user selects a word or a range of words, highlight the
selection, but not any adjacent spaces.

- When the user chooses Cut, if the character to the left of the
selection is a space, discard it.

- When the. user chooses Paste, if the character to the left ~f the
current selection isn't a space, add a space. If the character to
the right of the current selection isn't a punctuation mark or a
space, add a space. Punctuation marks in~lude the period, comma,
exclamation point, question mark, apostrophe, colon, semicolon,r
and quotation mark.

This feature makes more sense if the application supports the full
definition of a word (as detailed above under "Selecting a Word"),
rather than the definition of a word as anything between two spaces.

These rules apply to any selection that's one or more whole words,
whether it was chosen with a double-click or as a range selection.

Figure 23 shows some examples of intelligent cut and paste.

11/30/84 Averill /INTF/EDIT

TEXT EDITING 49

Example 1:

1. Select a word. Drink to me _ with thine eyes.

2. Choose Cut. Drink to mel wi th thine eyes

3. Selec1 an insertion point. Drink to me Wl th ~hlne eyes.

4. Choose Paste. Drink to me wi th only Ithlne eyes.

Example 2:

1. Select 8 word. How) _ brown CO'tV

2. Choose Cut. How)1 brown cow

3. Select en insertion point How~ brown cow

4. Choose Paste. How now~ brown cow

Figure 23. Intelligent Cut and Paste

Editing Fields

If an application isn't primarily a text application, but does use text
in fields (such as in a dialog box), it may not be able to provide the
full text editing capabilities described so far.

It's important, however, that whatever editing capabilities the
application provides under these circumstances be upward-compatible
with the fulI" text editing capability. The following list shows the
capabilities that can be provided, going from the minimal to the most
sophisticated:

- The user can select the whole field and type in a new value.

- The user can backspace.

- The user can select a substring of the field and replace it.

- The user can select a word by double-clicki~g.

- The user can choose Undo, Cut, Copy, Paste, and Clear, as
described above under "The Edit Menu". In the most sophisticated
version, the application implements intelligent cut and paste.

An application should also perform appropriate edit checks. For
example, if the only legitimate value for a field is a string of
digits, the application might issue an alert if the user typed any
nondigits. Alternatively, the application could wait until the user is
through typing before checking the validity of the contents of the

11/30/84 Averill /INTF/EDIT

50 User Interface Guidelines

field. In this case, the appropriate time to check the field is when
the user clicks anywhere other than within the fie+d.

DIALOGS AND ALERTS

The "se1ect-then~choose" paradigm is sufficient whenever operations are
s~mple and act on only one object. But occasionally a command will
require more than one object, or will need additional parameters before
it can be executed. And sometimes a command won't be able to carry out
its normal function, or will be unsure of the user's real intent. For
these special circumstances the Macintosh user interface includes two
additional features:

- dialogs, to allow the user to provide additional information
before a command is executed

- alerts, to notify the user whenever an unusual situation occurs

Since both of these features lean heavily on controls, controls are
described in this section, even though controls are also used in ~ther
places.

Controls

Friendly systems act by direct cause-and-effect; they do what they're
told. Performing actions on a system in an indirect fashion reduces
the sense of direct manipulation. To give Macintosh users the feeling
that they're in control of their machines, many of an application's
features are implemented with controls: graphic objects that, when
directly manipulated by the mouse, cause instant action with visible
results. ' '

There are four main types of controls: buttons, check boxes, radio
buttons, and dials. These four kinds are ,shown in Figure 24.

11/30/84 Averill /INTF/BOX

Buttons

(Button 1)

(Button 2)

cgJ Check BOH 1

~ Check BOH 2

o Check BOH :5

o Radio Button 1

@ Radio Button 2

o Radio Button 3

Figure 24. Controls

DIALOGS AND ALERTS 51

Diels

Buttons are small objects, usually- inside a window, labeled with text.
Clicking or pressing a button performs the action described by the
button's label.

Buttons perform instantaneous actions, such as completing operations
defined by a dialog box or acknowledging error messages. Conceivably
they could perform continuous actions, in which case the effect of
pressing on the button would be the same as the effect of clicking it
repeatedly.

Two parti~ular buttons, OK and Cancel, are especially important in
dialogs and alerts; they're discussed under those headings below.

Check Boxes and Radio Buttons

Whereas buttons perform instantaneous or continuous actions, check
boxes and radio buttons let the user choose among alternative values
for a parameter.

Check boxes act like toggle switches; they're used to indicate the
state of a parameter that must be either off or on. The parameter is
on if the box is checked, otherwise it's off. The check boxes
appearing together in a given context are independent of each other;
any number of them can be pff or on. /

Radio buttons typically occur in groups; they're round and are filled
in with a black circle when on. They're called radio buttons because

11/30/84 Averill /INTF/BOX

52 User Interface Guidelines

they act like the buttons on a car radio. At any given time, exactly
one button in the group is· on. Clicking one button in a group turns
off the current button.

Both check boxes and radio buttons are accompanied by text that
identifies what each button does.

Dials

Dials display the value, magnitud.e, or position of something in the
application or system, and optionally allow the user to alter that
value. Dials are predominantly analog devices, displaying their values
graphically and allowing the user to change the value by dragging an
indicator; dials may also have a digital display.

The most common example of a dial is the scroll bar. The indicator of
the scroll bar is the scroll box; it represents the position of the
window over the length of the document. The user can drag the scroll
box-to change that position.

Dialogs

Commands in menus normally act on only one object. If a command needs
more information before it can be performed, it presents a dialog box
to gather the additional information from the user. The user can tell
which commands bring up dialog boxes because they're followed by an
ellipsis (•••) in the menu.

A dialog box is a rectangle that may contain text, controls, and icons.
There should be some text in the box that indicates which command
brought up the dialog box.

Other than explanatory text, the contents of a diaIog box are all
objects that the user sets to provide the needed information. These
objects include controls and text fields. .When the application puts up
the dialog box, it should set the controls to some default setting and
fill in the text fields with default values, if possible. One of the
text fields (the "first" field) should be highlighted, so that the user
can change its value just by typing in the new value. If all the text
fields are blank, there should be an insertion point in the first
field.

Editing text fields in a dialog box should conform to the guidelines
detailed above, under "Text Editing".

When the user is through editing an item:

- Pressing Tab accepts the changes made to the item, and selects the
next item in sequence.

- Clicking in another item accepts the changes made to the previous
item and selects the newly clicked item.

11/30/84 Averill /INTF/BOX

DIALOGS AND ALERTS '53

Dialog boxes are either modal or modeless. as described below.

Modal Dialog Boxes

A modal dialog box is one that the user must explicitly dismiss before
doing anything else. such as making a selection outside the dialog box
or choosing a command. Figure 25 shows a modal dialog box.

Print the document

@8 1/2" H II" paper
o 8 1/2" H 14" paper

(CanCel)

(OK)

~ Stop printing after each page

Title: I Rnnual Reportl

Figure 25. A Modal Di'alog Box

Because it restricts the user's freedom of action, this type of dialog
box should be used sparingly. In particular, the user can't choose a
menu item while a modal dialog box is uP. and therefore can only do the
simplest kinds of text editing.

For these reasons, the main use of a modal dialog box is when it's
important for the user to complete an operation before doing anything
else.

A modal dialog box usually has at least two buttons: OK and Cancel.
OK ,dismisses the dialog box and performs the original command according
to the information provided; it can be given a more descriptive name
than "OK". Cancel dismisses the dialog box and cancels the original
command; it must always be called "Cancel".

A dialog box can have other kinds of buttons as well; these mayor may
not dismiss the dialog box. One of the buttons in the dialog box may
be outlined boldly. The outlined button is the default button; if no
button is outlined, then the OK 'button is the default button. The
default button should be the safest button in the current situation.
Pressing the Return or Enter key has the same effect as clicking' the
default button. If there is no default button, then Return 'and Enter
have no effect.

A special type of modal dialog box is one with no buttons. This type
of box is just to inform the user of a situation without eliciting any
response. Usually. it would describe the progress of an ongoing
operation. S~nce it has no buttons, the user has no way to dismiss it.
Therefore, the application must leave it up long enough for the user to
read it before taking it down again.

11/30/84 Averill /INTF/BOX

54 User Interface Guidelines

Modeless Dialog Boxes

A modeless dialog box allows the user to perform other operations
without dismissing the dialog box. Figure 26 shows a modeless dialog
box.

~o Change

find teHt: Guide lines

Change tal guidelinesl

(Change All)

(Change NeHt)

Figure 26. A Modeless Dialog Box

.A mode1ess dialog box is dismissed by clicking in the close box or by
choosing Close when the dialog is active. The dialog box is also
dismissed implicitly when the user chooses Quit. It's usually a good
idea for the application to remember the contents of the dialog box
after it's dismissed, so that when it's opened again, it can be
restored exactly as it was.

Controls work the same way in modeless '. dialog boxes as in modal dialog
boxes, exc~pt that buttons never dismiss the dialog box. In this
context, the OK button means "go ahead and perform the operation, but
leave the dialog box up", while Cancel usually terminates an ongoing
operation.

A modeless dialog box can also have text fields; since the user can
choose menu commands, the full range of editing capabilities can be
made available.

Alerts

Every user of every application is liable to do something that the
application won't understand. From simple typographical errors to
slips of the mouse to trying to write on a protected disk, users will
do things an application can't cope with in a normal manner. Alerts
give applications a way to respond to errors not only in a consistent
manner, but in stages according to the severity of the error, the
user's level of expertise, and the particular history of the error.

11/30/84 Averill /INTF/BOX

DIALOGS AND ALERTS 55

The two kinds of alerts are beeps and alert boxes.

Beeps are used for errors that are both minor and immediately obvious.
For example, if the user tries to backspace past the left boundary of a
text field, the application could choose to beep instead of putting up
an alert box. A beep can also be ~art of a staged alert, as described
below.

An alert box looks like a modal dialog box, except that it's somewhat
narrower and appears lower on the screen. An alert box is primarily a
one-way communication from the system to the user; the only way the
user can respond is by clicking buttons. Therefore alert boxes might
contain dials and buttons, but usually not text fields, radio buttons,
or check boxes. Figure 27 shows a typical alert box.

CAUTION (Cancel)

Rre you sure (OK)
you want to erase all
changes to your document?

Figure 27. An Alert Box

There are three types of alert boxes:

- Note: A minor mistake that wouldn't have any disastrous
consequences if left as is.

- Caution: An operation that mayor may not have undesirable
results if it is allowed to continue. The user is given the
choice whether or not to continue.

- Stop: A situation that requires remedial action by the user. The
situation could be either a serious problem, or something as
simple a's a request by the application to the us'er to change
diskettes.

An application can define several stages for an alert, so that if the
user persists in the same mistake, the application can issue
increasingly more helpful (or sterner) messages. A typical sequence is
for the first two occurrences of the mistake to result in a beep, and
for subsequent occurrences to result in an alert box. This type of
sequence is especially appropriate when the mistake is one that has a
high probability of being accidental. An example is when the user
chooses Cut when the selection is an insertion point.

11/30/84 Averill /INTF/BOX

56 User Interface Guidelines

How the buttons in an alert box are labeled depends on the nature of.
the box. If the. box presents the user with a situation in which no
alternative actions are available, the box has a single button that
says OK. Clicking this button means "I have read the alert." If the
user is given alternatives, then typically the alert is phrased as a
question that can be answered "yes" or "no". In this case, buttons
labeled Yes and No are appropriate, although some variation such as
Save and Don't Save is also acceptable. OK and Cancel can be used, as
long as their meaning isn't ambiguous.

The preferred (safest) button to use in the current situation· is boldly
outlined. This is the alert's default button; its effect occurs if the
user presses Return or Enter.

It's important to phrase messages in alert boxes so that users aren't
left guessing the real meaning. Avoid computer jargon.

Use icons whenever possible. Graphics can better describe some error
situations than words, and familiar icons help users distinguish their
alternatives better. Icons should be internationally comprehensible;
they should not contain any words, or any symbols that are unique to a
particular country.

Generally, i~'s better to be polite-than abrupt, even if it means
lengthening the message. The role of the alert box is to be helpful
and make constructive suggestions, not to give out orders. But its
focus is to help the user solve the problem, not to give an interesting
but academic description ~f the problem itself.

,Under no circumstances should an alert message refer the user to
external documentation for further clarification. It should provide an
adequate description of the information needed by the user to take
appropriate action.

The best way to make an alert message understandable is to think
carefully through·the error condition itself. Can the application
handle this without an error? Is the error specific enough so that the
user can fix the situation? What are the recommended solutions? Can
the exact item causing the error be displayed in the alert message?

DO'S AND DON'TS OF A FRIENDLY USER INTERFACE

Do:

- Let the user have as much control as possible over the-appearance
of objects on the screen--their arrangement, size, and visibility.

- Use verbs as menu commands.

- Make alert messages self-explanatory.

11/30/84 Averill /INTF/THOUS

DO'S AND DON'TS ,OF A FRIENDLY USER INTERFACE 57

- Use controls and other graphics instead of just menu commands.

- Take the time to use good graphic design; it really helps.

Don't:

- Overuse modes, including modal dialog boxes.

- Require using the keyboard for an operation that would be easier
with the mouse, or require using the mouse for an operation that
would be easier with ·the keyboard.

- Change the way the screen looks unexpectedly, especially by
scrolling automatically more than necessary.

- Make up your own menus and then give them the same names as
standard menus.

- Take an old-fashioned prompt-based application originally
developed for another machine and pass it off as a Macintosh
application.

11/30/84 Averill /INTF/THOUS

MACINTOSH USER EDUCATION

Macintosh Memory Management: An Introduction /MEM/INTRO

See Also: The Memory Manager: A Programmer's Guide
Programming Macintosh Applications in Assembly Language

Modification History: First Draft Steve Chernicoff and
Bradley Hacker 8/20/84

ABSTRACT

This manual contains the m1n1mum information needed about memory
management on the Macintosh. Memory management is covered in greater
detail in the manual The Memory Manager: A Programmer's Guide.

2 Memory Management Introduction

TABLE OF CONTENTS

3 About This Manual
3 The Stack and the Heap
5 Pointers and Handles
9 G~neral-Purpose Data Types

12' Summary
13 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual contains the minimum information needed about memory
management on the Macintosh. *** Eventually it will form an early
chapter in the comprehensive Inside Macintosh manual. *** Memory
management is covered in greater detail in the Memory Manager manual.

This manual assumes you're familiar with Lisa Pascal and the
information in Inside Macintosh: A Road Map.

THE STACK AND THE HEAP

A running program can dynamically allocate and release memory in two
different ways: from the stack or the heap. The stack is an area of
memory that can grow or shrink at one end while the other end remains
fixed, as shown in Figure 1. This means that space on the stack is
always allocated and released in LIFO (last-in-first-out) order: the
last item allocated is always the first to be released. It also means

. that the allocated area of the stack is always contiguous. Space is
released only at the top of the' stack, never in the middle, so there
can never be any unallocated "holes" in the stack.

low memory

high memory

m w stack

low memory

high memory

--·0
Figure 1. The Stack

low memory

high memory

\ free space

By convention, the stack grows from high toward low memory addresses.
The end of the stack that grows and shrinks is usually referred to as
the "top" of the stack, even though it's actually at the lower end of
the stack in memory.

The other method of dynamic memory allocation is from the heap. Unlike
stack space, which is implicitly tied to a program's subroutine
structure, heap. space is allocated and released only at the program'R
explicit request. In Pascal, objects on the heap are referred to by

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

4 Memory Management Introduction

means of pointers instead of by name.

Space on the heap is allocated in blocks, which may be of any size
needed for a particular object. The Macintosh Operating System's
Memory Manager does all the necessary "housekeeping" to keep track of
the blocks as they're allocated and released. Because these operations
can occur in any order, the heap doesn't grow and shrink in an orderly
way like the stack. After a program has been running for a while, the
heap tends to become fragmented into a patchwork of allocated and free
blocks, as sho~n in Figure 2.

low memory

ra allocated blocks

:-: -: ~:-: .. »: .:-:-: .:-:- :-:-:.: .:-:-:.:.: -:<

D free blocks

high memory

Figure 2. A Fragmented Heap

As a result of heap fragmentation, when the program a!:;ks to· allocate a
new block of a certain size, it may be impossible to satisfy the
request even though there's enough free space available, because the
space is broken up into blocks smaller than the requested size. When
this happens, the Memory Manager will try to create the needed space by
compacting the heap: moving already allocated blocks together in order
to collect the free space into a single larger block (see Figure 3).

low memory
: : ::: : :: : :: : : :: : : :: : : : : : : :: : : : : : : : : : : : : : : : : : : ~ : ..

:-:.:.:.:.:.:-:.:-:.:.:.:-:.:.:-:-:-:.:.:.:.:.:
•• 0 • .. ••••• .. ·0

:::
:-:-:.:-:-: .. :.:-:.:.:-:-:.:-:-:.:-:-:.:.:.:-:.:
•••••••••••• ow ••••••••••

:::

ra allocated blocks

o free blocks

low memory
: : : : :: :: : : : ~ . : : ~ : ~ : ~ : : :: : : ;: : : : : : : :: : : :: :: :: : : :
: . : . : .. : .. : . : . : .. : . : .. : . : . : . : ~ : . : . : . : . : . : . : . : . : . : . :
:.:.:.:.:-:«.:.:.:-:-:-:.:.:-:.:-:-:-:-:.:-:

:-:-:.:.:.:-:.:.:-:-:-:-:-:-:-:.:.:-:-:-:.:-:-:
.0 .. :-:-:':':-:-:-:.:-:': .. :':-:,:->:,:.:,:,:.::-: .. :.:.:-:-:.:.:.:.:-:-:.:.:.:.:.:.:-:.:.:-:.: : ~: ~ :~: ~: ~: ~:~:~:~: ~: ~::: ~: ~: ~: >~: ~:~: ~:~:~:
>:.:.:-:.:-:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:-:

high memory high memory

Before A tter

Figure 3. Heap Compaction

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

THE STACK AND THE HEAP 5

There are always two independent heap areas in memory: the system
heap, which is used by the Toolbox and Operating System, and the
application heap, which is used by the application program.

POINTERS AND HANDLES

The Memory Manager contains a few fundamental routines for allocating
and releasing heap space. The NewPtr function allocates a block on the
heap of a requested size and returns a pointer to the block. The
DisposPtr procedure releases the block the variable points to and sets
the variable to NIL.

For example, after the declarations

TYPE ThingPtr
Thing

= AThing;
= RECORD

END;

VAR aThingPtr: ThingPtr;

the statement

aThingPtr := NewPtr(SIZEOF(Thing»

will allocate heap space for a new variable of type Thing and set
aThingPtr to po!nt to it. The amount of space to be allocated is
determined by the size of Thing. To allocate a 2K-byte memory block,
you can use:

aThingPtr := NewPtr($2000)

Once you've used NewPtr to allocate a block and obtain a pointer to it,
you can make as many copies of the pointer' as you need and use them in
any way your program requires. When you're finished with the block,
you can release the memory it occupies (returning it to available free
space) with the statement

DisposPtr(aThingPtr)

Any pointers you may have to the block are now invalid, since the block
they're supposed to point to no longer exists. You have to be careful
not to use such "dangling" pointers. This type of bug can be very
difficult to diagnose and correct, since its effects typically aren't
discovered until long after the pointer is left dangling.

Another way ,a pointer can be left dangling is for its underlying block
to be ,moved to a different location within the heap. To avoid the
problem, blocks that are referred to through simple pointers, as in
Figure 4, are nonrelocatable. The Memory Manager will never move a
nonrelocatable block, so you can rely on all pointers to it to remain
correct for as long as the block remains allocated.

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

q Memory Management Introduction

heap

pointer ,.----

...
nonre I oceteb I e
block

Figure 4. A Pointer to a Nonrelocatable Block

If all blocks on the heap were nonrelocatable, there would be no way to
prevent the heap's free,space from becoming fragmented. Since the
Memory Manager needs to be able to move blocks around in order to
compact the heap, it also uses relocatable blocks. (All the allocated
blocks shown earlier in Figure 3, the illustration of heap compaction,
are relocatable.) To keep from creating dangling pointers, the Memory
Manager maintains a single master pointer to each relocatable "block.
Whenever a relocatable block is created, a master pointer is allocated
from the heap at the same time and set to point to the block. All
references to the block are then made by double indirection, through a
pointer to the master pointer, called a handle to the block (see Figure
5). If the Memory Manager needs to move the block during compaction,
it has only to update the master pointer to point to the block's new
location; the master pointer itself is never moved. Since all copies
of the handle point to this same master pointer, they can be relied on
not to dangle, even after the block has been moved.

heap

handle

~ __________ ~)~-------------4 master
pointer

re I ocetab I e
block

Figure 5. A Handle to a Relocatable Block

Given a handle to an object on the heap, you can access the object
itself by double indirection. For example, after the following
additional declarations

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

POINTERS AND HANDLES 7

TYPE ThingHandle = AThingPtr;

VAR aThingHandle: ThingHandle;

you can access the Thing referred to by the handle aThingHandle with
the expression

aThingHandle AA

Once you've allocated a block and obtained a handle to it, you can ma1ke
as many copies of the handle as you need and use them in any way your
program requires. When you're finished with the block, you can free
the space it occupies with the statement

(note)

DisposHandle(aThingHandle)

Toolbox routines that create new objects of various
kinds, such as NewWindow and NewControl, implicitly call
the NewPtr and NewHandle routines to allocate the space
they need. There are also analogous routines for
releasing these objects, such as DisposeWindow and

-DisposeControl.

If the Memory Manager can't allocate a block of a requested size even
after compacting the entire heap, it can try to free some space by
purging blocks from the heap. Purging a block removes it from the heap
and frees the space it occupies. The block's master pointer is set to .
NIL, but the space occupied by the master pointer itself remains
allocated. Any handles to the block now point to a NIL master pointer,
and are said to be empty. If your program later needs to refer to the
purged block, it can detect that the handle has become empty and ask
the Memory Manager to reallocate the block. This operation updates the
original mas ter pointer, so that all handles to the .block are left
referring correctly to its new location (see Figure 6 on the following
page) •

(warning)
Reallocating a block recovers only the space it occupies,
not its contents. Any information the block contains is
lost when the block is purged. It's up to your program
to reconstitute the block's contents after reallocating
it.

Relocatable and nonrelocat·able are permanent properties of a block that
can never be changed once the block is allocated. A relocatable block
can also be locked or unlocked, purgeable or unpurgeable; your program
can set and change these attributes as necessary. Locking a block
temporarily prevents it from being moved, even if the heap is
compacted. The block can later be unlocked, again allowing the Memory
Manager to move it during compaction. A block can be purged only if
it's relocatable, unlocked, and purgeable. A newly allocated
relocatable block is initially unlocked and unpurgeable.

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

8 Memory Management Introduction

heap

handle

'--------t) ~-------1 master
r--"1----=------f -- pointer

~ ~.. relocatable .:-:.:.:-:-:-:.:-:.:.:-:.:-:.:-:-:-:-:.:.:.:.:.

han die

I
I .)

handle

::::::::::::::::::::;:::::::::::::::::::::::::: - block

Before purging

. heap

NIL

After purging

heap

master
- pointer

relocatable
block

~--------~)~--------~~--- master
- pofnter

After reallocating
\

Figure 6. Purging and Reallocating a Block

8120/84 Chernicoff-Hacker /MEM/INTRO.2

GENERAL-PURPOSE DATA TYPES 9

GENERAL-PURPOSE DATA TYPES

The Memory Manager includes a number of type definitions for general
purpose use. For working with pointers and handles, there are the
following definitions:

TYPE Signed Byte
Byte
Ptr
Handle

-128 •• 127;
0 •• 255;
ASignedByte;
APtr; ,

SignedByte stands for an arbitrary byte in memory, just to give Ptr and
Handle something to point to. You can define a buffer of, say, bufSize
untyped memory bytes as a PACKED ARRAY [l •• bufSize] OF SignedByte.
Byte is an alternative definition that treats byte-length data as
unsigned rather that signed quantities.

Because of Pascal's strong typing rules, you can't directly assign a
value of type Ptr to a variable of some other pointer type. Instead,
you have to convert the pointer from one type to another. For example,
after the declarations

TYPE Thing = RECORD

E~;

ThingPtr = AThing;

VAR aPtr: Ptr;
aThingPtr: ThingPtr;

Lisa Pascal allows you to make aThingPtr point to the same object as
aPtr with the assignment

aThingPtr := ThingPtr(aPtr)

or, you can refer! to a field of a record of type Thing with the
expression

ThingPtr(aPtr)A.field

In fact, you can use this same syntax to equate any two variables of
the same length. For example:

VAR aChar: CHAR;
aByte: Byte;

aByte := Byte(?Char);

You can also use the Lisa Pascal functions ORD, ORD4, and POINTER, to
convert variables of different length from one type to another. For
example:

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

10 Memory Management Introduction

VAR anInteger: INTEGER;
aLongInt: LONGINT;
aPointer: Ptr;

anInteg~r := ORD(aLongInt);
anInteger := ORD(aPointer);
aLongInt := ORD(anInteger);
aLongInt := ORD4(anInteger);
aLongInt := ORD(aPointer);
aPointer := POINTER(anInteger);
aPointler : = POINTER(aLongInt);

{two low-order bytes only}
{two low-order bytes only}
{packed into high-order bytes}
{packed into low-order bytes}

Assembly-language note: Of course, assembly-language
programmers needn't bother with type conversion.

For working with strings, pointers to strings, and handles to strings,
the Memory Manager includes the following definitions:

TYPE Str255
StringPtr
StringHandle

STRING[255];
.... Str255;
.... StringPtr;

, For treating procedures and functions as data objects, there's the
ProcPtr data type:

TYPE ProcPtr = Ptr;

For example, after the declarations

VAR aProcPtr: ProcPtr;

PROCEDURE MyProc;
BEGIN

END;

you can make aProcPtr point to MyProc by using Lisa Pascal's @
operator, as follows: (

aProcPtr := @MyProc

With the @ operator, you can assign procedures and functions to
variables of type ProcPtr, embed them in data structures, and pass them
as arguments to other routines. Notice, however, that the data type
ProcPtr technically points to an arbitrary byte (SignedByte), not an
actual routine. As a result, there's noway in Pascal to access the
underlying routine l vi~ this pointer in order to call it. Only routines
written in assembly language (such as those in the Operating System and
the Toolbox) can actually call the routine designated by a pointer of
type ProcPtr.

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

GENERAL-PURPOSE DATA TYPES 11

(warning)
Procedures and functions that are nested within other
routines can't be passed with the @ operator.

Finally, for treating long integers as fixed-point numbers, there's· the
following data type:

TYPE Fixed = LONGINT;

As illustrated in Figure 7, a fixed-point number is a 32-bit quantity
containing an integer part in the high-order word and a fractional part
in the low-order word. Negative numbers are the two's 'complement
(formed by inverting each bit and adding 1).

15

15
1
2

1
4 I 1

8

o
4 2 1

integer (high-order)

o

fraction (low-order)

Figure 7. Fixed-Point Numbers

*** (The discussion of Fixed will be removed from the next draft of the
Toolbox Utilities manual.) ***

8/20/84 Chernicoff-Hacker /MEM/INTRO.2

12 Memory Management Introduction

SUMMARY

TYPE Signed Byte
Byte
Ptr
Handle

Str255
StringPtr
StringHandle

-128 •• 127;
0 •• 255;
.... SignedByte;
.... Ptr;

STRING[255];
= Str255;
= StringPtr;

ProcPtr = Ptr;

Fixed = LONGINT;

8/20/84 'Chernicoff-Hacker /MEM/INTRO. S

GLOSSARY 13

GLOSSARY

allocate: To reserve an are~ of memory for use.

application heap: The portion of the heap available to the running
application program for its own memory allocation.

block: ~~ area of contiguous memory on the heap.

compaction: The process of moving allocated blocks within the heap in
order to collect the free space into a single block.

empty handle: A handle that points to a NIL master pointer, signifying
that the underlying relocatable block has been purged.

fixed-point number: A,32-bit quantity containing an integer part in
the high-order word and a fractional part\in the low-order word.

i

handle: A pointer to a master pointer, which designates a relocatable
block on the heap by double indirection.'

heap: The area of memory in which space is dynamically allocated and
released on demand, u~ing the Memory Manager.

lock: To temporarily prevent a relocatable block from being moved
during heap compaction. .

master pointer: A single pointer to a relocatable block, maintained by
the Memory Manager and updated whenever the block is moved, purged, or
reallocated. All handles to a relocatable block refer to it by double
indirection through the master pointer.

nonrelocatable block:- A block whose location in the 'heap is fixed and
can't be moved during heap compaction.

purge: To remove a relocatable block from the heap, leaving its master
pointer allocated but set to NIL.

purgeable block: A relocatable block that can be purged from the heap.

reallocate: To allocate new space on the heap for a purged block,
updating its master pointer to point to its new location.

release: To free an allocated area of memory, making it available for
reuse.

relocatable block: A block that can be moved within the heap during
compaction.

stack: The area of memory in which space is allocated and released in
, LIFO (last-in-first-out) order.

8/20/84 Chernicoff-Hacker /MEM/INTRO.G

14 Memory Management Introduction

system heap: The portion of the heap reserved for use by the Toolbox
and Operating System.

unlock: To allow a relocatable block to be moved during heap
compaction.

unpurgeable block: A relocatable block that can't be purged from the
heap.

8/20/84 Chernicoff-Hacker /MEM/INTRO.G

MACINTOSH USER EDUCATION

Programming Macintosh Applications in Assembly Language /INTRO/ASSEM

See Also: Inside Macintosh: A Road Map
Macintosh Memory Management: .An Introduction
The Memory Manager: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide

Modification History: First Draft
Second Draft
Third Draft

Steve Chernicoff
Bradley Hacker
Caroline Rose

2/27/84
8/2r/J/84
1/22/85

ABSTRACT
This manual gives you general information that you'll need to write all
or part of your Macintosh application program in assembly language.

Summary of significant changes and additions since last draft:

- Some additional generally useful global variables are documented
(page 4).

- Additions, corrections, and clarifications have been made to the
sections "Pascal Data Types" (page 4) and "Calling Conventions"
(page 9).

- All illustrations of the stack now place high memory at the top.

?

2 Programming in Assembly Language

TABLE OF CONTENTS

,3 About This Manual
3 Definition Files
4 Pascal Data Types
5 The Trap Dispatch Table
7 The Trap Mechanism
8 Format of Trap Words
9 Trap Macros
9 Calling Conventions

10 Stack-Based Routines
12 Register-Based Routines
13 Macro Arguments
14 Result Codes
14 Register-Saving Conventions
15 Pascal Interface to the Toolbox and Operating System
15 Mixing Pascal and Assembly Language
19 Summary
20 Glossary

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual gives you general information that you'll need to write all
or part of your Macintosh application program in assembly language.
*** Eventually it will become part of the comprehensive Inside
Macintosh man~al. *** It assumes you already know how to write
assembly-language programs for the' Motorola MC68000, the microprocessor
in the Macintosh. You should also be familiar with the information in
the manuals Inside Macintosh: A Road Map and Macintosh Memory
Management: An Introduction.

*** Lisa running MacWorks is· called "Macintosh XL" in this manual. ***

DEFINITION FILES
.,

The primary aids to assembly-language programmers'are a set of
defini tion files for symbolic names used in assembly-language pr'ograms.
The definition files include equate files, which equate symbolic names
with values, and macro files, which define the macros used to call
Toolbox and Operating System routines from assembly language. The
equate files define a variety of symbolic names for various purposes,
such as:

useful numeric quantities

- masks and bit numbers

- offsets into data structures

addresses of global variables (which often in turn contain
addresses)

It's a good idea to always use the symbolic names defined in an equate
file in place of the corresponding numeric values (even if you know
them), since some of these values may change. Note that the names of
the offsets for a data structure don't always match the field names in
the corresponding Pascal definition. In the documentation, the
definitions are normally shown in their Pascal form; the corresponding
offset constants for assembly-language use are listed in the summary at
the end of each manual.

1/22/85 Hacker-Rose /INTRO/ASSEM.2

'4 Programming in Assembly Language

Some generally useful global variables are defined in the equate files
as follows:

Name
One One
MinusOne
Lo3Bytes
Scratch20
Scratch8
ToolScratch
ApplScratch

Contents
$00010001
$FFFFFFFF
S00FFFFFF
20~byte scratch area
8-byte scratch area
8-byte scratch area
12-byte scratch area reserved for use by
applications

Scratch20, Scratch8, and ToolScratch will not be preserved across calls
to the routines in the Macintosh ROM. ApplScratch will be preserved;
it ·should be used only by application programs I and not by desk
accessories or other drivers.

PASCAL DATA TYPES

Pascal's strong typing ability lets Pascal programmers write programs
without really considering the size of variables. But assembly
language programmers must keep track of the size of every variable.
The sizes of the stanqard Pascal data types, and some of the basic
types defined in the Hemory Manager, are listed below. {See the Apple
Numerics Manual (Apple Product #nnn) *** fill in the number *** for
more information about REAL, DOUBLE, EXTENDED, and COMP.)

~
INTEGER
LONGINT
BOOLEAN
CHAR
REAL
DOUBLE
EXTENDED
COMP

STRING[n]

SignedByte
Byte
Ptr
Handle

Size
2 bytes
4 bytes
1 byte
2 bytes
4 bytes
8 bytes

10 bytes
8 bytes

n+1 bytes

1 byte
2 bytes
4 bytes
4 bytes

Contents
Two's complement integer
Two's complement integer
Boolean value in bit 0
Extended ASCII code in low-order byte
IEEE standard single format
IEEE standard double format
IEEE standard extended format
Two's complement integer with
reserved value
Byte containing string length (not
counting length byte) followed by
bytes containing ASCII codes of
characters in string
Two's complement integer
Value in low-order byte
Address of data
Address of master pointer

Other data types are constructed from these. For some commonly used
data types, the size in bytes is available as a predefined constant.

Before allocating space for any variable whose size is greater than one
byte, Pascal adds "padding" to the next word boundary, if it isn't

1/22/85 Hacker-Rose /INTRO/ASSEM.2

PASCAL DATA TYPES 5

already at a word boundary. It does this not only
variables declared successively in VAR statements,
arrays and records. As you would expect, the size
record is the sum of the sizes of all its elements
stored with the first one at the lowest address).
size of the data type

TYPE TestRecord RECORD
testHandle: Handle;
testBoolA: BOOLEAN;
testBoolB: BOOLEAN;
testChar: CHAR

END;

when allocating
but also within
of a Pascal array or
or fields (which are
For example, the

is eight bytes: four for the handle, one each for the Booleans, and
two for the character. If the testBoolB field weren't there, the size
would be the same, because of the byte of padding Pascal would add to
make the character begin on a word boundary.

In a packed record or array, type BOOLEAN is stored as a bit, and types
CHAR and. Byte ~re stored as bytes. The padding rule described above
still applies. For example, if the TestRecord data type shown above
were declared as PACKED RECORD, it would occupy only six bytes: four
for the handle, one for the Booleans (each stored in a bit), and one
for the character. If the last field were INTEGER rather than CHAR,
padding before the 2-byte integer field would cause the ·size to be
eight bytes.

(note)
The packing algorithm may not be what you expect. If you
need to exactly how data is packed, or if you have \
questions about the size of a particular data type, the
best thing to do is write a test program in Pascal and
look at the results. (You can use the SIZEOF function to
get the size.) '.

THE TRAP DISPATCH TABLE

The Toolbox and Operating System reside in ROM. However, to allow
flexibility for future development, application code/must be kept free
of any specific ROM addresses. So all references to Toolbox and
Operating System routines are made indirectly through the trap dispatch
table in RAM, which contains the addresses of the routines. As long as
the location of the trap dispatch table is known, the routines
themselves can be moved to different locations in ROM without
disturbing the· operation of programs that depend on them.

Information about the locations of the· various Toolbox and Operating
System routines is encoded in -compressed form in the ROM itself. When
the system is started up, this encoded information is expanded to form
the trap dispatch table. Because the trap dispatch table resides in·
RAM, individual entries can be "patched" to point to addresses other

1/22/85 Hacker-Rose /INTRO/ASSEM.2

6 Programming in Assembly Language

than the original ROM address. This allows changes to be made in the
ROM code by loading corrected versions of individual routines into RAM
at system startup and patching the trap dispatch table to point to
them. It1also allows an application program to replace specific
Toolbox and Operating System routines with its own "custom" versions.
A pair of utility routines for manipulating the trap dispatch table,
GetTrapAddress and SetTrapAddress, are described in the Operating
System Utilities manual. f .

For compactness, entries in the trap dispatch table are encoded into
one word each, instead of a full long-word address. Since the trap
dispatch table is 1024 bytes long, it has room for 512 word-length
entries. The high-order bit of each entry tells whether the routine
resides in ROM (0) or RAM (1). The remaining 15 bits give the offset
of the routine relative to a base address. For routines in ROM, this
base address is the beginning of the'ROM; for routines in RAM, it's the
beginning of the system heap. The two base addre~ses are' kept in a
pair of global variables named ROMBase and RAMBase.

The offset in a trap dispatch table entry is expressed in words instead
of bytes, taking advantage of the fact that instructions must always
fallon word boundaries (even byte addresses). As illustrated in
Figure 1, the system does the following t~ find the absolute address of
the routine:

1. checks the high-order bit of the trap dispatch table entry to find
out which base address to use

2. doubles the offset to convert it from words to bytes (by left
shifting one bit)

3. adds the result to the designated base address

trap dispatch table entry
15 14 0

I I I

15 1 0

10 I
, I

0: (~OM8eSe)}-- +
1: (AAMBase)

address of
= routine

Figure 1. Trap Dispatch Table Entry

1/22/85 Hacker-Rose /INTRO/ASSEM.2

THE TRAP DISPATCH TABLE 7

Using IS-bit word offsets, the trap dispatch table can address
locations within' a range of 32K words, or 64K bytes, from the base
address. Starting from ROMBase, this range is big enough to cover the
entire ROM; but only slightly more than half of the 128K RAM lies
within range of RAMBase. Since all RAM-based code resides in the heap,
RAMBase'is set to the beginning of the system heap to maximize the
amount of useful space within range. Locations below the start of the
heap are used to hold global system data (including the trap dispatch
table itself), and can never contain executable code; but if the heap

. is big enough, it's possible for some of the application's code to lie
beyond the upper end of the trap dispatch table's range. Any such code
is inaccessible through the trap dispatch table.

(note)
This problem is particularly acute on the Macintosh 512K
and Macintosh XL. To make sure they lie within range of
RAMBase, patches to Toolbox and Operating System routines
are typically placed in the system heap rather than the
application heap.

THE TRAP MECHANISM

Calls to the Toolbox and Operating System via the trap dispatch table
are implemented by means of the MC68000's "1010 emulator" trap. To
issue such a call in assembly language, you use one of the trap macros
defined in the macro files. When you assemble your program, the macro
generates a trap word in the machine-language code. A trap word always
begins with the hexadecimal digit $A (binary 1010); the rest of the
word identifies the routine you're calling,along with some additional
information pertaining to the call. '

(note)
A list of all Macintosh trap words is given in the
appendix of the Operating System Utilities manual.

Instruction words beginning with $A or $F ("A-line" or "F-Ifne"
instructions) don't correspond to any valid machine-language
instruction, and are known as unimplemented instructions. They're used
to augment the p'rocessor's native instruction set with additional
operations that are "emulated" in software instead of being executed
directly by the hardware. A-line instructions are reserved for use by
Apple; on a Macintosh, they provide access to the Toolbox and Operating
System routines. Attempting to execute such an instruction causes °a
trap to the trap dispatcher, which examines the bit pattern of the trap
word, to determine what operation it stands for, looks up the address of
the corresponding routine in the trap dispatch table, and jumps to the
routine.

(note)
F-line instructions are reserved by Motorola for use in
future processors.

1/22/85 Hacker-Rose /INTR9/ASSEM.2

8 Programming in Assembly Language

Format of Trap Words

As noted above, a trap word always contains $A in bits 12-15. Bit Ii
determines ,how the remainder of the word will be interpreted; usually
it's 0 for Operating System calls and 1 for'Toolbox calls, though there
are some exceptions.

Figure 2 shows the Toolbox trap word format. Bits 0-8 form the trap
number (an index into the trap dispatch table), identifying the
particular routine being called. Bit 9 isn't used. Bit 10 is the
"auto-pop" bit; this bit is used by language systems that, rather than
directly invoke the trap like Lisa Pascal, do a JSR to the trap word
followed immediately by a return to t~e calling routine. In this case,
the return addresses for the both the JSR and the trap get pushed onto
the stack, in that order. The auto-pop bit causes the trap dispatcher
to pop the trap's return address from the stack and return directly to
the calling program.

15 14 13 12 11 10 9 8

trap number

I I not used .

~ auto-pop bit

Figure 2. Toolbox Trap Word (Bit 11=1)

a

For Operating System calls, only the low-order eight bits (bits 0-7)
are used for the trap number (see Figure 3). Thus of the 512 entries
in the trap dispatch table, 1 only the first 256 can be used for
Operating System traps. Bit 8 of an Operating System trap has to do
with register usage and is discussed below under "Register-Saving

\
Conventions". Bits 9 and 10 have specialized meanings depending on
which routine you're calling, and are covered where relevant in other
manuals.

15 14 13 12 11 10 9 8 7

(1 I 0 I 1 I 0 I 0 I f I egg I I
L

trap number

3et if trap di 3patcher
doesn' t preserve AD'
(routine passes it beck)

o

Figure 3. Operating System Trap Word (Bit 11=0)

1/22/85 Hacker-Rose /INTRO/ASSEM.2

THE TRAP MECHANISM 9

Trap Macros

The names of all trap macros begin with the underscore character (),
followed by the name of the corresponding routine. As a rule, the
macro name is the same as the name used to call the routine from
Pascal, as giv~n in the Toolbox and Operating System documentation.
For example, to call the Window Manager routine NewWindow, you would
use an instruction with the macro name _NewWindow in the opcode field.
There are some exceptions, however; in which the spelling of the macro
name differs from the name of the Pascal routine itself; these are
noted in the documentation for the individual routines.

(note)
The reason for the exceptions is that assembler names
must be unique to eight characters. Since one character
is taken up by the underscore, special macro names must
be used for Pascal routines ,whose names aren't unique to
seven characters.

Trap macros for Toolbox calls take no arguments; those for Operating
System calls may have as many as three optional arguments. The first
argument, if present, is used to load a register with a parameter value
for the routine you're, calling, and is discussed below under "Register
Based Routines". The remaining arguments control the settings of the
various flag bits in the trap word. The, form of these arguments varies

,with the meanings of the flag bits, and is described in the manuals on
the relevant parts of the Operating Sy~tem.

CALLING CONVENTIONS

The calling conventions for Toolbox and Operating System routines fall
into two categories: stack-based and register-based. As the terms
imply, stack-based routines communicate via the stack, following the
same conventions used by the Pascal Compiler for routines ,written in
Lisa P~~cal, while register-based routines receive their parameters and
return'their results in registers. Before calling any Toolbox or
Operaiing System routine, you have to set up the parameters in the way
the routine expects.

(riote)
,As a general rule, Toolbox routines are stack-based and
Operating System routines register-based, but there are
exceptions on both sides. Throughout the technical
documentation, register-based calling conventions are
given for all routines that have them; if none is shown,
then the routine is stack-based.

1/22/85 Hacker-Rose /INTRO/ASSEM.3

10 Programming in Assembly Language

Stack-Based Routines

To call a stack-based routine from assembly language, you have to set
up the parameters on the stack in the same way the compiled object code
would if your program were written in Pascal. If the routine you're
calling is a function, its result is returned on the stack. The number
and types of' parameters, and the type of result returned by a function,
depend on the routine being called. The number of bytes each parameter
or result occupies on the stack depends on its type:

T~pe of parameier
or function result
INTEGER
LONGINT
BOOLEAN

CHAR

REAL, DOUBLE, or
COMP
EXTENDED
STRING[n]

SignedByte
Byte
Ptr
Handle
Record or array

VAR parameter

Size
2 bytes
4 bytes
2 bytes

2 bytes

4 bytes

4 bytes
4 bytes

2 bytes
2 bytes
4 bytes
4 bytes
2 or 4
bytes

4 bytes

, Contents
Two's complement integer
Two's complement integer
Boolean value in bit 0 of high
order byte
Extended ASCII code in low-order
byte
Pointer to value converted to
EXTENDED
Pointer to value
Pointer to string (first byte
pointed to is length byte)
Value in low-order byte
Value in low-order byte
Address of data
Address of master pointer
Contents of structure (padded to
word boundary) if <= 4 bytes,
otherwise pointer to structure
Address of variable, regardless'
of type

The steps to take to call the routine are as follows:

1. If i~'s a function, reserve space on the stack for the result.

2. Push the parameters onto the stack in the order they occur in the
routine's Pascal definition.

3. Call the routine by executing the corresponding trap macro.

The trap pushes the return address onto the stack, along with an extra
word of processor status information. The trap dispatcher removes this
extra status word, leaving the stack in the state shown in Figure 4 on
entry to the routine. The routine itself is responsible for removing
its own parameters from the stack before returning. If it's a
function, it leaves its result on top of the stack in the space
reserved for it; if it's a procedure, it restores the stack to the same
state it was in before tJhe call.

1/22/85 Hacker-Rose /INTRO/ASSEM.3

high memory

previous 3'tack conteni3 .

~7 ~~

function result (if any)

first parameter

last parameter
4(SP) ---7 ~--------1

return address
(SP) -7 ~-:--. ~ ... ~.-:-. -:-:" .. ---:". ":""':"' .. ~:-:-: .. -:-:1

..... ',' '.' ..

low memory

On entry

CALLING CONVENTIONS 11

high memory

prey i ous stack contents

function result

(S P) ---7 h-::: :":""':"'.:; :-:-:"". : : ;-:-:"':: ; :~:::: ;:-:-:.:; :-:-:';:: :-:-:":::: :-=--:., ;--=-: .; ;-:-:-::: :-:-:"': ;>-:-:.: :-:-:< :-:-1::::

:::' .. <:-:::',:::.":-.:.::::'::. :::',:<:- :.::

low memory

On return (functions)

high memory

prev i ous stack contents

(SP) -7 ./.~:-~~~-:--"""""""-:-.-. -, . -.. -:--, ,,..:
........ ««':':-. <-: -: -: -: :-::~::::. -::::-:::.:.',', .

low memory

On return (procedures)

Figure 4. Stack Format for Stack-Based Routines

For example, the Window Manager function GrowWindow is defined in
Pascal as follows:

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point;
sizeRect: Rect) : LONGINT;

To call this function from assembly language, you'd write something
like the following:

SUBQ.L
MOVE.L
MOVE.L

PEA

114,SP
theWindow,-(SP)
startPt,-(SP)

sizeRect

Gro'wWi ndow
MOVE.L (SP)+,D3

;make room for LONGINT result
;push window pointer
;a Point is a 4-byte record,
; so push actual contents
;a Rect is an 8-byte record,
; so push a pointer to it
;trap to routine
;pop result from stack

Although the MC68000 hardware provides for separate user and supervisor
stacks, each with its own stack pointer, the Macintosh maintains only
one stack. All application programs run in supervisor mode and share
the same stack with the system; the user stack pointer isn't used.

1/22/85 Hacker-Rose /INTRO/ASSEM.3

12 Programming in Assembly Language

Remember that the stack pointer must always be aligned on a word
boundary. This is whYt for example t a Boolean parameter occupies two
bytes; it's actually the Boolean value followed by a byte of padding.
Because all Macintosh application code runs in the MC68000's supervisor
mode t an odd stack pointer will cause a "double bus fault": a
catastrophic system failure that causes the system to restart.

To keep the stack pointer properly aligned t the MC68000 automatically
adjusts the pointer by 2 instead of 1 when you move a byte-length value
to or from the stack. This happens only when all of the following
three conditions are met:

- A 1-byte value is being transferred.

- Either the source or the destination is specified by predecrement
or postincrement addressing.

- The register being decremented or incremented is the stack pointer
(A7).

An extra t unused byte will automatically be added in the low-order byte
to keep the stack pointer even. (Note that if you need to move a
character to br from the stack, you must explicitly use a full word of
data, with the character in the low-order byte.)

(warning)

(note)

If you use any other method to manipulate the stack
pointer t it's your responsibility to make sure the
pointer stays properly aligned.

Some Toolbox and Operating Systeln routines accept the
address of"one of your own routines as a parameter, and
call that routine under certain circumstances. In these
cases, you must set up your routine to be stack-based.

Register-Based Routines

By convention, register-based routines normally use register A0 for
passing addresses (such as pointers to data objects) and D0 for other
data val~es (such as integers). Depending on the routine, these
registers may be used to pass parameters to the routine, result values
back to the calling program, or both. 'For routines that take more than
two parameters (one address and one data value), ~he'parameters are
normally collected in a parameter block in memory and a pointer to the
parameter block is passed in A0. However, not all routines obey these
conventions; for example t some expect' parameters in other registers,
such as Al. See the documentation on each individual routine for
details.

Whatever the conventions may be for a particular routine, it's up to
you to set up the parameters in the appropriate registers before
calling the routine. For instance t the Memory Manager procedure

1/22/85 Hacker-Rose /INTRO/ASSEM.3

CALLING CONVENTIONS 13

BlockMove, which ~opies a block of consecutive bytes from one place to
another in memory, expects to find the address of the first source byte
in· register A0, the address of the first destination location in AI,
and the number of bytes to be copied in D0. So you might write
something like

LEA src(A5),A0
LEA dest(A5),Al
MOVEQ #20,D0

BlockMove

;source address in A0
;destination address in Al
;byte count in D0
;trap to routine

Macro Arguments

The following information applies to the Lisa Assembler. If you're
using some other assembler, you should check its documentation to find
out whether this information applies.

Many register-based routines expect to find an address of some sort in
register A0. You can specify the contents of that register as an
argument to the macro instead of explicitly setting up the register
yourself. The first argument you supply to the macro, if any,
represents an address to be passed in A0. The macro will load the
register with an LEA (Load Effective Address) instruction before
trapping to the routine. So, for instance, to perform a Rea~ operation
on a file, you could set up the parameter block for the operation and
then use the instruction

Read paramBlock ;trap to routine with pointer to·
; parameter block in A0

This feature is purely a convenience, and is optional: If you don't
supply· any arguments to a trap macro, or if the first argument is null,
the LEA to A0 will be omitted from the macro expansion. Notice that A0
is loaded with the address denoted by the argument, not the contents of
that address.

(note)
You can use any of the MC68000's addressing modes to
specify this addr~ss, with one exception: You can't use
the two-register indexing mode ("address register
indirect with index and displacement"). An instruction
such as

Read offset(A3,D5)

won't work properly, because the comma separating the two
registers will be taken as a delimiter marking the end of
the macro argument.

1/22/85 Hacker-Rose /INTRO/ASSEM.3

14 Programming in Assembly Language

Result Codes

Many regisier-based routines return a result code in the low-order word
of registerD0 to report successful completion or failure due to some
error condition. A result code of 0 always indicates that the routine
was completed successfully. Just before returning from a register
based call, the trap dispatcher tests the low-order word of D0 with a
TST.W instruction to set the processor's condition codes. You can then
check for an error by branching directly on the condition codes,
without any explicit test of your own. For example:

_PurgeMem
BEQ NoError

;trap to routine
;branch if no error
;handle error

(warning)
Not all register-based routines return a result code.
Some leave the contents of D0 unchanged; others use the
full 32 bits of the register to return a long-word
result. See the documentation of individual routines for
details.

Register-Saving Conventions

All Toolbox and Operating System routines preserve the contents of all
registers except A0, AI, and D0-D2 (and of course A7, which is the
stack pointer). In addition, for register-based routines, the trap
dispatcher saves registers AI, Dl, and D2 before dispatching to the
routine and restores the~ before returning to the calling program. A7
and D0 are never restored; whatever the routine leaves in these
registers is passed back unchanged to the calling program, allowing the
routine to manipulate the stack pointer as appropriate and to return a
result co~e.

Whether the trap dispatcher preserves register A0 for a register-based
trap depends on the setting of bit 8 of the trap word: If this bit is
0, the trap dispatcher saves and restores A0; if it's 1, the routine
passes back A0 unchanged. Thus bit 8 of the trap word should be set to
1 only for those routines that return a result 'in A0, and to 0 for all
other routines. The trap macros automatically set this bit correctly
for eac~ routine, so you never have to worry about it yourself.

Stack-b~sed traps preserve only registers A2-A6 and D3-D7. If you want
to preserve any of the other registers, you have to save them yourself
before trapping to the routine--typically on the stack with a MOVEM
(Move Multiple) instruction--and restore them afterward.

(note)
Any routine in your application that may be called as the
result of a. Toolbox or Operating System call shouldn't
rely on the value of any register except AS, which
shouldn't change.

1/22/85 Hacker-Rose /INT~O/ASSEM.3

CALLING CONVENTIONS 15

Pascal Interface to the Toolbox and Operating System

When you call a register-based Toolbox or Operating System routine from
Pascal, you're actually calling an interface routine that fetches the
parameters from the stack where the Pascal-calling p~ogram left them,
puts them in the registers where the routine expects them, and then
traps to the routine. On return, it moves the routine's result, if
any, from a register to the stack and then returns to the calling
program. (For routines that return a result code, the interface
routine may also move the result code to a global variable, where it
can later be accessed.)

For stack-based calls, there's no interface routine; the trap word is
inserted directly into the compiled code.

MIXING PASCAL AND ASSEMBLY LANGUAGE

You can mix Pascal and assembly language freely in your own programs,
calling routines written in either language from the other. The Pascal
and assembly-language portions of the program have to be compiled and
assembled separately, then combined with a program such as the Linker.
For convenience in this discussion, such separately compiled or
assembled portions of a program will be called "modules". You c'an
divide a program into any number of modules, each of which may be
written in either Pascal or assembly language.

References in one module to routines defined in another are called
external references, and must be resolved by a program such as the
Linker that resolves external references by matching them up with their
definitions in other modules. You have to identify all the external
references in each module so they can be resolved properly. For more
information, and for details about the actual process of linking the
modules together, see the documentation for the development system
you're using.

In addition to being able to call your own Pascal routines from
assembly language, you can call certain routines in the Toolbox and
Operating System that were created expressly for Lisa Pascal
programmers and aren't part of the Macintosh.ROM. (These routines may
also be available to users of other development systems, depending on
how the interfaces have been set up on those s~stems.) They're marked
with the notation

[Not in ROM]

*** previously [Pascal only] or [No trap macro] *** in the
documentation. There are no trap macros for these routines (though
they may call other routines for which there are trap macros). Some of
them were created just to allow Pascal programmers access to assembly
language information, and so won't be useful to assembly-language
programmers. Others, however, contain code that's executed before a

1/22/85 Hacker-Rose /INTRO/ASSEM.3 ,

16 Programming in Assembly Language

trap macro is invoked, and you may want to perform the operations they
provide.

All calls from one language to the other, in either direction, must
obey Pascal's stack-based calling conventions (see "Stack-Based
Routines", above). To call your own Pascal routine from assembly
language, or one of'the Toolbox or Operating System routines that
aren't in ROM, you push the parameters onto the stack before the call
and (if the routine is a function) look for the result on the stack on
return. In an assembly-language routine to be called from Pascal, you
look for the parameters on the stack on entry and leave the result (if
any) on the stack before returning.

Under stack-based calling conventions, a convenient way to access a
routine's parameters on the stack is with a frame pOinter, using the
MC68000's LINK and UNLK (Unlink) instructions. You can use any address
register for the frame pointer (except A7, which is reserved for the
stack'p01nter), but on the Macintosh register A6 is conventionally used
for this purpose. The instruction

LINK A6,#-12

at the beginning of a rpu~ine saves the previous contents of A6 on the
stack and sets A6 to point to it. The second operand specifies the
number of bytes of stack space to be reserved for the routine's local
variables: in this case, 12 bytes. The LINK instruction offsets the
stack pointer by this amount after copying it into A6.

(warning)
The offset is added to the stack pointer, not subtracted
from it. So to allocate stack space for local variables,
you have to give a negative offset; the instruction won't
work properly if the offset is positive. Also, to keep
the stack pointer correctly aligned, be sure the offset
is even. For a routine with no local variables on the
stack, use an offset of #0.

~egister A6 now points to the routine's stack frame; the routine can
locate its parameters and local variables by indexing with respect to
this register (see Figure 5). The register itself points to its own
saved contents, which are often (but needn't necessarily be) the frame
pointer of the calling routine. The parameters and return address are
found at positive offsets from the frame pointer.

1/22/85 Hacker-Rose /INTRO/ASSEM.3

MIXING PASCAL AND ASSEMBLY LANGUAGE 17

high memory

previous stack contents

",r

function result (if any)

first parameter

~
J. /'

last paramoter
8(AS) ~ t-------

return address
4(AS) ~ ~-----------4

(AS) ~ t----------~
prey ious (A6)

.,
""

local variables

~

""
~------------------------~

saved reg i sters

.1."7 ",r
<SP) ~ ~> :-~:-:-~,~ ... :':"':"'-: :':""':""::. :~: -: :~'.'. ,--='. -:--=. ·-"',1·-: .• ~ .. .,.-. .,.-.. .,.-. ~~

............. . . '"

low memory

Figure 5. Frame Pointer -

Since the saved contents of the frame pointer register occupy a long
word (four bytes) on the stack, the return address is located at 4(A6)
and the last parameter at 8(A6). This ts followed by the rest of the
parameters in reverse order, and finally by the space reserved for the
function result, if any. The proper offsets for these remaining
parameters and for the function result depend on the number and types
of the parameters, according to the table above under "Stack-Based
Routines". If the LINK instruction allocated stack space for any local
variables, they can be accessed at negative offsets from the frame
pointer, again depending on their number and types.

At the end of the routine, the instruction

UNLK A6

reverses the process: First it releases the local variables by setting
the stack pointer equal to the frame pointer (A6), then it pops ihe
saved contents back into register A6. This restores the register to
its original state and leaves the stack pointer pointing to the
routine's return address.

A routine with no parameters can now just return to the caller with an
RTS instruction. But if there are any parameters, it's the routine's

1/22/85 Hacker-Rose , / INTRO / ASSEM. 3

19 Programming in Assembly Language

responsibility to pop them from the stack before returning. The usual
way of doing this is to pop the return address into an address
register, increment the stack pointer to remove the parameters, and
then exit with an indirect jump through the register.

Remember that any routine called from Pascal must observe Pascal
register conventions and preserve registers A2-A6 and D3-D7. This is
usually done by saving the registers that the routine will be using on
the stack with a MOVEM instruction, and then restoring them before
returning. Any routine you write that will be accessed via the trap
mechanism--for instance, your own version of a Toolbox or Operating
System routine that you've patched into the trap dispatch table--should
observe the same conventions.

Putting all this together, the routine should begin with a sequence
like

MyRoutine LINK A6,iI-dd ;set up frame pointer-
, dd = number of bytes
; of local variables

MOVEM.L A2-AS/D3-D7,-(SP) ; ••• or whatever subset of
; these registers you use

and end with something like

MOVEM.L (SP)+,A2-AS/D3-D7
UNLK A6

MOVE.L (SP)+,AI

ADD.W ilpp,SP

JMP (AI)

;restore registers
;restore frame pointer

;save return address in an
; available register
;pop parameters--
; pp = number of bytes
; of parameters
;return to caller

Notice that A6 doesn't have to be included in the MOVEM instructions,
since it's saved and restored by the LINK and UNLK.

(warning)
Whe.n the Segment Loader starts up an application, it sets
register AS to point to the boundary between the
application's globals and parameters. Certain parts of
the system (notably QuickDraw and the File Manager) rely
on· finding AS set up properly--so you have to be a bit
more careful about preserving this register. The safest
policy is never to touch AS at all. If you must use it
for your own purposes, just saving its contents at the
beginning of a routine and restoring them before
returning isn't enough: You have to be sure to restore
it before any call t~at might depend on it. The correct
setting of AS is always available in the global variable
CurrentAS.

'1/22/85 Hacker-Rose /INTRO/ASSEM.3

SUMMARY

Variables

One One
MinusOne
Lo3Bytes
Scratch20
Scratch8
ToolScratch
ApplScratch
CurrentAS

$00010001
$FFFFFFFF
$00FFFFFF
20-byte scratch area
8-byte scratch area
8-byte scratch area

SUMMARY 19

12-byte scratch area reserved for use by applications
Correct value of AS (long)

1/22/85 Hacker-Rose /INTRO/ASSEM.S

20 Programming in Assembly Language

GLOSSARY

external reference: A reference to a routine or variable defined in a'
separate compilation or assembly.

frame pointer: A pointer to a routine's stack frame, held in an
address register and manipulated with the LINK and UNLK instructions.

interface routine: A routine called from Pascal whose purpose is to
trap to a certain Toolbox or Operating System routine.

parameter block: Memory space used to transfer information between
applications and- certain Ope~ating System routines.

register-based routine: A Toolbox or Operating System routine that
receives its parameters and returns its results, if any, in registers.

stack-based routine: A Toolbox or Operating System routine that
receives its parameters and returns its results, if any, on the stack.

stack frame: The area of the stack used by a routine for i~s
parameters, return address, local variables, and temporary storage.

trap dispatch table: A table in RAM containing the addresses of al}
Toolbox and Operating System routines in encoded form.

trap dispatcher: The part of the Operating System that examines a trap
word to determine what operation it stands for, looks up the address of
the corresponding routine in the ,trap dispatch table, and jumps to the
routine.

trap macro: A macro that assembles into a trap word, used for calling
a Toolbox or Operating System routine from assembly language.

trap number: The identifying number of a Toolbox or Operating System
routine; an index into the trap dispatch table.

trap word: An unimplemented instruction representing a call to a
Toolbox or Operating System routine.

unimplemented instruction: An instruction word that doesn't correspond
to any valid machine-language instruction but instead causes a trap.

1/22/85 Hacker-Rose /INTRO/ASSEM.G

MACINTOSH USER EDUCATION

The Resource Manager: A Programmer's Guide /RMGR/RESOURCE

See Also: Macintosh User Interface Guidelines
Inside Macintosh: A Road Map
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
QuickDraw: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
Putting Together a Macintosh Application

Modification History: First Draft (ROM 2.0)
Second Draft (ROM 4)
Third Draft (ROM 7)
Errata added

Caroline
Caroline
Caroline
Caroline

Rose
Rose
!lose
Rose

Fourth Draft Caroline Rose
Bob Anders

2/2/83
6/21/83
10/3/83
3/8/84

&
11/28/84

ABSTRACT

Macintosh applications make ,use of many resources, such as menus, fonts,
and icons. These resources are stored in resource files separately from
the application code, for flexibility and ease of maintenance. This
manual describes resource files and the Resource Manager routines.

Summary of significant changes and additions since the last draft:

- A detailed discussion of the specification of resource ID numbers
has been added (page 9).

- The concept of "system references" has been moved from the
discussion of resource references (page 11) to a separate section
(page 37). Since the Finder does not recognize these references
to system resources, they aren't particularly useful and have been
moved to a section which is essentially "of historical interest
only". For this reason, "local references" are now simply called
"resource references".

- SizeResource returns a long integer rather than an integer (page
25) •

2 Resource Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the Resource Manager
5 Overview of Resource Files
8 Resource Specification
8 Resource Types '
9 ' Resource 10 Numbers
10 Resource IDs of Owned Resources
11 Resource Names
11 Resource References
14 Using the Resource Manager
16 Resource Manager Routines
16 Initialization
17 Opening and Closing Resource Files
18 Checking for Errors
19 Setting, the Current Resource File
20 Getting Resource Types
21 Getting and Disposing of Resources
25 Getting Resource Information
26 Modifying Resources
31 Advanced Routines
32 Resources Within Resources
34, Format of a Resource File
37 System References
39 Resource Attributes of System References
39 System References in Resource Manager Routines
40 Format of System References
42 Summary of the Resource Manager
46 Summary of the Resource File Format
47 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

)

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Resource Manager, the part of the Macintosh
User Interface Toolbox through which an application accesses various
resources that it uses, such as menus, fonts, and icons. ***
Eventually it will become part of the comprehen.sive Inside Macintosh
manual. *** It discusses resource files, where resources are-stored.
Resources form the foundation of every Macintosh application; even the
application's code is a resource. In a resource file, the resources
used by the application are stored separately from the code for
flexibility and ease of maintenance.

- You can use an existing program for creating and editing resource
files, or write one of your own. These programs will call
Resource Manager routines.

- Usually you'll access resources indirectly through other parts of
the Toolbox, such as the Menu Manager and the Font Manager, which
in turn call the Resource Manager to do the low-level resource
operations. In some cases, you may need to call a Resource
Manager routine directly.

Like all Toolbox documentation, this manual assumes you're familiar
with Lisa Pascal and the information in the following manuals:

- Inside Macintosh: ! Road Map

Macintosh User Interface Guidelines

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications in Assembly Language, if you're
using assembly language

Familiarity with Macintosh files, as described in the File Manager
manual, is optional. It's useful if you want a complet'e unders tanding
of the internal structure of a resource file, but you d~n't have to
know it to be, able to use the Resource Manager.

If you're going to write your" own program to create and edit resource
files, you also need to know the exact format of eacp type of resource.
The documentation for the part of the Toolbox that deals w~th a
particular type of resource will tell you what you need to know for
that resource.

ABOUT 'THE RESOURCE MANAGER

Macintosh applications make use of many resources, such as menus,
fonts, and icons, which are stored in resource files. For example, an
icon resides in a resource file as a 32-by-32 bit image, and a font as
a large bit image containing the characters of the font. In some cases

11/28/84 Rose-Anders /RMGR/RESOURCE.2

4 Resource Man&ger Programmer's Guide

the resource consists of descriptive information ,(such as, for a menu,
.the menu title, the text of each command in the menu, whether the
command is checked with a check mark, and so on). The Resource Manager
keeps track of resources in resource files and provides routines that
allow applications and other parts of the Toolbox to access them.

There's a resource file associated with each application, containing
the resources specific to that application; these resources include the
application code itself. There's also a system resource file, which
contains standard resources shared by all applications (also called
system resources).

The resources used by an application are created and changed separately
from the application's code. This separation is the main advantage to
having resource files. A change in the title of a menu, for example,
won't require any recompilation of code, nor will translation to a
foreign language.

The Resource Manager is initialized by the system when it starts up,
and the system resource file is opened as part of the initialization.
Your application's resource file is opened when the application starts
up. When instructed to get a certain resource, the Resource Manager
normally looks first tn the application's resource file and then, if
the search isn't successful, in the system resource file. This makes
it easy to share resources among applications and also to override a
system resource with one of you"[' own Cif you want to use something
other than a standard icon in an alert box, for example).

Resources are grouped logically by function into resource types. You
refer toa resource by passing the Resource Manager a resource
specification, which c'onsists of the resource type and either an ID
nu~ber or a name. Any resource type is valid, whether one of those
recognized by the Toolbox as referring to standard Macintosh resources
(such as menus and fonts), or a type created for use by your
application. Given a resource specification, the Resource Manager will
read the 'resource into memory and return a handle to it.

(note)
The Resource Manager knows nothing about the formats of
the individual types of resources. Only the routines in
the other parts of the Toolbox that call the Resource
Manager have this knowledge.

While most access to resources is read-only, certain applications may
want to modify resources,. You can change the content of a resource or
its ID number, name, or other attributes--everything except its type.
For example, you can designate whether the resource should be kept in
memory or whether, as is normal for large resources, it can be removed
from memory and read in again when needed. You can change existing
resources, remove resources from the resource file altogether, or add
new resources to the file.

Resource files are not limited to applfcations; anything stored in a
file can have its own resources. For instance, an unusual font used in

11/28/84 Rose-Anders /RMGR/RESOURCE.2

ABOUT THE RESOURCE MANAGER 5

only one document can be included in the,resource file for that
document rather than in the system resource file.

(note)
Although shared resources are usually stored in the
system resource file, you can have other resource files
that contain resources shared by two or more applications
(or documents, or whatever).

A number of resource files may be open at one time; the Resource
Manager by default searches the files in the reverse of the order that
they were opened. Since the system resource file is opened when the
Resource Manager is initialized, it's always searched last. The search
starts with the most recently opened resource file, but you can change
it to start with a file that was opened earlier. (See Figure 1.)

Order of
opening:

Opened
last

Opened
second

Opened
first

Document's
resource f i Ie

Appl ication's
resource 1 i Ie

System resource
tile

Usual search

:;;
You can change
it to this:

Figure 1. Resource File Searching

OVERVIEW OF RESOURCE FILES

Resources may be put in a resource file with the aid of the Resource
Editor, which is documented *** nowhere right now, because it isn't' yet
available. Meanwhile, you can use the Resource Compiler. You describe
the resources in a text file that the Resource Compiler uses to
generate the resource file. The exact format of the input file to the
Resource Compiler is given in the manual Putting Together ~ Macintosh
Application. ***
A resource file is not a file in the strictest sense. Although it's
functionally like a file in many ways, it's actually just one of two
parts, or forks, of a file. (See Figure 2.) Every file has a resource
fork and a data fork (either of which may be empty). The resource fork
of an application file contains not only the resources used by the

11/28/84 Rose-Anders /RMGR/RESOURCE.2

6 Resource Manager Programmer's Gu~de

application but also the"application code itself. The code may be
divided into different segments, each of which is 'a. resource; this
allows various parts of the program.to be loaded and purged
dynamically. Information is stored in the resource fork vi~ the
Resource Manager. The data fork of an application file can contain
anything an application wants to store there. Information is stored in
the data fork via the File Manager.

•

________________ ~ ____ ~-----J

The epplicatlorls
resources (which
include its code)

Resource fork
(" resource file It)

In it lally emptYi·
the application
may store date
here.

Data fork

~--
Figure 2. An Application File

As shown in Figure 3, the system resource file has this same structure.
The resource fork contains the system resources and the data fork
contains "patches" to the routines in the Macintosh ROM. Figure 3 also
shows the structure of a file containing a document; the resource fork
contains the document's resources and the data fork contains the data
that comprises the document.

r--------~----~----~--------, ~---J-----~----~---------------

The system
resources

Resource fork

("resource file ";

System code: The document's
patches to resources
ROM rout ines

Data fork
·1
t
1

Resource fork

("resource ·file ")

The date in
the document

Data fork

~ -------------------------------, ---------------------------------
System Resource File Document File

Figure 3. Other Files

11/28/84 Rose-Anders /RMGR/RESOURCE.2

OVERVIEW OF RESOURCE FILES 7

To open a resource file, the Resource Manager calls the appropriate
File Manager routine and returns the reference number it gets from the
File Manager. This is a number greater than 0 by which you can refer
to the file when calling other Resource Manager routines.

(note)
This'reference number is actually the path reference
number, as described in the File Manager manual.

Most of the Resource Manager routines don't require the resource file's
reference riumber a~ a parameter. Rather, they assume that the current
resource file is where they should perform their operation (or begin
it, in the case of a search for a resource). The current resource file
is the last one that was opened unless you specify otherwise.

A resource file consists primarily of resource data and a resource map.
The resource data consists of the resources themselves (for example,
the bit image for an icon or the descriptive information for a 'menu).
The resource map contains an entry for each resource that provides the
location of its resource data. Each entry in the map either give~ the
offset of the resource data in the file or contains a handle to the
data if it's in memory. The resource map is like the index of a book;
the Resource Manager looks in it for th~ resource you specify and
determines where its resource data is located.

The resource map is read into memory when the file is opened and
remains there until, the file is closed. Although for simplicity we say
that the Resource Manager searches resource files t it actually searches
the resource maps that were read into memory, and not the resource
files on the disk.

Reso~rce data is normally read into memory when needed, though you can
specify that it be read in as soon as the' resource file is opened. '
When re~d in, resource data is stoied in a relocatable block in the
heap. Resources are designated in the resource map as being either
purgeable or unpurgeable; if, purgeable, they may be removed from the
heap when space is required by the Memory Manager. Resources
consisting of a relatively large amount of data are usually designated
as purgeable. Before accessing such a resource through its handle, you
ask the Resource Manager to read the resource into memory again if it
has been purged.

(note)
Programmers concerned about the amount of available
memory should be aware that there's a 12-byte overhead in
the resource map for every resource and an additional
12-byte overhead fqr memory management if the resource is
read into memory.

To modify a resource, you change the resource data or resource map in
memory. The change becomes permanent only at your explicit request,
and then only when the application terminates or when you' call a
routine specifically for updating or closing the resource file.

11/28/84 Rose-Anders /RMGR/RESOURCE.2

8 Resource Manager Programmer'~ Guide

Each resource file also may contain a partial copy of its entry in the
file directory, writtell and used 'by the Finder, and up to 128 bytes of
any data the application wants to store there.

RESOURCE SPECIFICATION

In a resource file, every resource is assigned a type, an ID number,
and optionally a name. When calling a Resource Manager routine to
access a resource, you specify the resource by passing its type and
either its ID number or its name. This section gives some general
information about resource specification.

Resource Types

The resource ~ is a sequence of four characters. Its Pascal data
type is:

TYPE ResType = PACKED ARRAY [1 •• 4] OF CHAR; ,

The standard Macin'tosh resource types are as follows:

Resource type
'ALRT'
'BNDL'
'CDEF'
'CNTL'
'CODE'
'CURS'
'DITL'
'DLOG'
'DRVR'
'DSAT'
'FKEY'
'FONT'
'FREF'
'FRSV'
'FWID'
'ICNII'
'ICON'
'INIT'
'INTL'
'KEYC'
'MBAR'
'MDEF'
'MENU'
'PACK'
'PAT •
'PATII'
'PDEF'
'PICT'
'PREe'

11/28/84 Rose-Anders

Meaning
Alert tetnplate
Bundle
Control definition function
Control template
Application code segment
Cursor
Item list in a dialog or alert
Dialog template
Desk accessory or other device driver
System startup alert table
Command-Shift-number routine
Font
File reference
Font reserved for system use
Font widths
Icon list
Icon
Initialization resource

-International resource
Keyboard configuration
Menu bar
Menu definition procedure
Menu
Package
Pattern (The space is required.)
Pattern list
Printing code
Picture
Print record

/RMGR/RESOURCE.2

(warning)

'STR '
'STRII'

, 'WDEF'
'WIND'

RESOURCE SPECIFICATION 9

String (The space is required.)'
String list
Window definition function
Window template

Uppercase and lowercase letters are distinguished in
resource types. For example, 'Menu' will not be
recognized as the resource type for menus.

Notice that some of the resources listed above are "templates". A
template is a list of parameters used to build a Toolbox object; it is
not the object- itself. For example, a window template contains
information specifying the size and location of the window, its title,
whether it's visible, and so on. The Window Manager uses this
information to build the window in memory and then never accesses the
template again.

You can use any four-character sequence (except those listed above) for
resource types specific to your application.

Resource ID Numbers

Every resource has an ID number, or resource ID. The resource ID must
be unique within each resource type, but resources of different types
may have the same ID. If you assign the same resource ID to two
resources of the same type, the second assignment of the ID will
override the first, thereby making the first resource inaccessible.

(warning)
Certain resources contain the resource IDs of other
resources; for instance, a dialog template contains the
resource ID of its item list. In order not to duplicate
an existing resource ID, a program that copies resources
may need to change the resource ID of a resource; such a
program may not, however, change the ID where it occur,s
in other resources. For instance~ an item list's
resource ID contained in a dialog template may not be
changed, even though the actual resource ID of the item
list was changed to avoid duplication; this would make it
impossible for the template to access the item list. Be
sure to verify, and if necessary, correct, the IDs
contained within such resources. (For related
information, see the section "Resource IDs of Owned
Resources" below.)

By convention, the ID numbers are divided into ,the following ranges:

11/28/84 Rose-Anders /RMGR/RESOURCE.2

10 Resource Manager Programmer's Guide

(note)

Range
-32768 through -16385
-16384 through -1

o through 127
128 thro~gh 32767

Description
Reserved; do not use
Used for system resources owned by other
system resources (explained below)
Used for other system resources
Available for your use in whatever
way you wish

The manuals that describe the different types of
resources in detail give information about resource types
that may be more restrictive about the allowable range
for their resource IDs. A device driver, for instance,
can't have a resource ID greater than 31.

Resource IDs of Owned Resources

This section is intended for advanced programmers who are involved in
writing their own desk accessories (or other drivers), or special types
of windows, controls, and menus. It's also useful in understanding the
way that resource-copying programs recognize resources that are
associated with each other.

Certain types of system resources may have resources of their own in
the system resource file; the "owning" resource consists of code that
reads the "owned" resource into memory. For exampie, a desk accessory
might have its own pattern and string resources. A special numbering
convention is used to associate owned system resources with the
resources they belong to. This enables resource-copying programs to
recognize which additional resources need to be copied along with an
owning resource. An owned system resource has the ID illustrated in
Figure 4.

1 S 14 13 11 10 S 4 0'
t1 11 1 type bits 110 of owning resource I variable

Figure 4. Resource ID of an Owned System Resource

Bits 14 and 15 are always 1. Bits 11 through 13 specify the type of
t'he owning resource, as follows:

T~pe bits ~
000 'DRVR'
001 'WDEF'
010 'MDEF'
011 'CDEF'
100 'PDEF'
101 'PACK'
110 Reserved for future use
111 Reserved for future use

11/28/84 Rose-Anders /RMGR/RESOURCE.2

RESOURCE SPECIFICATION 11

Bits 5 through 10 contain the resource ID of the owning resource
(limited to 0 through 63). Bits 0 through 4 contain any desired value
(0 through 31).

Certain types of resources can't be owned, because their IDs don't
conform to the special numbering convention described above. For
instance, the resource ID for a resource of type 'WDEF can't be more
than 12 bits long (as described in the Window Manager manual). Fonts
are also an exception because their IDs include the font size. The
manuals describing the different types of resources provide detailed
information about such restrictions.

An owned resource may itself contain the ID of a resource associated
with it. For instance, a dialog template owned by a desk accessory
contains the resource ID of its item list. Though the item list is
associated with the dialog template, it's actually owned (indirectly)
by the desk accessory. The resource ID of the item list should conform
to the same special convention as the ID of the template. For example,
if the resource 10 of the desk accessory is 17, the IDs of both the
template and the item list should contain the value 17 in bits 5
through 10.

As mentioned above"a program that copies resources may need to- change
the resource 10 of a resource in order not to duplicate an existing
resource ID. Bits 5 through 10 of resources owned, directly or
indirectly, by the copied resource will also be changed when those
resources are copied. For instance, in the above example, if the desk
accessory must be given a new ID, bits 5 through 10 of both the
template and the item list will also be changed.

(warning)
Remember that while the ID of an owned' resource may be
changed by a resource-copying program, the 10 may not be
changed where it appears in other resources (such as an
item list's ID contained in a dialog template).

Resource Names

A resource may optionally have a resource name. Like the resource 10,
the resource name must be unique within each type. When comparing
resource names, the Resource Manager ignores case (but does not ignore
diacritical marks in foreign names).

RESOURCE REFERENCES

The entries in the resource map that identify and locate the resources
in a resource file, are known as resource references. Using the analogy
of an index of a book, resource references are like the individual
entries in the index.

I

11/28/84 Rose-Anders /RMGR/RESOURCE.2

12 Resource Manager Programmer's Gu.ide

re,ource
specification

... ,
re,ource
reference

resource map

J resource I
'I dete

Figure 5. Resource References in Resource Maps

Every resource reference includes the type, ID number, and optional
name of the resource. Suppose you're accessing a resource for the
first time. You pass a resource specification to the Resource Manager,
which looks for a match among all the references in the resource map of
the current resource file. If none is found, it looks at the
references in the resource map of the next resource file to be
searched. (Remember, it looks in the resource map in memory, not in
the file.) Eventually it finds a reference matching the specification,
which tells it,where the resource data is in the file. After reading
the resource data into memory, the Resource Manager stores a handle to
that data in the reference (again, in the resource map in memory) and
returns the handle so you can use it to refer to the resource in
subsequent routine calls.

Every resource reference also contains certain resource attributes that
determine how the resource should be dealt with. In the routine calls
for'setting or reading them, each attribute is specified by a bit in
the low-order byte of a word, as illustrated in Figure 6.

11/28/84 Rose-Anders /RMGR/RESOURCE.2

7

10 I

RESOURCE REFERENCES 13

low-order byte

6 S .. 3 2

(high-order byte is ignored)
, 0

I I I
I I L reserved for use by the Resource Manager

, if to be written to resource fi Ie .. 0 if not
1 if to be prelo8ded, 0 if not .

--------1 if protected, 0 if not

1 if loclced .. 0 if not
---1 if purgeeble, 0 if not

~----1 if re80 into system he8p, 0 if application heap

Figure 6. Resource Attribuies

The Resource Manager provides a predefined constant for each attribute,
in which the bit corresponding to that attribute is set.

CONST resSysHeap = 64; {set if read into system heap}
resPurgeable = 32; {set if purgeable}
resLocked 16; {set if locked}
resProtected = 8' {set if protected} ,
resPreload = 4- {set if to be preloaded} ,
res Changed 2' , {set if to be written to resource file}

(warning)
Your application should not change the setting of bit 0
or 7, nor should it set the resChanged attribute
directly. (ResChanged is set as a side effect of the
procedure you call to tell the Resource Manager that
you've changed a resource.)

Normally the resSysHeap attribute is set for all system resources; it
should not be set for your ~pplication's resources. If a system
resource is too large for the system heap, this attribute will be 0,
and the resource will be read into the application heap.

Since a locked resource is neither relocatable nor purgeable, the
resLocked attribute overrides the resPurgeable attribute; when
resLocked is set, the resource will not be purgeable regardless of
whether resPurgeable is set.

If the resProtected attribute is set, the application can't use
Resource Manager routines to change the ID number or name of the
resource, modify its contents, or remove the resource from the resource
file. The routine that sets the resource attributes may be called,
however, to remove the protection or just change some of the other
attributes.

11/28/84 Rose-Anders /RMGR/RESOURCE.2

14 Resource Manager Programmer's Guide

The resPreload attribute tells the Resource Manager to read this
resource into memory immediately after opening ,the resource file. This
is useful, for example, if you immediately want to draw ten icons
stored in the file; rather than read and draw each one individually in
turn, you can have all of them read in when the file is opened and just
draw all ten.

The res Changed attribute is used orily while the resource map is in
memory; it must be 0 in the resource file. It tells the Resource
Manager whether this resource has been changed.

USING THE RESOURCE MANAGER

The Resource Manager is initialized automatically when the system
starts up: the -system resource file is opened and its resource map is
read into memory. Your application's resource file is opened when the
application starts up; you can call CurResFile to get its reference
number. You can also call OpenResFile to open any resource file that
you specify by name, and CloseResFile to close any resource file. A
function named ResError lets ,you check for errors that may occur during
ex~cution of Resource Manager routines.

(note)
These are the only routines you need to know about to use
the Resource Manager indirectly through other parts of
the Toolbox; you can skip to their descriptions in the
next section.

Normally when you want to access a resource for the first time, you'll
specify it by type and ID number (or type and name) in a call to
GetResource (or GetNamedResource). In special situations, you may want
to get every resource of each type. There are two routines which, used
together, will tell you all the resource types that are in all open
resource files: CountTypes and GetIndType. Similarly, CountResources
and GetIndResource may be used to get all resources of a particular
type.

If you don't specify otherwise, GetResource, GetNamedResource, and
GetIndResource read the resource data into memory and return a handle
to it. Sometimes, however, you may not need the data to be in memory.
You can use a procedure named SetResLoad to tell the Resource Manager
not to read the resource data into memory when you get a, resource; in
this case, the handle returned for the resource will be an empty handle
(a-pointer to a NIL master pointer). You can pass the empty ,handle to
routines that operate only on the resource map (such as the routine
that sets resource attributes), since the handle is enough for the
Resource Manager to tell "what resource you're referring to. Should you
later want to access the resource data, you can read it into memory
with the LoadResource procedure. Before calling any of the above
routines that read the resource data rnto memory, it's a good idea to
call SizeResource to see how much space is needed.

11/28/84 Rose-Anders /RMGR/RESOURCE.2

USING THE RESOURCE MANAGER 15

Normally the Resource Manager starts looking for a resource in the most
recently opened resource file, and searches other open resource files
in the reverse of the order that they were opened. In some situations,
you may want to change which file is searched first. You ,can do this
with the UseResFile procedure. One such situation might be when you
want a resource to be read from the same file as another resource; in
this case, you can find out which resource file the other resource was
read from by calling the HomeResFile function.

Once you have a handle to a resource, you can call GetResInfo or
GetResAttrs to get the information that's stored for that resource in
the resource map, or you can access the resource data through the
handle. (If the resource was designated as purgeable, first call
LoadResource to ensure that the data is in memory.)

Usually you'll just read resources from previously created resource
files with the routines described above. You may, however, want to
modify existing resources or even create your 'own resource file. To
create your own resource file, call CreateResFile (followed by
OpenResFile to open it). The AddResource procedure lets you add
resources to a resource file; to be sure a new resource won't override
an existing one, 'you can call the UniqueIO function to get an 10 number
,for it. To make a copy of an existing resource, call OetachResource
followed by AddResource (with a new resource 10). There are a number
of procedures for modifying existing resources:

- To remove a resource, call RmveResource.

- If you've changed the resource data for a resource and want the
changed data to be written to the resource file, call
ChangedResource; it signals the Resource Manager to write the data
out when the resource file is later updated.

- To change the information stored for ·a resource in the resource
map, call SetResInfo or SetResAttrs. If you want the change to be
written to the resource file, call ChangedResource. (Remember
that ChangedResource will also cause the resource data itself to
be written out.)

These procedures for adding and modifying resources change only the
resource map in memory. The changes are written to the resource file
when the application terminates (at which time all resource files other
than the system resource file are updated and closed) or when one of
the following routines is called:'

- CloseResFile, which updates the resource file before closing it.

- UpdateResF~le, which simply updates the resource file.

- WriteResource, which writes the resource data for a specified
resource to th~ resource file.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

16 Resource Menager Programmer's Guide

RESOURCE MANAGER ROUTINES

Assembly-language note: Except for LoadResource, ail Resource
Manager routines preserve all registers except A0 and·00.
LoadResource preserves A0 and 00 as well.

Initialization

Although you don't call these initialization routines (because they're
executed automatically for.you), it's a good idea to familiarize
yourself with what they do.

FUNCTION InitResources : INTEGER;

InitResources is called by the system when it starts up, and should not
be called by the application. It initializes the Resource Manager,
opens the system resource file, reads the resource map from the file
into memory, and returns a refeEence number for the file.

(note)

Assembly-language note: The name of the system resource file is
stored in the global variable SysResName; the reference number
for the file is stored in the global variable SysMap. ,A handle
to the resource map of the system resource file is stored in the
variable SysMapHndl.

The application doesn't need the reference number for the
system resource file, because every Resource Manager
routine that has a reference number as a parameter
interprets 0 to mean the system resource file.

PROCEDURE RsrcZoneInit;

RsrcZoneInit is called automatically when your application starts up,
to initialize the resource map read from the system resource file;
normally you'll have no need to call it directly. It "cl'eans up" after
any resource access that may have been done by a previous application~
First it closes all open resource files except the system resource
file. Then, for every system resource that was read into the
application heap (that is, whose resSysHeap attribute is 0), it
replaces the handle to that resource in the resource map with NIL.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 17

This lets the Resource Manager know that the resource will have to be
read in again (since the previous application heap is no longer
around).

Opening and Closing Resource Files

When calling the CreateResFile or OpenResFile routines, described
below, you specify a resource file by its file name; the routines
assume that the file has a version number of 0 and is on the default
volume. (Version numbers and volumes are described in the File Manager
manual.)

PROCEDURE CreateResFile (fileName: Str255);

CreateResFile creates a resource file containing no resource data or
copy of the file's directory entry. If there's no file at all with the
given name, it also creates an empty data fork for the file. If
there's already a resource file with the given name (that is, a
resource fork that isn '.t empty), CreateResFile will do nothing and the
ResError function will retur~ an appropriate Operating System result
code.

(note)
Before you can work with the resource file, you need to
open it with OpenResFile.

FUNCTION OpenResFile (fileName: Str255) : INTEGER;

OpenResFile opens the resource file having the given name and makes it
the current resource file. It reads the resource map from the file
into memory and returns a reference number for the file. It also reads
in every resource whose resPreload attribute is set. If the resource
file is already open, it doesn't make it the current resource file; it
simply returns the reference number.

(note)
You don't have to call OpenResFile to open the system
resource file or the application's resource file, because
they're opened when the system and the application start
up, respectively. To get the reference number of the
application's resource file, you can call CurResFile
after the application starts up (before you open any
other resource file).

If the file can't be opened, OpenResFile will return -1 and the
ResError function will return an appropriate Operating System result
code. For example, an error occurs if there's no resource file with
the given name.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

18 Resource Manager Programmer's Guide

Assembly-language~: A handle to the resource map of the
most recently opened resource file is stored in the global
variable TopMapHndl.

PROCEDURE CloseResFile (refNum: INTEGER);

Given the reference number of a resource file, CloseResFile does the
foll?wing:

- updates the resource file by calling the UpdateResFile procedure

- for each resource in the resource. file, releases the memory it
occupies by calling the ReleaseResource procedure

- releases the memory occupied by the resource map

- closes the resource file

If there's no resource file open with the given reference number;
CloseResFile will do nothing and the ResError function will return the
result code resFNotFound. A refNum of 0 represents the system resource
file, but if you ask to close this file, CloseResFile first closes all
other open resource files.

A CloseRes~ile of ~very open resource file except the syste~ resource
file is done automatically when the application terminates. So you
only need to call CloseResFile if you want to close the system resource
file, or if jou want to close any resource file before 'the application
terminates.

Checking for Errors

FUNCTION ResError : ,INTEGER;

Called after one of the various Resource Manager routines that may
result in an error condition, ResError returns a resul.t code
identifying the error, if any. If no error occurred, it returns the
result code '

CONST noErr = 0; {no error}

If an error occurred at the Operating System level, it returns an
Operating System result code, such as the File Manager "disk I/Ou error
or the Memory Manager "out of memoryU error. (See the File Manager and
Memory Manager manuals for a list of the result codes.) If an error
haEpened at ~he Resource Manager level, ResError returns one of the

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE ~~AGER ROUTINES 19

following result codes:

CONST resNotFound
resFNotFound
addResFailed
rmvResFailed

= -192;,
= -193;

-194;
= -196;

{resource not found}
{resource file not found}
{AddResource failed}
{RmveResource failed}

Each routine description tells which errors may occur for that routine.
You can also check for an error after system startup, which calls
InitResources, and application startup, which opens the application's
resource file.

Assembly-language note: The current value of ResError is stored
in the global variable ResErr. In addition, you can specify a
procedure to be called whenever there's an error by storing a
pointer to the procedure in the global variable ResErrProc
(which is normally NIL). Before returning a result code other
than noErr, the ResError function places that result code in
register D0 and calls your procedure.

Setting the Current Resource File

FUNCTION CurResFile : INTEGER;

CurResFile returns the reference number of the current resource file.
You can call it when the application starts up to get the reference
number of its resource file.

(note)
If the system resource file is the current resource file,
CurResFile returns the actual reference number of the
system reference file (found in the global variable
SysMap). You needn't worry about this number being used
(instead of 0) in the routines that require a reference
number; these routines recognize both 0 and the actual
reference nu~ber as referring to the system resource
file.

Assembly-language note: The reference number of the current
resource file is stored in the global variable CurMap.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

20 Resource Manager Programmer's Guide

FUNCTION HomeResFile (theResource: Handle) : INTEGER;

Given a handle to a resource, HomeResFile returns the reference number
of the resource file containing that resource. If the given handle
isn't a handle to a resource, HomeResFile will re.turn -1 and the
ResError function will return the result code resNotFound.

PROCEDURE UseResFile (refNum: INTEGER);

Given the reference number of a resource file, UseResFile sets the
current r~source file to that file. If there's no resource file open
with the given reference number, UseResFile will do nothing and the
ResError function will return the result code resFNotFound. A ref~um
of 0 represents the system resource file.

Open resource files are arranged, as a linked list; the most recently
opened file is at the end of the list and is the first one to be
searched. UseResFile lets you start the search with a file opened
earlier; the file(s) following it on the list are then left out of the
search process. This is best understood with an example. Assume there
are four open resource files (R0 through R3); the search'order is R3,
R2, R1, R0. If you,call UseResFile(R2), the search order becomes R2,
R1, R0; R3 is no longer searched. If you then open a fifth resource
file (R4), it's added to the end of the list and the search order
becomes R4, R3, R2, R1, R0.

This procedure is useful if you no longer want to override a system
resource with one by the same name in your application's resource file.
You can call UseResFile(0) to leave the application resource file out
of the search, causing only the system resource file to be searched.

(warning)
Early versions of some desk accessories may, upon
closing, always set the current resource file to the one
opened just prior to the accessory, ignoring any
additional resource files that may have been opened while
the accessory was in use. To be safe, whenever desk
accessories may have been in use, call UseResFile to
ensure access to resource files opened after accessories.

Getting Resource Types

FUNCTION CountTypes : INTEGER; ,

CountTypes returns the number of resource types in all open resource
files.

11/28/84 Rose~Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 21

PROCEDURE GetlndType (VAR theType: ResType; index: INTEGER);

Given an index ranging from 1 to CountTypes (above), GetlndType returns
a resource type in theType. Called repeatedly over the entire range
for the index, it returns all the resource types in all open resource
files. If the given index isn't in the range from 1 to CountTypes,
GetIndType returns four NUL characters (ASCII code 0).

Getting and Disposing of Resources

PROCEDURE SetResLoad (load: BOOLEAN);

Normally, the routines that return handles to resources read the
resource data into memory if it's not already in memory.
SetResLoad(FALSE) affect's all those routines so that they will not read
the resource data into memory and will return an empty handle.
Resources whose resPreload attribute is set will still be read in,
however, when a resource file is opened. SetResLoad (TRUE) res tores t'he
normal state.

(warning)
If you call SetResLoad(FALSE), be sure to restore the
normal state as soon as possible, because other parts of
the Toolbox that call the Resource Manager 'rely on it.

Assembly-language note: The current SetResLoad state is stored
in the global variable ResLoad.

FUNCTION CountResources (theType:. ResType) : INTEGER;

CountResources returns the total number of resources of the given type
in all open resource files.

FUNCTION GetlndResource (theType: ResType; index: INTEGER) Handle;

Given an index ranging from 1 to CountResources(theType),
GetlndResource returns a handle to a resource of the given type (see
CountResources, above). ' Called repeatedly over the entire range for
the index, it ~eturns handles to all resources of the given type in all
open resource files. GetlndResource reads the resource data into
memory if it's not already in memory, unless you've called
SetResLoad(FALSE).

11/28/84 Rose-Anders /RMGR/RESOURCE.R

22 Resource Manager Programmer's Guide

(warning)
The handle returned wi~l be an empty handle if you've
called SetResLoad(FALSE) (and the data isn't already in
memory). The handle will become empty if the resource
data for a purgeable resource is read in but later
purged. (You can test for an empty handle with, for
example, myHndl A = NIL.) To read in the data and make
the handle no lo'nger be empty, you can call LoadResource.

GetIndResource returns handles for all resources in the most recently
opened resource file first, and then for those in the resource files
opened before it, in the reverse of the order that they were opened.
If you want to find out how many resources of a given type are in-a
particular resource file, you can do so as follows: Call
GetIndResource repeatedly with the index ranging from 1 to the number
of resources of that type. Pass each handle returned by GetIndResource
to HomeResFile and count all occurrences where the reference number
returned is that of the desired file. Be sure to start the index fr6m
1, and to call SetResLoad(FALSE) so the resources won't be read in.

(note)
The UseR~sFile procedure affects which file the Resource
Manager searches first when looking for a particular
resource but not when getting indexed resources with
GetIndResource.

If the given index isn't in the range from 1 to
CountResources(theType), GetIndResource returns NIL and the ResError
function will return the result code resNotFound. GetIndResource also
returns NIL if the resource is to be read· into memory but won't fit; in
this case, ResError will return an appropriate Operating Sy~tem result
code.

FUNCTION GetResource (theType: ResType; theID: INTEGER) Handle;

GetResource returns a handle to the resource having the given type and
ID number, reading the resource data into memory if it's not already in
memory and if you haven't called SetResLoad(FALSE) (see the warning
above for GetIndResource). GetResource looks in the current resource
file and all resource files opened before it, 'in the ~everse of the
order that they were opened; the system resource file is searched last.
If it doesn't find the resource, GetResource returns NIL and the
ResError function will return the result code resNotFound. GetResource
also returns NIL if"the resource is to be read into memory but won't
fit; in this case, ResError will return an appropri.ate Operating System
result code.

FUNCTION GetNamedResource (theType: ResType; name: Str255) : Handle;

GetNamedR~source is the same as GetResource (above) except that you
pass a reso'urce name instead of an ID number.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 23

PROCEDURE Load,Resource (theResource: Handle);

Given a handle to a resource (returned by GetIndResource, GetResource,
or GetNamedResourc'e), LoadResource reads that resource into memory. It
does nothing if the resource is already in memory or if the given
handle isn't a handle to a resource; in the latter case, the ResError
function will return the result code resNotFound. Call this procedure
if you want to access the data for a resource through its handle and
either you've called SetResLoad(FALSE) or if the resource is purgeable.

If you've changed the resource data for a purgeable resource and the
resource is purged before being written to, the resource file, the
changes will be lost; LoadResource will reread the original resource
from the resource file. See the descriptions of ChangedResource and
SetResPurge for information about how to ensure that changes made to
purgeable resources will be written to the resource file.

Assembly-language note: LoadResource preserves all registers.

PROCEDURE ReleaseResource (theResource: Handle);

Given a handle to a resource, ReleaseResource releases the memory
occupied by the resource data,'if any, and replaces the handle to that
resource in the resource map with NIL. (See Figure 7.) The given
handle will no longer be recognized as a handle to a resource; ~f the
Resource Manager is subsequently called to get the released resource, a
new handle will be allocated. Use this procedure only after you're
completely through with a·resource.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

24 Resource Manager Programmer's Guide

TYPE myHndl: Hendlej
myHndl :=

GetResource(type" 10);

After
Rei eeseResource(myHnd I)j

resource map

resource map

handle

myHndl

After
_ oetachAesource(myHnd I) j

resource map

NIL NIL

myHndl ~yHndl

resource deta

resource dete

Figure 7. ReleaseResource and DetachResource

If the given handle isn't a handle to a resource, ReleaseResource will
do nothing and the ResError function will return the result code
resNotFound.

PROCEDURE DetachResource (theResource: Handle);

Given a handle to a resource, OetachResource replaces the handle to
that resource in the resource map with NIL. (See Figure 7 above.) The
given handle will no longer be recognized as a handle to a resource; if
the Resqurce Manager is subsequently called to get the detached
resource, a new handle will'be allocated.

OetachResource is useful if you, want the resource data to be accessed
only by yourself through the given handle and not by the Resource
Manager. OetachResource is also useful in the unusual ·case that you
don't want a resource to be released when a resource file is closed.
To copy a resource, you can call OetachResource followed by AddResource
(with a new resource 10).

If the given handle isn't a handle to a resource, OetachResource will
do nothing and the ResError function will return the result code
resNotFound.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 25

Getting Resource Information

FUNCTION UniqueID (theType: ResType) : INTEGER;

UniqueID returns an ID number greater than 0 that isn't currently
assigned to any resource of the given type in any open resource file.
Using this number when you add a new resource to a resource file
ensures that you won't duplicate a resource ID and override an existing
resource.

(warning)
It's possible that UniqueID will return an ID in the
range reserved for system resources (0 to 127). You
should check that the ID returned is greater than 127; if'
it isn't, call UniqueID again.

PROCEDURE GetResInfo (theResource: Handle; VAR theID: INTEGER; VAR
theType: ResType; VAR name: Str255);

Given a handle to a resource, GetResInfo returns the ID number, type,
and name of the resource. If the given handle isn't a handle to a
resource, GetResInfo will do nothing and the ResError function will
return the result code resNotFound.

FUNCTION GetResAttrs (theResource: Handle) : INTEGER;

Given a handle to a resource, GetResAttrs returns the resource
attributes for the resource" (Resource attributes are described above
under "Resource References".) If the given handle isn't a handle to a
resource, GetResAttrs will do nothing and the ResError function will
return the result code resNotFound.

FUNCTION SizeResource (the Resource: Handle) : LONGINT;

Given a handle to a resource, SizeResource returns the size in bytes of
the resource in the resource file. If the given handle. isn't a ha~dle
to a resource, SizeResource will return -1 and the ResError function
will return the result code resNotFound. It's a good idea to call
SizeResource and ensure that sufficient space is' available before
reading a resource into memory.

Assembly-language note: The macro you invoke to call
SizeResource from assembly language is named SizeRsrc.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

26 Resource Manager Programmer's Guide

Modifying Resources

Except for UpdateResFile and WriteResource, all the routines described
below change the resource map in memory, and not the resource file .
itself.

PROCEDURE SetResInfo (theResource: Handle; theID: INTEGER; name:
Str25S);

Given a,handle to a resource, SetResInfo changes the ID number and name
of the resource to the given ID number and name.

Assembly-language note: If you pass NIL for the name parameter,
the name will not be changed.

(warning)
It's a dangerous practice to change the 10 number and
name of a system resource, because other applications may
already access the resource and may no longer work
properly.

The change will be written to the resource file when the file is
updated if you follow SetResInfo with a call to ChangedResource.

(warning)
Even if you don't call ChangedResource for this resource,
the change may be written to the resource file when the
file is updated. If you've ever called ChangedResource
for any resource in the file, or if you've added or
removed a resource, the Resource Manager will write out
the entire resource map when it updates the file, so all
changes made to resource information in the map will
become permanent. If you want any of the changes to be
temporary, you'll have to restore the original
information before the file is updated.

SetResInfo does nothing in the following cases:

- The resProtected attribute for the resource is set.

- The given handle isn't a handle to a resource. The ResError
function will return the result code resNotFound.

- The resource map becomes too large to fit in memory (which can
happen if a name is passed) or sufficient space for the modified
resource file can't be reserved on the disk. ResError will return
an appropriate Operating System result .code.

11/28/84 Rose-Anders /RMGR/RESQURCE.R

RESOURCE MANAGER ROUTINES 27

PROCEDURE SetResAttrs (theResource: Handle; attrs: INTEGER);

Given a handle to a resource, SetResAttrs sets the resource attributes
for the resource to attrs. (Resource attributes are described above
under "Resource References".) The resProt~cted attribute takes effect
immediately; the others take effect the next time the resource is read
in.

(warning)
Do not use SetResAttrs to set the resChanged attribute;
you must call ChangedResource instead. Be sure that the
attrs parameter passed to SetResAttrs doesn't change the
current setting of this attribute.

The attributes set with SetResAttrs will be written to the resource
file when the f~le is updated if you follow SetResAttrs with a call to
ChangedResource. However, even if 'you don't call ChangedResource for
this resource, the change may be written to the resource file when the
file is updat~d. See the last warning for SetResInfo (above).

If the given handle isn't a handle to a resource, SetResAttrs will do
nothing and the ResError function will return the result code
resNotFound.

PROCEDURE ChangedResource '(theResource: Handle);

Call ChangedResource after changing .either the information about a
resource in the resource map (as described above under SetResInfo and
SetResAttrs) or the resource data for a resource, if you want the
change to be permanent. Given a handle to a resource, ChangedResource
sets the resChanged attribute for the resource. This attribute tells
the Resource Manager to do both of the following:

- write the resource data for the resource to the resource file when
the file is updated or when WriteResource is called

- write the entire resource map to the resource file when the file
is updated

(warning)
If you change information in the resource map with
SetResInfo or SetResAttrs and then call ChangedResource,
remember that not only the resource map but also the
I1esource data will be written out when the resource file
is updated.

To change the resource data for a purgeable resource and make the
change permanent, you have to take special precautions to ensure that
the resource won't be purged while you're changing it. You can make
the resource temporarily unpurgeable and then write it out with
WriteResource before making it purgeable again. You have to use the
Memory Manager procedures HNoPurge and HPurge to make the resource
unpurgeable and purgeable; SetResAttrs can't be used because it won't

11/28/84 Rose-Anders /RMGR/RESOURCE.R

28 Resource Manager Programmer's Guide

take effect immediately. For example:

myHndl :~ GetResource(type,ID);

HNoPurge(myHndl);

{or LoadResource(myHndl) if }
{ you've gotten it previously}
{make it unpurgeable}

ChangedResource(myHndl);
WriteResource(myHndl);
HPurge(myHndl)

{make the changes here}
{mark it changed}
{write it out} -
{make it purgeable again}

Or, instead of calling WriteResource to write the data out immediately,
you can call SetResPurge(TRUE) before making any changes to purgeable
resource data.

ChangedResource does nothing in the following cases:

- The given handle isn't a handle to a resource. The ResError
function will return the result code resNotFound.

- Sufficient space for the modified resource file can't be reserved
on the disk. ResError will return an appropriate Operating System
result code.

(warning)
Be aware that ChangedResource (and not WriteResource)
checks to see if there's sufficient disk space to write
out the modified file; if there isn't enough space, the
resChanged attribute won't be set. This means that when
WriteResource is called,it won't know that the resource
file has been changed; it won't write out the modified
file and no error will be returned. For this reason,
always check to see that ChangedResource returns noErr.

PROCEDURE AddResource (theData: Handle; theType: ResType; theID:
INTEGER; name: Str255);

Given a handle to data in memory (not a handle to an existing
resource)~ AddResource adds to the current resource file a resource
reference that points to the data. It sets the resChanged attribute
for the resource, so the data will be written to the resource file when

I

the file is updated or when WriteResource is called. If the given
handle is empty, zero-length resource data will be written.
AddResource does nothing in the following cases:

- The given handle is NIL or is already a handle to an existing
resource. The ResError function will return the result code
addResFailed.

- The resource map becomes too large to fit in memory or sufficient
space for the modified resource file can't be reserved on the
disk. ResError will return an appropriate Operating System result
code.

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 29

(warning)
AddResource doesn't verify whether the resour'ce ID you've:
passed is already assigned to another resource of the
same type; be sure to call UniqueID before adding a
resource.

PROCEDURE RmveResource (theResource: Handle);

Given a handle to a resource in the current resource file, RmveResource
removes the resource reference to the resource. The resource data will
be removed from the resource file when the file is updated.

(note)
RmveResource doesn't release the memory occupied by the
resource data; to do that, call the Memory Manager
procedure DisposHandle after calling RmveResource.

If the resProtected attribute for the resource is set or if the given
handle isn't a handle to a resource in the current resource'file,
/RmveResource will do nothing and the ResError function will return the
result code rmvResFailed.

PROCEDURE UpdateResFile (refNum: INTEGER);

Given the reference number of a resource file, UpdateResFile does the
following:

- Changes, adds, or removes resource data in the file as appropriate
to' match the map. Remember that changed resource data is written
out only if you called ChangedResource (and the call was

,successful); if you did, the resource data will be written out
with WriteResource.

- Compacts the resource file, closing up any' empty space created
when a resource was removed or made larger. (If the size of a
changed resource is greater than its original size in the resource
file, it's written at the end of the file rather than at its
original location; the space occupied by the original is then
compacted.) UpdateResFile doesn't close up any empty space
created when a resource is made smaller.

- Writes out the resource map of the resource file, if you ever
called ChangedResource for any' resource in the file or if you
added or removed a resource. All changes to resource information
in the map will become permanent as a result of this, so if you
want any such changes to be temporary, you must restore the
original information before calling UpdateResFile.

If there's no open resource file with the given reference number, _
UpdateResFile wil~ do nothing and the ResError function will return the
result code resFNotFound. A refNum of 0 represents the system resource
file.

11/28/84 Rose-Anders /RMGR/RESQURCE.R

,30 Resource Manager Programmer's Guide

The CloseResFile procedure calls UpdateResFile before it closes the
resource file, so you only need to call UpdateResFile'yourself if you
want to update the file without closing it.

PROCEDURE WriteResource (theResource: Handle);

Given a handle to a resource, WriteResource checks the resChanged
attribute for that resource and, if it's set (which it will be if you
called ChangedResource or AddResource successfully), writes its
resource data to the resource file and clears its resChanged attribute.

(warning)
Be aware that ChangedResource (and not WriteResource)
determines if sufficient disk space is available to write
out the modified file; if there isn't it will clear the
resChanged attribute and WriteResource will be unaware of
the modifications. For this reason, always verify that
ChangedResource returns noErr.

If the resource is purgeable and has been purged, zero-length resource
data will be written. WriteResource does nothing if the resProtected
attribute for the resource is set or if the given handle isn't a handle
to a resource; in the latter case, the ResError function will ,return
the result code resNotFound.

Since the resource file is updated when the application terminates or
when you call UpdateResFile (or CloseResFile, which calls
UpdateResFile), you only need to call WriteResource if you want to
write out just one or a few resources immediately.

(warning)
The maximum size for resources to be written to a
resource file is 32K bytes •.

PROCEDURE SetResPurge (install: BOOLEAN);

SetResPurge(TRUE) sets a "hook" in the Memory Manager such that before
purging data specified by a handle, the Memory Manager will first pass
the handle to the Resource Manager. The Resource Manager will
determine whether the handle is that of a resource in the application
heap and, if so, will call WriteResource to write the resource data for
that resource to the resource file if its resChanged attribute is set
(see ChangedResource and WriteResource above). SetResPurge(FALSE)
restores the normal state, clearing the hook so that the Memory Manager
will once again purge_without checking with the Resource Manager.

,SetResPurge(TRUE) is useful in applications that modify purgeable
resources. You still have to make the resources temporarily
unpurgeable while making the changes, as shown in the description of
ChangedResource, but you can set the purge hook inst~ad of writing the
data out immediately with WriteResource. Notice that you won't know
exactly when the resource~ are being written out; most applications

11/28/84 Rose-Anders /RMGR/RESOURCE.R

RESOURCE MANAGER ROUTINES 31

will want more control than this. If you wish, you can set your own
such hook; for details, refer to the section "Memory Manager Data
Structures" in the Memory Manager manual. '

Advanced Routines

The routines described below allow advanced programmers to have even
greater control over resource file operations. Just as individual
resources have attributes, an entire resource file also has attributes,
which these routines manipul~te. Like the attributes of individual
resources, resource file attributes are specified by bits in the
lowerder byte of a word. The Resource Manager provides a predefined
constant for each attribute, in which the bit corresponding to that
attribute is set.

CONST mapReadOnly
mapCompact
mapChanged

= 128;
64;

= 32;

{set if resource file is read-only}
{set to compact file on update}
{set to write map on update}

When the mapReadOnly attribute is set, the Resource Manager will
neither write anything to the resource file nor check whether there's
sufficient space for the file on the disk when the resource map ·is
modified •.

(warning)
If you set mapReadOnly but then later clear it, the
resource file will be written even if ther~'s no room for
it on the disk. This would destroy the file.

Assembly-language note: The current value of the read-only
attribute is stored in the global variable ResReadOnly.

\

The mapCompact attribute causes resource file compaction to occur when
the file is updated. It's set by the Resource Manager when a resource
is removed, or when a resource is made larger and thus has to be
written at the end of the resource file. You may want to set
mapCompact to force compac~ion when you've only made resources smaller.

The mapChanged attribute causes the resource map to be written to the
resource file when the file is updated. It's set by the Resource
Manager when you call ChangedResource or when you 'add or remove a
resource. You can set mapCnanged if, for example, you've changed
resource attributes only and d9n't want to tall ChangedResource because
you don't want the resource data to be written out.

11/28/84 Rose-Anders /RMGR/RESQURCE.X

32 Resource Manager Programmer's Guide

FUNCTION'GetResFileAttrs (refNum: INTEGER) : INTEGER;

Given the reference number of a re'source file, GetResFileAttrs returns
the resource file attributes for the file. If there's no resource file
with the given reference number, GetResFileAttrs will do nothing and
the Res"Error function will return. the result code resFNotFound. A
refNum of 0 represents the system resource file.

PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER);

Given the , .. reference number of a resource file, SetResFileAttrs sets the
resource file attributes of the file to attrs. If there's no resource
file with the given reference number, SetResFileAttrs will do nothing
and the ResError function will return the result code resFNotFound. A
refNum of 0 represents the system resource file, but you shouldn't
change its resource file attributes.

RESOURCES WITHIN RESOURCES

Resources may point to other resources; this section discusses how this
is normally done, for programmers who are interested in background
information about resources or who are defining their own resource
types.

In a resource file, one resource points to another with the ID number
of the other resource. For example, the resource data for a menu
includes the ID number of the menu's definition procedure (a separate
resource that determines how the menu looks and behaves). To work with
the resource data in memory, however, it's faster and more convenient
to have a handle to the other resource rather than its ID number.
Since a handle occ~pies two words, the ID number in the resource file
is followed by a word containing 0; these two words together serve as a
placeholder for the handle. Once the other resource has been read into
memory, these two words can be replaced by a handle to it. (See .Figure
8.)

11/28/84 Rose-Anders /RMGR/RESOURCE.F

(note)

placeholder {
for handle

Appl i cat ion's resource f; Ie

Memory

handle

menu

10
0

menu

RESOURCES WITHIN RESOURCES 33

_ , · ·
.. l · , ..

menu definition
procedure

.... master
, pointe~

.... · ,
·

~~ · l

menu definition
procedure

Figure 8. How Resources Point to Resources

The practice of using th~ ID number followed by 0 as a
placeholder is simply a convention. If you like, you can
set up your own resources to have the In number followed
by a dummy word, or even a word of useful information, or
you can put the In in the second rather than the first
word of the placeholder.

In the case of menus, the Menu Manager function GetMenu calls the
Resource Manager to read the menu ~nd the menu definition procedure
into memory, and then replaces the placeholder in the menu with th~
handle to the procedure. There may be other cases where you call the
Resource Manager directly and store the handle in the placeholder
yourself. It might be useful in these cases to call HomeResFile to
learn which resource file the original resource is located in, and.
then, before getting the resource it points to, 'call UseResFile to set
the current resource file to that file. This will ensure that the
resource pointed to is read from that same file (rather than one that
was opened after it).

(war~ing)
If you modify a resource that points to another resource
and you make the change permanent by calling
ChangedResource, be sure you reverse the process
described here, restoring the other resource's ID number
in the placeholder.

11/28/84 Rose-Anders /RMGR/RESOURCE.F

34 Resource Manager Programmer's Guide

FORMAT OF A RESOURCE FILE

You need to know the exact format of a resource file, described below,
only if you're writing a program that will create or modify resource
files directly; you don't have to know it to be able to use the
Resource Manager routines.

resource header
(16 byte,)

copy of directory entry
(112 bytes) 256 bytes

application deta
(128 bytes)

/ ,resource date .l

~, . resource map .,
Figure 9. Format of a Resource File

As illustrated in Figure 9, every resource file begins with a resource
header. The resource header gives the offsets to and lengths of the
resource data and resource map parts of the file, as follows:

(note)

Number of bytes
4 bytes

4 bytes

4 bytes
4 bytes

Contents
Offset from beginning of resource file
to resource data
Offset from beginning of resource file
to resource map
Length of resource data
Length of resource map

All offsets and lengths in the resource file are given in
bytes.

This is what immediately follows the resource header:

Number of bytes
112 bytes
128 bytes

Contents
Partial copy of'directory entry for this file
Available for application data

The directory copy is used by the Finder. The application data may be
whatever you want.

11/28/84 Rose-Anders /RMGR/RESOURCE.F

FORMAT OF A RESOURCE FILE 35

The resource data follows the application data. It consists of the
following for each resource in the file:

Number of bytes
For each resource:

4 bytes
n bytes

Contents

Length of foilowing resource data
Resource data for this resource .

To learn exactly what the resource data is for a standard type of
resource, see the documentation on the part of the Toolbox that deals
with that resource type.

After the resource data, the resource map begins as follows:

Number of bytes
16 bytes

4 bytes

2 bytes
2 bytes
2 bytes

2 bytes

Contents
o (reserved for copy of resource header)
o (reserved for handle to next resource map
to be searched)
o (reserved for file reference number)
Resource file attributes
Offset from beginning of resource map
to type list (see below)
Offset from beginning of resource map
to resource name list (see below)

After reading the resource map into memory, the Resource Manager stores
the indicated information in the reserved areas at the beginning of the
map.

The resource map continues with a type list, 'reference lists, and a
resource name list. The type list contains the following:

Number of bytes
2 bytes
For each type:

4 bytes
2 bytes

2 bytes

Contents
Number of resource types in the map minus 1

Resource type
Number of resources of this type in the map
minus 1
Offset from beginning of type list
to reference list for resources of this type

This is followed by the reference list for each type of resource, which
contains the resource references for all resources of that type. The
reference lists are contiguous and in the same order as the types in
the type list. The format of a reference list is as follows:

11/28/84 Rose-Anders /RMGR/RESOURCE.F

36 Resource Manager Programmer's Guide

Number of bytes
For each reference
of this type:

2 bytes
2 bytes

1 byte
3 bytes

4 bytes

Contents

Resource ID
Offs~t from beginning of resource name list
to length of resource name, or -1 if none
Resource attributes
Offset from beginning of resouce data to
length of data for this resource
o (reserved for handle to resource)

The resource name list. follows the reference list and has this format:_

Number of bytes
For each name:

1 byte
n bytes

Contents

Length of following resource name
Characters of resource name

Figure 10 shows where the various offsets lead to in a resource file,
in general and also specifically for a resource reference.

11/28/84 Rose-Anders /RMGR/RESOURCE.F

resource
header

and other
data .

resource
dete

resource
mep

FORMAT OF A RESOURCE FILE 37

offset to resource date

I >1 offset to resource map I
1.#

I ength of resource dete I"

resource deta

.. i j

'! !

rf
offset to type list
offset to name list

~.

i ~

rI offset to reference list
~ .~

I I
,
, :::l:l:l:l:l:l: resource ::=::i::::::::: IDHHmmmm

..- ioffset to resource neme~
mm resource et'tritiutes mm
1 offset to resource detel 10-

.:.:.: d f h dl ::::' lmH reserve or en e Jilli

.. ; i
'! ~

" , length of resource neme
resource neme

}
type
list

reference
lists

resource
neme list

Figure 10. Resource Reference in a Resource File

SYSTEM REFERENCES

This section gives information of historical interest only. It
explains another kind of resource reference besides the one explained
in the "Resource References", section above. This additional kind of
reference t called a system reference t was intended to be used by the
Finder t as described below. In fact t the Finder doesn't use system
references, so they're not particularly useful.

There are. actually two.different kinds of resource references t as
illustrated in Figure 11:

- Local reference. The term "resource reference"t as used earlier
in this manual t refers to this type of reference. A local

11/28/84 Rose-Anders /RMGR/RESOURCE.F

38 Resource Manager Programmer's Guide

reference is an entry in the resource map that locates the
resource data of a resource. If the resource data is already in
memory, the local reference provides a handle to the data;
otherwis~ it gives an offset to the resource data in the file.

- System reference. This is also an entry in the resource map but
it's a reference to a system resource. It provides a resource
specification for the resource in the system resource file, which
in turn leads to a local reference to the resource in that file.

resource
specification

resource
specification

Appl icatiorts
resource file

local
reference

System
resource f i Ie

system -+--------i!---+ resource local
reference specification reference

for system
resource

resource map resource map

Figure 11. Local and System References

Every resource reference has its own type, ID" number, and optional
name. In the case of local references, the ID number and name are
simply those of the resource itself. A system reference, on the other
hand, may have its own ID number and name, different from those of the
actual resource it refers to in the system resource file.

System references need not be included in an application's resource
file in order for the system resources to be found, because the system
resource file will be searched anyway as part of the normal search
process. The major reason for having system references was to tell the
Finder what system resources an application or document was using.
This would ensure that those resources would accompany the applicat'ion
or document should it be copied to a disk having a different system
resource file on it. The Finder, however, doesn't recognize system
refere~ces, which renders them i'argely ineffectual. (One remaining use
for such a reference could be to provide an "alias" for a system
resource.)

The remainder of this section explains the use and format of system
references, and discusses several routines that work with such
references.

11/28/84 Ros~-Anders /RMGR/RESOURCE.F

SYSTEM REFERENCES 39

Resource Attributes of System References

As stated in the section on resource references» each reference has a
set of resource attributes associated with it» and each attribute is
specified by a bit in the low-order byte of a word in the resource map.
In Figure 6 in that section, bit 7 of the low-order byte is shown as 0.
This bit actually specifies whether or not the reference is a system
reference. If you have a system reference in your resource file, this
bit should be set. A predefined constant for this attribute is also
provided:

CONST resSysRef = 128; {set if system reference}

System Reference~ in Resource Manager Routines

Some of the previously described Resource Manager routines take special
action if the current resource file contains a system reference to the
given resource:

- GetResInfo will return the ID number» type» and name of the system
reference'. The ID number and name may be different from those of
the resource itself in the system resource file.

- GetResAttrs will return the attributes of the system reference»
which may be different from those of the resource itself .in the
system resource file.

- SetResInfo will change only the ID number and name of the system
reference.

- SetResAttrs will set only the attributes of the system reference.

The following additional procedures can be used to add or remove a
system reference.

(note)
If you've added or removed a system reference» the
Resource Manager will write out the entire resource map
when it updates the resource file. Also, file compaction
will occur during the update if a system reference has
been removed.

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name:
~tr255);

Given a handle to a system resource, AddReference adds to the current
resource file a system reference to the resource, giving it the ID
number and name specified by the parameters. It sets the resChanged
attribute for the resource, so the reference will be written to the
resource file when the file is updated~ AddReference does nothing in

11/28/84 Rose-Anders /RMGR/RESQURCE.F

40 Resource Manager Programmer's Guide

the following cases:

- The current resource file is the system resource file or already
contains a system reference to the specified resource, or the
given handle isn't a handle to a system resource. The ResError
function will return the result code

CONST addRefFailed = -195; {AddReference failed}

- The resource map becomes too large to fit in memory or sufficient
space for the modified resource file can't be reserved on the
disk. ResError will return,an appropriate Operating System result
code.

PROCEDURE RmveReference (theResource: Handle);

Given a handle to a system resource, RmveReference removes the system
reference to the resource from the current resource file. (The
reference will be removed from the resource file when the file is
updated.) RmveReference will do nothing and the ResError function will
return the result code

CONST rmvRefFailed = -197; {RmveReference failed}

if any of the following are true:

- The resProtected attribute for the resource is set.

- There's no system reference to the resource in the current
resource file.

- The given handle isn't a handle to a syst~m resource.

Format of System References

In the section "Format of a Resource-File", the format of a resource
list' actually covered only the case of a local reference; the format of
a reference list containing either local ,or system references is
outlined below:

11/28/84 Rose-Anders /RMGR/RESOURCE.F

Number of bytes
For each reference
of this type:

2 bytes
2 bytes

1 byte
3 bytes

4 bytes

11/28/84 Rose-Anders

SYSTEM REFERENCES 41

Contents

Resource ID
Offset from beginning of resource name list
to length of resource name, or -1 if none
Resource attributes
If local reference, offset from beginning
of resource data to length of data for this
resource
If system reference, 0 (ignored)
If local reference, 0 (reserved for handle
to resource)
If system reference, resource specification
for system resource: in high-order word,
resource ID; in low-order word, offset from
beginning of resource name list to length
of resource name, or -1 if none

/RMGR/RESOURCE.F

42 Resource Manager Programmer's Guide

SUMMARY OF THE RESOURCE MANAGER

Constants

CONST { Resource attributes }

resSysRef = 128; {set if system reference}
resSysHeap = 64; {set if read into system heap}
resPurgeable = 32; {set if purgeable}
resLocked = 16; {set if locked}
resProtected 8; {set if protected}
resPreload = 4; {set if to be preloaded}
resChanged = 2; {set if to be written to resource file}

{ Resource Manager result codes }

resNotFound = -192; {resource not found}
resFNotFound = -193; {resource file not found}
addResFailed = -194; {AddResource failed}
add Ref Failed = -195; {AddReference failed}
rmvResFailed = -196; {RmveResource failed}
rmvRefFailed -197; {RmveReference failed}

{ Resource file attributes }

mapReadOnly
mapCompact
mapChanged

Data Types

128;
64;

= 32;

{set if file is read-only}
{set to compact file on update}
{set to write map on update}

TYPE Res Type PACKED ARRAY [1 •• 4] OF CHAR;

Routines

Initialization

FUNCTION InitResources
PROCEDURE RsrcZoneInit;

INTEGER;

Opening and Closing Resource Files

PROCEDURE CreateResFile (fileName: Str255);
FUNCTION OpenResFile (fileName: Str255) INTEGER;
PROCEDURE CloseResFile (refNum: INTEGER);

11/28/84 Rose-Anders /RMGR/RESOURCE.S

SUMMARY or THE RESOURCE MANAGER 43

Checking for Errors

FUNCTION ResError : INTEGER;

Setting the Current Resource File

FUNCTION CurResFile : INTEGER;
FUNCTION HomeResFile (theResource: Handle)
PROCEDURE UseResFile (refNum: INTEGER);

Getting Resource Types

INTEGER;

INTEGER;

FUNCTION CountTypes
PROCEDURE GetIndType (VAR theType: ResType; index: INTEGER);

Getting and Disposing of Resources

(load: BOOLEAN);
(theType: ResType) : INTEGER;

PROCEDURE SetResLoad
FUNCTION CountResources
FUNCTION GetIndResource
FUNCTION GetResource
FUNCTION GetNamedResource
PROCEDURE LoadResource
PROCEDURE ReleaseResource
PROCEDURE DetachResource

(theType: ResType; index: INTEGER) : Handle;
(theType: ResType; theID: INTEGER) : Handle;
(theType: ResType; name: Str255) : Handle;
(theResource: Handle);
(theResource: Handle);
(theResource: Handle);

Getting Resource Information

FUNCTION UniqueID
PROCEDURE GetResInfo

FUNCTION GetResAttrs
FUNCTION SizeResource

Modifying Resources

(theType: ResType) : INTEGER;
(theResource: Handle; VAR,theID: INTEGER;
theType: ResType; VAR name: Str255);

(theResource: Handle) INTEGER;
(theResource: Handle) : LONGINT;

VAR

PROCEDURE SetResInfo (theResource: Handle; theID: INTEGER; name:

PROCEDURE SetResAttrs
PROCEDURE ChangedResource
PROCEDURE Add Resource

PROCEDURE RmveResource
PROCEDURE UpdateResFile
PROCEDURE WriteResource
PROCEDURE SetResPurge

11/28/84 Rose-Anders,

Str255);
(theResource: Handle; attrs: INTEGER);
(theResource: Handle);
(theData: Handle; theType: ResType; theID:
INTEGER; name: Str255);

(theResource: Handle);
(refNum: INTEGER);
(theResource: Handle);
(install: BOOLEAN);

/RMGR/RESOURCE.S

44 Resource Manager Programmer's Guide

Advanced Routines

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER;
PROCEDURE SetResFileAttrs (refNum: INTEGER; att'rs: INTEGER);

'Modifying System References

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name:
Str255);

PROCEDURE RmveReference (theResource: Handle);

Assembly-Language Information

Constants

; Resource attributes

re'SSysRef .EQU 7 jset if system reference
resSysHeap .EQU 6 ;set if read into system heap
resPurgeable .EQU 5 jset if purgeable
resLocked .EQU 4 j set" if locked
resProtected .EQU 3 jset if protected
resPreload .EQU 2 jset if to be preloaded
resChanged .EQU 1 j set if to be written to resource file

; Resource Manager result codes

resNotFound .EQU -192
resFNotFound .EQU -193
addResFailed .EQU -194
addRefFailed .EQU -195
rmvResFailed .EQU -196
rmvRefFailed .EQU -197

; Resource file attributes

mapReadOnly
mapCompact
mapChanged

Variables

Name

TopMapHndl

SysMapHndl

.EQU

.EQU

.EQU

Size

4 bytes

4 bytes

11/28/84 Rose-Anders

7
6
5

; resource not found
; resource file not found
;AddResource failed
jAddReference failed
jRmveResource failed
;RmveReference failed

;set if resource file is read-only
;set to compact file on update
jset to write map on update

Contents

Handle to resource map of most recently
opened resource file
Handle to map of system resource file

/RMGR/RESQURCE.S

SysMap
CurMap
ResReadOnly
Res Load
Res Err
ResErrProc
SysResName

2 bytes
2 bytes
2 bytes
2 bytes
2 bytes
4 bytes
20 bytes

Special Macro Name

Routine name
Size-aesource

Macro name
SizeRsrc

11/28/84 ~ose-Anders

SUMMARY OF THE RESOURCE MANAGER 45

Reference number of system resource file
Reference number of current resource file
Current value of mapReadOnly attribute
Current value of SetResLoad
Current value of ResError
Pointer to resource error procedure
Name of system resource file (beginning
with one-byte. length)

/RMGR/RESOURCE.S

46 Resource Manager Programmer's Guide

SUMMARY OF THE RESOURCE FILE FORMAT

(note)
All offsets and lengths are given in bytes.

Resource
Header
and other
data

Resource
Data

Resource
Map

Type list

Reference
lists (one
per type,
contiguous,
same order
as in type
list)

Resource
name list

4 bytes
4 bytes
4 bytes
4 bytes

112 bytes
128 bytes

For each resource:
4 bytes
n bytes

16 bytes
4 bytes

2 bytes
2 bytes
2 bytes
2 bytes

2 bytes
For ea~h type:

4 bytes
2 bytes
2 bytes

For each r.ference
of this type:

2 bytes
2 bytes

1 byte.
3 bytes
4 bytes

For each name:
1 byte
n bytes

11/28/84 Rose-Anders

Offset to resource data
Offset to resource map
Length of resource data
Length of resource map
Partial copy of file's directory
Application data

Length of following resource data
Resource data for this resource

entry

Reserved for copy of resource header
Reserved for handle to next resource map
to be searched
Reserved for file reference number
R~source file attributes
Offset to type list
Offset to resource name list

Number of resource types minus 1

Resource type
Number of resources of this type minus 1
Offset to reference list for this type

Resource ID
Offset to length of resource name or -1
if none
Resource attributes
Offset to length of resource data
Reserved for handle to resource

Length of following resource name
Characters of resource name

/RMGR/RESOURCE.S

GLOSSARY 47

GLOSSARY

current resource file: The last resource file opened, un~ess you
specify otherwise with a Resource Manager routine.

data fork: The part of the file that contains data accessed via the
File Manager.

empty handle: A pointer to a NIL master poi~ter.

fork: One of two parts of a file; see data fork and resource fork.

reference number: A number greater than 0, returned when a file is
opened, by which you can refer to that file. In Resource Manager
routines that expect a reference number, 0 represents the system
resource file.

resource: Data or code stored in a resource file and managed by the
Resource Manager.

resource attribute: One of several characteristics, specified by bits
in a resource reference, that determine how the resource should be
dealt with.

resource data: In a resource file, the data that comprises a resource.

resource file: The resource fork of a file, which contains data used
by the application (such as menus, fonts, and icons) and also the
app1icat,ion code it~e1f.

resource fork: The part of the file"that contains the resources used
by an application (such as menus, fonts, and icons) and also the
application code itself; usually accessed via the Resource Manager.

resource header: At the beginning of a resource file, data that gives
the offsets to and lengths of the resource data and resource map.

resource ID: A number that, together with the resource type,
identifies a resource in a resource file. Every resource has an ID
number.

resource map: In a resource file, data that is read into memory when
the file is opened and that, given a resource specification, leads to
the corresponding resource data.

resource name: A string that, together with the resource type,
identifies a resource in a resource file. A resource mayor may not
have a name.

resource reference: In a resource map, an entry that identifies a
resource and contains either an offset to its resource data in the
resource file or a handle to the data if it's already been read into
memory.

11/28/84 Rose-Anders /RMGR/RESOURCE.G

48 Resource Manager Programmer's Guide

resource specification: A resource type and either a resource ID or a
res,ource name.

resource type:. The type of a resource in a resource file, designated
by a sequence of four characters (such as 'MENU' for a menu).

system resource: A resource in the system resource file.

system resource file: A resource file containing standard resources,
accessed if a requested resQurce wasn't found in any of the other
resource fIles that were searched.

11/28/84 Rose-Anders /RMGR/RESOURCE.G

MACINTOSH PUBLICATIONS

QuickOraw: A Programmer's Guide /QUICK/QUIKDRAW

See Also: Macintosh User Interface Guidelines
Macintosh Operating System Reference Manual
The Window Manager: A Programmer's Guide

Modification History: First Draft C. Espinosa
Revised and Edited C. Espinosa
Revised and Edited C. Rose
Errata Added C. Rose
Revised C. Rose
Revised for ROM 2.1 C. Rose

11/27/81
2/15/82
8/16/82
8/19/82

11/15/82
3/2/83

ABSTRACT

This document describes the QuickDraw graphics package, heart of-the
Macintosh User Interface Toolbox routines. It describes the conceptual
and physical data types used by QuickDraw and gives details of the
procedures and functions available in QuickDraw.

Summary of significant changes and additions since last version:

- "Font" no longer includes type size. There is a new grafPort
field (txSize) and a procedure (TextSize) for specifying the size
(pages 25, 43). Some other grafPort fields were reordered and
some global variables were moved to the grafPort (page 18).

- The character style data type was renamed Style and now includes
two new variations, condense and extend (page 23).

- You can set up your application now to produce color output when
devices supporting it are available in the future (pages 30, 45).

- The Polygon data type was changed (page 33), and the PolyNext
procedure was removed.

- There are two new grafPort routines, InitPort and ClosePort (pages
35, 36), and three new calculation routines, EqualRect and
EmptyRect (page 48) and EqualPt (page 65).

- XferRgn and XferRect were removed; use CopyBits, PaintRgn,
FillRgn, PaintRect, or FillRect. CursorVis was also removed; use
HideCursor or ShowCursor.

- A section on customizing QuickDra\\T operations was added (page 7(/1).

2 QuickDraw Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About QuickDraw
5 How To Use QuickDraw
6 The Mathematical Foundation of QuickDraw
6 The Coordinate Plane
7 Points
8 Rectangles
9 Regions
11 Graphic Entities
12 The Bit Image
13 The BitMap
15 Patterns
15 Cursors
17 The Drawing Environment: GrafPort
21 Pen Characteristics
22 Text Characteristics
25 Coordinates in GrafPorts'
27 General Discussion of Drawing
29 TransferrModes
3~ Drawing in Color
31 Pictures and Polygons
31 Pictures
32 Polygons
34 QuickDraw Routines
34 GrafPort Routines)
39 Cursor-Handling Routines
4~ Pen and Line-Drawing Routines
43 Text-Drawing Routines
45 Drawing in Color
46 Calculations with ~ectangles
49 Graphic Operations on Rectangles
5~ Graphic Operations on Ovals
51 Graphic Operations on Rounded-Corner 'Rectangles
52 Graphic Operations on Arcs and Wedges
54 Calculations with Regions
58 Graphic Operations on Regions
59 Bit Transfer Operations
61 Pictures
62 Calculations with Polygons
64 Graphic Operations on Polygons
65 Calculations with Points
67 Miscellaneous Utilities
7~ Customizing QuickDraw Operatio,ns
73 Using QuickDraw from Assembly Language
78 Summary of QuickDraw
87 Glossary

ABOUT THIS MANUAL 3

-"'-..-----.--.---~~-.-----------.--ABOUT THIS MANUAL

This manual describes QuickDraw, a set of graphics procedures,
functions, and data types that allow a Pascal or\ assembly-language
programmer of Macintosh to perform highly complex graphic operations
very easily and very quickly. It covers the graphic concepts behind
QuickDraw, as well as the technical details of the data types,
procedures, and functions you will use in your programs. '

(hand)
This manual describes version 2.1 of the ROM. In earlier
versions, QuickDraw may not work as discussed here.

We assume that you are familiar with the Macintosh User Interface
Guidelines, Lisa Pascal, and the Macintosh Operating System's memory
management. This graphics package is for programmers, not end users.
Although QuickDraw may be used from either Pascal or assembly language,
this manual gives all examples in their Pascal form, to be clear,
concise, and more intuitive; a section near the end describes the
details of the assemb"ly-language interface to QuickDraw.

The manual begins with an introduction to QuickDraw and what you can do
with it. It then steps back a little and looks at the mathematical
concepts that form the foundation for QuickDraw: coordinate planes,
points, and rectangles. Once you understand these concepts, read on
about the gr,aphic entities based on those concepts -- how the
mathematical world of planes and rectangles is translated into the
physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports, a
summary of the basic drawing process, and a discussion of two more
parts of QuickDraw, pictures and polygons.

Next, there's the detailed description of all QuickDraw procedures and
functions, their parameters, calling protocol, effects, side effects,
and so on -- all the technical information you'll need each time you
write a program for Macintosh.

Following these descriptions are sections that will not be of interest
to all readers. Special information is given for programmers who want
to customize QuickDraw operations by overriding the standard drawing
procedures, and for those Who will be using QuickDraw from assembly
language.

Finally, the~e's a summary of the QuickDraw data structures and routine
calls, for quick reference'l and a glossary that' explains terms that may
be unfamiliar to you.

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2

4 QuickDraw Programmer's Guide

------------------------ABOUT QUICKDRAW

QuickDraw allows you to divide the Macintosh screen Into a number of
individual areas. Within each area you can draw many things, as
illustrated in Figure 1 •

Text.
Bold
/f8//C.
UnderlIne

@!ffilfiH~
~

F~ ellI·l(lF·~ pc-t,::,
",_'.. ',. 1._' __ k...1 I

(-'~JO
.... ---~

Figure 1.

You can draw:

. _ Lines (P.eetangles I

~~~ DOICJO 

:~::\~::~ ~)~~ i· :~::~) 
/~·I DtP! CzuCz 

Samples of QuickDraw's Abilities 

Text characters in a number of proportionally-spaced fonts, with 
variations that include boldfacing, italicizing, underlining, and 
outlining. 

- Straight lines of any length and width. 

- A variety of shapes, either solid or hollow, including: 
rectangles, with or without rounded corners; full circles and 
ovals or wedge-shaped sections; and polygons. 

- Any other arbitrary shape or collection of shapes, again either 
solid or hollow. 

- A picture consisting of any combination of the above items, with 
just a single procedure call. 

In addition, QuickDraw has some other abilities that you won't find in 
many other graphics packages. These abilities take care of most of the 
"housekeeping" -- the trivial but time-consuming and bothersome 
overhead that's necessary to keep thlngs in order. 

- The ability to define many distinct "ports" on the screen, each 
with its own complete drawing environment -- its own coordinate 
system, drawing location, character set, location on the screen, 
and so on. You can easily switch from one such port to another. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



ABOUT QUICKDRAW 5 

- Full and complete "clipping" to arbi trary areas·, so that drawing 
will occur only where you want. It's like a super-duper coloring 
book that won't let you color outside the lines. You don't have 
to worry about accidentally drawing over something else on the 
screen, or drawing off the screen and destroying memory. 

- Off-screen drawing. Anything you can draw on the screen, you can 
draw into an off-screen buffer, so you can prepare an image for an 
output device without disturbing the screen, or you can prepare a 
picture and move it onto the screen very quickly. 

And QuickDraw lives up to its name! It's very fast. The speed and 
responsiveness of the Macintosh user interface is due primarily to the 
speed of the QuickDraw package. You can do good-quality animation, 
fast interactive graphics, and complex yet speedy text displays using 
the full features of QuickDraw. This means you don't have to bypass 
the general-purpose QuickDraw routines by writing a lot of special 
routines to improve speed. 

How To Use QuickDraw 

QuickDraw can be used from either Pascal or MC68~~~ machine language. 
It has no user interface of its own; you must write and 'compile (or 
assemble) a Pascal (or assembly-language) program ·that includes the 
proper QuickDraw calls, link the resulting object code with the 
QuickDraw code, and execute the linked o1?je.ct file. 

Some programming models are available t~rough your Macintosh software 
coordinator; they show the structure of a properly organized QuickDraw 
program. What's best for beginners is to obtain a machine-readable 
version of the text of one of these programs, read through the text, 
and, using the superstructure of the program as a "shell", modify it to 
suit your own purposes. Once you get the hang of writing programs 
inside the presupplied shell, you can work on changing the shell 
itself. 

QuickDraw is stored permanently in the ROM memory. All access is made 
through an indirection table in low RAM. '~en you write a program that 
uses QuickDraw, you link it with this indirection table. Each time you 
call a QuickDraw procedure or function, or load a predefined constant, 
the request goes through the table into QuickDraw. You'll never access 
any QuickDraw address directly, nor will you have to code constant 
addresses into your program. The linker will make sure all address 
references get straightened out. 

QuickDraw is an independent unit; it doesn't use any other units, not 
even HeapZone (the Pascal interf~ce to the Operating System's memory 
management routines). This means it cannot use the data types Ptr and 
Handle, because they are defined in HeapZone. Instead, QuickDraw 
defines two data types that are equivalent to Ptr· and Handle, QDPtr and 
QDHandle. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



6 QuickDraw Programmer's Guide 

TYPE QDByte 
QDPtr 
QDHandle 

= -128 .. 127; 
= .... QDByte; 

.... QDPtr; 

QuickDraw includes only the graphics and utility procedures and 
functions you'll need to create graphics on the screen. Keyboard 
input, mouse input, and larger user-interface constructs such as 
windows and menus are implemented in separate packages that use 
QuickDraw but are linked in as separate units. You don't need these 
units in order to use QuickDraw; however, you'll probably want to read 
the documentation for windows and menus and learn how to use them with 
your Macintosh programs. 

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 

To create graphics that are both precise and pretty requires not 
supercharged'features but a firm mathematical foundation for the 
features you have. If the mathematics that underlie a graphics package 
are imprecise or fuzzy, the graphics will be, too. QuickDraw defines 
some clear mathematical constructs that are widely used in its 
procedures, functions, and data types: the coordinate plane, the 
point, the rectangle, and the region. 

The Coordinate Plane 

All information about location, placement, or movement that you give to 
QuickDraw is in terms of coordinates on a plane. The coordinate plane 
is a two-dimensional grid, as illustrated in Figure 2. 

t 

Figure 2. The Coordinate Plane 

There are two distinctive features of the QuickDraw coordinate plane: 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



THE MATHEMATICAL FOUNDATION OF QUICKDRAW 7 

- All grid coordinates are integers. 

- All grid lines are infinitely thin. 

These concepts are important! First, they mean that the QuickDraw 
plane is finite, not infinite (although it's very large). Horizontal 
coordinates range from -32768 to +32767, and vertical coordinates have 
the same range. (An auxiliary package is available that maps real 
Cartesian space., with X, Y, and Z coordinates, onto QuickDraw's 
two~dimensional integer coordinate system.) 

Second, they mean that all elements represented on the coordinate plane 
are mathematically pure. Mathematical calculations using integer 
arithmetic will produce intuitively correct results. If you keep in 
mind that grid lines are infinitely thin, you'll never have "endpoint 
paranoia" -- the confusion thaf results from not knowing whether that 
last dot is included in the line. 

Points 

On the coordinate plane are 4,294,967,296 unique points. Each point is 
at the intersection of a horizontal grid line and a vertical grid line. 
As the grid lines are infinitely thin, a point is infinitely small. Of 
course there are more points on this grid than there are dots on the 
Macintosh screen: when using QuickDraw you associate small parts of 
the grid with areas on the screen, so that you aren't bound into an 
arbitrary, limited coordinate system. 

The coordinate origin (0,0) is in the middle of the grid. Horizontal 
coordinates increase as you move from left to right, and vertical 
coordinates increase as you.move from top to bottom. This is the way 
both a TV screen and a page of English text are scanned: from the top 
left to the bottom right. 

You can store the coordinates of a point into a Pascal variable whose 
type is defined by QuickDraw. The type Point is a record of two 
integers, and has this structure: 

TYPE VHSelect 
Point 

= (V,H); 
= RECORD CASE INTEGER OF 

~: (v: INTEGER; 
h: INTEGER); 

1: (vh: ARRAY [VHSelect] OF INTEGER) 

END; 

The variant part allows you to access the vertical and horizontal 
components of a point either individually or as an array. For example, 
if the variable goodPt were declared to be of type ?oint, the following 
would all refer to the coordinate parts of the point: 

3/2/83 Espinosa-Rose /QUI~K/QUIKDRAW.2 



8 QuickDraw Programmer's Guide 

goodPt.v 
goodPt.vh[V] 

goodPt. h 
goodPt.vh[H] 

Rectangles 

Any two points can define the top left and bottom right corners of a 
rectangle. As these points are infinitely small, the borders of the 
rectangle are infinitely thin (see Figure 3). 

Top 

left. 

_JIL 

Bon:orn. 

~~t~3hf 

Figure 3. A Rectangle 

Rectangles are used to define active areas .on the screen, to assign 
coordinate systems to graphic entities, and to specify the locations 
and sizes for various drawing cOlllmands. QuickDraw also allows you to 
perform many mathematical calculations on rectangles -- changing their 
sizes, shifting them around, and so on. 

( hand) 
Remember that rectangles, like points, are mathematical 
concepts that have no direct representation on the 
screen. The association between these conceptual 
elements and their physical representations is made by.a 
bitMap, described below. 

The data type for rectangles is called Rect, and consists of four 
integers or two points: 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



THE MATHEMATICAL FOUNDATION OF QUICKDRAW 9 

TYPE Rect = RECORD CASE INTEGER OF 

~: (top: INTEGER; 
left: INTEGER; 
bottom: INTEGER; 
right: INTEGER); 

1 : (topLeft: Point; 
botRight: Point) 

END; 

Again, the record variant allows you to access a .variable of type Rect 
either as four boundary coordinates or as two diagonally opposing 
corner points. Combined with the record variant for points, all of the 
following references to the rectangle named bRect are legal: 

( eye) 

Regions 

bRect 

bRect.topLeft 

bRect.top 
bRect.topLeft.v 
bRect.topLeft.vh[V] 

bRect.bottom 
bRect.botRight.v 
bRect.botRight.vh[V] 

bRect.botRight 

bRect.left 
bRect.topLeft.h 
bRect.topLeft.vh[HJ 

bRect.right 
bRect.botRight.h 
bRect.botRight.vh[H] 

{type Rect} 

{type Point} 

{type INTEGER} 
{type INTEGER} 
{type INTEGER} 

{type INTEGER} 
{type INTEGER} 
{type INTEGER} 

If the bottom coordinate of a rectangle is equal to or 
less than the top, or the right coordinate is equal to or 
less th~n the left, the rectangle is an empty rectangle 
(i.e., one that contains no bits). 

Unlike most graphics packages that can manipulate only simple geometric 
structures (usually rectilinear, at that), QuickDraw has the unique and 
amazing ability to gather an arbitrary set of spatially cohere'nt points 
into a structure called a region, and perform complex yet rapid 
manipulations and calculations on such structures. This remarkable 
feature not only will make your standard programs simpler and faster, 
but will let you perform operations that would otherwise be nearly 
impossible; it is fundamental to the Macintosh user interface. 

You define a region by drawing lines, shapes such as rectangles and 
ovals, or even other regions. The outline of a region should be one or 
more closed loops. A region can be concave or convex, can consist of 
one area or many disjoint arefls, and can even have "holes" in the 
middle. In Figure 4, th~ region on the left has a hole in. the middle, 
and the region on the right consists of two disjoint areas. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



10 QuickDraw Programmer's Guide 

Figure 4. Regions 

Because a region can be any arbitrary area or set of areas on the 
coordinate plane, it takes a variable amount 'of information to store 
the outline of a region. The data structure for a region, therefore, 
is a variable-length entity with two fixed fields at the beginning, 
followed by a variable-length data field: 

TYPE Region = RECORD 
rgnSize: INTEGER; 
rgnBBox: Rect; 
{optional region definition data} 

END; 

The rgnSize field contains the size, in bytes, of the region variable. 
The rgnBBox field is a rectangle Which completely encloses the region. 

The simplest region is a rectangle. In this case, the rgnBBox field 
defines .the entire region, and there is no optional region data. For 

"-rectangular regions (or empty regions), the rgnSize field contains 10. 

The region definition data for nonrectangu1ar regions is stored in a 
compact way which allows for highly efficient access by QuickDraw 
procedures. 

As regions are of variable size, they are stored dynamically on the 
heap, 'and the Operating System's memory management moves them around as 
their sizes change. Being dynamic, a region can be accessed only 
through a pointe~; but When a region is movad, all pointers referring 
to it must be updated. For this reason, all regions are accessed 
through handles, which point to one master pointer which in turn points 
to the region. 

TYPE RgnPtr 
RgnHand1e 

3/2/83 Espinosa-Rose 

= ""Region; 
= ""RgnPtr; 

/QUICK/QUIKDRAW.2 



THE MATHEMATICAL FOUNDATION OF QUICKDRAW 11 

When the memory management relocates a region's data in memory, it 
updates only the RgnPtr master pointer to that region. The references 
through the master pointer can find the region's new home, but any 
references pointing directly to the region's previous position in 
memory would now,point at dead bits. To acc~ss individual fields of a 
region, use the region handle and double indirection: 

myRgn ....... rgnSize 
myRgn ....... rgnBBox 
myRgn ....... rgnBBox.top 

myRgn .... rgnBBox 

{size of region whose handle is myRgn} 
{rectangle enclosing the same region} 
{minimum vertical coordinate of all 
points in the region} 

{syntactic'ally incorrect; will not compile 
if myRgn is a rgnHandle} 

Regions are created by a QuickDraw function which allocates space for 
the region, creates a master pointer, and returns a rgnHandle. When 
you're done with a region, you dispose of it with another QuickDraw 
routine which frees up the space used by the region. Only these calls 
allocate or deallocate regions; do 'NOT use the Pascal procedure NEW to 
create a new region! 

You specify the outline of a region with procedures that draw lines and 
shapes, as described in the section "QuickDraw Routines". An example 
is given in the discussion of CloseRgn under "Calculations with 
Regions" in that section. 

Many calculations can be performed on regions. A region can be 
"expanded" or "shrunk" and, given any two regions, QuickDraw can find 
their union, intersection, difference, and exclusive-OR; it can also 
determine whether a given point or rectangle intersects a given region, 
and so on. There is of course a set of graphic operations on regions 
to draw them on the screen. 

GRAPHIC ENTITIES 

Coordinate planes, points, rectangles, and regions are all go04 
mathematical models, but they aren't really graphic elements -- they 
don't have a direct physical appearance. Some graphic entities that do 
have a direct graphic interpretation are the bit image, bitMap, 
pattern, and cursor. This section describes the data structure of 
these graphic entities and how they 'relate to the mathematical 
constructs described above. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



12 QuickDraw Programmer's Guide 

The Bit Image 

A bit image is a collection of bits in memory which have a rectilinear 
representation. Take a collection of words in memory and lay them end 
to end so that bit 15 of the lowest-numbered word is on the left and 
bit 0 of the highest-numbered word is on the far right. Then take this 
array of bits and divide it, on word boundaries, 'into a number of 
equal-size rows. Stack these rows vertically so that the first row is 
on the top and the last row is on the bottom. The result is a matrix 
like the one shown in Figure 5 -- rows and columns of bits, with each 
row containing the same number of bytes. The number of bytes in each 
row of the bit image is called the row width of that ima'ge. 

firSt: 

Figure 5. A Bit Image 

Ro~p 

V'/hith, 
is 
8 tJ1JI)JS 

Lo .. st. 
81=~t~~: 

A bit image can be stored in any static or dynamic variable, and can be 
of any length that is a multiple of the row width. 

The Macintosh screen itself is one large visible bi t image. The upper 
21,888 bytes of memory are displayed as a matrix of 175,104 pixels on 
the screen', each bi t corresponding to one pixel. If a bi t' s yalue is 
0, its pixel is white; if the bit's value is 1, the pixel is black. 

The screen is 342 pixels tall and 512 pixels wide, and the .row width of 
its bit image is 64 bytes. Each pixel on the screen is'squar~; there 
are 72 pixels per inch in each direction. 

( hand) 
Since each pixel on the screen represents one bit in a 
bit image, wherever this document says "bit", you can 
substitute "pixel" if the bit image is the Macintosh _ 
screen. Likewise, this document often refers to pixels 
on the screen where the discussion applies equally to 
bits in an off-screen bit image. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



GRAPHIC ENTITIES 13 

The BitMap 

When you combine the physical entity of a bit image with the conceptual 
entities of the coordinate plane and rectangle, you get a bitMap. A 
bitMap has three parts: a pointer to a bit image, the. row width (in 
bytes) of that image, and a boundary rectangle which gives' the bitMap 
both its dimensions and a coordinate system. Notice that a bitMap does 
not actually include the bits themselves: it points to them. 

There can be several bi tMaps pointing to the same bi t image, each 
imposing a different coordinate system on it. This important feature 
is explained more fully in "Coordinates in GrafPorts", below. 

As shown in Figure 6, the data structure of a bitMap is as follows: 

TYPE BitMap = RECORD 
baseAddr: 
rowBytes: 
bounds: 

rcn·VB1..JH::S 

bouruis 

END; 

Base: ;a, 
1~I(jlt.reSS 

QDPtr; 
INTEGER; 
Rect 

Figure 6. A BitMap 

The baseAddr field is a pointer to the beginning of the hit image in 
memory, and the rowBytes field is the number of bytes in each row of 
the image. Both of these should always be even: a bitMap should 
always begin on a word boundary and contain an integral number of words 
in each row. 

The bounds' field is a boundary rectangle that both encloses the active 
area of the bit image and imposes a coordinate system on it. The 
relationship between the boundary rectangle ann the bit image in a 
bitMap is simple yet very important. First, a few general rules: 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



14 QuickDraw Programmer's Guide 

- Bits in a bit image fall between points on the coordinate plane. 

- A rectangle . divides a bit image into two sets of bits: those bits 
inside the rectangle and those outside the rectangle. 

- A rectangle that is H points wide and V points tall encloses 
exactly (H-1)*(V-1) bits. 

The top left corner of the boundary rectangle is aligned around the 
first bit in the bit image. The width of the rectangle determines how 
many bits of one row are logically owned by the hitMap; the 
relationship 

8*map.rowBytes )= map. bounds. right-map. bounds. left 

must always be true. The height of the rectangle determines how many 
rows of the image are logically owned by the bitMap; the relationship 

SIZEOF(map.baseAddr A
) )= (map.bounds.bottom-map.bounds.top) 

* map.rowBytes 

must always be true/to ensure that the number of bits in the logical 
bitMap area is not larger than the number of bits in the bit image. 

Normally, the boundary rectangle completely encloses the bit image: 
.the wi?th of the boundary rectangle is equal to the number of bi ts in 
one row of the image, and the height of the rectangle is equal to the 
number of rows in the image. If the rectangle is smaller than the 
dimensions of the image, the least significant bits in each row, as 
well as the last rows in the image, are not affected by any operations 
on the bitMap. 

The bi tMap -also imposes a coordinate system on the image. Because bi ts 
fall between coordinate points, the coordinate system assigns integer 
values to the lines that border and separate bits, not to the bit 
positions themselves. For example, if a bitMap is assigned the 
boundary rectangle with corners (10,-8) and (34,8), the bottom right 
bit in the image will be between horizontal coordinates 33 and 34, and 
between vertical coordinates 7 and 8 (see Figure 7). 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



GRAPHIC ENTITIES 15 

\ 

• 

Figure 7. Coordinates and BitMaps 

Patterns 

A pattern is a 64-bit image, organized as an 8-by-8-bit 'sqlmre, which 
is used to define a repeating oesign (such as stripes) or tone (~uch as 
gray). Patterns can be used to draw lines and shapes or to fill areas 
on the screen. 

~Vhen a pattern is drawn, it is ,aligned such that adjacent areas of the 
same pattern in the same graphics port will blend with it into a 
continuous, coordinated pattern. QuickDraw provides the predefined 
patterns white, black, gray, ItGray, and dkGray. Any other 64-bit 
variable or constant can be used as a pattern, too. The data ~ype 
definition for a pattern is as fo~lows: 

TYPE Pattern = PACKED ARRAY [0 •• 7] OF 0 •• 255; 

The row width of _a patter~ is 1 byte. 

Cursors 

A cursor is a small image that appears on the screen and is controlled 
by the mouse. (It appears only on the screen,- and never in an 
off-screen bit image.) 

( hand) 
Other Macintosh documentation calls this image a 
"pointer", since it points to a location on the screen. 
To avoid confusion with other meanings of "pointer" in 
this manual and other Toolbox documentation, we use the 
alternate term "cursor". 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



16 QuickDraw Programmer's Guide 

A cursor is defined as a 256-bit image, a 16-by-16-bit square. The row 
- width of a cursor is 2 bytes. Figure 8 illustrates four cursors. 

o 
- I lJ--

9 

,-. 
(.I 

Figure 8. Cursors 

A cursor has three fields: a 16-word data field that contains the 
image itself, a 16-word mask field that contains information about the 
screen appearance of each bit of the cursor, and a hotSpot point that 
aligns the cursor with the position of the mouse. 

TYPE Curso'r = RECORD 
data: 
mask: \ 
hotSpot: 

END; 

ARRAY [0 •• 15] OF INTEGER; 
ARRAY [0 •• 15] . OF INTEGER; 
Point 

The data for the cursor must begin on a word boundary. 

The cursor appears on the screen as a 16-by-16-bit square. The 
appearance of each bit of the square is determined by the corresponding 
bits in the data and mask and, if the mask bit is ~, by the pixel 
"under" the cursor (the one already on the screen in the same position 
as this bit of the cursor): 

Data Mask Resulting pixel on screen 
-0- -1- White 

1 1 Black 
0 ~ Same as pixel under cursor 
1 ~ Inverse of pixel under cursor 

Notice that if all mask bits are ~, the cursor is completely 
transparent, in that the image under the cursor can still be viewed: 
pixels under the white part of the cursor appear unchanged, while under 
the black part of the cursor, black pixels show through as white. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.2 



GRAPHIC ENTITIES 17 

-The hotSpot aligns a point in the image (not a bit, a point!) with the 
mouse position. Imagine the rectangle with 'c'orners (9},9}) and (16,16) 
framing the image, as in each of the examples in Figure 8; the hotSpot 
is defined in this coordinate system. A hotSpot of (9},9}) is at the top 
left of the image. For the arrow in Figure 8 to point to the mouse 
position, (9},9}) would be its hotSpot. A hotSpot of (8,8) is in the 
exact center of the image; the center of the plus sign or circle in 
Figure 8 would coincide with the mouse position if (8,8) were the 
hotSpot for that cursor. Similarly, the hotSpot for the pointing hand 
would be (16,9). 

Whenever you move the mouse, the low-level interrupt-driven mouse 
routines move the cursor's hotSpot to be aligned with the new mouse 
position. 

( hand) 
The mouse position is always linked to the cursor 
position. You can't reposition the cursor through 
software; the only control you have is whether it's 
visible or not, and what shape it will assume. Think of 
it as being hard-wired: if the cursor is visible, it 
always folJows the mouse over the full size of the 
screen. 

QuickDraw supplies a predefined arrow cursor, an arrow pointing 
north-northwest. 

THE DRAWING ENVIRONMENT: GRAFPORT 
~----------------------------------------------
J 

A grafPort is a complete drawing environment that defines how and where 
graphic operations will have their effect. It contains all the 
information about one instance of graphic output that is kept separate 
from all other instances. You can have many grafPorts open at once, 
and each one will have its own coordinate system, drawing pattern, 
background pattern, pen size and location, character font and style, 
and .bitMap in which drawing takes place. You can instantly switch from 
one port to another. GrafPorts are the structures on which a program 
builds windows, which are fundamental to the Macintosh "overlapping 
windows" user interface. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



18 .QuickUraw Programmer's Guide 

f 
A grafPort is a dynamic data structure, defined as follows: 

. I 

TYPE GrafPtr = AGrafPort; 
GrafPort = RECORD 

device: 
portBits: 
portRect: 
visRgn: 
clipRgn: 
bkPat: 
fillPat: 
pnLoc: 
pnSize: 
pnMode: 
pnPat: 
pnVis: 
txFont: 
txFace: 
txMode: 
txSize: 
spExtra: 
fgColor: 
bkColor: 
colrBit: 
patStretch: 
picSave: 
rgnSave: 
polySave: 
grafProcs: 

END; 

INTEGER; 
BitMap; 
Rect; 
RgnHandle; 
RgnHandle; 
Pattern; 
Pattern; 
Point; 
Point; 
INTEGER; 
Pattern; 
INTEGER; 
INTEGER; 
Style; 
INTEGER; 
INTEGER; 
INTEGER; 
LongInt; 
LongInt; 
INTEGER; 
INTEGER; 
QDHandle; 
QDHandle; 
QDHandle; 
QUProcsPtr 

All QuickDraw operations refer to grafPorts via grafPtrs. You create a 
grafPort with the Pascal procedure NEW and use the resulting pointer in 
calls to QuickDraw. You could, of course, declare a static VAR of type 
grafPort, and obtain a pointer to that static structure (with the @ 
operator), but as most grafPorts will be used dynamically, their data 
structures should. be dynamic also. 

( hand) 
You can access all fields and subfields of a grafPort 
normally, but you should not store new values directly 
into them. QuickDraw has procedures for altering all 
fields of a grafPort, and using these procedure~ ensures 
that changing a grafPort produces no unusual side 
effects. 

The device'field of a grafPort is the number of the logical output 
device that the grafPort will be using. The Font Manager uses this 
information, since there are physical differences in the same logical 
font for different output devices. The default device number is ~, for 
the Macintosh screen. For more information about device numbers, see 
the *** not yet existing *** Font Manager documentation. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



Table of Contents 

1861 Table of Contents 



• Chapter 1 Introduction 190 

• Chapter 2 Basics 192 
194 Operation Forms 
194 Arithmetic and Auxiliary Operations 
195 Conversions 
195 Comparisons 
195 Other Operations 
196 External Access 
196 Calling Sequence 
197 The Opword 
198 Assembly-Language Macros 
199 Arithmetic Abuse 

• Chapter 3 Data Types 200 

• Chapter 4 Arithmetic Operations and 204 
Auxiliary Routines 

206 Add, Subtract, Multiply, and Divide 
206 Square Root 
206 Round-to-Integer, Truncate-to-Integer 
207 Remainder 
207 Logb, Scalb 
208 Negate, Absolute-Value, Copy-Sign 
209 Next-After 

Table of Contents 



• Chapter 5 Conversions 210 
211 Conversions Between Binary Formats 
211 Conversions to Extended 
212 Conversions From Extended 
212 Binary-Decimal Conversions 
212 Binary to Decimal 
213 Fixed-Format "Overflow" 
213 Decimal to Binary 
213 Techniques for Maximum Accuracy 

• Chapter 6 Comparisons and Inquiries 216 
217 Comparisons 
218 Inquiries 

• Chapter 7 Environmental Control 220 
221 The Environment Word 
223 Get-Environment and Set-Environment 
224 Test-Exception and Set-Exception 
225 Procedure-Entry and Procedure-Exit 

• Chapter 8 Halts 226 
227 Conditions for a Halt 
228 The Halt Mechanism 
229 Using the Halt Mechanism 

• Chapter 9 Elementary Functions 232 
233 One-Argument Functions 
234 Two-Argument Functions 
235 Three-Argument Functions 

1881 Part III: The 68000 Assembly-Language SANE Engine 



• Appendix A 68000 SANE Access 236 

• Appe~dix B 68000 SANE Macros 238 

• Appendix C' 68000 SANE Quick Reference 262 
Guide 

Table of Contents 



THE DRAWING ENVIRONMENT: GRAFPORT 19 

The portBits field is the bitMap that points to the bit image to be 
used by the grafPort. All drawing that is done in this grafPort will 
take place in this bit image. The default bitMap uses the entire 
Macintosh screen as its bit image t with rowBytes of 64 and a boundary 
rectangle of (0 t0t 5l2 t 342). The bitMap may be changed to indicate a 
different structure in memory: all graphics procedures work in exactly 
the same way regardless of whether their effects are visible on the 
screen. A program cant for example t prepare an image to be printed on 

, a printer without ever displaying the image on the screen t or develop a 
picture in an off-screen bitMap before transferring it to the screen. 
By altering the coordinates of the portBits.bounds rectangle, you can 
change the coordinate system of the grafPort; with a QulckDraw 
procedure call t you can set an arbitrary'coordinate system for each 
grafPort t even if the different grafPorts all use the same bit image 
(e.g.'t the full screen). 

The portRect field is a rectangle that defines a subset of the bitMap 
for use by the grafPort. Its coordinates are in the system defined by 
the portBits.bounds rectangle. All drawing done by the application 
occurs inside this rectangle. The portRect usually defines the 
"writable" interior area of a windowt document, or other object on the 
screen. 

The visRgn field is manipulated by the t·1indow Manager; users and 
programmers will normally never change a grafPort's visRgn. It 
indicates that region (remember t an arbitrary area or set _of areas) 
which is actually visible on the screen. For example, if you move one 
window in front of another, the Window Manager logically removes the 
area of overlap from the visRgn of the window in the back. ~~en you 
draw into the back window, whatever's being drawn is clipped to the 
visRgn so that it doesn't run over onto the front window. The default 
visRgn is set to the portRect. The visRgn has no effect on images that 
are not displayed on the screen. 

The clipRgn is an arbitrary region that the application can use to 
limit drawing to any region within the portRect. If, for example, you 
want to draw a half circle on the screen, you can set the clipRgn to 
half the square that would enclose the whole circle, and go ahead and 
draw the whole circle. Only the half within the clipRgn will actually 
be drawn in the grafPort. The de'fault clipRgI! is set arbi trarily 
large, and you have~full control over its setting. Notice that unlike 
the visRgn, the clipRgn affects the image even if it is not displayed 
on the screen. 

Figure 9 illustrates a typical bitMap' (as defined by portBfts), 
portRect, visRgnt and clipRgn. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



I ~ 

Chapter 1 

Introduction 

190 I Part III: The 68000 Assembly-Language SANE Engine 



\ 

The purpose of the software package described in Part III of this 
manual is. to provide the features of the Standard Apple Numeric 
Environment (SANE) to assembly-language programmers using 
Apple's 68000-based systems. SANE -described in detail in 
Part I-fully supports the IEEE Standard (754) for Binary 
Floating-Point Arithmetic, and augments the Standard to provide 
greater utility for applications in accounting, finance, science, and' 
engineering. The IEEE Standard and SANE offer a combination of 
quality, predictability, and portability heretofore unknown for 
numerical software. 

A functionally equivalent 6502 assembly-language SANE engine is 
available for Apple's 6502-based systems. Thus numerical 
algorithms coded in assembly language for an Apple 68000-based 
system can be readily recoded for an Apple 6502-based system. 
We have chosen macros for accessing the 6502 and 68000 
engines to make it easier to port algorithms from one system to 
the other. 

Part III of this manual describes the use of the 68000 
assembly-language SANE engine, but does not describe SANE 
itself. For example, Part III explains how to call the SANE 

. remainder function from 68000 assembly language, but does not 
discuss what this function does. See Part I for information about 
the semantics of SANE. 

See Appendix A for information about accessing the 68000 SANE 
engine from the Apple 68000-based systems. 

Chapter 1: Introduction 



Chapter ~ 

Basics 

192\ . Part III: The 68000 Assembly-Language SANE Engine 



The following code illustrates a typical invocation of the SANE 
engine, FP68K. 

PEA A_ADR Push address of A (single format) 
PEA B_ADR; Push address of B (extended format) 
FSUBS ; Floating-point SUBtract Single: B - B - A 

FSU8S is an assembly-language macro taken from the file listed 
in Appendix 8. The form of the operation in the example 
(8 - 8 - A, where A is a numeric type and 8 is extended) is 
similar to the forms Jor most FP68K operations. Also, this example 
is typical of SANE engine calls because operands are passed to 
FP68K by pushing the addresses of the operands onto the stack 
prior to the call. Details of SANE engine access are given later in 
this chapter. 

The SANE elementary functions are provided in Elems68K. 
Access to Elems68K is similar to access to FP86K; details are 
given in Chapter 9. 

Chapter 2: Basics 
) 



• Operation Forms 

The example above illustrates the form of an FP68K binary 
operation. Forms for other FP68K operations are described in this 
section. Examples and furthe~ details are given in subsequent 
chapters. 

Arithmetic and Auxiliary Operations 
\ r 

Most numeric operations are either unary (one operand), like 
square root and negation, or binary (two operands), like addition 
and multiplication. 

The 68000 assembly-language SANE engine, FP68K, provides 
unary operations in a one-address form: 

DST - <op> DST ... for example, B - sqrt(B) 

The operation <op> is applied to (or operates on) the operand 
DST and the result is returned to DST, overwriting the previous 
value. DST is called the destination operand. 

FP68K provides binary operations in a two-address form: 

DST - DST < op > SRC ... for example, B - B / A 

The operation < op > is applied to the operands DST and SRC 
and the result is returned to DST, overwriting the previous value. 
SRC is called the source operand. 

In order to store the result of an operation (unary or binary), the 
location of the operand DST must be known to FP68K, so DST is 
passed by address to FP68K. In general all operands, source and 
destination, are passed by address to FP68K. 

For most operations the storage format for a source operand 
(SRC) can be one of the SANE numeric formats (single, double, 
extended, or comp). To support the extended-based SANE 
arithmetic, a destination operand (DST) must be in the extended 
format. 

The forms for the copysign next-after functions are unusual and 
are discussed in Chapter 4. 

1941 Part III: The 68000 Assembly-Language SANE Engine 



Conversions 
FP68K provides conversions between the extended format and 
other SANE formats, between extended and 16- or 32-bit integers, 
and between extended and decimal records. Conversions between 
binary formats (single, double, extended, comp, and integer) and 
conversions from decimal to binary have the form 

DST - SRC 

Conversions from binary to decimal have the form 

DST - SRC according to SRC2 

where SRC2 is a DecForm record specifying the decimal format 
for the conversion of SRC to DST. 

Comparisons 
Comparisons have the form 

< relation> - SRC, DST 

where DST is extended and SRC is single, double, camp, or 
extended, and where < relation> is less, equal, greater ~ or 
unordered according as 

DST < relation> SRC 

Here the result < relation> is indicated by setting the 68000 CCR 
flags. 

Other Operations 
FP68K provides inquiries for determining the class and sign of an 
operand and operations for accessing the floating-point 
environment word and the halt address. Forms for these 
operations vary and are given as the operations are introduced. 

Chapter 2: Basics 



• External Access 

The SANE engine, FP68K, is reentrant, position-independent code, 
which may be shared in multiprocess environments. It is accessed 

I through one entry point, labeled FP68K. Each user process has a 
. static state area consisting of one word of mode bits and error 

flags, and a two-word halt vector. The package allows for different 
access to the state word in single and multiprocess environments. 

The package preserves all 68000 registers across invocations, 
except that REMAINDER modifies DO. The package modifies the 
68000 CCR flags. Except for binary-decimal conversions, it uses 
little more stack area than is required to save the sixteen 32~bit 
68000 registers. Because the binary-decimal conversions 
themselves call the package (to perform multiplies and divides), 
they use about twice the stack space of the regular operations. 

The access constraints described in this section ~Iso apply to 
Elems68K. ' 

• Calling Sequence 

A typical invocation of the e-ngine consists of a sequence of PEA's 
to push operand addresses followed by one of the Appendix B 
macros: 

PEA <source address> 
PEA <destination address> 
<FOPMACRO> 

PEA'S for source operands always precede those for destination 
operands. <FOPMACRO> represents a- typical operation macro 
defined as 

MOVE.W <opword>,-(SP) 
JSRFP 

; Push op code. 

The macro JSRFP in turn generates a call to FP68K; for 
Macintosh T~ it expands to an A-line trap, whereas for Lisae it 
expands to an intrinsic unit subroutine call 

JSR FP68K. 

1961 Part III: The 68000 Assembly-Language SANE Engine 

-- .( 



The Opword 

The opword is the logical OR of an operand format code and an 
operation code. 

The operand format code specifies the format (extended, double, 
single, integer, or comp) of one of the operands. The operand 
format code typically gives the format for the source operand 
(SRC). At most one operand format need be specified, because 
other operands' formats are implied. 

The operation code specifies the operation to be performed by 
FP68K. 

(Opwords are listed in Appendix C; operand format codes and 
operation codes are listed in Appendix B.) 

Example 

The format code for single is 1000 (hex). The operation code for 
divide is 0006 (hex). Hence the opword 1 b06 (hex) indicates divide 
by a value of type single. . 

Chapter 2: Basics 



Assembly-Language Macros 
The macro file in Appendix B provides macros for 

MOVE.W <opword>.-(SP) 
JSRFP 

for most common < opword > calls to FP68K. 

Example 1 

Add a single-format operand A to an extended-format operand B. 

PEA A_ADR Push address of A 
Push address of B PEA B_ADR 

FADDS Floating-point ADD Single: B - B + A 

Example 2 

Compute B - sqrt(A), where A and B are extended. The value of 
A should be preserved. 

PEA A_ADR Push address of A 
Push address of B PEA B_ADR 

FX2X 
PEA B_ADR 

Floating-point eXtended to eXtended: B - A 
Push address of B 

FSQRTX 

PEA 
PEA 
FD2X 
PEA 
PEA 
FSUBD 
PEA 
PEA 
FX2D 

Floating SQuare RooT eXtended: B 4- sqrt(B) 

Example 3 

Compute C - A - B, where A, B, and C are in the double format. 
Because destinations are extended, a temporary extended 
variable T is required. 

A_ADR Push address of A 
T_ADR Push address of 10-byte temporary variable 

Fl-pt convert Double to eXtended: T - A 
B_ADR Push address of B 
T_ADR Push address of temporary 

Fl-pt SUBtract Double: T - T - B 
T_ADR Push address of temporary 
C_ADR Push address of C 

Fl-pt convert eXtended to Double: C 4- T 

Part III: The 68000 Assembly-Language SANE Engine 



• Arithmetic Abuse 

FP68K is designed to be as robust as possible, but it is not 
bullet-proof. Passing the wrong number of operands to the engine 
damages the stack. Using UNDEFINED opword parameters or 
passing incorrect addresses produces undefined results . 

. Chapter 2: Basics 



20 QuickDraw Programmer's Guide 

Figure 9. GrafPort Regions 

The bkPat and fillPat fields of a grafPort contain patterns used by 
certain QuickDraw routines. BkPat is the "background" pattern that is 
used when an area is erased or when bi ts are scrolled out of it. ,.]hen 
asked to fill an area with a specified pattern, QuickDraw stores the 
given pattern in the fillPat field and then calls a low-level drawing 
routine which gets the pattern from that field. The various graphic 
operations are discussed in detail later in the descriptions of 
individual QuickDraw routines. 

Of the next ten fields, the first five determine characteristics of the 
graphics pen and the last five.determine characteristics of any text 
that may be drawn; these are described in subsections below. 

The fgColor, bkColor ,'and colrBi t fields contain values related to 
. drawing in color, a capability that will be available in the future 
when Apple supports color output devices for the Macintosh. FgColor is 
the grafPort's foreground color and bkColor is its background color. 
ColrBit tells the color imaging software which plane of the color 
picture to draw into. For nire information, see "Drawing in Color" in 
the general discussion of drawing. 

The patStretch field is used during output to a printer to expand 
patterns if necessary. The application should not change its value. 

The picSave, rgnSave, and polySave fields reflect the state of picture, 
region, and polygon defintion, respectively. To define a region, for 
example, you "open" it, call routines that draw it, and then "close" 
it. If no region is open, rgnSave contains NIL; otherwise, it contains 
a handle to information related to the region definition. The 
application should not be concerned about exactly what information the 
handle leads to; you may, however, save the current value of rgnSave, 
set the field to NIL to disable the region definition, and later 
restore it to the saved value to resume the region definition. The 

3/2/83 .Espinosa-Rose /QUICK/QUIKDRAW.3 



Chapter 3 

Data Types 

200 I Part III: The 68000 Assembly-Language SANE Engine 



FP68K fully supports the SANE data types 

single 
double 
comp 
extended 

32-bit floating-point 
64-bit floating-point 
64-bit integer 
80-bit floating-point 

and the 68000-specific types 

integer 
longint 

16-bit two's complement integer 
32-bit two's complement integer 

The 68000 engine uses the convention that least-significant bytes 
are stored in high memory. For example, let us take a variable of 
type single with bits 

s 
eO ... e7 
fO ... f22 

sign 
exponent (msb .. .Isb) 
significand fraction (msb .. .Isb) 

. Chapter 3: Data Types 



The logical structure of this four-byte variable is shown below. 

Order 
msb lsb msb lsb 

Hilllill fie! IIIIIIIIIIIIIIIIIIIII~ 
1000 1001 1002 1003 

Memory Location 

If this variable is assigned the address 1000, then its bits are 
distributed to the locations 1000 to 1003 as shown. 

The other SANE formats (see Chapter 2 in Part I)' are represented 
in memory in similar fashion. 

2021 Part III: The 68000 Assembly-Language SANE Engine 





Chapter 4 

. Arithmetic Operations and Auxiliary Routines 

2041 Part III: The 68000 Assembly-Language SANE Engine 



The operations covered in this chapter follow ,the access schemes 
described in Chapter 2. 

Unary operations follow the one-address form: ' 
DST - < op > DST. They use the calling sequence 

PEA <OST address> 
<FOPMACRO> 

Binary operations follow the two-address form: 
DST - DST < op > SRC. They use the calling sequence 

PEA <SRC address> 
PEA' <OST address> 
<FOPMACRO> 

The destination operand (DST) for these operations is passed by 
address and is generally in the extended format. The source 
operand (SRC) is also passed by address and may be single, 
double, comp, or extended. Some operations are distinguished by 
requiring some specific type for SRC, by using a nonextended 
destination, or by returning auxiliary information in the DO register 
and in the processor CCR status bits. In this section, operations 
so distinguished are noted. The examples employ the macros in 
Appendix B. 

Chapter 4: Arithmetic Operations and Auxiliary Routines 1205 ' 



• Add, Subtract, Multiply, and Divide 

PEA 
PEA 
FDIVD 

These are binary operations and follow the two-address form. 

Example 
8 - B / A , where A is double and 8 is extended. 

push address of A 
push address of B 
divide with source operand of type double 

• Square Root 

PEA 
FSQRTX 

This is. a unary operation and follows the one-address form. 

Example 
8 - sqrt(8) , where B is extended. 

push address of B 
; square root (operand is always extended) 

• Round-to'-Integer, Truncate-to-Integer 

These are unary operations and follow the one-address form. 

Round-to-integer rounds (according to the current rounding 
direction) to an integral value in the extended format. 
Truncate-to-integer rounds toward zero (regardless of the current 
rounding direction) to an integral value in the extended format. The 
calling sequence is the usual one for unary operators, illustrated 
above for square root. 

2061 Part III: The 68000 Assembly-Language SANE Engine 



• Remainder 

PEA 
PEA 
FREMS 

This is a binary operation and follows the two-address form. 

Remainder returns auxiliary information: the low-order integer 
quotient (between -127 and + 127) in DO.W. The high half of DO.L 
is undefined. This intrusion into the register file is extremely 
valuable in argument reduction-the principal use of the remainder 
function. The state of DO after an invalid remainder is undefined. 

Example 
B - 8 rem A , where A is single and B is extended. 

push address of A 
push address of B 
remainder with source operand of type single 

• Logb, Scalb 

Logb is a unary operation and follows the one-address form. 

Scalb is a binary operation and follows the two-address form. Its 
source operand is a 1S-bit integer. -

Example 
B - 8 * 21: where 8 is extended. 

PEA 
PEA 
FSCALBX 

push address of I 
push address of B 
scalb 

Chapter 4: Arithmetic Operations and Auxiliary Routines 1207 



• Negate, Absolute Value, Copy-Sign 

Negate and absolute value are unary operations and follow the 
one-address form. 

Copy-sign uses the calling sequence 

PEA <SRC address> 
, PEA <DST address> 

FCPYSGNX 

to copy the sign of DST onto the sign of SRC. Note that copy-sign 
differs from most two-address operations in that it changes the 
SRC value rather than the DST value. The formats of the 
operands of FCPYSGNX can be single, double, or extended. (For 
efficiency, the 68000 assembly-language programmer should copy 
signs directly rather than calling FP68K.) 

Example 
Copy the sign of B (single, double, or extended) into the sign of A 
(single, double, or extended). 

PEA A_ADR 
PEA B_ADR 
FCPYSGNX 

; push address of A 
; push address of B 
; cOPy-sign 

2081 Part III: The 68000 Assembly-Language SANE Engine 



• Next-After 

Both source and destination operands must be of the same 
floating-point type (single, double, or extended). The next-after 
operations use the calling sequence 

PEA <SRC address> 
PEA <DST address> 
<next-after macro> 

to effect SRC - next value, in the format indicated by the macro, 
after SRC in the direction of DST. Note that next-after operations 
differ from most two-address operations in that they change SRC 
values rather than DST values. 

Example 
A - next-after(A) in the direction of B, where A and B are double 
(so next-after means next-double-after). 

PEA A_ADR 
PEA B_ADR 
FNEXTD 

push address of A 
push address of B 
next-after in double format 

Chapter 4: Arithmetic Operations and Auxiliary Routines 1209 



THE DRAWING ENVIRONMENT: GRAFPORT 21 

picSave and polySave fields work similarly for pictures and polygons. 

Finally, the grafProcs field may point to a special data structure that 
the application stores into if it wants to customize QuickDraw drawing 
procedures or use QuickDraw in other advanced, highly specialized ways. 
("For more information, see "Customizing QuickDraw Operations".) If 
grafProcs is NIL, QuickDraw responds in the standard ways described in 
this manual. 

Pen Characteristics 

The pnLoc, pnSize, pnMode, pnPat, and pnVis fields of a grafPort deal 
with the graphics pen. Each grafPort has one and only one graphics 
pen, t~hich is used for drawing lines, shapes, and text. As illustrated 
in Figure 10, the pen has four characteristics: a location, a size, a 
drawing mode, and a drawing pattern. 

Figure 10. A Graphics Pen 

The pen location is a point in the coordinate system of the grafPort, 
and is where QuickDraw will begin drawing the next line, shape, or 
character. It can be "anywhere on the coordinate plane: there are no 
restrictions on the movement or placement of the pen. Remember that 
the pen location is a point on the coordinate plane, not a pixel in a 
bit image! 

The pen is rectangular in shape, and has a user-definable width and 
height. The default size is a 1-by-1-bit square; the "width and height 
can range from (0,O) to (32767,32767). If either the pen width or the 

~ pen height is less than 1, the pen will not draw on the screen. 

- The pen appears as a rectangle wi th its top left corner at the pen 
location; it hangs below and to the right of the pen locat~on. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



Chapter 5 

Conversions . 

210 I Part III: The 68000 Assembl~:-Language SANE Engine 
) \ 



/ 

This chapter discusses conversions between binary formats and 
conversions between binary and decimal formats . 

• Conversions Between Binary Formats 

FP68K provides conversions between the extended type and the 
SANE types single, double, and comp, as ~ell as the 16- and 
32-bit integer types. 

Conversions to Extended 
FP68K provides conversions of a source, of type single, double, 
-comp, extended, or integer, to an extended destination. 

extended -
single 
double 
comp 
extended 
integer 

All operands, even integer ones, are passed by address. The 
following example illustrates the calling sequence. 

Example 

Convert A to B, where A is of type comp and B is extended. 

PEA 

PEA 

FC2X 

push address of A 
push address of B 
convert comp to extended 

Chapter 5: Conversions 



Conversions From Extended 
FP68K provides conversions of an extended source to a 
destination of type single, double, comp, extended, or integer. 

single 
double 
comp 
extended 
i~teger 

- extended 

(Note that conversion to a narrower format may alter values.) 
Contrary to the usual scheme, the destination for these 
conversions need not be of type extended. All operands are 
passed by address. The following example illustrates the calling 
sequence. 

Example 

Convert A to B where A is extended and B is double. 

PEA 

PEA 

FX2D 

push address of A 
push address of 8 
convert extended to double 

• Binary-Decimal Conversions 

FP68K provides conversions between the binary types (single, 
double, comp, extended, and integer) and the decimal record type. 

Decimal records and decform records (used to specify the form of 
decimal representations) are described in Chapter 4 of Part I. For 
FP68K, the maximum length of the sig digits field of a decimal 
record is 20. (The value 20 is specific to this implementation: 
algorithms intended to port to other SANE implementations should 
use no more than 18 digits in sig.) 

Binary ·to Decimal 
The calling sequence for a conversion from a· binary format to a 
decimal record passes the address of a decform record, the 
address of a binary source operand, and the address of a 
decimal-record destination. The maximum number of significant 
digits that will be returned is 19 .. 

2121 Part III: The .68000 Assembly-Language SANE 'Engine 



Example 

Convert a comp-format value A to a decimal record D according to 
the decform record F. 

PEA F_ADR 
PEA A_ADR 
PEA D_AOR 
FC20EC 

push address of F 
push address of A 
push address of 0 
convert comp to decimal 

Fixed-Format "Overflow" 

If a number is too large for a chosen fixed style, then FP68K 
returns the string I?' in the sig field of the decimal record. 

Decimal to Binary 
The calling sequence for a conversion from decimal to binary 
passes the address of a decimal-record source operand and the 
address of a binary destination operand. 

The maximum number of digits in sig is 19. If the length of sig 
is 20, then sig represents its first 19 digits plus one or more 
additional nonzero digits after the 19th. The exponent corresponds 
to the 19-digit integer represented by the first 19 digits of sig. 

Example 

Convert the decimal record D to a double-format value B. 

PEA 
PEA 
FDEC2D 

puSh address of 0 
push address of B 
convert decimal to double 

Techniques for Maximum Accuracy 

The following techniques apply to FP68K; other SANE 
implementations require other techniques. 

For maximum accuracy, insert or delete trailing zeros for the sig 
field of a decimal record in order to minimize the magnitude of the 
exp field. For example, for 1.0E60 set sig to 
'1000000000000000000000000000' (17 zeros) and exp to 43, and 
for 300E-43 set sig to '3' and exp to -41. 

Chapter 5: Conversions 



If you are writing a parser and must handle a number with more 
than 19 significant digits, follow these rules: 

• Place the implicit decimal point to the right of the 19 most 
significant digits. . 

• If any of the discarded digits to the right of the implicit decimal 
point are nonzero, then concatenate the digit '1' to sig. 

2141 Part III: The 68000 Assembly-Language SANE Engine 





Chapter 6 

Comparisons and Inquiries . 

2161 Part III: The 68000 Assembly-Language SANE Engine 



• Comparisons 

FP68K offers two comparison operations: FCPX (which signals 
invalid if its operands compare unordered) and FCMP (which does 
not). Each compares a source operand (which may be single, 
double, extended, or comp) with a destination operand (which 
must be extended). The result of a comparison is the relation -
(less, greater, equal, or unordered) for which 

DST < relation> SRC ; 

is true. The result is delivered in the X, N, Z, V, and C status bits: 

Result Status Bits 

greater 
less 
equal 
unordered 

XNZVC 
o 0 000 
1 1 0 0 1 
o d 1 0 0 
00010 

These status bit encodings reflect that floating-point comparisons 
have four possible results, unlike the more familiar integer 
comparisons with three possible results. You need not learn these 
encodings, however; simply use the FBxxx series of macros for 
branching after FCMP and FCPX. 

FCMP and FCPX are both provided to facilitate implementation of 
relational operators defined by higher level languages that do not 
contemplate unordered comparisons. The IEEE standard specifies 
that the invalid exception shall be signaled whenever necessary to 
alert users of such languages that an unordered- comparison may 
have adversely affected their program's logic. 

Chapter 6: Comparisons and Inquiries 



Example", 
Test B < = A, where B is extended and A is single; if TRUE 
branch to LOC; signal if unordered. 

PEA A_ADR 
PEA B_AOR 
FCPXS 

FBLE LaC 

Example 2 

push address of A 
puSh address of B 
compare using source of type single. 
signal invalid if unordered 
branch if B <= A 

Test B not-equal A, where B is extended and A is double; if TRUE 
branch to LOC. (Note that not-equal is equivalent to less, greater, 
or unordered, so invalid should not be signaled on unordered.) 

PEA A_ADR 
PEA' B_ADR 
FCMPD 

FBNE LaC 

• Inq~iries 

push address of A 
pUSh address of B 
compare using source of type double, 
do not signal invalid if unordered 
b~anch if B not-equal A 

The classify operation provides both class and sign inquiries. This 
operation takes one source operand (single, double, or extended), 
which is passed by address, and places the result in a 16-bit 
integer destination. 

The sign of the result is the sign of the source; the magnitude of 
the result is 

1 signaling NaN 
2 quiet NaN 
3 infinite 
4 zero 
5 normal 
6 denormal 

2181 Part III: The 68000 Assembly-Language SANE Engine 



Example 
Set C· to sign and class of A. 

PEA A_ADR 
PEA C_ADR 
FCLASSS 

push address of A 
push address of result 
classify single 

Chapter 6: Comparisons and Inquiries 



22 QuickDraw Programmer's Guide 

The pnMode and pnPat fields' of a grafPort determine how the bits under 
the pen are affected when lines or shapes are drawn. The pnPat is a' 
pattern that is used like the "ink" in the pen. This pattern, like all 
other patterns drawn in the grafPort, is always aligned with the port's 
coordinate system: the top left. corner of the pattern is aligned with 
the top left corner of the portRect, so that adjacent areas of the same 
pattern will blend into a continuous, coordinated pattern. Five 
patterns are predefined (white, black, and three shades of gray); you 
can also create your own pattern and use it as the pnPat. (A utility 
procedure, called Stuff Hex, allows you ·to fill patterns easily.) 

The pnMode field determines Lhow the pen pattern is to affect what's 
already on the bitMap when lines or shapes are drawn. When the pen 
draws, QuickDraw first determines what bits of the bitMap will be 
affected and finds their corresponding bits in the pattern. It then 
does a bit-by-bit evaluation based on ~he pen mode, which specifies one 
of eight boolean operations to perform. The resulting bit is placed -
into its proper place in the bitMap. The pen modes are described under 
"Transfer Modes" in the general discussion of) drawing ,below. 

The pnVis field determines. the pen's visibility, that is, whether it 
draws on the screen. For more information, see the descriptions of 
HidePen and ShowPen under "Pen and Line-Drawing Routines" in the 
"QuickDraw Routines" section. 

Text Characteristics 

The txFont, txFace, txMode, txSize, andspExtra fields of a grafPort 
determine how text will be drawn -- the font, style, and size of 
characters and how they will be placed on the bi tMap. 

( hand) 
In the Macintosh User Interface Toolbox, character style 
means stylistic variations such as bold, italic, and 
underline; font means the complete set of characters of 
one typeface:-;Uch as Helvetica, and does not include the 
character style or size. 

QuickDraw can draw characters as quickly and easily as it draws lines 
and shapes, and in many 'prepared fonts. Figure 11 shows two QuickDraw 
characters and some terms you should become familiar with. 

3/2/83 Espinosa-~ose /QUICK/QUIKDRAW.3 



Chapter 7 

Environmental Control 

Part III: The 68000 Assembly-Language SANE Engine 



• The Environment Word 

The floating-point environment is encoded in the 1S-bit integer 
format as shown below in hexadecimal: 

msb Isb 

I-Irlrlxldlolul il-IRIRlxlololulll 
rounding exception rounding halts 

direction flags precision enabled 

rounding direction, bits SOOO 
0000 to-nearest 
2000 upward 
4000 downward 
SOOO toward-zero 

exception flags, bits 1 FOO 
0100 invalid 
0200 underflow 
0400 overflow 
0800 division-by-zero 
1 000 inexact 

Chapter 7: Environmental Control 

rr 

i 
u 
o 
d 
x 



rounding precision, bits 0060 RR 
0000 extended 
0020 double 
0040 single 
0060 UNDEFINED 

halts enabled, bits 001 F 
0001 invalid I 
0002 underflow U 
0004 overflow 0 
0008 division-by-zero D 
0010 inexact X 

Bits 8000 and 0080 are undefined. 

Note that the default environment is represented by the integer 
value zero. 

Example 
With rounding toward-zero, inexact and underflow exception flags 
raised, extended rounding precision, and halt on invalid, overflow, 
and division-by-zero, the most significant byte of the environment 
is 72 and the least significant byte is 00. 

Access to the environment is via the operations get-environment, 
set-environment, test-exception, set-exception, procedure-entry, 
and procedure-exit. 

2221 Part III: The 68000 Assembly-Language SANE Engine 



• Get-Environment and Set-Environment 

Get-environment take.s one input operand: the address of a '16-bit 
integer destination. The environment word is returned in the 
destination. . 

Set-environment has one input operand: the address of a 16-bit 
integer, which is to be interpreted as an environment word. 

Example 
Set rounding direction to toward-zero. 

PEA A_AOR 
FGETENV 
LEA A_AOR,AO AO gets address of A 
MOVE.W (AO), DO DO gets envi ronment' 
OR.W #$6000,00 r set rounding toward-zero 
MOVE.W 00, (AO) restore A 
PEA A_AOR 
FSETENV 

Chapter 7: Environmental Control 



Test-Exception and Set-Exception 

Test- exception takes one operand: the address of a 16- bit integer 
destination. On input the destination contains a bit index: 

o -- invalid 
1 -- underflow 
2 -- overflow 
3 -- divide- by- zero 
4 -- inexact 

If the corresponding exception flag is set, then test- exception 
returns the value 1 in the high byte of the destination; otherwise it 
returns zero. 

Example 

Branch to XLOC if underflow is set. 

MOVE.W #FBUFLOW,-(SP) ; underflow bit index 
PEA (SP) . 
FTESTXCP 
TST.B (SP)+ ; test byte, pop word 
BNE XLOC 

Set- exception takes one source operand, the address of a16- bit 
integer which encodes an exception in the manner described above 
for test- exception. Set- exception stimulates the indicated 
exception. 

2241 Part III: The 68000 Assembly-Language SANE Engine 



• Procedure-Entry and Procedure-Exit 

ATOMICPRO,C 
PEA 

Procedure-entry saves the current floating-point environment 
(16-bit integer) at the address passed as the sole operand, and 
sets the operative environment to the default state. 

Procedure-exi~ saves (temporarily) the exception. flags, sets the 
environment passed as the sole operand, and then stimulates the 
saved exceptions. 

Example 
Here is a procedure that appears to its callers as an atomic 
operation. 

FPROCENTRY 
; push address to store environment 
; procedure entry 

... body of routine ... 

PEA 
FPROCEXIT 
RTS 

push address of environment 
; procedure exit 

Chapter 7: Environmental Control 1225 . 



Chapter 8 

Halts 

2261 Part III: The 68000 Assembly-Language SANE Engine 



FP68K lets you transfer program control when selected 
floating-point exceptions occur. Because this facility will be used to 
implement halts in high-level languages, we refer to it as a halt 
mechanism. The assembly-language programmer can write a halt 
handler routine to cause special actions for floating-point 
exceptions. The FP68K halting mechanism differs from the traps 
that are an optional part of the IEEE Standard . 

• Conditions for a Halt 

Any floating-point exception can, under the appropriate conditions, 
trigger a halt. The halt for a particular exception is enabled when 
the user has set the halt-enable bit corresponding to that 

. exception. 

Chapter 8: Halts 



• The Halt Mechanism 

If the halt for a given exception is enabled, FP68K does these 
things when that exception occurs: 

1. FP68K delivers the same result to the destination address that 
it would return if the halt were not enabled. 

2. It sets up the following stack frame: 

(A7) 

pending DO (long word) 

pending CCR (word) 
( helt exceptions (word) --.. 

... 

MISe record pointer (long word) 

SRC2 address (long word) 

SRC address (long word) 

OST address (long word) 

opcode (word) 
.. return address (long word) -

The first word of the record MISC contains in its five low-order 
bits the AND of the halt-enable bits with the exceptions that 
occurred in the operation just completing. If halts were not 
enabled, then (upon return from FP68K) CCR and DO would . 
have the values given in MISC. . 

3. It passes control by JSR through the halt vector previously set 
by FSETHV, pushing another long word containing a return 
address in FP68K. If execution is to continue, the halt 
procedure must clear 18 bytes from the stack to remove the 
opword and the DST, SRC, SRC2, and MISC addresses. 

2281 Part III: The 68000 Assembly-Language SANE Engine 

\ 



Set-halt-vector has one input· operand: the address of a 32-bit 
integer, which is interpreted as the halt vector (that is, the address 
to jump to in case a halt occurs). 

Get-halt-vector has. o~e input operand: the address of a 32-bit 
integer, which receives the halt vector . 

• Using the Halt Mechanism 

·HROUTINE 

This example illustrates the use of the halrmechanism. The user 
must set the halt vector to the starting address of a halt handler 
routine. This particular halt handler returns control to FP68K, 
which will continue as if no halt had occurred, returning to the next 
instruction in the user's program. 

LEA HROUTINE,AO 
MOVE.L AO,H_ADR 
PEA. H_ADR 

AO gets address of halt routine 

H_ADR gets same 

FSETHV set halt vector to HRDUTINE 

PEA 
<FOPMACRO> 

MOVE.L (SP)+.AO 
ADD.L H18,SP 
JMP (AO) 

Chapter 8: Halts 

floating-point operand here 

a floating-point call here 

called by FP68K 
AO saves return address in FP68K 
increment stack past arguments 
return to FP68K 



THE DRAWING ENVIRONMENT: G~AFPORT 23 

--.---r.-----.,------- oscent. line 

-X.. _____ ........ ___ (jescent. line 

Figure 11. QuickDraw Characters 

QuckDraw can display characters in any size, as well as boldfaced, 
italicized, outlined, or shadowed, all without changing fonts. It can 
also underline the characters, or draw them closer together or farther 
apat:t. 

ThetxFont field is a font number that identifies the character font to 
be used in the grafPort. The font number ~ represents the system font. 
For more information about the sys tern font, the other font numbers 
recognized by the Font Manager, and the construction, layout, and 
loading of fonts, see the *** not yet existing *** Font Manager 
documentation. 

A character font is defined as a collection of bit images: these 
images make up the individual characters of the font. The characters 
can be of unequal widths, and they .... re not restricted to their "cells": 
the lower curl of a lowercase j, for example, can stretch back under 
the previous character (typographers call this kerning). A font can 
consist of up to 256 distinct characters, yet not all characters need 
be defined in a single font. Each font contains a missing symbol to be 
drawn in case of a request to draw a character that is missing from the 
font. 

The txFace field controls the appearance of. the font wi th values from 
the set def.ined by the Style data type: 

TYPE StyleItem = (bold, italic, underline, outline, shadow, 
condense, extend); 

Style SET OF StyleItem; 

You can apply these either alone or in combination (see Figure 12). 
Most combinations usually look good only for large fonts. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



The FP68K halt machanism is designed so that a halt procedure 
may be written in Lisa Pascal. This is the form of a Pascal 
equivalent to HROUTINE: 

type mise~ee = ~eeo~d 
halte~~o~s intege~ " 
ee~pending 1ntege~,; 

DOpending : longint ; 

end {~eeo~d} ; 

p~oeedu~e halt~outine 

va~ mise : mise~ee 

s~e2. s~e. dst : longint 
opeode : intege~ ) ; 

begin {halt~outine} 

end {halt~outine} ; 

Like HROUTINE, haltroutine merely continues execution as if no 
, halt had occurred. 

Part 1\1: The 68000 Assembly-Language SANE Engine 





Chapter 9 

Elementary Functions 

2321 Part III: The 68000 Assembly-Language SANE Engine 



The elementary functions that are specified by the Standard Apple 
Numeric Environment are made available to the 68000 
assembly-language programmer in ELEMS68K. Also included are 
two functions that compute logd1 + x) and 2X 

- 1 accurately. 
ELEMS68K calls the SANE engine (FP68K) for its basic arithmetic. 
The access schemes for FP68K (described in Chapter 2) and 
ELEMS68K are similar. Opwords and sample macros are included 
at the end of the file listed in Appendix B. (These macros are used· 
freely in the examples below.) 

• One-Argument Functions 

The SANE elementary functions logix), In(x), In1 (x) = In(1 + x), 
2X, eX, exp1 (x) = eX - 1, cos(x), sin(x), tan (x), atan(x), and 
random(x), together with log21 (x) = logi1 + x) and 
exp21 (x) = 2X - 1, each have one extended argument, passed by 
address. These functions use the one-address calling sequence 

PEA DST 
<EOPMACRO> 

to effect 

DST - <op> DST 

<EOPMACRO> is one of the macros in Appendix B that generate 
code to push an opword and invoke ELEMS68K .. This calling 
sequence follows the FP68K access scheme for unary operations, 
such as square root and negate. 

Chapter 9: Elementary Functions 



Example 
8 - sin(8), where 8 is of extended type. 

PEA B_ADR push address of B 
F S I NX ; B - sin ( B ) 

• Two-Argument Functions 

General exponentiation (xY) has two extended arguments, both 
passed by address. The result is returned in x. 

Integer exponentiation (Xi) also has two arguments. The extended 
argument x, passed by address, receives the result. The 16-bit 
integer argument i is also passed by address. 

80th exponentiation functions use the calling sequence for binary 
operations 

PEA 
PEA 

SRC address 
DST address 

push exponent address first 
push base address second 

<EOPMACRO> 

to effect 

DST - DS,-sRC 

Example 
B - B~ where the type of 8 is extended. 

PEA 
PEA 
FXPWRI 

push address of K 
push address of B 
i~teger exponentiation 

2341 Part III: The 68000 Assembly-Language SANE Engine 



• Three-Argument Functions 

PEA 
PEA 
PEA 

Oompound and annuity use the calling sequence 

SRC2 addr-ess 
. SRC addr-ess 

OST addr-ess 

push addr-ess of r-ate first 
push addr-ess of number- of periods second 
push address of destination thir-d 

<EOPMACRO> 

to effect 

CST - < Op > (SRC2, SRC) 

where < op > is compound or annuity, SRC2 is the rate, and SRC 
is the number of periods. All arguments SRC2, SRC, and CST 
must be of the extended type. 

Example 
C - (1 + R)N, where C, R, and N are of type extended. 

PEA 
PEA 
PEA 
FCOMPOUNO 

push addr-ess of R 
push addr-ess of N 
push address of C 
compound 

Chapter 9: Elementary Functions 



Appendix A 

68000 SANE Access 

2361 Part III: The 68000 Assembly-Language SANE Engine 



In your assemblies include the file TLASM/SANEMACS. TEXT, 
which contains the macros mentioned in this manual. The 
standard version is for Macintosh. For programs that will run on 
Lisa, redefine the symbol FPBYTRAP as follows: 

FPBYTRAP .EQU 0 

On Macintosh, the object code for FP68K and ELEMS68K is 
automatically loaded as needed by the Package Manager. On Lisa, 
it suffices to link your assembled code with the intrinsic unit file 
10SFPLlB.OBJ. -

Appendix A: 68000 SANE Access 



Appendix B 

68000 SANE Macros 

2381 Part III: The 68000 Assembly-Language SANE Engine 



------------------------------------------------------------, " 

FILE: SANEMACS.TEXT 

These macros and equates give assembly-language access to 
the 6BK floating-point arithmetic routines. 

------------------------------------------------------------, 

------------------------------------------------------------, 
; WARNING: set FPBYTRAP for your system. 

;-----------------------~~----------------------------------
FPBYTRAP .EOU 

.MACRO JSRFP 
.IF FPBYTRAP 

_FP68K 
.ELSE 

.REF 
JSR 

.ENDC 
.ENDM 

Fp68K 
FP68K 

. MACRO JSRELEMS 
.IF FPBYTRAP 

_ELEMS6BK 
.ELSE 

;0 for Lisa, 1 for Macintosh 

;defined in TOOLMACS 

;defined in TOOLMACS 

.REF ELEMS68K 
JSR 

.ENDC 
.ENDM 

ELEMS68K 

Appendix B: 68000 SANE Macros 



24 QuickDraw Programmer's Guide 

Norrna\ Charact8r~i 
Bold Characters 

t.JnderJined Characters '!j'2 

©~~8(ftJ@J@1 ©llir~@lfW 
IlMm1rmVlrar!l a(b~t;)rEl 
Condensed Charaeter~:, 
E~l.te.nded Charaete.r~3 

Bold /lalic Chamclcrs 

H~~ 
,. ,. . and in other tl)tlts, too( 

Figure 12. Character Styles 

If you specify bold, each character is repeatedly drawn one bit to the 
right ?n appropriate number of times for extra thickness. 

Italic adds an italic ,slant to the characters. Character bi ts above 
the base line are skewed right; bits below the base line are skewed 
left. 

Underline draws a line below the base line of the characters~ If part 
of a character descends below the base line (as "y" in Figure 12), the 
underline is not drawn through the pixel on either side of the 
descending part. 

You may specify either outline or shadow. Outline makes a hollow, 
outlined character rather than a solid one. '-lith shadow, not only is 
the character hollow and outlined, but the outline is thickened below 
and to the right of the character to achieve the effect of a shadow. 
If you .specify bold along with outline or shadow, th~ hollow part of 
the character is widened. 

Condense and extend affect the horizontal distance between all 
characters, including spaces. Condense decreases the distance between 
char~cters and extend increases it, by an amount Which the Font Manager 
determines is appropriate. 

The txMode field controls the way characters are placed on a bit image. 
It functions much like a pnMode: when a character is drawn, QuickDraw 
determines which bi ts of the bi t 'image will be af fected, does a 
bit-by-bit comparison based on the mode, and stores the resulting bits 
into the bit image. These modes are described under "Transfer Modes" 
in the general discussion of drawing below. Only three of them 
srcOr, srcXor, and srcBic -~ should be used for drawing text. 

3/2/83 Espinosa-Rose /Q~ICK/QUIKDRAW.3 



._---------------------------------------------------------. , 
; Operation code masks . 

. ---~--------------------------------------.---------- ------, 
FOADD 
FOSUB 
FOMUL 
FODIV 
FOCMP 
FOCPX 
FOREM 
FOZ2X 
FOX2Z 
FOSQRT 
FORTI 
FOTTI 
FOSg,ALB 
FOLOGB 
FOCLASS 

; UNDEFINED 

FOSETENV 
FOGETENV 
FOSETHV 
FOGETHV 
FOD2B 
FOB2D 
FONEG 
FOABS 
FOCPVSGN 
FONEXT 
FOSETXCP 
FOPROCENTRV 
FOPROCEXIT 
FOTESTXCP 

UNDEFINED 
; UNDEFINED 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 

$0000 

$0002 
$0004 
$0006 
$0008 

$ 000 A 

$OOOC 
$OOOE 
$0010 
$0012 
$0014 
$0016 
$0018 
$001A 
$001C 
$001E 

$0001 
$0003 
$0005 
$0007 

$0009 
$OOOB 
$0000 
$OOOF 
$0011 
$0013 
$0015 
$0017 
$0019 
$0018 
$0010 
$001F 

add 
subtract 
multiply 
divide 
compare, no exception from unordered 
compare, signal invalid if unordered 
remainder 
convert to extended 
convert from extended 
square root 
round to integral value 
truncate to integral value 
binary scale 
binary log 
classify 

; set environment 
get environment 
set halt vector 
get halt vector 
convert decimal to binary 
convert binary to decimal 
negate 
absolute 
copy sign 
next-after 
set exception 
procedure entry 

:, procedure exit 
test exception 

Part III: The 68000 Assembly-Language SANE Engine 



------------------------------------------------------------· 
; Operand format masks. 

------------------------------------------------------------· 
FFEXT .EQU $0000 extended SO-bit float 
FFDBL .EQU $OSOO double 64-bit float 

FFSGL .EQU $1000 single 32-bit float 
FFINT .EQU $2000 integer 16-bit integer 
FFLNG .EQU $2S00 long int 32-bit integer 
FFCOMP .EQU $3000 comp 64-bit integer 

------------------------------------------------------------· 
; Precision code masks: forces a floating point output 

; value to be coerced to the range and precision specified. 

------------------------------------------------------------· 
FCEXT 

FCDBL 

FCSGL 

.EQU 

.EQU 

.EQU 

$0000 
$4000 

$SOOO 

extended 

double 

single 

------------------------------------------------------------· 
Operation macros: operand addresses should already be on 

the stack. with the destination address on top. The 

suffix X. D. S. C. I. or L determines the format of the 

source operand extended. double. single. compo 
integer. or long integer. respectively; 'the destination 

operand is always extended. 

------------------------------------------------------------· 
._----------------------------------------------------------· 
; AddU ion. 

------------------------------------------------------------· 
.MACRO FADDX 

MOVE.W #FFEXT+FOADD.-(SP) 

JSRFP 

.ENDM 

.MACRO FADDD 

MOVE.W #FFDBL+FOADD.-(SP) 

JSRFP 

.ENDM 

.MACRO FADDS 

MOVE.W #FFSGL+FOADD.-(SP) 

JSRFP 

.ENDM 

Appendix B: 68000 SANE Macros 



.MACRO FADDC 
MOVE.W NFFCOMP+FOADD,-(SP) 
JSRFP 
.ENDM 

.MACRO FADDI 
MOVE. W . NFFINT+FOADD,-(SP) 
JSRFP 
.ENDM 

.MACRO FADDl 
MOVE.W NFFlNG+FOADD,-(SP) 
JSRFP 
.ENDM 

------------------------------------------------------------, 
; Subtraction. ; _______ J _____________________________________________ _____ _ 

.MACRO FSUBX 
MOVE.W NFFEXT+FOSUB,-(SP) 
JSRFP 
.ENDM 

.MACRO FSUBD 
MOVE.W NFFDBl+FOSUB,-(SP) 
JSRFP 
.ENDM 

.MACRO FSUBS 
MOVE.W NFFSGl+FOSUB,-(SP) . 
JSRFP 
.ENDM 

.MACRO FSUBC 
MOVE.W NFFCOMP+FOSUB,-(SP) 
JSRFP 
.ENDM 

.MACRO FSUBI 
MOVE.W NFFINT+FOSUB,-(SP) 
JSRFP 
.ENDM 

.MACRO FSUBl 
MOVE.W NFFlNG+FOSUB,-(SP) 
JSRFP 
.ENDM 

Part III: The 68000 Assembly .. Language SANE Engine 



------------------------------------------------------------· ; Multiplication. 

------------------------------------------------------------· . 
. MACRO FMULX 
MOVE .. W NFFEXT+FOMUL.-(SP) 
JSRFP 
.ENDM 

. MACRO FMULD 
MOVE.W NFFDBL+FOMUL.-(SP) 
JSRFP 
.ENDM 

.MACRO FMULS 
MOVE.W NFFSGL+FOMUL.-(SP) 
JSRFP 
.ENDM 

. MACRO FMULC 
MOVE.W NFFCOMP+FDMUL.-(SP) 
JSRFP 
.ENDM 

. MACRO FMULI 
MOVE.W NFFINT+FOMUL.-(SP) 
JSRFP 
.ENDM 

. MACRO FMULL 
MOVE.W NFFLNG+FOMUL.-{SP) 
JSRFP 
.ENDM 

------------------------------------------------------.-----· ; Division. 

-----.------------------------------------------------------· .MACRO FOIVX 
MOVE.W NFFEXT+FOOIV.-(SP) 
JSRFP 
.ENDM 

. MACRO FDlVD 
MOVE.W NFFDBL+FODlV.-(SP) 
JSRFP 
.ENDM 

Appendix B: 68000 SANE Macros 1243 . 



.MACRO FDIVS 
MOVE.W HFFSGL+FODIV,-(SP) 
JSRFP 
.ENDM 

.MACRO FDIVC 
MOVE.W HFFCOMP+FODIV,-(SP) 
JSRFP 
.ENDM 

.MACRO FDIVI 
MOVE.W HFFINT+FODIV,-(SP) 
JSRFP 
.ENDM· 

.MACRO FDIVL 
MOVE.W HFFLNG+FODIV,-(SP) 
JSRFP 
.ENDM 

------------------------------------------------------------, 
; Square root. 
e __________________________________________________________ _ 

, 
. MACRO 
MOVE.W 
JSRFP 
.ENDM 

FSGRTX 
HFOSQRT,-(SP) 

------------------------------------------------------------, 
; Round to integer, according to the current rounding mode. 
------------------------------------------------------------, 

.MACRO FRINTX 
MOVE.W HFORTI,-(SP) 
JSRFP 
.ENDM, 

------------------------------------------------------------, 
; Truncate to integer, using round toward zero. 
------------------------------------------------------------, 

.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FTINTX 
HFOTTI,-(SP) 

Part III: The 68000 Assembly-Language SANE Engine 



------------------------------------------------------------, 
; Remainder. 

------------------------------------------------------------, 
.MACRO FREMX 
MOVE.W HFFEXT+FOREM,-(SP) 
JSRFP 
.ENDM 

.MACRO FREMD 
MOVE.W HFFDBL+FOREM,-(SP) 
JSRFP 
.ENDM 

.MACRO FREMS 
MOVE.W HFFSGL+FOREM,-(SP) 
JSRFP 
.ENDM 

.MACRO FREMC 
MOVE.W HFFCOMP+FOREM,-(SP) 
JSRFP 
.ENDM 

.MACRO FREMI 
MOVE.W HFFINT+FOREM,-(SP) 
JSRFP 
.ENDM 

.MACRO FREML 
MOVE.W HFFLNG+FOREM,-(SP) 
JSRFP 
.ENDM 

;------------------------~----------------------------------
; Logb. 

------------------------------------------------------------, 
.MACRO FLOGBX 
MOVE.W HFOLOGB,-(SP) 
JSRFP 
.ENDM 

Appendix 8: 68000 SANE Macros 



e __________________________________________________________ _ 

, 
: Scalb. 

------------------------------------------------------------, 
.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FSCALBX 
HFFINT+FOSCALB,-(SP) 

------------------------------------------------------------, 
: COPy-sign. 

------------------------------------------------------------, 
.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FCPYSGNX 
HFOCPYSGN,-(SP) 

------------------------------------------------------------, 
: Negate . 

. MACRO FNEGX 
MOVE.W HFONEG,-(SP) 
JSRFP 
.ENDM 

------------------------------------------------------------, 
: Absolute value. 

------------------------------------------------------------, 
.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FABSX 
#FOABS,-(SP) 

------------------------------------------------------------, 
: Next-after. NOTE: Qoth operands are of the same 
: format, as specified by the usual suffix. 

------------------------------------------------------------, 
.MACRO FNEXTS 
MOVE.W HFFSGL+FONEXT,-(SP) 
JSRFP 
.ENDM 

\ 
.MACRO FNEXTD 
MOVE.W HFFDBL+FONEXT,-(SP) 
JSRFP 
.ENDM 

Part III: The 68000 Assembly-Language SANE Engine 



. MACRO 
MOVE.W 
vSRFP 
.ENDM 

FNEXTX 
HFFEXT+FONEXT,-(SP) 

------------------------------------------------------------, 
; Conversion to extended. 

------------------------------------------------------------, 
. MACRO FX2X 
MOVE.W HFFEXT+FOZ2X.-(SP) 
vSRFP 
.ENDM 

.MACRO FD2X 
MOVE.W HFFDBL+FOZ2X,-(SP) 
JSRFP 
.ENDM 

. MACRO FS2X 
MOVE.W HFFSGL+FOZ2X.-(SP) 
vSRFP 
.ENDM 

.MACRO FI2X 
MOVE.W HFFINT+FOZ2X,-(SP) 
JSRFP 
.ENDM 

. MACRO FL2X 
MOVE.W HFFLNG+FOZ2X.-(SP) 
JSRFP 
.ENDM 

. MACRO FC2X 
MOVE.W HFFCOMP+FOZ2X.-(SP) 
vSRFP 
.ENDM 

Appendix B: 68000 SANE Macros 



------------------------------------------------------------, 
; Conversion from extended . 

. MACRO FX2D 
MOVE.W HFFDBL+FOX2Z,-(SP) 
JSRFP 
.ENDM 

.MACRO FX2S 
MOVE.W HFFSGL+FOX2Z,-(SP) 
JSRFP 
.ENDM 

.MACRO FX21 
MOVE.W HFFINT+FOX2Z,-(SP) 
JSRFP 
.ENDM 

.MACRO FX2L 
MOVE.W HFFLNG+FOX2Z,-(SP) 
JSRFP 
.ENDM 

.MACRO FX2C 
MOVE.W HFFCOMP+FOX2Z,-(SP) 
JSRFP 
.ENDM 

;---------i------------------------------------------- ------
; Binary to decimal conversion. 
;-----------------------------------------------------------

.MACRO FX2DEC' 
MOVE.W HFFEXT+FOB2D,-(SP) 
JSRFP 
.ENDM 

.MACRO FD2DEC 
MOVE.W HFFDBL+FOB2D,-(SP) 
JSRFP 
.ENDM 

. MACRO FS2DEC 
MOVE.W HFFSGL+FOB2D,-(SP) 
JSRFP 
.ENDM 

Part III: The 68000 Assembly-Language SANE Engine 



.MACRO FC20EC 
MOVE.W HFFCOMP+FOB2D,-(SP) 
JSRFP 
.ENDM 

.MACRO FI2DEC 
MOVE.W HFFINT+FOB2D,-(SP) 
JSRFP 
.ENDM 

.MACRO FL2DEC 
MOVE.W HFFLNG+FOB2D,-(SP) 
JSRFP 
.ENDM 

------------------------------------------------------------, 
; Decimal to binary conversion. 
------------------------------------------------------------, 

.MACRO FDEC2X 
MOVE.W HFFEXT+FOD2B,-(SP) 
JSRFP 
.ENDM 

.MACRO FDEC2D 
MOVE.W HFFDBL+FOD2B,-(SP) 
JSRFP 
.ENDM 

.MACRO FDEC2S 
MOVE.W HFFSGL+FOD2B,-(SP) 
JSRFP 
.ENDM 

.MACRO FDEC2C 
MOVE.W HFFCOMP+FOD2B,-(SP) 
JSRFP 
.ENDM 

.MACRO FDEC21 
MOVE.W HFFINT+FOD2B,-(SP) 
JSRFP 
.ENDM 

.MACRO FDEC2L 
MOVE.W HFFLNG+FOD2B,~(SP) 

JSRFP 
.ENDM 

Appendix B: 68000 SANE Macros 



THE DRAWING ENVIRONMENT: GRAFPORT 25 

The txSize field specifies the type size for the font, in points (where 
"point" here is a printing term meaning 1/72 inch). Any size may be 
specified. If the Font Manager does not have the font in a specified 
size, it will scale a size it does have as necessary to produce the 
size desired. A value of ~ in thi~ field directs the Font Manager to 
choose the size from among those it has for the font; it will choose 
whichever size is closest to the system font size. 

Finally, the spExtra field is useful when a line of characters is to be 
drawn justified such that it is aligned wi th both a left and a right 
margin (sometimes called "full justification"). SpExtra is the number 
of pixels by which each space character should be widened to fill out 
the line. 

COORDINATES IN GRAFPORTS 

Each grafPort has its own local 'coordinate system. All fields in the 
grafPort are expressed in these coordinates, and all calculations and 
actions performed in QuickDraw use the local coordinate system of the 
currently selected port. 

Two things are important to remember: 

- Each grafPort maps a portion of the coordinate plane into a 
similarly-sized portion of a bit image. 

- The portBits.bounds rectangle defines the local coordinates for a 
grafPort. 

The top left corner of portBits.bounds is always aligned around the 
firs t bi t in the hi t image; the coordinates of that corner "anchor" a' 
point on the grid to that hi t in the bi t image •. This forms a common 
reference point 'for mult iple grafPorts using the same bi t image (such 
as the screen) • Given a portBi ts. bounds rectangle for each port, you 
know that their top left corners coincide. 

The interrelationship between the portBits. bounds and portRect 
rectangles is very important. As the portBits.bounds rectangle 
establishes a coordinate sys tern for the port" the portRect rectangle 
indicates the section of the coordinate plane (and thus the bit image) 
that will be used for drawing. The portRect usually falls inside the 
portBits.bounds rectangle, but it's not required to do so. 

When a new grafPort is created, its bitMap is set to point to the 
entire Macintosh screen, and both the portBits.bounds and the portRect 
rectangles are set to 512-by-342-bit rectangles, with the point (0,~) 
at the top left corner of the screen. 

You can redefine the local coordinates of the top left corner of the 
grafPort's portRect, using the SetOrigin procedure. This changes the 
local coordinate system of the grafPort, recalculating the coordinates 
of ,all points in the grafPort to be relative to the new corner 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



------------------------------------------------------------, 
; Compare, not signaling invalid on unordered. 

-.----------------------------------------------------------, 
.MACRO FCMPX 
MOVE.W NFFEXT+FOCMP,-(SP) 
,",SRFP 
.ENDM 

.MACRO FCMPD 
MOVE.W NFFDBL+FOCMP,-(SP) 
,",SRFP 
.ENDM 

.MACRO FCMPS 
MOVE.W NFFSGL+FOCMP,-(SP) 
,",SRFP 
.ENDM 

.MACRO FCMPC 
MOVE.W NFFCOMP+FOCMP,-(SP) 
,",SRFP 
.ENDM 

.MACRO FCMPI 
MOVE.W NFFINT+FOCMP,-(SP) 
,",SRFP 
.ENDM 

.MACRO FCMPL 
MOVE.W NFFLNG+FOCMP,-(SP) 
,",SRFP 
.ENDM 

------------------------------------------------------------, 
; Compare, signaling invalid on unordered. 

-.----------------------------------------------------------, 
.MACRO 
MOVE.W 
,",SRFP 
.ENDM 

FCPXX 
NFFEXT+FOCPX,-(SP) 

.MACRO FCPXO 
MOVE.W NFFDBL+FOCPX.-(SP) 
,",SRFP 
.ENDM 

Part III: The 68000 Assembly·Language SANE Engine 



.MACRO FCPXS 
MOVE.W #FFSGL+FOCPX.-(SP) 
uSRFP 
.ENDM 

.MACRO FCPXC 
MDVE.W #FFCOMP+FOCPX,-(SP) 
uSRFP 
.ENDM 

.MACRO FCPXI 
MOVE.W #FFINT+FDCPX,-(SP) 
uSRFP 
.ENDM 

.MACRO FCPXL 
MOVE.W #FFLNG+FOCPX.-(SP) 
uSRFP 
.ENDM 

------------------------------------------------------------. 
The following mac~os define a set of so-called floating 

; b~anches. They p~esume that the app~op~iate compare 
; ope~ation. mac~o FCMPz o~ FCPXz, p~ecedes. 

------------------------------------------------------------. 
.MACRO FBEQ 
BEQ %1 
.ENOM 

.MACRO FBLT 
BCS %1 
.ENDM 

. MACRO FBLE 
BLS %1 
.ENDM 

. MACRO FBGT 
BGT %1 
.ENDM 

.MACRO FBGE 
BGE %1 
.ENDM 

Appendix B: 68000 SANE Macros 



.MACRO FBUlT 
BlT %1 
.ENDM 

.MACRO FBUlE 
BlE %1 
.ENDM 

. MACRO FBUGT 
BHI %1 
.ENDM 

.MACRO FBUGE 
BCC %1 
.ENDM 

.MACRO FBU 
BVS %1 
.ENDM 

.MACRO FBO 
BVC %1 
.ENDM 

.MACRO FBNE 
BNE %1 
.ENDM 

. MACRO FBUE 
BEQ %1 
BVS %1 
.ENDM 

.MACRO FBlG 
BNE %1 
BVC %1 
.ENDM 

------------------------------------------------------------. 
; Short branch versions. 
------------------------------------------------------------. 

. MACRO FBEQS 
BEQ.S %1 
.ENDM 

.MACRO FBlTS 
BCS.S %1 
.ENDM 

Part III: The 68000 Assembly-Language SANE Engine 



. MACRO FBLES 
BLS.S %1 
.ENDM 

. MACRO FBGTS 
BGT.S %1 
.ENDM 

.MACRO FBGES 
BGE.S %1 
.ENDM 

.MACRO FBULTS 
BLT.S %1 
.ENDM 

.MACRO FBULES 
BLE.S %1 
.ENDM 

.MACRO FBUGTS 
BHI.S %1 
.ENDM 

.MACRO FBUGES 
BCC.S %1 
.ENDM 

.MACRO FBUS 
BVS.S %1 
.ENDM 

.MACRO FBOS 
BVC.S %1 
.ENDM 

.MACRO FBNES 
BNE.S %1 
.ENDM 

. MACRO FBUES 
BEQ.S %1 
BVS.S %1 
.ENDM 

Appendix B: 68000· SANE Macros 



.MACRO FBLGS 
BNE.S %1 
BVC.S %1 
.ENDM 

------------------------------------------------------------, 
; Class and sign inquiries. 
------------------------------------------------------------, 

FCSNAN .EQU 1 signaling NAN 
FCQNAN .EQU 2 quiet NAN 
FCINF .EQU 3 infinity 
FCZERO .EQU 4 zero 
FCNORM .EQU 5 normal number 
FCDENORM .EQU 6 denormal number 

.MACRO FCLASSS 
MOVE.W #FFSGL+FOCLASS,-(SP) 
uSRFP 
.ENDM 

.MACRO FCLASSD 
MOVE.W #FFCBL+FOCLASS,-(SP) 
uSRFP 
.ENDM 

.MACRO FCLASSX 
MOVE.W #FFEXT+FOCLASS,-(SP) 
uSRFP 
.ENDM 

Part III: The 68000 Assembly-Language SANE Engine 



------------------------------------------------------------, 
; Bit indexes for bytes of floating point environment word. 

------------------------------------------------------------, 
FBINVAlID .EQU. 0 invalid opera~ion 
FBUFlOW .EQU 1 underflow 
FBOFlOW .EQU 2 , overflow 
FBDIVZER .EQU 3 division by zero 
FBINEXACT .EQU 4 inexact 
FBRNDlO .EQU 5 low bit of rounding mode 
FBRNDHI .EQU 6 high bU of rounding mode 
FBlSTRND .EQU 7 last round result bi t 
FBDBl .EQU 5 double precision control 
FBSGl .EQU 6 single precision control 

------------------------------------------------------------, 
; Get and set environment. 

------------------------------------------------------------, . 
. MACRO 
MOVE.W 
JSRFP 
.ENDM 

.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FGETENV 
#FOGETENV,-(SP) 

FSETENV 
#FOSETENV,-(SP) 

------------------------------------------------------------, 
; Test and set exception. 

------------------------------------------------------------, 
.MACRO FTESTXCP 
MOVE.W #FOTESTXCP,-(SP) 
JSRFP 
.ENDM 

.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FSETXCP 
#FOSETXCP,-(SP) 

Appendix 8: 68000 SANE Macros 



.;-----------------------------------------------------------
; Procedure entry and ex;t . 
. _----------------------------------------------------------, 

.MACRO FPROCENTRY 
MOVE.W HFOPROCENTRY,-(SP) 
JSRFP 
.ENOM 

.MACRO FPROCEXIT 
MOVE.W HFOPROCEXIT,-(SP) 
JSRFP 
.ENDM 

._----------------------------------------------------------, 
; Get and set halt vector . 
. _----------------------------------------------------------, 

.MACRO FGETHV 
MOVE.W HFOGETHV,-(SP) 
JSRFP 
.ENDM 

.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FSETHV • 
HFOSETHV,-(SP) 

Part III: The 68000 Assembly-Language SANE Engine 



------------------------------------------------------------, 
; Elementary function operation code masks. 

------------------------------------------------------------, . 

FOLNX 
FOLOG2X 
FOLN1X 
FOLOG21X 

FOEXPX 
FOEXP2X 
FOEXP1X 
FOEXP21X 

FOXPWRI 
FOXPWRY 
FOCOMPOUND 
FOANNUITY 

FOSINX 
FOCOSX 
FOTANX 
FOATANX 
FORAND X 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

.EOU 

$0000 
$0002 
$0004 
$0006 

$0008 
$OOOA 
$ooOC 
$OOOE 

$8010 
$8012 
$C014 
$C016 

$0018 
$001A 
$oo1C 
$oo1E 
$0020 

base-e log 
base-2 log 
1n (1 + x) 
10g2 (1 + x) 

base-e exponential 
base-2 exponential 
exp (x) - 1 
exp2 (x) - 1 

integer exponentiation 
general exponentiation 
compound 
annuity 

sine 
cosine 
tangent 
arctangent 
random 

Appendix 8: 68000 SANE Macros 



------------------------------------------------------------, 
; Elementary function macros. 
e __________________________________________________________ _ 

, 
. MACRO 
MOVE.W 
JSRELEMS 
.ENDM 

FLNX 
NFOLNX,-(SP) 

.MACRO 
MOVE.W 
JSRELEMS 
.ENDM 

FLOG2X 
NFOLOG2X,-(SP) 

.MACRO FLN1X 
MOVE.W NFOLN1X,-(SP) 
JSRELEMS 
.ENDM 

.MACRO 
MOVE.W 
JSRELEMS 
.ENDM 

.MACRO 
MOVE.W 
JSRELEMS 
.ENDM 

FLOG21X 
NFOLOG21X,-(SP) 

FEXPX 
NFOEXPX,-(SP) 

.MACRO FEXP2X 
MOVE.W NFOEX~2X,-(SP) 

JSRELEMS 
.ENDM 

. MACRO 'FEXP 1X 
MOVE.W NFOEXP1X,-(SP) 
JSRELEMS 
.ENDM 

; base-e log 

base-2 log 

ln (1 + x) 

log2 (1 + x) 

base-e exponential 

base-2 exponential 

exp (x) - 1 

. MACRO FEXP21X exp2 (x) - 1 
MOVE.W NFOEXP21X,-(SP) 
JSRELEMS -
.ENDM 

Part III: The 68000 Assembly-Language SANE Engine 



.MACRO 
MOVE.W 
JSRELEMS 
.ENDM 

.MACRO 
MOVE.W 
JSRELEMS 
.ENDM . 

.> 

FXPWRI 
#FOXPWRI,-(SP) 

FXPWRY 
#FOXPWRY,-(SP) 

;nteger exponent;al 

general exponential 

. MACRO FCOMPOUND ; compound 
MOVE.W #FOCOMPOUND ,-(SP) 
JSRELEMS 
.ENDM 

. MACRO FANNUITY ; annuity 
MOVE.W #FOANNUITY ,-(SP) 
JSRELEMS 
.ENDM 

.MACRO FSINX 
MOVE.W #FOSINX,-(SP) 
JSRELEMS 
.ENDM 

.MACRO FCOSX 
MOVE.W #FOCOSX,-(SP) 
JSRELEMS 
.ENDM 

.MACRO FTANX 
MOVE.W #FOTANX,-(SP) 
JSRELEMS 
.ENDM 

cosine 

tangent 

.MACRO FATANX ; arctangent 
MOVE.W #FOATANX,-(SP) 
JSRELEMS 
.ENDM 

.MACRO FRAND IX random number generator 
MOVE.W #FORANDI ~,-(SP) 

JSRELEMS 
.ENDM 

Appendix B: 68000 SANE Macros 



26 QuickDraw Programmer's Guide 

coordinates. For example, consider these procedure calls: 

SetPort(gamePort); 
SetOrigin(40,80); 

The call to SetPort sets the current grafPort to gamePort; the .call to 
SetOrigin changes ·the local coordinates of the top left corner of that 
port's portRect to (40,80) (see Figure 13). 

Before S"~~r Oliqin 

Figure 13. Changing Local Coordinates 

This recalculates the coordinate components of the following elements: 

gamePortA.portBits.bounds gamePortA.portRect 

gamePortA.visRgn 

These elements are always kept "in sync", so that all calculations, 
comparisons, or operations that seem right, work right. 

- Notice that when the local coordinates of a grafPort are offset, ,the 
visRgn of that port is offset also, but the clipRgn is not. A good way 
to think of it is that if a document ·is being, shown inside a grafPort, 
the document "sticks" to the coordinate system, and the port~s 
structure "sticks" to the screen. Suppose·, for example, that the 
visRgn and clipRgn in Figure 13 before SetOrigin are the same as the 
portRect, and a document is being shown. After the SetOrigin call, the 
top left corner of the clipRgn is still (95,120), but this location has 
moved down and to the right, and the location of the pen within the 
document has similarly moved. The locations of portBits.bounds, 
portRect, and visRgn did not change; their coordinates were offset. As 
always, the top left ·cornerof portRits.bounds remains aligned around 
the first bit in the bit image (the first pixel on the screen). 

If you are moving, comparing, or otherwise dealing with mathematical 
items in different grafPorts (for example, finding the intersection of 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



------------------------------------------------------------, 
; NaN codes. 

------------------------------------------------------------, 
NANSQRT .EQU Inva 1 id square root such as sqrt( -1). 

NANADD .EQU 2 Inval id addition such as +INF - +INF. 
NANDIV .EQU 4 Invalid division such as 0/0. 
NANMUL .EQU 8 Inval id multiply such as o * INF. 
NANREM .EQU 9 Invalid remainder or mod such as x REM O. 
NANASCBIN .EQU 17 Attempt to convert invalid ASCII string. 
NANCOMP .EQU 20 Result of converting comp NaN to floating. 
NANZERO .EQU 21 Attempt to create a NaN with a zero code. 
NANTRIG .EQU 33 Inval id argument to trig routine. 
NANINVTRIG .EQU 34 Inva 1 i d argument to inverse trig routine. 
NANLOG .EQU 36 Inval id argument to log routine. 
NANPOWER .EQU 37 ; Invalid argument to x~i or x~y routine. 
NANFINAN .EQU 38 ; Invalid argument to financial function. 
NANINIT .EQU 255 ; Uninitialized storage. 

Part III: The 68000 Assembly-Language SANE Engine 





Appendix C 

68000 SANE Quick Reference Guide 

2621 Part III: The 68000 Assembly-Language SANE Engine 



This guide contains diagrams of the SANE data formats and the 
68K SANE, operations and environment word. . 

• Formats of SANE Types 

Each of the diagrams below is followed by the rules for evaluating 
the number v. 

In each field of each diagram, the leftmost bit is the msb and the 
rightmost is the Isb. 

Table C-1. Format Diagram Symbols 

V value of number 
s sign bit 
e biased exponent 
i explicit one's-bit (extended type only) 
f fraction 

Appendix C: 68000 SANE Quick Reference Guide 



Single: 32 Bits 

1 8 23 
lsi e f 

msb Isb msb Isb 

If 0 < e < 255, 
If e = 0 and f ,a 0, 
If e = 0 and f = 0, 
If e = 255 and f = 0, 
If e = 255 and f - 0, 

Double: 64 Bits 

1 l' 

lsi e 
msb Isb msb 

If 0 < e < 2047, 
If e = 0 and f ,a 0, 
If e = 0 and f = 0, 
If e = 2047 and f = 0, 
If e = 2047 and f ¢ 0, 

then v = (_1)5 * 2(e-127) * (1.f). 
then v = (_1)5. 2(·126) • (O.f). 
then v = (_1)5 * O. 
then v = (_1)5. C». 

then v is a NaN. 

52 
f 

Isb 

then v = (_1)5 * ,2<e-1023) * (1.t). 
then v = (_1)5 * 2(·1022) '. (O.f). 
then v = (_1)5. O. 
then v = (-1)$. c». 

then v is a NaN. 

2641 Part III: The 68000 Assembly-Language SANE Engine 



Camp: 64 Bits 

. 1 

Is I 
msb 

If s = 1 and d = 0, 
Otherwise, 

Extended: 80 Bits 

1 15 1 

Is I e I i I 
msb Isb msb 

If 0 < = e < 32767, 
If e = 32767 and f = 0, 
If e = ~2767 and f ¢ 0, 

63 
d 

Isb 

then v is the unique comp NaN. 
v is thetwo's-complement value of 
the 64-bit representation. 

63 
f 

lib 

then v = (_1)S * 2(e-16383) * (i.f). 
then v = (_1)S * (XI, regardless of i. 
then v is a NaN, regardless of i. 

Appendix C: 68000 SANE Quick Reference ,Guide 1265 



Operations 

In the operations below, the operation's mnemonic is followed by 
the opword in parentheses: the first byte is the operation code; 
the second is the operand format code. For some operations, the 
first byte of the opword (xx) is ignored. 

Abbreviations and Symbols 
The symbols and abbreviations in this section closely parallel 
those in the text, although some are shortened. In some cases, 
the same symbol has various meanings, depending on context. 

Operands 

.cST 
SRC 

SRC2 

Data Types 

X 
o 
S 
I 
L 

·C 
Dec 
Decform 

destination operand (passed by address) 
source operand (passed by address), pushed 
before DST 
second source operand (passed by address), 
pushed before SRC 

extended (80 bits) 
double (64 bits) 
single (32 bits) 
integer ( 16 bits) 
longint (32 bits) 
camp (64 bits) 
decimal Record 
decform Record 

68000 Processor Registers 

DO data register a 
X extend bit of processor status register 
N negative bit of processor status register 
Z zero bit of processor status register 
V overflow bit of processor status register 
C carry bit of processor' status register 

2661 Part III: The 68000 Assembly-Language SANE Engine 



Operation 

ADD 
FADDX (0000) 
FADDD (0800) 
FADDS (1000) 
FADDC (3000) 
FADDI (2000) 
FADDL (2800) 

SUBTRACT 
FSUBX (0002) 
FSUBD (0802) 
FSUBS (1002) 
FSUBC (3002) 
FSUBI (2002) 
FSUBL (2802) 

MULTIPLY 
FMULX (0004) 
FMULD (0804) 
FMULS (1004) 
FMULC (3004) 
FMULI (2004) 
FMULL (2804) 

Exceptions 

I 
U 
o 
o 
X 

invalid operation 
underflow 
overflow 
divide-by-zero 
inexact 

For each operation, an exception marked with x indicates that the 
operation will signal the exception for some input. 

Environment and Halts 

EnWrd 
HltVctr 

SANE environment word (16-bit integer) 
SANE halt vector (32-bit longint) 

Arithmetic Operations and Auxiliary Routines 
(Entry Point FP68K) 

Operandi and Data Types Exceptions 

DST DST + SRC I U 0 o X 
X X X x - x - x 
X X 0 x - x - x 
X X S x - x - x 
X X C x - x - x 
X X I x · x - x 
X X L x - x - x 

DST DST - SRC J U 0 o X 
X X X x - x - x 
X X 0 x · x - x 
X X S x - x - x 
X. X C x · x . x 
X X I x - x - x 
X X L x - x - x 

DST DST • SRC U 0 0 X 
X X X x x x - x 
X X 0 x x x - x 
X X S x x x . x 
X X C x - x - x 
X X I x - x - x 
X X L x - x - x 

Appendix C: 68000 SANE Quick Reference Guide 



Operation Operands and Data Types Exceptions 

DIVIDE OST OST SRC U 0 0 X 
FOIVX (0006) X X X x x x x x 
FDIVD (0806) X X 0 x x x x x 
FOIVS (1006) X X S x x x x x 
FOIVC (3006) X X C x x - x x 
FOIVI (2006) X X I x x - x x 
FOIVL (2806) X X. L x x - x x 

SQUARE ROOT OST sqrt(OST) U 0 0 X 
,FSORTX (0012) X X x - - - x 

ROUND TO INT OST md(OST) U 0 0 X 
FRINTX (0014) X X x - - - x 

TRUNC TO INT OST chop(OST) U 0 0 X 
FTINTX (0016) X X x - - - x 

REMAINDER OST OST REM SRC U 0 0 X 
FREMX (OOOC) X X X x - -
FREMO (080e) X X 0 x 
FREMS (100C) X X S x - -
FREMC (300C) X X C x - -
FREMI (200C) X X I x - -
FREML (280C) X X L x - -

DO - integer quotient DST/SRC, 
between -127 and + 127 

LOG BINARY OST logb(OST) U 0 0 X 
FLOGBX (001 A) X X x - - x -
SCALE BINARY DST OST.2"SRC I U 0 0 X 
FSCALBX (0018) X X I x x x - x 

NEGATE OST -OST I U 0 0 X 
FNEGX (0000) X X 

ABSOLUTE VALUE OST IOSTI I U 0 o X 
FABSX (OOOF) X X 

COPY-SIGN SRC SRC with OST's sign U 0 0 X 
FCPYSGNX (0011) X,D, X,D, X,D, 

orS or S orS 

NEXT-AFTER SRC " next after SRC toward OST U 0 0 X 
FNEXTX (0013) X X X x x x - x 
FNEXTO (0813) 0 0 0 x x x - x 
FNEXTS (1013) S S S x x x - x 

2681 Part III: The 68000 Assembly-Language SANE Engine 



Conversions (Entry Point FP68K) 

Operation Operands and Data Types Exceptions 

CONVERT 

Bin to Bin DST SRC U 0 D X 
FX2X (0010) X X x - -
FX2D (0810) D X x x x - x 
FX2S (1010) S X x x x - x 
FX2C (3010) C X x - - - x 
FX21 (2010) I X x - - - x 
FX2L (2810) L X x - - - x 

FD2X (080E) X D x -
FS2X (100E) X S x - -
FC2X (300E) X C 
FI2X (200E) X I - - - - -
FL2X (280E) X L - - - - -

Bin to Dec DST - SRC according to SRC2 U .0 D X 
FX2DEC (0008) Dec X Decform x - - - x 
FD2DEC (0808) Dec D Decform x - - - x 
FS2DEC (1008) Dec S Decform x - - - x 
FC2DEC (3008) Dec C Decform - x 
FI2DEC (2008) Dec I Decform - x 
FL2DEC (2808) Dec L Decform - x 

(First SRC2 is pushed, then SRC, then DST.) 

Dec to Bin DST SRC U 0 D X 
FDEC2X (0009) X Dec - x x - x 
FDEC2D (0809) D Dec - x x - x 
FDEC2S (1009) S Dec - x x - x 
FDEC2C (3009) C Dec x - - - x 
FDEC21 (2009) I Dec x - - - x .. , 
FDEC2L (2809) L Dec x - - - x 

Appendix C: 68000 SANE Quick Reference Guide 



COORDINATES IN GRAFPORTS 27 

two regions in two different grafPorts) , you must adju~t to a common 
coordinate system before you perform the operation. A Quickpr~w 
procedure, LocalToGlobal, lets you convert a point's local coordinates 
to a global system where the top left corner of the bi t image is (0,0); 
by converting the various local coordinates to global coordinates, you 
can compare and mix them wi th confidence. For more informatio.n, see 
the description of this,procedure under "Calculations with Points" in 
the section "QuickDraw Routines". 

GENERAL DISCUSSION OF DRAWING 

Drawing occurs: 

- Always inside a grafPort, in the bit image and coordinate system 
defined by the grafPort's bitMap. 

I 

- Always within the intersection of the grafPort's portBits.bounds 
and portRect, and clipped to its visRgn and clipRgn. 

- Always at the grafPort's pen location. 

- Usually with the grafPort's pen size, pattern, and mode. 

With QuickDraw procedures, you can draw lines, shapes, and text. 
Shapes include rectangles, ovals, rounded-corner rectangles, 
wedge-shaped sections of ovals, regions, and polygons •. 

Lines are defined by two points: the current pen location and a 
destination location. Hhen drawing a line, QuickDraw moves the top 
left corner of the pen along the mathematical trajectory from the 
current location to the destinatio~. The pen hangs below and to the 
right of the trajectory (see Figure 14). . 

• • 

Figure 14.. Drawing Lines 

3/2/83'Espinosa-Rose /QUICK/QUIKDRAW.3 



Compare and Classify (Entry Point FP68K) 

Operation 

COMPARE 

No invalid 
for unordered 
FCMPX (0008) 
FCMPD (0808) 
FCMPS (1008) 
FCMPC (3008) 
FCMPI (2008) 
FCMPL (2808) 

Signal invalid 
if unordered 
FCPXX (OOOA) 
FCPXD (080A) 
FCPXS (100A) 
FCPXC (300A) 
FCPXI (200A) 
FCPXL (280A) 

CLASSIFY 

Operands and Data Types 

Status Bits - < relation> 
where DST < relation> SRC 

X X 
X D 
X S 
X C 
X I 
X L 

(Invalid only for signaling NaN inputs.) 

Status Bits - < relation> 
where 

<relation> 

DST > SRC 
DST < SRC 
DST = SRC 

DST < relation> 
X 
X 
X 
X 
X 
X 

DST & SRC unordered 

class of 
sign of 

SRC 
X 
0 
S 
C 
I 
L 

Status Bits 
X N Z 

0 0 0 
1 1 0 
0 0 1 
0 0 0 

SRC 
SRC 

V 

0 
0 
0 
1 

<class> 
<sign> 
DST (-1 ) " < sign> • < class> 

FCLASSX (001C) 
FCLASSD (081C) 
FCLASSS (101 C) 

X 
0 
S 

C 

0 
1 
0 
0 

270 I Part III: The 68000 Assembly-Language SANE Engine 

x 
x 
x 
x 
x 
x 

x 
x 
x 
x 
x 
x 

Exceptions 

U 0 0 X 

-
-
-
-
-
-

U 0 0 X 

-
-
-
-
-
-

U 0 0 X 



SAC <class> SAC <sign> 

signaling NaN 1 positive 0 
quiet NaN 2 negative 1 
infinite 3 
zero 4 
normalized 5 
denormalized 6 

Environmental Control (Entry Point FP68K) 

Operation 

GET ENVIRONMENT 
FGETENV (0003) 

SET ENVIRONMENT 
FSETENV (0001) 

Operands and Data Types 

OST - EnvWrd 
I 

EnvWrd - SRC • 
I 

Exceptions 

I U 0 0 X 

I U 0 0 X 
x x x x x 

(Exceptions set by set-environmant cannot cause halts.) 

TEST EXCEPTION DST high byte <-~ DST Xcp set . 
FTESTXCP (001 B) 1 ·1 
SET EXCEPTION EnvWrd - EnvWrd AND SRC' 
FSETXCP (0015) I 

PROCEDURE ENTRY OST - EnvWrd. EnvWrd - 0 
FPROCEN11~.Y (00f7) I 

PROCEDURE EXIT EnvWrd - SRC OR current Xcps 
FPROCEXIT (0019) I 

Halt Control (Entry Point FP68K) 

SET HALT VECTOR 
. FSETHV (xx05) 

GET HALT VECTOR 
FGETHV (0007) 

HltVctr - SRC 
L 

OST - HItVctr 
L 

Appendix C: 68000 SANE Quick Reference Guide 

I U 0 o X 

U 0 o X 
x x x x x 

I U 0 o X 
x x x x x 

I U 0 o X 
x x x x ,x 

I U 0 0 x 

I U 0 0 X 



Elementary Functions (Entry Point ELEMS68K) 

Operation Operands and Data Types 

BASE-E LOGARITHM OST - In(OST) 
FLNX (0000) X X 

BASE-2 LOGARITHM OST - log2(OST) 
FLOG2X (0002) X X 

BASE-E LOG1 (LN1) OST - In(1 + OST) 
FLN1X (0004) X X 

BASE-2 LOG1 OST - log2(1 + OST) 
FLOG21 X (0006) X X 

BASE-E EXPONENTIAL OST - eAOST 
FEXPX (0008) X X 

BASE-2 EXPONENTIAL OST - 2 A OST 
FEXP2X (OOOA) X X 

BASE-E EXP1 OST - eAOST - 1 
FEXP1 X (OOOC) X X 

BASE-2 EXP1 OST - 2 AOST - , 
FEXP21X (OOOE) X X 

INTEGER EXPONENTIATION OST - OST A SRC 
FXPWRI (8010) X X I 

GENERAL EXPONENTIATION OST - OST A SRC 
FXPWRY (8012) X X X 

COMPOUND INTEREST OST - compound(SRC2.SRC) 
FCOMPOUNO (C014) X X X 

(SRC2 is the rate; SRC is the number of periods.) 

ANNUITY FACTOR OST - annuity(SRC2.SRC) 
FANNUITY (C016) X X X 

(SRC2 is the rate; SRC is the number of periods.) 

SINE 
FSINX (0018) 

COSINE 
FCOSX (001 A) 

OST 
X 

sin(OST) 
X 

OST - cos(OST) 
X X 

Exceptions 

U 0 0 X 
x - - x x 

U 0 0 X 
x - - x x 

I U 0 o X 
x x - x x 

U 0 0 X 
x x - x x 

U 0 0 X 
x x x - x 

I U 0 0 X 
x x x - x 

U 0 0 X 
x x x - x 

I U 0 0 X 
x x . x - x 

I U 0 o X 
x x x x x 

U 0 0 X 
x x x x x 

I U 0 0 X 
x x x x x 

I U 0 0 X 
x x x x x 

U 0 0 X 
x x - - x 

I U 0.0 X 
x x - - x 

'2721 Part III: The 68000 Assembly-Language SANE, Engine 



TANGENT DST - tan(DST) I U 0 D, X 
FTANX (001C) X x x x - x x 

ARCTANGENT DST - atan(DST) I U 0 o X 
FATANX (001E) X X x x - - x 

RANDOM DST - random(DST) I U 0 o X 
FRANDX (0020) X X x x x - x 

• Environment Word 

The floating-point environment is encoded in the 16-bit integer 
format as shown below in hexadecimal: 

msb Isb 

I-Irlrlxldiolul il-IRIRIXIO,oIUltl 
ro~nding exception rounding halts 

direction flags precision enabled 

rounding direction, bits 6000 rr 
0000 to-nearest 
2000 upward 
4000 downward 
6000 toward-zero 

exception flags, bits 1 FOO 
0100 invalid i 
0200' underflow u 
0400 overflow 0 

0800 division-by-zero d 
1000 inexact x 

Appendix b: 68000 SANE Quick Reference Guide 



28 QuickDraw Programmer's Guide 

( hand) 
No mathematical element (such as the pen location) is 
ever affected by clipping; clipping only determines what 
appears where in the bit image. If you draw a line to a 
location outside your grafPort, the pen 'Iocation will 
move there, but only the 'portion of the line that is 
inside the port will actually be drawn. This is true for 
all drawing procedures. 

Rectangles, ovals, and rounded-corner rectangles are defined by two 
corner points. The shapes always appear inside the mathematical 
rectangle defined by the two points. A region is defined in a more 
complex manner, but also appears only within the rectangle enclosing 
it. Remember, these enclosing rectangles have infinitely thin borders I 

and are'not visible on the screen. 
I 

As illustrated in Figure 15, shapes may be drawn either solid (filled 
in with a pattern) or framed (outlined and hollow). 

lIen 1teig1\t . 
... 
f 

-+1 ft- pen 
. wid!.i{ 

Figure 15. Solid Shapes and Framed Shapes 

In the case of framed shapes, the.outlineappears completely within the 
enclosing rectangle -- with one exception ~- and the vertical and 
horizontal thickness of the outline is determined by the pen size. The 
exception is polygons , as discussed in "Pictures and Polygons" below. 

The pen pattern is used to fill in the bits that are affected by the 
drawing operation. The pen mode defines how those bits are to be 
affected by directing QuickDraw to apply one of eight boolean 
operations to the bits in the shape and the corresponding pixels on the 
screen. 

Text drawing does not use the pnSize, pnPat, or pnMode, but it does use 
the pnLoc. Each character is placed to the right of the current pen 
location, with the left end of its base line at the pen's location. 
The pen is moved to the right to the location where it will draw the 

3/2/83 Espinosa-Rose ·/QUICK/QUIKDRAW.3. 



GENERAL DISCUSSION OF DRAWING 29 

next character. No wrap or carriage return is performed automatically. 

The method QuickDraw uses in, placing text is controlled by a mode 
similar to the pen mode. This is explained in "Transfer Modes", below. 
Clipping of text is performed in exactly the same manner as all other 
clipping in QuickDraw. 

Transfer Modes 

When lines or 'shapes are drawn, the pnMode field of the grafPort 
determines how the drawing is to appear in the port's bit image; 
similarly, the txMode field determines how text is to appear. There is 
also a QuickDraw procedure that transfers a bit image from one bitMap 
to another, and this procedure has a mode parameter that det~rmines the 
appearance of the result. In all these cases, the mode, called a 
transfer mode, specifies one of eight boolean operations: for each bit 
in the item to be drawn, QuickDraw finds the corresponding bit in the 
des tination bi t image, performs the boolean operation on the pair of 
bits, and stores the resulting bit into the bit image. 

There are two types of transfer mode: 

- Pattern transfer modes, for drawing lines or shapes with a 
pattern. 

- Source transfer modes, for drawing text or transferring any bit 
image between two bitMaps. 

For each type of mode, there are four basic operations -- Copy, Or, 
Xor, and Bic. The Copy operation simply replaces the pixels in the 
destination with the pixels in the pattern or source, "painting" over 
the destination without regard for ,what is already there. The Or, Xor, 
and Bic operations leave the destination pixels under,the white part of 
the pattern or source unchanged, and differ in how they affect the 
pixels under the black part: Or replaces those pixels. with black 
pixels, thus "overlaying" the destination wi th the black part of the 
pattern or source; XOr inverts the pixels under the black part; and Bic 
erases them to white. 

Each of the basic operations has a variant in which every pixel in the 
pattern or source is inverted before the operation is performed, giving 
eight operations in all. Each mode is defined by name as a constant in 
QuickDraw (see Figure 16). 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.3 



30 QuickDraw Programmer's Guide 

. Pattern 
transfer 
mode 
patCopy 
patOr 
patXor 
patBic 

notPatCopy 
notPatOr 
notPatXor 
notPatBic 

Drawing in Color 

II 

II ••• 
pav:::o!I!.r 
sfcCoP3' 

p3.t.r:)r 
.srGOr 

p;~.t.Xor 

.srcXor 
patE:ic 
srdHr. 

•••• fl1)i.'P;;.tCt:l1-'~~· flot'P;;.t 01' rll)t.'P.,.t}~Oi' ftot.'P;;t.r:.l{'. 
fLotSrcCOfl!l fll')tSreOr flotSrf;Xt)r flI~,tSf'cBiG 

Figure 16. Transfer Modes 

Source Action on each pixel 
transfer If black pixel in 
mode pattern or source 
srcCopy Force black 
srcOr Force black 
srcXor Invert 
srcBic Force white 

notSrcCopy Force white 
notSrcOr Leave' alone 
notSrcXor Leave alone 
notSrcBic Leave alone 

in destination : 
If white pixel in 
pattern or source 
Force white 
Leave alone 
Leave alone 
Leave alone 

Force black 
Force black 
Invert 
Force white 

Currently you can only look at QuickDraw output on a black-and-white 
screen or printer •. Eventually, however, Apple will support color 
output devices.' If you want to set up your application now to produce 
color output in the future, you can do so by using QuickDraw procedures 
to set the foreground color and tpe background color. Eight standard 
colors may be specified with the following predefined constants: 
b1ackCo1or, whiteColor, redCo10r, greenCo10r, b1ueCo1or, cyanCo1or, 
magentaCo1or, and yel10wColor. Initially, the foreground color is 
b1ackCo1or and the background color is ymiteColor. If 'you specify a 
color other than whiteCo10r '. it will appear as black on a 
black-and-white output device. 

To apply the table in the "Transfer Modes" section above to drawing in 
color, make the following translation: where the table shows "Force 
black", read "Force foreground color", and where 'it shows "Force 
white", read "Force background color". When you ~ventua11y receive the 

3/2/83 Espinosa-Rose /QUIGK/QUIKDRAW.3 



GENERAL DISCUSSION OF DRAWING 31 

color output device, you'll find out the effect of inverting a color on 
it. 

( hand) 
QuickDraw can support output devices that have up to 32 
bits of color information per pixel. A color picture may 
be thought of, then, as having up to 32 planes. At any 
one time, QuickDraw draws into only'one of these planes. 
A QuickDraw routine c~lled by the color-imaging software 
specifies which plane. 

PICTURES AND POLYGONS 

QuickDraw lets you save a sequence of drawing commands and "play them 
back" later with a single procedure call. There are two such 
mechanisms: one for d.rawing any picture to scale in a des tination 
rectangle that you specify, and another for drawing polygons in all the 
ways you can draw other shapes in QuickDraw. 

Pictures 

A picture in QuickDraw is a transcript of calls to routines which draw 
something -- anything -- on a bitMap. Pictures make it easy for one 
program to draw something defined in another program, wi th great 
flexib~,lity and without knowing the details about what's being drawn. 

For each picture you define, you specify a rectangle that surrounds the 
picture; this rectangle is called the picture frame. Hhen you later 
call the procedure that draws the saved picture, you supply a 
destination rectangle, and QuickDraw scales the picture so that its 
frame is completely aligned with the destination rectangle. Thus, the 
picture may be expanded or shrunk to fit its destination rectangle. 
For example, if the picture is a circle inside a square picture frame, 
and the destination rectangle is not square, the picture is drawn as an 
oval. 

Since a picture may include any sequence of drawing· commands, its data 
structure is a variable-length entity. It consists of two fixed fields 
followed by a variable-length data field: 

TYPE Picture = RECORD 
picSize: INTEGER; 
picFrame: Rect; 
{picture definition data} 

END; 

The picSize field contains the size, in bytes, of the picture variable. 
The picFrame fie~d is the picture frame which surrounds the picture and 
gives a frame of reference for scaling when the picture is drawn. The 
rest of the structure contains a compact representation of the drawing 

3/2/83 Rose /QUICK/QUIKDRAW.P 



32 QuickDraw Programmer's Guide 

commands that define the picture. 

All pictures are accessed through handles, which point to one master 
pointer which in turn points to the picture • 

TYPE .PicPtr 
PicHandle 

.... Picture; 

.... PicPtr; 

To define a picture, you call a QuickDraw function that returns a ' 
picHandle and then call the routines that draw the picture. There is a 
procedure to call when you've finished defining the picture, and 
another for when you're done with the picture altogether. 

QuickDraw also allows you to intersperse picture comments in with the 
definition of a picture. These comments, which do not affect the 
picture's appearance, may be used to provide additional information 
about the picture when it's played back. 'This is especially valuable 
when pictures are transmitted from one application to another. There 
are two standard types of comment which, like parentheses, serve to 
group drawing commands together (such as all the commands that draw a 
particular part of a picture): 

CONST picLParen 
picRParen 

<6; 
1 ; 

The application defining the picture can use these standard comments as 
well as comments of its own design. 

To include a comment in the definition of a picture, the application 
calls a QuickDraw procedure that specifies the comment with three 
parameters: the comment kind, which identifies .the type of comment; a 
handle to additional 'data if desired; and the size of the additional 
data, if any. When playing back a picture, Qu~ckDraw passes any 
comments in the picture's definition to a low-level procedure accessed 
indirectly through'the grafProcs field of the grafPort (see -
"Customizing QuickDraw Operations" for more information). To process 
comments, the application must include a procedure to do the processing 
and store a pointer to it in the data structure pointed. to by the 
grafProcs field. 

( hand) 
The standard low-level procedure for processing picture 
comments simply ignores all comments. 

'Polygons 

Polygons are similar to pictures in that you define them by a sequence 
of calls to QuickDraw routines. They are also similar to other shapes 
that QuickDraw knows about, since there is a set of procedures for 
performing graphic operations and calculations on them. 

A polygon is simply any sequence of connected lines (s'ee 'Figure 17). 
You define a polygon by moving to the starting point of the polygon and 

3/2/83 Rose /QUICK/QUIKDRAW.P 



PICTURES AND POLYGONS 33 

drawing lines from there to the next point, from that point to the 
next, and so on. 

l/ 
...... 

l 
/ 

/ 
l 
.............. , 

Figure 17. Polygons 

The data structure for a polygon is a variable-length entity. It 
consists of two fixed fields followed by a variable-length array: 

TYPE Polygon = RECORD 
polySize: 
polyBBox: 
polyPoints: 

END; 

INTEGER; 
Rect; 
ARRAY [0 •• 0] OF Point 

The polySize field contains the size, in bytes, of the polygon 
variable. The polyBBox field is a rectangle which just encloses the 
entire polygon. The polyPoints array expands as necessary to contain 
the points of the polygon -- the starting point followed by 'each 
succesive point to which a line is drawn. 

Like pictures and regions, polygons are accessed through handles. 

TYPE PolyPtr 
PolyHandle 

= "'Polygon; 
= "'PolyPtr; 

To define a polygon, you call a QuickDraw function that returns a 
polyHandle and then form the polygon by calling procedures that draw 
lines. You call a procedure when you've finished defining the polygon, 
and another when you're done with the polygon altogether. 

Just as for other shapes that QuickDraw knows about, there is a set of 
graphic operations on polygons to draw them on the screen. QuickDraw 
draws a polygon by moving to the starting point and then drawing lines 
to the remaining points in succession, just as when the ,routines were 
called to define the polygon. In this sense it "plays back" those 
routine calls. As a result, polygons are not treated exactly the same 

3/2/83 Rose /QUICK/QUIKDRAW.P 



34 _ QuickDraw Programmer's Guide 

as other QuickDraw shapes. For example, the procedure that frames a' 
polygon draws outside the actual boundary of the polygon, because 
QuickDraw line-drawing routines draw below and to the right of the pen 
location. The procedures that fill a polygon with a pattern, however, 
stay within the boundary. of the polygon; they also add an additional line 
between the ending point and the starting point ff those points are not 
the same, to complete the shape. 

There is also a difference in the way QuickDraw scales a polygon and a 
similarly-shaped region if it's being drawn as part of a picture: when 
stretched, a slanted line is drawn more smoothly-if it's part of a 
polygon rather than a region. You may find it helpful.to keep in mind 
the conceptual di fference between polygons and regions: a polygon is 
treated more as a continuous shape, a region more as a set of bits. 

QUICKDRAW ROUTINES 

This section describes all the procedures and functions in QuickDraw, 
their parameters, and their operation. They are presented in their 
Pascal form; for information on using them from assembly language, see 
"Using QuickDraw from Assembly Language". 

GrafPort Routines 

PROCEDURE InitGraf (globalPtr: QDPtr); 

Call InitGraf once and only once at the beginning of your program to 
initialize QuickDraw. It initializes the QuickDraw global variables 
listed below. 

Variable. 
thePort 
white' 
black 
gray 
-ltGray 
dkGray 
arrow 
screenBits 
randSeed 

Type 
GrafPtr 
Pattern 
Pattern 
Pattern 
Pattern 
Pattern 
Cursor 
BitMap 
Longlntl 

Initial setting 
NIL 
all-white pattern 
all-black Pattern 
5~% gray pattern 
25% gray pattern 
75% gray pattern 
pointing arrow cursor 
Macintosh screen, (0,0,.512,342)' 
1 

The globalPtr parameter tells QuickDraw where to store its global 
variables, beginning with thePort. From Pascal programs, this 
parameter should always be set to @thePort; assembly-language 
programmers may choose any location, as long as it can accommodate the 
number of bytes specified by GRAFSIZE in GRAFTYPES.TEXT (see "Using 
QuickDrawfrom.Assembly Language"). 

3/2/83 Espinosa-Rose . /QUICK/QUIKDRAW.4 



'" 

( hand) 

QUICKDRAW ROUTINES 35 

To initialize the cursor, call InitCursor (described 
under "Cursor-Handling Routines" below). 

PROCEDURE OpenPort (gp: GrafPtr); 

OpenPort allocates space for the given grafPort's visRgn and clipRgn, 
initializes the fields of the grafPort as indicated below, and makes 
the grafPort the current port (see SetPort). You must call OpenPort 
before using any grafPort; first perform a NEW to create a grafPtr and 
then use that grafPtr in the OpenPort call. 

Field Type Initial setting 
device INTEGER ~ (Macintosh screen) 
portBits BitMap screenBits (see InitGraf) 
portRect Rect screenBits.bounds (O,O,512,342) 
visRgn RgnHandle handle to the rectangular region 

(~,0,512,342)' 
clipRgn RgnHandle handle to the rectangular'region 

(-30~00,-30000,30000,300~0) 
bkPat Pattern white 
fillPat Pattern black 
pnLoc Point (0,0) 
pnSize Point (1,1) 
pnMode INTEGER patCopy 
pnPat Pattern black 
pnVis INTEGER ~ (visible) 
txFont INTEGER ~ (system font) 
txFace Style normal 
txMode INTEGER srcOr 
txSize INTEGER ~ (Font Manager decides) 
spExtra INTEGER 0 
fgColor Longlnt blackColor 
bkColor Longlnt whiteColor 
colrBit INTEGER ~ 
patStretch INTEGER ~ 
pic Save QDHandle NIL 
rgnSave QDHandle NIL 
polySave QDHandle NIL 
grafProcs QDProcsPtr NIL 

PROCEDURE InitPort (gp: GrafPtr); 

Given a pointer to a grafPort that has been opened with OpenPort, 
InitPort reinitializes 'the fields of the grafPort and makes it the 
current port (if it's not already). 

( hand) 
InitPort does everything OpenPort does except allocate 
space for the visRgn and clipRgn. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



36 QuickDraw Programmer's Guide 

PROCEDURE ClosePort (gp: GrafPtr); 

ClosePort deallocates the space occupied by the given grafPort's visRgn 
and clipRgn. l~en you' are completely through with a grafPort, call 
,this procedure and then dispose of the grafPort (with a DISPOSE of the 
grafPtr). 

" ( eye) 

( eye) 

If you do not call ClosePort before disposing of the 
grafPort, the memory used by the visRgn and clipRgn will 
be,unrecoverable. 

After calling ClosePort, be sure not to use any copies of 
the visRgn or clipRgn handles that 'you may have made. 

PROCEDURE SetPort (gp: GrafPtr); 

SetPort sets the grafPort indicated· by gp to be the current port. The 
global pointer thePort always points to the current port. All 
QuickDraw drawing routines affect the bitMap thePortA.portBits and use 
the local coordinate system of thePort A• Note that OpenPort and 
InitPort do a SetPort to the given port. 

( eye) 
Never do a SetPort to a port that has not been opened 
with OpenPort. 

Each port possesses its own pen and text characteristics which remain 
unchanged when the port is not selected as the current' port. 

PROCEDURE GetPort (VAR gp: GrafPtr); 

GetPort returns a pointer to the current grafPort. If you have a 
program that draws into more than one grafPort, it's extremely useful 
to have each procedure save the current grafPort (with GetPort), set 
its own grafPort, do drawing or calculations, and then restore the 
previous grafPort (with SetPort). The pointer to the current grafPort 
is also available through the global pointer thePort, but you may 
prefer to use GetPort for better readabili ty of your program text. For 
example, a procedure could do a GetPort(savePort) before setting its 
own grafPort and a SetPort(savePort) afterwards to restore the previous 
port. 

PROCEDURE GrafDevice (device: INTEGER); 

GrafDevice sets thePortA.device to the given number, which identifies 
the logical output device for this grafPort. The Font Manager uses 
this information. The initial device number is ~, which represents the 
Macintosh screen. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 37 

PROCEDURE SetPortBits (bm: BitMap); 

SetPortBits sets thePort ...... portBits to any previously defined bi tMap. 
This allows you to perform all normal drawing and calculations on a 
buffer other than the Macintosh screen -- for example, a 64~-by-7 
output buffer for a C. Itoh printer, or a small off-screen image for 
later "stamping" onto the screen. 

Remember to prepare all fields of the bitMap before you call 
\ , 

SetPortBits. 

PROCEDURE PortSize (width,height: INTEGER); 

PortSize changes the size of the current grafPort's po'rtRect. THIS 
DOES NOT AFFECT THE SCREEN; it merely changes the size of the "active 
area" of the grafPort. 

( hand) 
T~is procedure is normally called only by the '·1indow 
Manager. 

The top left corner of the portRect remains at its same location; the 
width and height of the portRect are set to the given width and height. 
In other words, PortSize moves the bottom right corner of the portRect 
to a position relative to the top left corner. 

Port Size does not change the clipRgn or the visRgn, nor does it affect 
the local coordinate system of the grafPort: it changes only the 
portRect's width and height. Remember that all drawing occurs only in 
the intersection of the portBits.bounds and the portRect, clipped to 
the visRgn and the clipRgn. 

PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER); 

MovePortTo changes the position of the current grafPort's portRect. 
THIS DOES NOT AFFECT THE SCREEN; it merely changes the location at 
which subsequent drawing inside the port will appear. 

( hand) 
This procedure is normally called only by the l·lindow 
Manager. 

The leftGlobal and topGlobal parameters set the distance between the 
top left corner of portBits.bounds and the top left corner of the new 
portRect. For example, 

MovePortTo(256,171); 

will move the top left corner of the portRect to the center of the 
screen (if portBits is the Macintosh screen) regardless of the local 
coordinate system. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



38 QuickDraw Programmer's Guide 

Like PortSize, MovePortTo does not change the clipRgn or the visRgn, 
nor does it affect the local coordinate system of the grafPort. 

PROCEDURE SetOrigin (h,v: INTEGER); 

SetOrigin changes the local coordinate system of the current grafPort. 
THIS DOES NOT AFFECT THE SCREEN; it does, however, affect where 
subsequent drawing and calculation will appear in the grafPort. 
SetOrigin updates the coordinates'of the portBits.bounds, the portRect, 
and the visRgn. All subseq,uent drawing and calculation routines will 
use the new coordinate system. 

The h and v parameters set the coordinates of the top left corner of 
the portRect. All other coordinates are calculated from this point. 
All relative distances among any el,ements in the port will remain the 
same; only their absolute local coordinates will change. 

( hand) 
SetOrigin does not update the coordinates of the clipRgn 
or the ~n; these items stick to the coordinate system 
(unlike the port's ,structure, which sticks to the 
screen). 

SetOrigin is useful for adjusting the coordinate system after a 
scrolling operation. (See ScrollRect tinder ~'Bit Transfer Operations" 
below. ) 

PROCEDURE SetClip (rgn: RgnHandle); 

SetClip changes the clipping region of the current grafPort to a region 
equivalent to the given region. Note that this does not change the 
region handle, but affects the clipping region itself. Since SetClip 
makes a copy of the given region, any. subsequent changes you make to· 
that region will not affect the clipping region of the port. 

You can set the clipping region to any arbitrary region, to aid you in 
drawing inside the grafPort. The initial clipRgn is an arbitrarily 
large rectangle. 

PROCEDURE GetClip (rgn: RgnHandle); 

G~tClip changes the given region to a region equivalent to the clipping 
region of the current grafPort. This is the reverse 'of What SetClip 
does. Like SetClip, it does not change the region handle. 

PROCEDURE ClipRect (r: Rect); 

ClipRect changes the clipping region of the current grafPort to a 
rectangle equivalent to given rectangle. Note that this does not 
change the region handle, but affects the region itself. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 39 

PROCEDURE BackPat (pat: Pattern); 

BackPat sets the background pattern of the·current grafPo~t to the 
given pattern.. The background pattern is used in ScrollRect and in all 
QuickDraw routines that perform an "erase" operation. 

Cursor-Handling Routines 

PROCEDURE InitCursor; 

InitCursor sets the current cursor to the predefined arrow cursor, an 
arrow pointing north-northwest, and sets the ~ursor level to ~, making 
the cursor visible. The cursor 'level, which is initialized to ~ when . 
the system is booted, keeps track of the number of times the cursor has 
been hidden to compensate for nested calls to HideCursor and ShowCursor 
(below). 

Before you call InitCursor, the cursor is undefined (or, if set by a 
previous process, it's whatever that process set it to). 

PROCEDURE SetCursor (crsr: Cursor); 

SetCursor sets the current cursor to the 16-by-16-bit image in crsr. 
If the cursor is hidden, it remains hidden and -will attain the new 
appearance when it's uncovered; if the cursor is already visible, it 
.changes to the new appearance i~mediately. 

The cursor image is initi~lized by InitCursor to a north-northwest 
arrow, visible on the screen. There is no way to retrieve the current 
cursor image. 

PROCEDURE HideCursor; 

HideCursor removes the cursor from the screen, restoring the bits under 
it, and decrements the cursor level (which InitCursor initialized to 
0). Every call to HideCursor should be balanced by a subsequent call 
to ShowCursor. 

PROCEDURE ShowCur~or; 

ShowCursor increments the cursor level, which may have been decremented 
by HideCursor, and displays the cursor on the screen if the level 
becomes 0. A call to ShowCursor should balance each previous call to 
lIideCursor. The level is not incremented/ beyond ~,\ so extra calls to 
ShowCursor don't hurt. 

QuickDraw low-level interrupt-driven routines 'link the cursor with the 
mouse position, so that if the cursor level is ~ (visible), the cursor 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



40 QuickDraw Programmer's Guide 

automatically follows the mouse. You don't need todd anything but a 
ShowCursor to have a cursor track the ~use'. There is no way to 
"disconnect" .. the cursor from the mouse; you can't force' the cursor to a 
certain position, nor can you easily prevent the cursor from entering a 
certain area of the screen. 

If the cursor has been changed (with SetCursor) while hidden, 
ShowCursor presents the new cursor. 

The cursor is initialized by InitCursor to a north-northwest arrow, not 
hidden. 

PROCEDURE ObscureCursor; I 

ObscureCursor hides the cursor until the. next time the mouse is roved. 
Unlike HideCursor, it has no effect on the cursor level and must not be 
balanced by a call to ShowCursor. 

Pen and Line-Drawing Routines 

The pen and line-drawing routines all depend on the coordinate system 
of the current grafPort. Remember that ~ach grafPort has its own pen; 
if you draw in one grafPort, change to another, and return to the 
first, the pen will have remained in the same location. 

PROCEDURE HidePen; 

HidePen decrements the current grafPort's pnVis field, which is 
initialized to (J by OpenPort; ~~henever pnVis is negative, the pen does 
not draw on the screen. PnVis keeps track of the number of times the 
pen has been hidden to compensate for nested calls to HidePen and 
ShowPen (below). HidePen is called by OpenRgn, OpenPicture, and 
OpenPoly so that you can define regions, pictures, and polygons wi thout 
drawing on the screen. 

PROCEDURE ShowPen; 

ShowPen increments the current grafPort's pnVis field, Which may have 
been decremented by HidePen; if pnVis becomes (J, QuickDraw resumes 
drawing on the screen. Extra calls to ShowPenwill increment pnVis 
beyond (J, so every call to ShowPen should be balanced, by a subsequent 
call to HidePen. ShowPen is called by CloseRgn, ClosePicture,_and 
ClosePoly. 

PROCEDURE GetPen (VAR pt: Point); 

GetPen returns the current pen location, in the local coordinates of 
the current grafPort. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES .41 

PROCEDURE GetPenState (VAR pnState: PenState); 

GetPenState saves the pen location, size, pattern, and mode into a 
storage variable, to be res tored later' wi th SetPenSta te (below). This 
is useful when calling short subroutines that operate in the current 
port but must change the graphics pen: each such procedure can save 
the pen's state when it's called, do whatever it needs to do, and 
restore the previous pen state immediately before returning. 

The PenState data type is not useful for anything except saving the 
pen's state. 

PROCEDURE SetPenState (pnState: PenState); 

SetPenState sets the pen location, size, pattern, and mode in the 
current grafPort to the values stored in pnState. This is usually 
called at the end of a procedure that has altered the pen parameters 
and wants to restore them to their state at the beginning of the 
procedure. (See GetPenState, above.) 

PROCEDURE PenSize (width,height: INTEGER); 

"-

PenSize sets the dimensions of the graphics pen in the current 
grafPort. All subsequent calls to Line, LineTo, and the procedures 
that draw framed shapes in the current grafPort will use the .new pen 
dimensions. 

The pen dimension~ can be accessed in the variable thePortA.pnSize, 
which is of type Point. If either of the pen dimensions is set to a 
negative value, the pen assumes the dimensions (0,O) and no drawing is 
performed. For a discussion of how the pen draws, see the "General 
Discussion of Drawing" earlier in this manual. . 

PROCEQURE PenMode (mode: INTEGER); 

PenMode sets the transfer mode through which the pnPat is transferred 
onto the bitMap when lines or shapes are drawn. The mode may be any 
one of the pattern transfer modes: 

patCopy 
patOr 

patXor 
patBic 

notPatCopy 
notPatOr 

notPatXor 
notPatBic 

If the mode is one of the source transfer modes (or negative), no 
drawing is performed. The current pen mode can be obtained in the 
variable thePortA.pnMode. The initial pen mode is patCopy, in Which 
the pen pattern is copied directly to the bitMap. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



42 QuickDraw Programmer's Guide 

PROCEDURE PenPat (pat: Pattern); 

PenPat sets the pattern that is used by the pen in the current 
grafPort. The standard patterns white, black, gray, ItGray,and dkGray 
are predefined; the initial pnPat is'black. The current pen pattern 
can be obtained in the variable thePortA.pnPat, and this value can be 
assigned (but not compared!) to any other variable of type Pattern. 

PROCEDURE PenNormal"; 

PenNormal resets the initial state of the pen in the current ,grafPort, 
as follows: 

Field 
pnSize 
pnMode 
pnPat 

Setting 
(1,1) 
patCopy 
black 

The pen location is not changed. 

PROCEDURE MoveTo (h,v: INTEGER); 

MoveTo moves the pen to location (h,v) in the local coordinates of the 
current grafPort. No drawing is performed. 

PROCEDURE Move (dh,dv: INTEGER); 

This procedure moves the pen a distance of dh horizontally and dv 
vertically from its current location; it calls MoveTo(h+dh,v+dv), where 
(h, v) is -the current location. The positive directions are to the 
right and down. No drawing is performed. 

PROCEDURE LineTo (h,v: INTEGER); 

LineTo draws a line from the current pen location to the location 
specified (in local coordinates) by hand v. The new pen location is 
(h,v) after the line is drawn. See the general discussion of drawing. 

If a region or polygon is open and being formed, its outline is 
infinitely thin and is not affected by the pnSize, pnMode, or pnPat. 
(See OpenRgn and OpenPoly.) " 

PROCEDURE Line (dh,dv: INTEGER); 

This procedure draws a line to the location that is a distance of dh 
horizontally and dv vertically from the current pen location; it calls 
LineTo(h+dh,v+dv), where (h,v) is the current location. The positive 
directions are to the right and down. The pen location becomes the 
coordinates of the end of the line after the line is drawn. See the 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 43 

general discussion of drawing. 

If a region or polygon is open and being formed, its outline is 
infinitely thin and is not affected by the pnSize, pnMode, or pnP~t. 
(See OpenRgn and OpenPoly.) 

Text-Drawing Routines 

Each grafPort has its own text characteristics, and all these 
procedures deal with those of the current port. 

PROCEDURE TextFont (font: INTEGER); 

TextFont sets the current grafPort's font (thePortA.txFont) to the 
given font number. The initial font number is ~, which represents the 
system font. ' 

PROCEDURE TextFace (face: Style); 

TextFace sets the current grafPort's character style (thePortA.txFace). 
The Style data type allows you to specify a set of one or more of the 
following predefined constants: bold, italic, underline, outline, 
shadow, c~ndense, and extend. For example: 

TextFace([bold]); 
TextFace([bold,italic]); , 
TextFace(thePortA.txFace+[bold]); 
TextFace(thePortA.txFace-[bold]); 
TextFace([]); 

PROCEDURE TextMode (mode: INTEGER); 

{bold} 
{bold and italic} 
{whatever it was plus bold} 
{whatever it was but not bold} 
{normal} 

TextMode sets the current grafPort's transfer- mode for drawing text 
(thePortA.txMode). The mode should be srcOr, srcXor, or srcBic. The 
initial transfer mode for drawing text is srcOr. 

PROCEDURE TextSize (size: INTEGER); 

TextSize sets the current grafPort's type size (thePortA.txSize) to the 
given number of points. Any size may be specified, but the result will 
look best if the Font Manager has the font in that size (otherwise it 
will scale a size it does have). The next best result will occur if 
the given size is 'an even multiple of a size available for the font. 
If 0 is specified, the Font Manager will choose one of the available 
sizes -- whichever is closest to the syste~ font size. The initial 
txSize setting is ~. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



,/ 

44 QuickDraw Programmer's Guide 

PROCEDURE SpaceExtra (extra: INTEGER); 

SpaceExtra sets the current grafPort's spExtra field, Which specifies 
the. number of pixels by which to widen each, space in a line of text. 
This is useful when text is being fully justified (that is, aligned 
with both a left and a right margin). Consider, for example, a line 
that contains three spaces; if there would normally be six pixels 
between the end of the line and the right margin, you would call 
SpaceExtra(2) to print the line with full justification.. The initial 
spExt~a setting ~s ~. 

( hand) 
SpaceExtra will also take a negative argument, but be 
careful not to n~rrow spaces so much that the text is 
unreadable. 

PROCEDURE DrawChar (ch: CHAR); 

DrawChar places the given character to the right of the pen location, 
with the left end of its base line at the pen's location, and advances 
the pen accordingly. If the character is not in the font, the font's 
missing symbol is drawn. 

PROCEDURE DrawString (s: 'Str255); 

DrawString performs consecutive calls to DrawChar for each character in 
the supplied string; the string is placed beginning at the current pen 
location and extending right. No formatting (carriage returns, line 
feeds, etc.) is performed by QuickDraw. The pen location ends up to 
the 'right of the last character in the string. 

PROCEDURE DrawText (textBuf: QDPtr; firstByte,byteCount: INTEGER); 

DrawText draws text from an arbitrary structure in memory- specified by 
textBuf, starting firstByte bytes into the structure and continuing fo'r 
byteCount bytes. The string of text is placed beginning at the current 
pen location and extending right. No formatting (carriage returns, 
line feeds, etc.) is performed by QuickDraw. The pen location ,ends up 
to the right of the last character in the string. 

FUNCTION CharWidth (ch: CHAR) : INTEGER; 

CharWidth returns the value that will be added to the pen horizontal 
coordinate if the specified character is drawn. CharWidth includes the 
effects of the stylistic variations set with TextFace; if you change 
these af·ter determining the character width but before actually drawing 
the character, 'the predetermined width may not be correct. If the 
character is a space, CharWidth also includes the effect of SpaceExtra. 

3/2/83 Espinosa-Rose /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 45 

FUNCTION StringWidth (s: Str255) : INTEGER; 

StringWidth returns the width of the given text string, which it 
calculates by adding the CharWidths of all the characters in the string 
(see above). This value will be added to the'pen horizontal coordinate 
if the specified string is drawn. 

FUNCTION TextWidth (textBuf: QDPtr; firstByte,byteCount: INTEGER) 
INTEGER; 

TextWidth returns the width of the text stored in the arbitrary 
structure in memory specified by textBuf, starting firstByte bytes into 
the structure and continuing for byteCount bytes. It calculates the 
width by adding the Char~vidths of all the characters in the text. (See 
CharWidth, above.) 

PROCEDURE GetFontInfo (VAR info: FontInfo); 

GetFontInfo returns the following information about the current 
grafPort .... scharacter font, taking .into consideration the style and size 
in which the characters will be drawn: the ascent, descent, maximum 
character width (the greates t distance the pen will move when a 
character is drawn), and leading (the vertical distance between the 
descent line and the ascent line below it), all in pixels. The 
FontInfo data structure is defined as: 

TYPE FontInfo = RECORD 
ascent: 
descent: 
widMax: 
leading: 

END; 

Drawing in Color 

I!'lTEGER; 
INTEGER; 
INTEGER; 
INTEGER 

These routines will enable applications to do color drawing in the 
future when Apple supports color output devices for the Macintosh. All 
nonwhite colors will appear as black on black-and-white output devices. 

PROCEDURE ForeColor (color: LongInt); 

ForeColor sets the foreground color for all drawing in the current 
grafPort (AthePort.fgColor) to the' given color. The following standard 
colors are predefined: blackColor, whiteColor, redColor, greenColor, 
blueColor, cyanColor, magentaColor, and yellowColor. The initial 
foreground color is blackColor. 

3/2/83 Espinosa-Rose /QUICK/QU,IKDRAW • 4 



46 QuickDraw Programmer"'s Guide 

PROCEDURE BackColor (color: LongInt); 

BackColor sets the background color for all drawing in the current 
grafPort (AthePort.bkColor) to the given color. Eight standard colors 
are predefined (see ForeColor above). The initial background color is 
whiteColor. 

PROCEDURE ColorBit (whichBit: INTEGER); 

ColorBit is called by printing software for a color printer, or other 
color-imaging software, to set the current grafPort .... s colrBit field to 
whichBit; this tells QuickDraw which plane of the color picture to draw 
into. QuickDraw will draw into the plane corresponding to bit number 
whichBit. Since QuickDraw can support output devices that have up to 
32 bits of color information per pixel, the possible range of values 

, for whichBit is 0 through 31. The initial value of the colrBit field 
is 0. 

Calculations with Rectangles 

Calculation routines are independent of the current 'coordinate system; 
a calculation will operate the same regardless of which grafPort is 
active'. 

( hand) 
Remember that if the parameters to one of the calculation 
routines were defined in different grafPorts, you must 
first adjust them to be in the'same coordinate system. 
If you do not "adjust them, the result returned by the 

- routine may be different from what you see on the screen. 
To adjust to a common coordinate system, see 
LocalToGlobal and GlobalToLocal under "Calculations with 
Points" below • 

. PROCEDURE SetRect (VAR r: Rect; left, top, right, bottom: INTEGER);' 

SetRect assigns the four boundary coordinates to the rectangle. The 
result is a rectangle with coordinates (l,eft, top, right, bottom). 

This procedure is supplied as a utility to help you shorten your 
program text. If yo~ want a more readable text at the expense of 
length, you can assign integers (or points) directly into the 
rectangle"'s fields~ There is no significant code size or execution 
speed advantage to either method; one"'s just easier to write, and the 
other"'s easier to read. 

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER); 

OffsetRect moves the rectangle by'. adding dh to each horizontal 
coordinate and dv to each vertical coordinate. If dh and dv are 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5 



QUICKDRAW ROUTINES 47 

positive, the movement is to the right and down; if either is negative, 
the corresponding movement is in the opposite direction. The rectangle 
retains its shape and size; it's merely moved on the coordinate plane. 
This does not affect the screen unless you subsequently call a routine 
to draw within the rectangle. 

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER); 

InsetRect shr~nks or expands the rectangle. The left and right sides 
are moved in by the amount specified by dh; the top and bottom are 

. moved towards the center by the amount specified by dv. If dh or dv is 
negative, the appropriate pair of sides is moved outwards instead of 
inwards. The effect is to alter the size by 2*dh horizontally and 2*dv 
vertically, with the rectangle remaining centered in the same place on 
the coordinate plane. 

If the resulting width or height becomes less than 1, the rectangle is 
set to the empty rectangle (0,0,0,0). 

/ 

FUNCTION SectRect'(srcRectA,srcR~ctB: Rect; VAR dstRect: Rect) 
BOOLEAN; 

SectRect calculates the rectangle that is the intersection of the tWo 
input rectangles, and returns TRUE if they indeed intersect or FALSE if 
they do not. Rectangles that "touch" at. a line or a point are not 
considered intersecting, because their intersection rectangle (really, 
in this case, an intersection line or point) does not enclose any bits 
on the bi tMap • 

If the rectangles do not intersect, the destination rectangle is set to 
(0,0,0,0). SectRect works correctly even if one of the source 
rectangles is also the destination. 

PROCEDURE UnionRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect); 

UnionRect calculates the smallest rectangle which encloses both input 
rectangles. It works correctly even if one of the source rectangles is 
also the destination. / 

FUNCTION PtInRect (pt: Point; r: Rect) : BOOLEAN; 

PtInRect determines whether the pixel below and to the right of the 
given coordinate point is enclosed in the specified rectangle, and 
returns TRUE if so or FALSE if not. 

PROCEDURE Pt2Rect (ptA,ptB: Point; VAR: dstRect: Rect); 

Pt2Rect returns the smallest rectangle which encloses the ·two input 
points. 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5 



48 QuickDraw Programmer's Guide 

PROCEDURE PtToAngle (r: Rect; pt: Point; VA~ angle: INTEGER); 

PtToAngle calculates an integer angle between a line from the center of 
the rectangle to the given point and a line from the center of the 
rectangle pointing straight up ,(12 o'clock high). The angle is in 
degrees from ~ to 359, measured clockwise from 12 o'clock, with 9~ 
degrees at 3 o'clock, 18~ at 6 o'clock, ·and.27~ at 9 o'clock. Other 
angles are measured relative to the rectangle: If the line to the 
given point goes through the top right corner of the rectangle, the 
angle returned is 45 degrees, even if the rectangle is nQt square; if 
it goes through the bottom right corner, the angle is 135 degrees, and 
so on (see Figure 18). 

-----..... pt. 
~-~ .... 

~·-··-·-·1·-·-· 
.... 1 f____ _ ___ ,' 

Figure 18. PtToAngle 

The angle returned' might be used as input to one of the proc'edures that 
manipulate arcs and wedges, as described 'below under "Graphic 
Operations on Arcs and Wedges". 

,FUNCTION EqualRect (rectA,rectB: Rect) : 'BOOLEAN; 

EqualRect compares the two rectangles and returns' TRUE if they are 
equal or FALSE if not. The two rectangles must have identical boundary 
coordinates to be considered equal. 

FUNCTION EmptyRect (r: Rect) : BOOLEAN; 

EmptyRect returns TRUE if the given rectangle is an empty rectangle or 
FALSE if not. A rectangle is considered empty if the bottom coordinate 
'is equal to or less than the top or the right coordinate is equal to or 
less than the left. 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5 



QUICKDRAW ROUTINES 49 

Graphic Operations on Rectangles 

These procedures perform graphic operations on rectangles. See also 
ScrollRect under "Bit Transfer Operations". 

PROCEDURE FrameRect (r: Rect); 

FrameRect draws a- hollow.outline just inside the specified rectangle, 
using the current grafPort's pen pattern, mode, and size. The outline 
is as wide as the pen width and as tall as the pen height. It ~s drawn 
with the pnPat, according to the pattern transfer mode specified by 
pnMode. The pen location is not changed by this procedure. 

If a region is open and being formed, the outside outline of the new 
rectangle is mathematically added to the region's boundary. 

PROCEDURE PaintRect (r: Rect); 

PaintRect paints the specified rectangle with the current grafPort's 
pen pattern and mode. The r'ectangle on the bitMap is filled with the 
pnPat, according to' the pattern transfer mode specified by pnMode. The 
pen location is not changed by this procedure. 

PROCEDURE EraseRect (r: Rect); 

EraseRect paints the specified rectangle with the current grafPort's 
background pattern bkPat (in patCopy mode). The grafPort's pnPat and 
pnMode are ignored; the pen location is not changed. 

PROCEDURE InvertRect (r:Rect); 

InvertRect inverts the pixels enclosed by the specified rectangle: 
every white pixel becomes black and every black pixel becomes white. 
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen 
location is not changed. 

- PROCEDURE FillRect (r: Rect; pat: Pattern); 

FillRect fills the specified rectangle with the given pattern (in 
patCopy mode). The grafPort's pnPat, pnMode, -and bkPat are all 
ignored; the pen location is not changed. 

3/2/83 Espinosa-Rose /QUICK.2-!QUIKDRAW • 5 



50 QuickDraw Programmer's Guide 

Graphic Operations on Ovals 

Ovals are drawn inside rectangles that you specify. If the rectangle 
you specify is square, QuickDraw draws a circle. 

PROCEDURE FrameOval (r: Rect); 

FrameOval draws a hollow outline just inside the oval that fits inside 
the specified rectangle, using the current grafPort's pen pattern, 
mode, and size. The outline is as wide as the pen width and as tall as 
the pen height. It is drawn with the pnPat, according to the pattern 
transfer mode specified by pnMode. The pen location is not changed by 
this procedure. 

If a region is open and being formed, the outside outline of the new 
oval is mathematically added to the region's boundary. 

PROCEDURE PaintOval (r: Rect); 

PaintOval paints an oval just inside the specified rectangle with the 
current grafPort's pen pattern and mode. The oval on the bi tMap is 
filled with the pnPat, according to the pattern ,transfer mode specified 
by pnMode. The pen location is not changed by this procedure. 

PROCEDURE EraseOval (r: Rect); 

EraseOval paints an oval just inside the I specified rectangle wi th the 
current grafPort's background pattern bkPat (in patCopy mode). The 
grafPort's pnPat and pnMode are ignored; the pen location is not 
changed. 

PROCEDURE InvertOval (r: Rect); 

InvertOval inverts the pixels enclosed by an oval just inside the 
specified rectangle: every white pixel becomes black and every black 
pixel becomes white. The grafPort's pnPat, pnMode, and bkPat are all 
ignored; the pen location is not changed. 

PROCEDURE FillOval (r: Rect; pat: Pattern); 

Fil10val fills an oval just inside the specified rectangle with the 
given pattern ,(in patCopy mode). . The grafPort's pnPat, pnMode, and 
bkPat are all ignored; the pen location is not changed. 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5 



QUICKDRAl~ ROUTINES 51 

Graphic Operations on Rounded-Corner Rectangles 

PROCEDURE Frame~oundRect '(r: Rect; ovaIWidth,ovaIHeight: INTEGER); 

FrameRoundRect draws a hollow outline just inside the specified 
rounded-corner rectangle, using the current grafPort's pen pattern, 
mode, and size. Ovallvidth and ovalHeight specify the diameters of 
curvature for the corners (see Figure 19). The outline is as wide as 
the pen width and as tall as the pen height. It is drawn with the 
pnPat, according to the pattern transfer mode specified by pnMode. The 
pen location is not change? by this procedure. 

OY31 V.f irl th oY;jlHeight 
~ ..... ---~ 

; ",\ (I) . ...... _- ',,' -_ ...... \ I,., ,." 

...... _---_ ...... 

I/-~-~··) 
1'0, ..-

.. _--- <~ .... 

(1 ... ·· ... ----....-···· .. . 

'. . ... l .\ .. ===..._--_ .... 

Figure 19. Rounded-Corner Rectangle 

If a region is open and being formed, the outside outline of the new 
rounded~corner rectangle is mathematically added to the region's 
boundary. 

PROCEDURE PaintRoundRect (r: Rect; ovaIWidth,ovaIHeight: INTEGER); 

PaintRoundRect paints the specified rounded-corner rectangle with the 
current grafPort's pen pattern and mode. Ovallvidth and ovalHeight 
specify the diameters of curvature for the corners. The rounded-corner 
rectangle on the bitMap is filled with the pnPat, according to the 
pattern transfer mode specified by pnMode. The pen location is not 
changed by this procedure. 

PROCEDURE EraseRoundRect (r: Rect; ovallvidth,ovaIHeight: INT~GER); 

EraseRoundRect paints the specified rounded-corner rectangle with the 
current grafPort's background pattern bkPat (in patCopy mode). 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5 



S2 QuickDraw Programmer's Guide 

OvalWidth and ova1Heig\:tt specify the diameters of curvature for the 
corners. The grafPort's pnPat and pnMode are ignored; the pen location 
is not changed. 

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER); 

InvertRoundRect inverts the pixels enclosed by the specified 
rounded-corner rectangle: every White pixel becomes black and every 
black pixel becomes White. OvalWidth and ovalHeight specify the 
diameters of curvature for the corners. The grafPort's pnPat, pnMode, 
and bkPat are all ignored; the pen location is not changed. 

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER; pat: 
Pattern); 

FillRoundRect fills the specified rounded-corner rectangle with the 
given pattern (in p'atCopy mode). OvalWidth and ovalHeight specffy the 
diameters of curvature for the corners. The grafPort's pnPat, pnMode, 
and bkPat are all ignored; the pen location is not changed. 

Graphic Operations on Arcs and Wedges 

These procedures perform graphic operations on arcs and wedge-shaped 
sections of ovals. See also PtToAngle under "Calculations with 
Rectangles". 

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: INTEGER); 

FrameArc draws an arc of the oval' that fits inside the, specified 
rectangle, using the current grafPort's pen pattern, mode, and size. 
StartAngle indicates Where the arc begins and is treated mod 36~. 
ArcAngle defines the extent of the arc. The angles are given in 
positive or negative degrees; a positive angle goes clockwise, While a 
negative angle goes counterclockwise. Zero degrees is at 12 o'clock 
high, 90 (or -270) is at 3 o"clock, 180 (or -18~) is at6 o'clock, and 
270 (or -90) is at 9 o'clock. Other angles are measured relative to 
the enclosing rectangle: a line from the center of the rectangle 
through its top right 'corner is at 4S degrees, even if the rectangle is 
not square; a line through the bottom right corner is at 13S degrees, 
and so on (see Figure 20). 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.S 



s!.;:lftAng,le = (I 

·-1!,'Arl,j1.::. - -4l" .: 
I •• " :j'''''; - •• t\ ({m 

. I I ,I 
L! ____ J 

st ijf1.Angle = n 

r 

':''''''Ar'1' 4l" :. i:1 .... I.. L~ 1;= .J 

FrijffteArc 

QUICKDRAW ROUTINES 53 

3t8ft.Afl~le = (I . 

~ ·f\1'r.A·p,jl~ -= 4 l-f··' '\::. " . .' 

FraffLeArG 

2It:~1't.Angle -= I) 

} i;fcAngle :: .4S 

!~ -:1 
\r ~ 

P8,int.Arc 

Figure 20. Operations on Arcs and Wedges 

The arc is as wide as the pen width and as tall as the pen height. It 
is drawn with the pnPat, according to the pattern transfer mode 
specified by pnMode. The pen location is not changed by this 
procedure. 

( eye) 
FrameArc differs from other QuickDraw procedures that 
frame shapes in that the arc is not mathematically added 
to the boundary of a region that is open and being 
formed. -

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTEGER); 

PaintArc paints a wedge of the oval just inside the specified rect"angle 
with the current grafPort's pen pattern and mode. StartAngle and 
arcAngle define the arc of the wedge as in FrameArc. The wedge on the 
bitMap is filled with the pnPat, according. to the pattern transfer mode 
specified by pnMode. The pen location is not changed by this 
procedure • 

. PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER); 

EraseArc paints a wedge of the oval just inside the specified rectangle 
with the current grafPort's background pattern bkPat '(in patCopy mode). 
StartAngle and arcAngle define the arc of the wedge as in FrameArc. 
The grafPort's pnPat and pnMode are ignored; the pen location is not 
changed • 

. 3/2/83 Espinosa-Rose IQUICK. 2/QUIKDRAW.5 



54 QuickDraw Programmer's Guide 

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER); 

InvertArc inverts the pixels enclosed by a wedge of the oval just 
inside the specified rectangle: every white pixel becomes black and 
every black pixel becomes white. StartAngle and arcAngle define the 
arc of the wedge as in FrameArc. The grafPort's pnPat, pnMode, and 
bkPat are all ignored; the pen location is not changed. 

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pat: 
Pattern); 

FillArc fills a wedge of the oval just inside the specified rectangle 
with the given pattern (in patCopy mode). StartAngle and arcAngle 
define the arc of the wedge as in FrameArc. The grafPort's pnPat, 
pnMode, and bkPat are all ignored; the pen location is not changed. 

Calculations with Regions 

( hand) 
Remember that if the parameters to one of the calculation 
routines were defined in different grafPorts, you must 
first adjust them to be in the same coordinate system. 
If you do not adjust them, the result returned by the 
routine may be different from what .you see on the screen. 

I 
To adjust to a common coordinate system, see 
LocaltoGlobal and GlobalToLocal under "Calculations with 
Points" below. 

FUNCTION NewRgn : RgnHandle; 

NewRgn allocates space for a new, dynamic ,. variable-size region, 
initializes it to the empty region (0,0,0,0), and returns a handle to 
the new region. Only this function creates new regions; all other 
procedures just alter the size and shape of regions you create. 
OpenPort calls NewRgn to allpcate space for the port's visRgn and 
cl:i:pRgn. 

( eye) 

( eye) 

Except When using visRgn or clipRgn, you MUST call NewRgn 
before specifying a region's handle in any drawing or 
calculation procedure. 

Never refer to a region without using its handle. 

PROCEDURE DisposeRgn (rgn: RgnHandle); 

DisposeRgn deallocates space for the region whose handle is supplied, 
and returns the memory used by the region to the free memory pool. Use 

3/2/83 Espinosa-Rose /QUICK. 2/QUIKDRAW. 5 . 



QUICKDRAW ROUTINES 55 

this only after you are completely through with a temporary region. 

( eye) 
Never use a region once you have deallocated it, or you 
will risk being hung by dangling pointers! 

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle); 

CopyRgn copies~the mathematical structure of srcRgn into dstRgn; that 
is, it makes a duplicate copy of srcRgn. Once this is done, srcRgn may 
be altered (or even disposed of) without affecting dstRgn: COPYRGN 
DOES NOT CREATE THE DESTINATION REGION: you must use NewRgn to create 
the dstRgn before you call CopyRgn. 

PROCEDURE SetEmptyRgn (rgn: RgnHandle); 

SetEmptyRgn destroys the previous structure of the given region, then 
sets the new structure to the empty region (0,0,0,0). 

PROCEDURE SetRectRgn (rgn: RgnHandle; left,top,right,bottom: INTEGER); 

SetRectRgn destroys the previous structure of the given region, then 
sets the new structure to the rectangle specified by left, top, right, 
and bottom. 

If the specified rectangle is empty (i.e., left>=right or top>=bottom), 
the region is set to the empty'region (0,0,0,0). 

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect); 

.RectRgn destroys the previous structure of the given region, then sets 
the new structure to the rectangle specified by r. This is 
operationally synonymous with SetRectRgn, except the input rectangle is 
defined by a rectangle rather than by four boundary coordinates. 

PROCEDURE OpenRgn; 

OpenRgn tells QuickDraw to allocate temporary space and start saving 
lines and framed shapes for later processing as a region definition. 
While a region is open, all calls to Line, LineTo, and the procedures 
that draw framed shapes (except arcs) affect the outline of the region. 
Only the line endpoints and shape boundaries affect the region 
definition; 'the pen mode, pattern, and size do not affect it. In fact, 
OpenRgn calls HidePen, so no drawing occurs on the screen While the 
region is open (unless you called ShowPen just after OpenRgn, or you 
called ShowPen previously without balancing it by a call to HidePen). 
Since the pen hangs below and to the right of the pen location, drawing 
lines with even the smallest pen will change bits that lie outside the 
region you define. 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5 



56 QuickDraw Programmer's Guide 

The outline of a region is mathematically defined and infinitely thin, 
and separates the bitMap into two groups of bits: those within the 
region and those outside it. A region should consist of one or oore 
closed loops. Each framed shape itself constitutes a loop. Any lines 
drawn with Line or LineTo should connect with each other or with a 
framed shape. Even ~hough the on-scre~n presentation of a region is 
clipped, the definition of a region is not; you can define a region 
anywhere on the coordinate plane-with complete disregard for the 
location of various grafPort entities on that plane. 

l-1hen a region. is open, the current grafPort's rgnSave field contains a 
handle to information related to the region definition. If you want to 
temporarily disable the collection of lines and shapes, you can save 
the current value of this field, set the field to NIL, and la ter 
restore the saved value to resume the region definition. 

( eye) 
Do not call OpenRgn while another region is already open. 
All open regions but the most recent Will behave 
strangely. 

PROCEDURE CloseRgn (dstRgn: RgnHandle); 

CloseRgn stops the collection of lines and framed shapes, organizes 
them into a region definition, and saves the resulting region into the 
region indicated by dstRgn. You should perform one and only one 
CloseRgn for every OpenRgn. CloseRgn calls ShowPen, balancing the 
HidePen call made by OpenRgn. 

H~re's an example of how to create and open a region, define a barbell 
shape, close the region; and draw it: 

barbell := NewRgn; 
OpenRgn; 

SetRect(tempRect,20,20,30,50); 
FrameOval(tempRect); 
SetRect(tempRect,30,30,8~,40); 
FrameRect(tempRect); 
SetRect(tempRect,80,20,9~,5~); 
FrameOval(tempRect); 

CloseRgn(barbell); 
FiIIRgn(barbell,black); 
DisposeRgn(barbell); 

{make a new region} 
{begin collecting stuff} 
{form the left weight} 

{form the bar} 

{form the right weight} 

{we're done; save in barbell} 
{draw it on the screen} 
{we don't need you anymore ••• } 

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER); 

) 
OffsetRgn moves the region on the coordinate plane, a distance of dh 
horizontally and dv vertically. This does not affect the screen unless 
you subsequently call a routine to draw the region. If dh and dv are 
positive, the movement is to the right and down; if either is negative, 
the corresponding movement is in the opposite direction. The region 
retains its size and shape. 

3/2/83 Espinosa-Rose /QUICK. 2/QUIKDRAW.5 



( hand) 

QUICKDRAW ROUTINES 57 

OffsetRgn is an especially efficient operation, because 
most of the data defining a region is stored relative to 
rgnBBox and so isn't actually changed by OffsetRgn. 

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER); 

InsetRgn shrinks or expands the region. All points on the region 
boundary are moved inwards a distance of dv vertically and dh . 
horizontally; if dh or dv is negative, the points are roved outwards in 
that direction. InsetRgn leaves the region "centered" at the same 
position, but moves the outline in (for positive values of dh and dv) 
or out (for negative values of dh and dv). InsetRgn of a rectangular 
region works just like InsetRect. 

\ 

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 

SectRgn calculates the intersection of two regions, and places the 
intersection in a third region. THIS DOES NOT CREATE THE DESTINATION 
REGION: you must use NewRgn to create the dstRgn before you call 
SectRgn. The dstRgn can be one of the source regions, if desired. 

If the regions do not intersect, or one of the regions is empty, the 
destination is set to the empty region (0,0,0,0). 

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 

UnionRgn calculates the union of two regions and places the union in a 
third region. THIS DOES NOT CREATE THE DESTINATION REGION: you must 
use NewRgn to create the dstRgn befo·re you call UnionRgn. The dstRgn 
can be one of the source regions, if desired. 

If both regions are empty, the destination is set to the empty region 
(0,O,O,O). 

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 

DiffRgn subtracts srcRgnB from srcRgnA and places the difference in a 
third region. THIS DOES NOT CREATE THE DESTINATION REGION: you must 
use NewRgn to create the dstRgn before you call DiffRgn. The dstRgn 
can be one of the source regions, if desired. 

If the first source region is empty, the destination is set to the 
empty region (0,0,0,0). 

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 
J 

XorRgn calculates the difference between the union and the intersection' 
of two regions and places the result in a third region. THIS DOES NOT 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.5 



58 QuickDraw Programmer's Guide 

CREATE THE DESTINATION REGION: 
dstRgn before you call' XorRgn. 
regions, if desired. 

you must use NewRgn to create the 
The dstRgn can be one of the source 

If the regions are coincident, the destination is set to the empty 
region (0,0,0,0). 

FUNCTION PtlnRgn (pt: Point; rgn: RgnHandle) : 'BOOLEAN; 

PtlnRgn checks whether the pixel below and to the right of the given 
coordinate point is within the specified region, and returns TRUE if so 
or FALSE if not. 

FUNCTION RectlnRgn (r: Reci; rgn: RgnHandle) : BOOLEAN; 

RectInRgn checks whether the given rectangle intersects the specified 
region, and returns TRUE if the intersection encloses at least one bit 
or FALSE if not. 

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle) : BOOLEAN; 

EqualRgn compares the two regions and returns TRUE if they are equal or 
FALSE if not. The two regions must have identical sizes, shapes, and 
locations to be considered equal. Any two empty regions are always 
equal. 

FUNCTION EmptyRgn (rgn: RgnHandle) : BOOLEAN; 

EmptyRgn returns TRUE if the region is an empty region ,or FALSE if not. 
Some of the circumstances in which an empty region can be created are: 
a NewRgn call; a CopyRgn of an empty region; a SetRectRgn or RectRgn 
with an empty rectangle as an argument; CloseRgn without a previous 
OpenRgn or with no drawing after an OpenRgn; OffsetRgn of an empty 
region; InsetRgn with an empty region or too large an inset; SectRgn of 
nonintersecting regions; UnionRgn of two empty regions; and DiffRgn or 
XorRgn of two identical or nonintersecting regions. 

Graphic Operations on Regions 

These routines all depend on the coordinate system of the current 
grafPort. If a region is drawn in a different grafPort than the one in 
which it was defined, it may not appear in the proper position inside 
the port. 

PROCEDURE FrameRgn (rgn: RgnHandle); 

FrameRgn draws a hollow outline just inside the specified region', using 
the current grafPort's pen pattern, mode, and size. The outline is as 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 59 

wide as the pen width and as tall as the pen height; under no 
circumstances will the frame go outside the region boundary. The pen 
location is not changed by this procedure. 

If a region is open and being formed, the outside outline of the region 
being framed is mathematically added to that region's boundary. 

PROCEDURE PaintRgn (rgn: RgnHandle); 

PaintRgn paints the specified region with the current grafPort'spen 
pattern and pen mode. The region on the bitMap is filled with the 
pnPat, according to the pattern transfer mode specified by pnMode. The 
pen location is not changed by this procedure. 

, PROCEDURE EraseRgn (rgn: RgnHandle); 

EraseRgn paints the specified region with the current grafPort's 
background pattern bkPat (in patCopy mode). The grafPort's pnPat and 
pnMode are ignored; the pen location is not changed. 

PROCEDURE InvertRgn (rgn: RgnHandle); 

InvertRgn inverts the pixels enclosed by the specified ~egion: every 
white pixel becomes black and every black pixel becomes white. The 
grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location 
is not changed. 

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern); 

FillRgn fills the specified region with the given pattern (in patCopy 
mode).· The grafPort's pnPat, pnMode, and 'bkPat are all ignored; the 
pen location is pot changed. 

Bit Transfer Operations 

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle); 

ScrollRect shifts ("scrolls") those bits inside the intersection of the 
specified rectangle, visRgn, clipRgn, portRect, and portBits.bounds. 
rhe bits are shifted a distance of dh horizontally and dv vertically. 
The positive directions are to the right and down. No other bits' are 
affected. Bits that are shifted out of the scroll area are lost; they 
are neither placed outside the area nor saved. The grafPort's 
background pattern bkPat fills the space created by the scroll. In 
addition,updateRgn is changed to the area filled with bkPat (see 
Figure 21). 

3/2/83 Espinosa-Rose IQUICK.2/QUIKDRAW.6 



60 QuickDraw Programmer's Guide 

B ·~t·lll··' l··-111lLr).~ .-[ I~;:. _ ~;:. .)1 •. ' _ r'i.~;:·I •. ·. "t"-r"l" f··-l"ltn.'.--r(-/.~ n . .,.-[ -f - C '1 1""'1 L.I:;.· .)1..' 'oJ ·['iX·!.,·l· •. I.-1;:arf'i.~;.·f..· ., 0,._1 •••.. 
c J 
._1 •• .\. •• 

Figure 21. Scrolling 

Figure 21 shows that the pen location after a ScrollRect is in a 
different position relative to what was scrolled in the rectangle. The 
entire scrolled item has been moved to different coordinates. To 
restore it to its coordinates before the ScrollRect, you can use the 
SetOrigin procedure. For example, suppose the dstRect here is the 
portRect of the grafPort and its top left corner is at (95,120). 
SetOrigin(105,115) will offset the coordinate system to compensate for 
the scroll. Since the clipRgn and pen location are not offset, they 
move down and to the left. 

PROCEDURE CopyBits (srcBits,dstBits: BitMap; srcRect,dstRect: Rect; 
mode: INTEGER; maskRgn: RgnHandle); 

CopyBits transfers a bit image between any two bitMaps and clips the 
result to the area'specified by the maskRgn parameter. The transfer 
may be performed in any of the eight source transfer modes. The result 
is always clipped to the maskRgn and the boundary rectangle of the 
destination bitMap; if the destination bitMap is the current grafPort's 
portBits, it is also clipped to the intersection of the grafPort's 
clipRgn and v~sRgn. If you do not want to clip to a maskRgn, just pass 
NIL for the maskRgn parameter. 

The dstRect and maskRgn coordinates are in terms of the dstBits.bounds 
coordinate system, and the srcRect coordinates are in terms of the 
srcBits.bounds coordinates. 

The bits enclosed by the source rectangle are transferred into the 
destination rectangle according to the rules of the chosen mode. The 
source transfer modes are as follows: 

srcCopy 
srcOr 

3/2/83 Espinosa-Rose 

srcXor 
srcBic 

notSrcCopy 
'notSrcOr 

notSrcXor 
notSrcBic 

/QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINE~ 61 

The source rectangle is completely aligned with the destination 
rectangle; if the rectangles are of different sizes, the bit image is 
expanded or shrunk as necessary to fit the destination rectangle. For 
example, if the bit image is a circle in a square source rectangle, and 
the des tination rectangle is not square, the bi t image appears as an 
oval in the destination (see Figure 22). 

Pictures 

Source 
Tr;jJLSfer 

M\){le. 

Source 
T f;;ft~lfef 

l'.'lo(le 

Figure 22. Ope~ation of CopyBits 

FUNCTION OpenPicture (picFrame: Rect) : PicHandle; 

ma.stR:;1l 
= NIl. 

OpenPicture returns a handle to a new picture Which has the given 
rectangle as its picture frame, and tells QuickDraw to start saving as 
the picture definition all calls to drawing routines and all picture 
comments (if any). 

OpenPicture calls HidePen, so no drawing occurs on the screen While the 
picture is open (unless you call ShowPen just after OpenPicture, or you 
called ShowPen previously without balancing it by a call to HidePen). 

When a picture is open, the current grafPort's picSave field contains a 
handle to information related to the picture definition. If you want 
to temporarily disable the collection of routine calls and picture 
comments, you can save the current value of this field, set the field 
to NIL, and later restore the saved value to resume the picture 
definition. 

( eye) 
Do not call OpenPicture while another picture is already 
open. 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6 



62 QuickDraw Programmer's Guide 

PROCEDURE ClosePicture; 

ClosePicture tells QuickDraw to stop saving routine calls and picture 
comments as the definition of the currently· open picture. You should 
perform one and only one ClosePicture for every OpenPicture. 
ClosePicture calls ShowPen, balancing the HidePen call made by 

,OpenPicture. 

PROCEDURE PicComment (kind,dataSize: INTEGER; dataHandle: QDHandle); 

PicComment inserts the specified comment into the definition of the 
currently open picture. Kind identifies the type of comment. 
DataHandle is a handle to additional data if desired, and dataSize is 
the size of that data in bytes. If there is no additional data for the 
comment, dataHandle should be NIL and dataSize should be~. The 
application that processes the comment must include a procedure to do 
the processing and store a pointer to the procedure in the data 
structure pointed to by the grafProcs field of the grafPort (see 
"Customizing QuickDraw Operations"). 

PROCEDURE DrawPicture (myPicture: PicHandle; dstRect: Rect); 

DrawPicture draws the given picture .to scale ·in dstRect, expanding or 
shrinking it as necessary to align the borders of the picture frame 
with dstRect. DrawPicture passes any picture comments to the procedure 
accessed indirectly through the grafProcs field·of the grafPort (see 
PicComment above). 

PROCEDURE K111Picture (myPicture: PicHandle); 

KillPicture deallocates space for the picture whose handle is supplied, 
and returns the memory used by the picture to the free memory pool. 
Use this only when you are completely through with a picture. 

Calculations with Polygons 

'FUNCTION OpenPoly : PolyHandle; 

OpenPoly returns a handle to a new polygon and tells QuickDraw to start 
saving the polygon definition as specified by calls to line-drawing 
routines. l~ile a polygon is open, all calls to Line and LineTo affect 
the outline of the polygon. Only the line endpoints affect the polygon 
definition; the pen mode, pattern, and size do not affect it. In fact, 
OpenPoly calls HidePen, so no drawing occurs on the screen while the 
polygon is open (unless you call ShowPen just after OpenPoly, or you 
called ShowPen previously without balancing it by a call to HidePen)./ 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 63 

A polygon should consist of a sequence of connected lines. Even though 
the on-screen presentation of a polygon is clipped, the definition of a 
polygon is not; you can define a polygon anywhere on the coordinate 
plane with complete disregard for the location of various grafPort 
entities on that plane. 

When a polygon is open, the current grafPort's polySave field contains 
a handle to information related to the polygon definition. If you want 
to temporarily disable the polygon definition, you can save the current 
value of this field, set the field to NIL, and later restore the saved 
value to resume the polygon definition. 

( eye) 
Do not call OpenPoly while another polygon is already 
open. 

PROCEDURE ClosePoly; 

ClosePoly tells QuickDraw to stop saving the definition of the 
currently open polygon and computes the polyBBox rectangle. You should 
perform one and only one ClosePoly for every OpenPoly. ClosePoly calls 
ShowPen, balancing the HidePen call made by OpenPoly. 

Here's an example of ,how to open a polygon, define it as a triangle, 
close it, and draw it: 

triPoly := OpenPoly; {save hand Ie and begin collecting stuff} 
MoveTo(300,100); { move to first point and'} 
LineTo(400,200); { form } 

, LineTo(200,200); { the } 
LineTo(300, 100); { triangle } 

ClosePoly; {stop collecting stuff} 
FillPoly(triPoly,gray); {draw it on the screen} 
KillPoly(triPoly); {we're all done} 

PROCEDURE KillPoly (poly: PolyHandle); 

KillPoly deallocates space for the polygon whose handle is supplied, 
and returns the memory used by the polygon to the free memory pool. 
Use this only after you are completely through with a polygon. 

PROCEDURE OffsetPoly (poly: PolyHandle; dh~dv: INTEGER); 

OffsetPoly moves the polygon on the coordinate plane, a distance of dh 
horizontally and dv vertically. This' does not affect the screen Unless 
you subsequently call a routine to draw the polygon. If dh and dv are 
positive, the movement is to the right and down; if either is negative, 
the corresponding movement is in the opposite direction. The polygon 
retains its shape and size. 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6 



64 QuickDraw Programmer's Guide 

( hand) 
OffsetPoly is an especially efficient operation, because 
the data defining a polygon is stored relative to 
polyStart and so isn't actually changed by OffsetPoly. 

Graphic Oper~tions on Polygons 

PROCEDURE FramePoly (poly: PolyHandle); 

FramePoly plays back.the line-drawing routine calls that define the 
given polygon, using the current grafPort's pen pattern, mode, and, 
size. The pen will hang below and to the right of each point on the
boundary of the polygon; thus, the polygon drawn will extend beyond the 
right and bottom edges of poly~~.polyBBox by the pen width and pen 
height, respectively. All other graphic operations occur strictly 
within the boundary of the polygon, as for other shapes. You can see 
this difference in Figure 23, where each of the polygons is shown with 
its polyBBox. 

F rarneF'oly F'ajntPoiy 

Figure 23. Drawing Polygons 

If a polygon is open and being formed, FramePoly affe.cts the outline of 
the polygon just as if the line-drawing routines themselves had been 
called. If a region is open and being formed, the outside outline of 
the polygon being framed is mathematically added to the region's 
boundary. . 

PROCEDURE PaintPoly (poly:PolyHandle); 

PaintPoly paints the specified polygon with the current grafPort's pen 
pattern and pen mode. The polygon on the bitMap is filled with the 
pnPat, according to the pattern transfer mode specified by pnMode. The 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 65 

pen location is not changed by this procedure. 

PROCEDURE ErasePoly (poly: PolyHandle); 

ErasePoly paints the specified polygon with the current grafPort's 
background pattern bkPat (in patCopy mode). The pnPat and pnMode are 
ignored; the pen location is not changed. 

PROCEDURE InvertPoly (poly: PolyHandle); 

InvertPoly inverts the pixels enclosed by the specified polygon: every 
white pixel becomes black and every black pixel becomes white. The 
grafPort's pnPat, pnMode, and hkPat are all ignored; the pen location 
is not changed. 

PROCEDURE FillPoly (poly: PolyHandle; pat: Pattern); 

FillPoly fills ,the specified polygon with the given pattern (in patCopy 
mode). The grafPort's pnPat, pnMode, and bkPat are all ignored; the 
pen location is not changed. 

Calculations with Points 

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point); 

AddPt adds the coordinates of srcPt to the coordinates of dstPt, and 
returns the result in dstPt. 

PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point); 

SubPt subtracts the coordinates of srcPt from the coordinates of dstPt, 
and returns the result in dstPt. 

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER); 

SetPt assigns two integer coordinates to a variable of type Point. 

FUNCTION EqualPt (ptA,ptB: Point) : BOOLEAN; 

EqualPt compares the two points and returns true if they are equal or 
FALSE if not. 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6 



66 QuickDraw Programmer's Guide 

. PROCEDURE LocalToGlobal (VAR pt: Point); 

LocalToGlobal converts the given point from the current grafPort's 
local coordinate system into a global coordinate system with the origin 
(0,O) at the top left corner of the port's bit image (such as 'the 
screen). This global point can then be compared to other global 
points, or be changed into the local coordinates of another grafPort. 

Since a rectangle is defined by two points, you can convert a rectangle 
into global coordinates by.performing two LocalToGlobal calls. You can 
also convert a rectangle, region, or polygon into global coordinates by 
calling OffsetRect, OffsetRg~, or OffsetPoly. For examples, see 
Globa1ToLocal below. . . 

PROCEDURE Globa1ToLoca1 (VAR pt: Point); 

G10ba1ToLoca1 takes a point expressed in global coordinates (with the 
top left corner of the bitMap as coordinate (0,O») and converts it into 
the local coordinates of the current grafPort. The global point can be 
obtained with the Loca1ToG10ba1 call (see above). For example, suppose 
a game draws a "ball" within a rectangle named ba1lRect, defined in the 
grafPort named gamePort (as illustrated below in Figure 24). If you 
want to draw that ball in the grafPort named selectPort, you can 
calculate the ball's selectPort coordinates like this: 

SetPort(gamePort); {start in origin po.rt} 
selectBa11 := ba11Rect; {make a copy to be moved} 
Loca1ToGloba1(se1ectBa1l.topLeft); {put both corners into} 
LocalToG1obal(se1ectBal1.botRight); { global coordinates } 

SetPort(se1ectPort); {switch to destination port} 
Globa1ToLoca1(se1ectBall.topLeft); {put both corners into } 
Globa1ToLoca1( se1ectBall. botRight); '{ these .loca1 coordinates,} 
FillOval(se1ectBa1l,ba11Color); {now you have the ba1~!} 

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 67 

Sl.\ 90 1,) 4S 
4ft - T"I • ..,.-,-....,..1 • ..,....,,--,-.,...1 ~--:-""\ -:3 (I -.-( ~--,--,,.......,.....-.--..,.-...,..--,....,....... 

.~ ... ,: ... ~···i .0. j ..• ; ••. ~. 0 0
;'" J··.1 

.~ ••• ~ ••• ~ ••• ~ ••• ~ ••• ~ eO .~ ••• ~ ••• ~ ••• ~ •• 

70 - o -

SO -.rI 70 
\ 

(J 30 
\ 

~~~~~~~ ~~~~~~.~ 

Figure 24. Converting between Coordinate Systems

You can see from Figure 24 that LocalToGlobal and GlobalToLocal simply
offset the coordinates of the rectangle by the coordinates of the top
left corner of the local grafPort's boundary rectangle. You could also
do this with OffsetRect. In fact, the way to convert regions and
polygons from one coordinate system to another is with OffsetRgn or
OffsetPoly rather than Local~oGlobal and GlobalTqLocal. For example,
if myRgn were a region enclosed by a rectangle having the same
coordinates as ballRect in gamePort, you could convert the region to
global coordinates with

OffsetRgn(myRgn, -20, -40);

and then convert it to the coordinates of the selectPort grafPort with

OffsetRgn(myRgn, 15, -30);

Miscellaneous Utilities

FUNCTION Random : INTEGER;

This function returns an integer, uniformly distributed pseudo-random,
in the range from -32768 through 32767. The value returned depends on
the global variable randSeed, which InitGraf initializes to 1; you can
start the sequence over again from where it began by resetting randSeed
to 1.

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.6

r

68 QuickDraw Programmer's Guide

FUNCTION GetPixel (h,v: INTEGER) : BOOLEAN;

GetPixel looks at the pixel associated with the given coordinate point
and returns TRUE if it is black or FALSE if it is White. The selected
pixel is immediately below and to the right of the point Whose
coordinates are given in h and v, in the local coordinates of the
current grafPort. There is no guarantee that the specified pixel
actually belongs to the port, however; it may have been drawn by a port
overlapping the current one. To see if the point indeed belongs to the
current port, perform a PtInRgn(pt,thePortA.visRgn).

PROCEDURE Stuff Hex (thingPtr: QDPtr; s: Str255);

Stuff Hex pokes bits (expressed as a string of hexadecimal digits) into
any data structure. This is a good way to create cursors, patterns, or
bit images to be "stamped" onto the screen W;th CopyBits. For example,

StuffHex(@stripes,'0l02040810204080')

places a striped pattern into the pattern variable stripes.

(eye)
There is no range checking on the size of the destination
variable. It's easy to overrun the variable and destroy
something if you don't know what you're doing.

PROCEDURE ScalePt (VAR pt: Point; srcRect,dstRect: Rect);

A width and height are passed in pt; the horizontal component of pt is
the width, and the vertical component of pt is the height. ScalePt
scales these measurements as follows and returns the result in pt: it
multiplies the given width by the ratio'of dstRect's width to srcRect's
width, and multiplies the given height by the ratio of dstRect's height
to srcRect's height. In Figure 25, Where dstRect's width is twice
srcRect's width and its height is three times srcRect's height, the pen
width is scaled from 3 to 6 and the pen height is scaled from 2 to 6.

3/2/83 Espinosa-Rose /QUICK. 2/QUIKDRAW., 6

QUICKDRAW ROUTINES 69

\) :) 16 1i
i t r

Figure 25. ScalePt and MapPt

PROCEDURE MapPt (VAR pt: Point; srcRect,dstRect: Rect);

Given a point within srcRect, MapPt maps it to a similarly located
point within dstRect (that is, to where it would fall if it were part
of a drawing being expanded or shrunk to fit dstRect). The result is
returned in pt. A corner point of srcRect would be mapped to the
corresponding corner point of dstRect, and the center of srcRect to the
center of dstRect. In Figure 25 above, the point (3,2) in srcRect is
mapped to (18,7) in dstRect. FromRect and dstRect may overlap, and pt
need not actually be within srcRect.

(eye)
Remember, if you are going to draw inside the rectangle
in dstRect, you will probably also want to scale the pen
size accordingly with ScalePt.

PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect);

Given a rectangle within srcRect, MapRect maps it to a similarly
located rectangle within dstRect by calling MapPt to map the top left
and bottom right corners of the rectangle. The result is returned in
r.

PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect)";

Given a region within srcRect, MapRgn maps it to a similarly located
region within dstRect by calling MapPt to map all the points in the
region.

3/2/83 Espinosa-Rose IQUICK.2/QuIKDRAW.6

70 QuickDraw Programmer's Guide

PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

Given a polygon within srcRect, MapPoly maps it to a similarly located
polygon witQin dstRect by calling MapPt to map all the points that
define the polygon.

CUSTOMIZING QUICKDRAW OPERATIONS

For each shape that QuickDraw knows how to draw, there are procedures
that perform these basic graphic operations on the shape: frame,
paint, erase, invert, and fill. Those procedures in turn call a
low-level drawing routine for the shape. For example, the FrameOval,
PaintOval, EraseOval, InvertOval, and FillOval procedures all call a
low-level routine that draws the oval. For each type of object
QuickDraw can draw, including text and lines, there is a pointer to
such a routine. By changing these pointers,. you can install your' own
routines, and either completely override the standard ones or call them
after your routines have ,modified parameters as necessary.

Other low-level routines that you can install in this way are:

- The procedure that does bit transfer and is called by CopyBits.

- The function that measures the width of text and is called by
CharWidth, String'-lidth, and TextWidth.

- The procedure that processes picture comments and is called by
DrawPicture. The standard such procedure ignores picture
comments.

- The procedure that saves drawing commands as the definition of a
picture, and the one that retrieves them. This enables the
application to. draw on remote devices, print to the disk, get
picture input from the disk, and support large pictures.

The grafProcs field of a grafPort determines which low-level routines
are called; if it contains NIL, the standard routines are called, so
that all operations in that grafPort are done in the standard ways
described in this manual. You can set the grafProcs field to point to
a record of pointers to routines. The data type of grafProcs is
QDProcsPtr:

3/2/83 Rose . /QUICK.2/QUIKDRAW.7

CUSTOMIZING QUICKDRAW OPERATIONS 71

TYPE QDProcsPtr
QDProcs

AQDProcs;
= RECORD

textProc:
lineProc:
rectProc:
rRectProc:
ovalProc:
arcProc:
polyProc:
rgnProc:
bitsProc:
commentProc:
txMeasProc:
ge tPicProc:
putPicProc (

END;

QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr; -
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr

{text drawing}
{line drawingr
{rectangle drawing}
{roundRect drawing}
{oval drawing}
{arc/wedge drawing}
{polygon drawing}
{region drawing}
fbi t transfer}
{picture comment processing}
{text width measurement}
{picture retrieval}
{picture saving}

To assist you in setting up a QDProcs record, QuickDraw provides the
following procedure:

PROCEDURE SetStdProcs (VAR procs: QDProcs);

This procedure sets all the fields of the given QDProcs record to point
to the standard low-level routines. You can then change the ones you
wish to point to your own routines. For example, if your procedure
that processes picture comments is named MyComments, you will store
@MyComments in the commentProc field of the QDProcs record.

The routines you install must of course have the same calling sequences
as the standard routines, which are described below. The stanQard
drawing routines tell which graphic operation to perform from a
parameter of type GrafVerb.

TYPE GrafVerb = (frame, paint, erase, invert, fill);

When the grafVerb is fill, the pattern to use when filling is passed in
the fillPat field of the grafPort.

PROCEDURE StdText (byteCount: INTEGER; textBuf: QDPtr; numer,denom:
INTEGER);

StdText is the standard low-level routine for drawing text. It draws
text from the arbitrary structure in memory specified by textBuf,
starting from the first byte and continuing for byteCount bytes. Numer
and denom specify the scaling, if any: numer.v over cienom.v gives the
vertical scaling, and numer.h over denom.h gives the horizontal
scaling.

PROCEDURE-StdLine (newPt: Point);

StdLine is the standard low-level routine for drawing a line. It draws
a line from the current pen location to the location-specified (in

3/2/83 Rose /QUICK.2/QUIKDRAW.7

72 QuickDraw Programmer's Guide

local coordinates) by newPt.

PROCEDURE StdRect (verb: GrafVerb; r: Rect);

StdR~ct is the standard low-level routine for drawing a rectangle. It·
draws the given rectangle according to the specified grafVerb.

PROCEDURE StdRRect (verb: GrafVerb; r: Rect; ovalwidth,ovaIHeight:
INTEGER) ;

StdRRect is the standard low-level routine for drawing a rounded-corner
rectangle. It draws the given rounded~corner rectangle according to
the specified grafVerb. Ovalt-lidth and ovalHeight specify the diameters
of curvature for the corners.

PROCEDURE StdOval (verb: GrafVerb; r: Rect);

StdOval is the standard low-level routine for drawing an oval. It
draws an oval inside the given rectangle according to the specified
grafVerb.

PROCEDURE StdArc (verb: GrafVerb; r: Rect; startAngle,arcAngle:
INTEGER);

StdArc is the standard low-level routine for drawing' an arc or a wedge.
It draws an arc or wedge of the oval that fits inside the given
rectangle. The grafVerb specifies the graphic 'operation; if it's the
frame operation, an arc is drawn; otherwise, a wedge is drawn.

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);'

StdPoly is the standard low-level routine for drawing a polygon. It
draws the given polygon according to 'the specified grafVerb.

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);

StdRgn is the standard low-level routine for drawing a region. It
drayws the given region according to the specified grafVerb'.

PROCEDURE StdBits (VAR, srcBits: BitMap; VAR srcRect,dstRect: Rect;
,,_ mode: INTEGER; maskRgn: RgnHandle);

StdBits is the standard low-level routine for doing bit transfer. It
transfers a bit image between the given bitMap and thePort portBits,
just as if CopyBits were called with the same parameters and with a
destination bitMap equal to thePort portBits.

3/2/83 Rose /QUICK.2/QUIKDRAW.7

CUSTOMIZING QUICKDRAW OPERATIONS 73

PROCEDURE StdComment (kind,dataSize: INTEGER; dataHandle: QDHandle);

StdComment is the standard low-level routine for processing a picture
comment. Kind identifies the type of comment. DataHandle is a handle
to additional data, and dataSize is the size of that data in bytes. If
there is no additio~al data for the command, dataHandle will be NIL and
dataSize will be~. StdComment simply ignores the comment.

FUNCTION StdTxMeas (byteCount: INTEGER; textBuf: QDPtr; VAR
numer,denom: Point; VAR info: FontInfo) : INTEGER;

StdTxMeas is the standard low-level routine for measuring text width.
It returns the width of the text stored in the arbitrary structure in
memory specified by textBuf, starting with the first byte and
continuing for byteCount bytes. ~umer and denom specify the scaling as
in the StdText procedure; note that StdTxMeas may change them.

PROCEDURE StdGetPic (dataPtr: QDPtr; byteCount: INTEGER);

StdGetPic is the standard low-level routine for retrieving information
from the definition of a picture., It retrieves the next byteCount
bytes from the definition of the currently open picture and s,tores them
in the data structure pointed to by dataPtr.

PROCEDURE StdPutPic (dataPtr: QDPtr; byteCount: INTEGER);

StdPutPic is the standard low-level routine for saving information as
the definition of a picture. It saves as the definition of the
currently open picture the drawing commands stored in the data
structure pointed to by dataPtr, starting with the first byte and
continuing for the next byteCount bytes.

USING QUICKDRAW FROM ASSEMBLY LANGUAGE

All Macintosh User Interface Toolbox routines can be called from
assembly-Iangu~ge programs as well as from Pascal. When you write an
assembly-language program to use these routines, though, you must
emulate Pascal's parameter passing and variable transfer protocols.

This section discusses how to use the QuickDraw constants, global'
variables, data types, procedures, and functions from assembly
language.

The primary aid to assembly-language programmers is a file named
GRAFTYPES.TEXT. If you use .INCLUDE to include this fi~e when you
assemble your program, all the QuickDraw constants, offsets to
locations of global variables, and offsets into the fields of
structured types will be available in symbolic form.

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.A

74 QuickDraw Programmer's Guide

Constants

QuickDraw constants are stored in the GRAFTYPES.TEXT file, and you can
use the constant values symbolically. For example, if you've loaded
the effective address of the thePortA.txMode field into address
register A2, you can set that field to the srcXor mode with this
statement:

MOVE. W flSRCXOR, (A2)

To refer to the number of bytes occupied by the QuickDraw global
variables, you can use the constant GRAFSIZE. When you call the
InitGraf procedure, you must pass a pointer to an area at least that
large.

Data Types

Pascal's strong' typing ability lets you write Pascal programs without
really considering the size of a variable. But in assembly language,
you must keep track of the size of every variable. The sizes of the
standard Pascal data types are as follows:

Type Size
INTEGER Word (2 bytes)
LongInt Long (4 bytes)
BOOLEAN Word (2 bytes)
CHAR Word (2 bytes)
REAL Long (4 bytes)

INTEGERs and LongInts are in tWo's complement form; BOOLEANs have their
boolean value in bit 8 of the word (the low-order bit of the byte at
the same location); CHARs are stored in the high-order byte of the
word; and REALs are in the KCS standard format~

The QuickDraw simple data types listed below are constructed out of
these fundamental types.

Type
QDPtr
QDHandle
Word
Str255
Pattern
'Bits16

Size
Long (4 bytes)
Long (4 bytes)
Long (4 bytes)
Page (256 bytes)
8 bytes
32 bytes

Other data types are constructed as records of variables of the above
types. The size of such a type is the sum of the sizes of all the
fields .in the record; the fields appear in the variable with the first
field in the lowest address. For example, consider the data type
BitMap, which is defined like this:

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.A

TYPE BitMap

USING QUICKORAW FROH ASSEMBLY, LANGUAGE 7 S

RECORD
baseAddr: QDPtr;
rowBytes: INTEGER;
bounds: Rect

END;

This data type would be arranged in memory as seven words: a long for
the baseAddr, a word for the rowBytes, and four words for the top,
left, right, and bottom parts of the bounds rectangle. To assist you
in referring to the fields inside a variable' that has a structure like
this, the GRAFTYPES.TEXT file defines constants that /you can use as
offsets into the fields of a structured variable. For example, to move
a bitMap's rowBytes value into D3, you would execute the following
instruction:

MOVE.W MYBITMAP+ROWBYTES,D3

Displacements are given in the GRAFTYPES.TEXT file for all fields of
all data types defined by QuickDraw.

To do double indirection, you perform an LEA indirectly to obtain the
effective address from the handle. For example, to get at the top
coordinate of a region's enclosin~ rectangle:

(eye)

MOVE.L
MOVE.L
MOVE.W

MYHANDLE,AI
(AI) ,AI
RGNBBOX+TOP(AI),D3

Load handle into Al
Use handle to get pointer
Load value using pointer

For regions (and all other variable-length structures
with handles), you must not move the pointer into a
register once and just continue'to use that pointer; you
must do the double indirection each time. Every
QuickDraw, Toolbox, or memory management call you make
can possibly trigger a heap' compaction that renders all
pointers to movable heap items (like regions) invalid.
The handles will remain valid, but pointers you've
obtained through handles can be rendered invalid at any
subroutine call or trap in your program.

Global Variables

Global variables are stored in a special section of Macintosh low
memory; register AS always points to this section of memory. The
GRAFTYPES.TEXT file defines a constant GRAFGLOB that points to the
begin'ning of the QuickDraw variables in this space, and other cons tants
that point to' the individual variables. To access one of the
variables, put GRAFGLOB in an address register, sum the constants, and
index off of that register. For example, if you want to know the
horizontal coordinate of the pen location for the current grafPort,
which the global variable thePort points to, you, can give the following
instructions: '

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.A

76 QuickDraw Programmer's Guide

MOVE.L GRAFGLOB(A5),A0
MOVE.L THEPORT(A0) ,AI
MOVE.W PNLOC+H(AI),D0

Procedures and Functions

Point to Qui_c}<~raw globals
Get current grafPort"
Get thePort pnLoc.h

To call a QuickDraw procedure ot function, you must push all parameters
to it on the stack, then JSR to the function or procedure. When you
link your program wi th QuickDraw," these JSRs are adjusted to refer to
the jump table in low RAM, so that a JSR into the table redirects you
to the actual location of the procedure or function.

The only difficu~t part about calling QuickDraw procedures and
functions is stacking the parameters. You must follow some strict
rules:

- Save all registers you wish to preserve BEFORE you begin pushing
parameters. Any QuickDraw procedure or function can destroy the
contents of the registers A0, AI, n0, DI, and D2, but the others
are never altered.

- Push the parameters in the order 'that they appear in the Pascal
procedural interface.

- For booleans, push a byte; for integers and characters, push a
word; for pointers, handles, long integers, and reals, push a
long.

- For any structured variable longer than four (4) bytes, push a
pointer to the variable.

- For all VAR parameters, regardless of size, push a pointer to the
variable.

- When calling a function, FIRST push a null entry equal to the size
of the function result, THEN push all other parameters. The
result will be left on the stack after the function returns to
you.

This maKes for a lengthy interface, but it also guarantees that you can
mock up a Pascal version of your program, and later translate it into
assembly code that works the same. For example, the Pascal statement

blackness := GetPixel(5~,mousePos.v);

would be written in assembly language like this:

CLR.l'] -(SP) Save space for boolean result
MOVE.',] 1150, -(SP) Push constant 50 (decimal)
MOVE.W MOUSEPOS+V,-(SP) Push the value of mousePos.v
JSR GETPlXEL Call routine

,MOVE.W (SP)+,BLACKNESS Fetch result from stack

3/2/83 Espinosa-Rose IQUICK.2/QUIKDRAW.A

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 77

This is a simple example, pushing and pulling word-long constants.
Normally, you'll be pushing more pointers, using the PEA (Push
Effective Address) instruction:

FillRoundRect(myRect,l,thePort pnSize.v,white);

PEA
MOVE .\>1
MOVE.L
MOVE.L
MOVE.W
PEA
JSR

MYRECT
/fl,-(SP)
GRAFGLOB(AS),A(/J
THEPORT(A(/J),Al
PNSIZE+V(Al),-(SP)
WHITE(A(/J)
FILLROUNDRECT

Push pointer to myRect
Push constant 1
Point to QuickDraw globals
Get current grafPort
Push value of thePort pnSize.v
Push pointer to global variable White
Call the subroutine

To call the TextFace prbcedure, push a word in Which each of seven bits
represents a stylistic variation: set bit ~ for bold, bit 1 for
italic, bit 2 for underline, bit 3 for outline, bit 4 for shadow, bit 5
for condense, and bit 6 for extend.

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.S

78 QuickDraw Programmer's Guide

SUMMARY OF QUICKDRAW

CaNST srcCopy = r); I

srcOr 1-,
srcXor - 2-,
srcBic = 3~ ,
notSrcCopy = 4-,
notSrcOr 5-,
notSrcXor = 6-,
notSrcBic = 7-,
patCopy = 8-,
patOr = 9-,
patXor 10;
patBic = 11;
notPatCopy = 12;
notPatOr = 13;
notPatXor = 14;
notPatBic 15;

blackColor = 33;
whiteColor = 30;
redColor = 205;
greenColor 341;
blueColor = 409;
cyanColor = 273 ;
magentaColor = 137;
yellowColor = 69;

picLParen = r);
picRParen = 1-,

TYPE QDByte -128 •• 127;
QDPtr AQDByte;
QDHandle = AQDPtr;
Str255 = STRING[255];
Pattern 1= PACKED ARRAY [0 •• 7] OF 0 •• 255;
Bits16 = ARRAY [0 •• 15] OF INTEGER;
GrafVerb = (frame, paint, erase, invert, fill);

Styleltem = (bold, italic, underline, outline, shadow, condense,
extend) ;

Style = SET OF Styleltem;

FontInfo = RECORD
ascent:
descent:
widMax:
leading:

END;

3/2/83 Espinosa-Rose

INTEGER;
INTEGER;
INTEGER;
INTEGER

/QUICK.2/QUIKDRAW.S

SUMMARY OF QUICKDRAW 79

VHSelect = (v,h);
Point = RECORD CASE INTEGER OF

0: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VHSelect] OF INTEGER)

END;

Rect = RECORD CASE INTEGER OF

0: (top:
left:
bottom:
right:

INTEGER;
INTEGER;
INTEGER;
INTEGER);

1: (topLeft: Point;
botRight: Point)

END;

BitMap RECORD
baseAddr: QDPtr;
rowBytes: INTEGER;
bounds: Rect

END;

Cursor = RECORD
data: Bits16;
mask: Bits16;
hotSpot: Point

END;

PenS tate = RECORD·
pnLoc:
pnSize:
pnMode: .
pnPat:

Point;
Point;
INTEGER;
Pattern

RgnHandle
RgnPtr
Region

END;

= RgnPtr;
= Region;
= RECORD

rgnSize: INTEGER;
rgnBBox: Rect;
{more data if not rectangular}

END;

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.S

80 QuickDraw Programmer's Guide

PicHandle APicPtr;
PicPtr = APicture;
Picture = RECORD

Po lyHand Ie
PolyPtr
Polygon

picSize: INTEGER;
picFrame: Rect;
{picture definition data}

END;

= APolyPtr;
= Polygo·n;
= RECORD

polySize: INTEGER;
polyBBox: Rect;
polyPoints: ARRAY [0 •• 0] OF Point

END;

QDProcsPtr
QDProcs

= AQDProcs;
RECORD

textProc:
lineProc:
rectProc:
rRectProc:
ovalProc:
arcProc:
polyProc:
rgnProc:
bitsProc:
commentProc:
txMeasProc:
getPicProc:
putPicProc:

END;

3/2/83 Espinosa-Rose

QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr;
QDPtr

/QUICK.2/QUIKDRAW.S

SUMMARY OF QUICKDRAW 81

GrafPtr = "GrafPort;
GrafPort RECORD

device: INTEGER;
portBits: BitMap;
portRect: Rect;
visRgn: RgnHandle;
clipRgn: RgnHandle;
bkPat: Pattern;
fillPat: Pat.tern;
pnLoc: Point;
pnSize: Point;
pnMode: INTEGER;
pnPat: Pattern;
pnVis: INTEGER;
txFont: INTEGER;
txFace: Style;
txMode: INTEGER;
txSize: INTEGER;
spExtra: INTEGER;
fgColor: LongInt;
bkColor: LongInt;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: QDHandle;
rgnSave: QDHandle;
polySave: QDHandle;
grafProcs: QDProcsPtr

END;

VAR thePort: GrafPtr;
white: Pattern;
black: Pattern;
gray: Pattern;
ItGray: Pattern;
dkGray: Pattern;
arrow: Cursor;
screenBits: BitMap;
randSeed: LongInt;

GrafPort Routines

PROCEDURE InitGraf
PROCEDURE OpenPort
PROCEDURE InitPort
PROCEDURE ClosePort
PROCEDURE SetPort
PROCEDURE GetPort
PROCEDURE GrafDevice
PROCEDURE SetPortBits
PROCEDURE PortSize
PROCEDURE MovePortTo
PROCEDURE'SetOrigin

(globalPtr: QDPtr);
(gp: GrafPtr);
(gp: GrafPtr);
(gp: GrafPtr);
(gp: GrafPtr);
(VAR gp: GrafPtr);
(device: INTEGER);
(bm: BitMap);
(width,height: INTEGER);
(leftGlobal,topGlobal: INTEGER);
(h,v: INTEGER).;

\
/

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.S

82 QuickDraw Programmer's Guide

PROCEDURE SetClip
PROCEDURE GetClip
PROCEDURE ClipRect
PROCEDURE BackPat

Cursor Handling

PROCEDURE InitCursor;

(rgn: RgnHandle);
(rgn: RgnHandle);
(r: Rect);
(pat: Pattern);

PROCEDURE SetCursor (crsr: Cursor);
PROCEDURE HideCursor;
PROCEDURE ShowCursor;
PROCEDURE ObscureCursor;

Pen and Line Drawing

PROCEDURE HidePen;
PROCEDURE ShowPen;
PROCEDURE GetPen
PROCEDURE GetPenState
PROCEDURE SetPenState
PROCEDURE PenSize
PROCEDURE PenMode
PROCEDURE PenPat
PROCEDURE PenNormal;
PROCEDURE MoveTo
PROCEDURE Move
PROCEDURE LineTo
PROCEDURE Line

Text Drawing

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FUNCTION
FUNCTION
FUNCTION

TextFont
TextFace
TextMode
TextSize
SpaceExtra
DrawChar
DrawString
Dr awText
CharWidth
Stringl~idth

TextWidth

PROCEDURE GetFontInfo

(VAR pt: Point);
(VAR pnState: PenState);
(pnState: PenState);
(widtR,height: INTEGER);
(mode: INTEGER);
(pat: Pattern);

(h, v: INTEGER);
(dh,dv: INTEGER);
(h, v: INTEGER);
(dh,dv: INTEGER);

(font: INTEGER);
(face: Style);
(mode: INTEGER);
(size: INTEGER);
(extra: INTEGER);
(ch: CHAR);
(s: Str255);
(textBuf: QDPtr; firstByte,byteCount:
(ch: CHAR) : INTEGER;
(s: Str255) : INTEGER;
(textBuf: QDPtr; firstByte,byteCount:
INTEGER;

(VAR info: FontInfo);

INTEGER) ;

INTEGER)

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW.S

SUMMARY OF QUICKDRAW 83

Drawing in Color

PROCEDURE ForeColor (color: LongInt);
PROCEDURE BackColor (color: LongInt);
PROCEDURE ColorBit (whichBit: INTEGER);

Calculations with Rectangles

PROCEDURE SetRect
PROCEDURE OffsetRect
PROCEDURE InsetRect
FUNCTION SectRect

(VAR r:Rect; left,top,right,bottom: INTEGER);
(VAR r: Rect; dh,dv: INTEGER);
(VAR r: Rect; dh,dv: INTEGER);
(srcRectA,srcRectB: Rect; VAR dstRect: Rect)
BOOLEAN;

PROCEDURE
FUNCTION
PROCEDURE
PROCEDURE
FUNCTION
FUNCTION

UnionRect
PtInRect
Pt2Rect
PtToAngle
EqualRect
EmptyRe.ct

(srcRectA,srcRectB: Rect; VAR dstRect: Rect)
(pt: Point; r: Rect) : BOOLEAN;
(ptA,ptB: Point; VAR dstRect: Rect);
(r: Rect;. pt: Point; VAR angle: INTEGER);
(rectA,rectB: Rect) : BOOLEAN;
(r: Rect) : BOOLEAN;

Graphic Operations on Rectangles

PROCEDURE FrameRect (r: Rect);
PROCEDURE PaintRect (r: Rect);
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect);
PROCEDURE FillRect (r: Rect; pat: Pattern);

Graphic Operations on Ovals

PROCEDURE FrameOval (r: Rect);
PROCEDURE PaintOval (r: Rec,t);
PROCEDURE EraseOval (r: Rect);
PROCEDURE InvertOval (r: Rect);
PROCEDURE FillOval (~: Rect; pat: Pattern);

Graphic Operations on Rounded-Corner Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight:
PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight:
PROCEDURE EraseRoundRect (r: Rec)t; ovalWidth,ovalHeight:
PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight:
PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight:

pat: Pattern);

INTEGER) ;
INTEGER);
INTEGER) ;
INTEGER) ;
INTEGER;

3/2/83 Espinosa-Rose !QUICK.2!QUIKDRAW.S

84 QuickDraw Programmer's Guide

Graphic Operations on Arcs and Wedges

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle:· INTEGER);
PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTEGER) ;
PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER) ;
PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER) ;
PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pa t :

Pattern);

Calculations with Regions

FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
FUNCTION
FUNCTION
FUNCTION
FUNCTION

NewRgn :
DisposeRgn
CopyRgn
SetEmptyRgn
SetRectRgn
RectRgn
OpenRgn;
CloseRgn
OffsetRgn
InsetRgn
SectRgn
UnionRgn
DiffRgn
XorRgn
PtInRgn
RectInRgn
EqualRgn
EmptyRgn

RgnHandle;
(rgn: RgnHandle);
(srcRgn,dstRgn: RgnHandle);
(rgn: RgnHand Ie) ;
(rgn: RgnHandle; left,top,right,bottom:
(rgn: RgnHandle; r: Rect);

(dstRgn: RgnHandle);
(rgn: RgnHandle; dh,dv: INTEGER);
(rgn: RgnHandle; dh,dv: INTEGER);
(srcRgnA,srcRgnB,dstRgn: RgnHandle);
(srcRgnA,srcRgnB,dstRgn: RgnHandle);
(srcRgnA,srcRgnB,dstRgn: RgnHandle);
(srcRgnA, srcRgnB,dstRgn: RgnHandle);
(pt: Point; rgn: RgnHandle) : BOOLEAN;
(r: Rect; rgn: RgnHandle) : BOOLEAN;
(rgnA,rgnB: RgnHandle) : BOOLEAN;
(Irgn: RgnHandle) : BOOLEAN;

Graphic Operations on Regions

PROCEDURE FrameRgn
PROCEDURE PaintRgn
PROCEDURE EraseRgn
PROCEDURE InvertRgn
PROCEDURE FillRgn

(rgn:
(rgn:
(rgn:
(rgn:
(rgn:

Bit Transfer Operations

RgnHa nd Ie) ;
RgnHandle);
RgnHandle);
RgnHandle) ;
RgnHandle; pat: Pattern);

INTEGER);

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle);
PROCEDURE CopyBits (srcBits,dstBits: BitMap; srcRect,dstRect: Rect;

mode: INTEGER; maskRgn: RgnHandle);

3/2/83 Espinosa-Rose /QUICK.2/QUIKD~AW.S

SUMMARY OF QUICKDRAW 85

Pictures

FUNCTION OpenPicture
PROCEDURE PicComment
PROCEDURE ClosePicture;
PROCEDURE DrawPicture
PROCEDURE KillPicture

(picFrame: Rect) : PicHandle;
(kind,dataSize: INTEGER; dataHandle: QDHandle);

(myPicture: PicHandle; dstRect: Rect);
(myPicture: PicHandle);

Calculations with Polygons

FUNCTION OpenPoly: PolyHandle;
PROCEDURE ClosePoly;
PROCEDURE KillPoly (poly: PolyHandle);
PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER);

Graphic Operations on Polygons

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

FramePoly
PaintPoly
ErasePoly
InvertPoly
FillPoly

(poly:
(poly:
(poly:
(poly:
(poly:

PolyHandle) ;
PolyHandle) ;
PolyHandle) ;
PolyHandle) ;
PolyHandle; pat: Pattern);

Calculations with Points

PROCEDURE AddPt
PROCEDURE SubPt
PROCEDURE SetPt
FUNCTION EqualPt
PROCEDURE LocalToGlobal
PROCEDURE GlobalToLocal

(srcPt: Point; VAR dstPt: Point);
'(srcPt: Point; VAR dstPt: Point);
(VAR pt: Point; h,v: INTEGER);
(ptA,ptB: Point) : BOOLEAN;
(VAR pt: Point);
(VAR pt: Point);

Miscellaneous Utilities

FUNCTION
FUNCTION
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

Random :
GetPixel
Stuff Hex
ScalePt
MapPt
MapRect
MapRgn
MapPoly

INTEGER;
(h,v: INTEGER) : BOOLEAN;
(thingPtr: QDPtr; s: Str255);
(VAR pt: Point; srcRect,dstRect: Rect);
(VAR pt: Point; srcRect,dstRect: Rect);
(VAR r:. Rect; srcRect, ds tRect: Rect);
(rgn: RgnHandle; srcRect,dstRect: Rect);
(poly: PolyHandle; srcRect,dstRect: Rect);

3/2/83 Espinosa-Rose /QUICK.2/QUIKDRAW·.S

86 QuickDraw Programmer's Guide

Customizing QuickDraw Operations

PROCEDURE SetStdProcs
PROCEDURE StdText

PROCEDURE StdLine
PROCEDURE StdRect
PROCEDURE StdRRect

PROCEDURE StdOval
PROCEDURE StdArc

PROCEDURE StdPoly
PROCEDURE StdRgn
PROCEDURE StdBits

PROCEDURE StdComment
FUNCTION StdTxMeas

PROCEDURE StdGetPic
PROCEDURE StdPutPic

3/2/83 Espinosa-Rose

(VAR procs: QDProcs);
(byteCount: INTEGER; textAddr: QDPtr; numer,denom:
Point);

(newPt: Point);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; ovalwidth,ovaIHeight:
INTEGER);

(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Rect; startAngle,arcAngle:
INTEGER) ;

(verb: GrafVerb; poly: PolyHandle);
(verb: GrafVerb; rgn: RgnHandle);
(VAR srcBits: BitMap; VARsrcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);

(kind,dataSize: INTEGER; dataHandle: QDHandle);
(byteCount: INTEGER; textBuf: QDPtr; VAR numer,
denom: Point; VAR info: FontInfo) : INTEGER;

(dataPtr: QDPtr; byteCount:· INTEGER);
(dataPtr: QDPtr; byteCount: INTEGER);

IQUICK.2/QUIKDRAW.S

GLOSSARY 87

GLOSSARY

bit image: A collection of bits in memory which have a rectilinear
representation. The Macintosh screen is a visible bit image.

bitMap: A pointer to a bit image., the row width of that image, and its
boundary rectangle.

boundary rectangle: A rectangle defined ,as part of a bitMap, which
encloses the active area of the bit image and imposes a coordinate
system on it. Its top left corner is always aligned around the first
bit in the bit image. ,

character style: A set of stylistic variations, such as bold, italic,
and underline. The empty set indicates normal text (no stylistic

, variations).

clipping: Limiting drawing to within the bounds of a particular area.

clipping region: Same as clipRgn.
'\

clipRgn: The region to which an application limits drawing in a
grafPort.

coordinate plane: A two-dimensional grid. In QuickDraw, the grid
coordinates are integers ranging from -32768 to +32767, and all grid
lines are infinitely thin.

cursor: A l6-by-16-bit image that appears on the screen and is
controlled by the mouse; called the "pointer" in other Macintosh
documentation.

cursor level: A value, initialized to ~ when the system is booted,
that keeps track of the number of times the cursor has been hidden.

empty: Containing no 'bits, as a shape defined by only one point.

font: The complete set of characters of one typeface, such as
Helvetica.

frame: To draw a shape by drawing, an outline of it.

global coordinate system: The coordinate system based on the top left
corner of the bit image being at (0,O).

grafPort: A complete drawing environment, including such elements as a
bitMap, a subset of it in which to draw, a character font, patterns for
drawing and erasing, and other pen characteristics.

grafPtr: A pointer to a grafPort.

handle: A pointer to one master pointer to a dynamic, relocatable data
structure (such as a region).

3/2/83 Rose /QUICK.2/QUIKDRAW.G

88 QuickDraw Programmer's Guide

hotSpot: The point in a cursor that is aligned with the mouse'
position.

kern: To stretch part of a character back under the previous
character.

local coordinate system: The coordinate system local to a grafPort,
imposed by the boundary rectangle defined in its bitMap.

missing symbol: A character to be drawn in case of a request to draw a
character that is missing from a particular font.

pattern: An 8-by-8-bit image, used to define a repeating design (such
as stripes) or tone (such as gray).

pattern transfer mode: One of eight transfer mo4es for drawing lines
or shapes with a patt~rn.

picture: A saved sequence of QuickDraw drawing commands (and,
optionally, picture comments) that you can play ,back later wi th a
single procedure call; also, the image resulting from these commands.

picture comments:' Data stored in the definition of a picture which
does not affect the picture's appearance but may be used to provide
additional information about the picture when it's played back.

picture frame: A rectangle, defined as part of a picture, which
surrounds the picture and gives a frame of reference for scaling when -
the picture is drawn. ,

pixel: The visual representation of a bit on the screen (white if the
bit is 0, black if it's 1).

point: The intersection of a horizontal grid line and a vertical grid
line on the coordinate plane, defined by a horizontal and a vertical
coordinate.

polygon: A sequence of connected lines, defined by QuickDraw
line-drawing commands.

port: Same as grafPort.

portBits: The bitMap of a grafPort.

portBits.bounds: The boundary rectangle of a'grafPort's bitMap.

portRect: A rectangle, defined as part of a grafPort, which encloses a
subset of the bi tMap for use by the -grafPort.

region: An ,arbitrary area or set of areas on the coordinate plane.
The outline of a region should be one or more closed loops.

row width: The number of bytes in each row of a bit image.

3/2/83 Rose /QUICK.2/QUIKDRAW.G

GLOSSARY 89

solid: Filled in with any pattern.

source transfer mode: One of eight transfer modes for drawing text or
transferring any bit image between two bitMaps.

style: See character style.

thePort: A global variable that points to the current grafPort.

transfer mode: A specification of which boolean operation QuickDraw
should perform when drawing or when transferring a bit image from one
bitMap to another.

visRgn:. The region of a grafPort, manipulated by the ~vindow Manager,
which is actually visible on the screen.'

3/2/83 Rose /QUICK. 2/QUIKDRAlv.G '

MACINTOSH USER EDUCATION

The Font Manager: A Programmer's Guide /FMGR/FONT

See Also: 'Macintosh User Interface Guidelines
The Memory Manager: A Prog,rammer' s Guide
Macintosh Operating System Reference Manual
QuickDraw: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
Programming Macintosh Applications in Assembly Language

"-

Modification History: Preliminary Draft Caroline Rose
First Draft (ROM 3.~) Caroline Rose
Second Draft (ROM 7) Brad Hacker
Third Draft Caroline Rose & Brad Hacker

4/2~/83
4/22/83

2/7 /84
6/11/84

ABSTRACT

The Font Manager is the part of the Macintosh User Interface Toolbox
that supports the use of various character fonts when you draw text" with
QuickDraw. This manual introduces you to the Font Manager and describes
the routines your application can call to get font information •. It also
describes the data structures of fonts and discusses how the F9nt
Manager communicates with QuickDraw.

Summary of significant changes and additions since last draft:

- The default application font has changed from New York to Geneva.

- Details are now given on the font characterization table (page
13) •

- Programmers defining their own fonts must include the characters
with ASCII codes $~~, $~9, and $~D (page 18).

- The sample location table and offset/width table have been
corrected, as has the calculation of the offset in the font
record's owTLoc field (page 21).

- Some assembly-language information has been changed and added.

2 Font Manager Programmer's Guide

TABLE OF CONTENTS

3
3
6
7
7
9
9
9
10
10
10
11
16
20
23
23
24
26
31

About This Manual
About the Font Manager
Font Numbers
Characters in a Font
Font Scaling
Using the Font Manager
Font Manager Routines

Initializing the Font Manager
Getting Font Information
Keeping Fonts in,Memory
Advanced Routine

Communication Between QuickDraw and the Font Manager
Format of a Font

Font Records
Font Widths
How QuickDraw Draws Text

Fonts in a Resource File
Summary of the Font Manager
Glossary

Copyright (~) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

The Font Manager is the part of the Macintosh User Interface Toolbox
that 'supports the use of various character fonts when you draw text
with QuickDraw. This manual intr09uces you to the Font Manager and
describes the routines your application can call to get font
information. It also describes the data structures of fonts and
discusses how the Font Manager communicates with QuickDraw. ***
Eventually this will become part of the comprehensive Inside Macintosh
manual. ***
Like all documentation about Toolbox units, this manual assumes you're
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and
the Macintosh Operating System's Memory Manager. You should also be
familiar with:

- resources, as described i~ the Resource Manager manual

- the basic concepts and structures behind QuickDraw, particularly
bit images and how to draw text

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an overview of the Font Manager and what you can
do with it. It then discusses the font numbers by which fonts are
identified, the characters in a font, and the scaling of fonts to
different sizes. Next, a section on using the Font Manager introduces
its routines and tells how they fit into the flow of your application.
Thi~ is followed by detailed descriptions of Font Manager procedures
and functions, their parameters, calling protocol, effects, side
effects, and so on.

Following these descriptions are sections that will not interest all
readers. There's a discussion of how QuickDraw and the Font Manager
communicate, followed by a section that describes the format of the
data structures used to define fonts, and how QuickDraw uses the data
to draw characters. Next is a section that gives the exact format of
fonts in a resource file.

Finally, there's a summary of the Font Manager, for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE FONT MANAGER

The main function of the Font Manager is to provide font support for
QuickDraw. To the Macintosh user, font means the complete set of
characters of. one typeface; it does~include the size of the
characters, ~nd usually doesn't include any stylistic variations (such

6/11/84 Rose-Hacker /FMGR/FONT.2

4 Font Manager Programmer's Guide

as bold and italic).

(note)
Usually fonts are defined in the normal style and
stylistic variations are applied to them; for example,
the italic style simply slants the normal characters.
However, fonts may be designed to include stylistic
variations in the first place.

The way you identify a font to QuickDraw or the Font Manager is with a
font number. Every font also has a name (such as "New York") that's
appropriate to include in a menu of available fonts.

The size of the characters, called the font size, is given in points.
Here this term doesn't have the same meaning as the "point" that's an
intersection of lines on the QuickDraw coordinate plane, but instead is
'a typographical term that stands for approximately 1/72 inch. The font
size measures the distance between the ascent line of one line of text
and the ascent line of the next line of single-spaced text (see Figure
1). It assumes 80 pixels per inch, the approximate resolution of the
Macintosh screen. For example, since an Imagewriter printer has twice
the resolution of the screen, high-resolution 9-point output to the
printer is actually accomplished with an 18-point font.

(note)

font J
size

ascent line

" ... base line

} descent line --t-,.--..... --- L'eading

(. ,)

Figure 1. Font Size

Because measurements cannot be exact on a bit-mapped
output device, the actual font size may be slightly
different from what it would be in normal typography.

Whenever you call a QuickDraw routine that does anything with text,
QuickDraw passes the following information to the Font Manager:

6/11/84 Rose-Hacker /FMGR/FONT.2

ABOUT THE FONT MANAGER 5

- The font number.

- The character style, which is a set of stylistic variations. The
empty set indicates normal text. (See the'QuickDraw manual for
details.)

- The font size. The size may range from 1 point to 127 points, but
for readability should be at least 6 points.

- The horizontal and vertical scaling factors, each of which is '
represented by a numerator and a denominator (for example, a
numerator of 2 and a denominator ·of 1 indicates.2-to-l scaling in
that direction).

- A Boolean value indicating whether the characters will actually be
drawn or not. 'They will not be drawn, for example, when the
QuickDraw function CharWidth is called (since it only measures
charact&rs) or when text is drawn after the pen has been hidden
(such as by the HidePen procedure or the OpenPicture function,
which calls HidePen).

- A number specifying the device on which the characters will be
drawn or printed. The number ~ represents the Macintosh screen.
The Font Manager can adapt fonts to other devices.

Given this information, the Font Manager provides QuickDraw with
information describing the font and--if the characters will actually be
drawn--the bits comprising the characters.

Fonts are stored as resources in resource files; the Font Manager calls
the Resource Manager to read them into memory. System-defined fonts
are stored in the system resource file. You may define your own fonts
with the aid of the Resource Editor and include them in the system
resource file-so they can be shared among applications. *** (The
Resource Editor doesn't yet exist, but an interim Font Editor is
available from Macintosh Technical Support.) *** In special cases, you
may want to store a font in an application's resource file or even in
the resource file for a document. It's also possible to store only the
character widths and general font information, and not the bits
comprising the characters, for those cases where the characters won't
actually be drawn.

A font may be stored in any number of sizes in a resource file. If a
size is needed that's not available as a resource, the Font Manager
scales an available size.

Fonts occupy a large amount of storage: a 12-point font typically
occupies about 3K bytes, and a 24-point font, about l~K bytes; fonts
for use on a high-resolution output device can take up four times as
much space as that (up to a maximum of 32K bytes). Fonts normally are
purgeable, which means they may be removed from the heap when space is
required by the Memory Manager. If you wish, you can call a Font
Manager routine to make a'font temporarily unpurgeable.

6/11/84 Rose-Hacker /FMGR/FONT.2

6 Font Manager Programmer's Guide

There are also routines that provide information about a font. You can
find out the name of a font having a particular font number, or the
font number for a font having a particular name. You can also learn
whether a font is available in a certain size or will have to be scaled
to that size.

FONT NUMBERS

The Font Manager includes the following font numbers for identifying
system-defined fonts:

CONST systemFont 0; {system font}
app1Font = 1 ; {application font}
new York 2· ,
geneva 3;
monaco 4;
venice 5;
london 6;
athens 7 ;
sanFran 8;
toronto 9;

The system font is so called because it's the font used by the system
(for drawing menu titles and commands in menus, for example). The name
of the system font is Chicago. The size of text drawn by the system in
this' font: is fixed at 12 points (called the system font size).

The application font is the font your application will use unless you
specify otherwise. Unlike the system fpnt, the application font isn't
a separate font with its own typeface, but is essentially a reference
to another font--Geneva, by default. *** In the future, there may be a
way f'or the user to change the application font, perhaps through the
Control Panel desk accessory. ***

Assembly-language note: The font number of the application font
is stored in the global variable apFontID.

6/11/84 Rose-Hacker /FMGR/FONT.2

CHARACTERS IN A FONT 7

CHARACTERS IN A FONT

A font can consist of up to 255 distinct characters; not all characters
need be defined in a single font. Figure 2 on the following page shows
the standard printing characters on the Macintosh and their ASCII codes
(for example, the ASCII code for "A" is 41 hexadecimal, or 65 decimal).

In addition to its maximum of 255 characters, every font contains a
missing symbol that's drawn in case of a request to draw a character
that's missing from the font.

FONT SCALING

The information QuickDraw passes to the Font Manager includes the font
size and the scaling factors QuickDraw wants to use. The Font Manager
determines the font information to return to QuickDraw' by looking for
the exact size needed among the sizes stored for the font. If the
exact size requested isn't available, it then looks for a nearby size
that it can scale.

1. It looks first for a font that's twice the size, and scales down
that size if there is one.

2. If there's no font that's twice the size, it looks "for a font
that's half the size, and scales up that size if there is one.

\

3. If there's no font that's half the size, it looks for a larger
size of the font, and scales do~n the next larger size if there is
one.

4. If there's no larger size, it looks for a smaller size of the
font, and scales up the closest smaller size if there is one.

5. If the font isn't available in any size at all, it uses the
application font instead, scaling the font to the proper size.

6. If the application font isn't available in any size at all, it
uses the system font instead, scaling the font to the proper si~e.

Scaling looks best when the scaled size is an even multiple of an
available size.

Assembly-language note: You can use the global variable
fScaleDisable to defeat scaling, if desired. Normally,
fScaleDisable is 0. If you set it to a nonzero value,. the Font
Manager will look for the size as described above but will
return the font unsealed.

6/11/84 Rose-Hacker /FMGR/FONT.2

8 Font Manager Programmer's Guide

o 2 3 4 5 6 7 8 9 A '8 C D E F

o SP 0 @ p ...
A

A- t .
P e :00' Iv -

gg I 1 A Q. a q .~ e 0 ::+: . . :-. I -

if
II 2 B R b (:

~

¢ ~ ~~: ~ r 1 -, " 2

• # 3 C Q
~

~ V C 5 E 1 £, ~: 2 : " v 3

4 " $ 4 D T d t. N A.
~-... ¥' ~f~ 1 ~

,
..

ro 5 E LJ e u 0 1 • ~:Li: ,..., ,
,...,.

.. : .-:
5

6 & ,6 F V f V U
IV' qr n ::21': :/i .

I 7 G W " ~

13
:-~'-g w a 0 .-2.. . <,,<,' <> ','" 7

(8 H X h
... ...

® ::n: X a 0 » ~' 8

..
) 9 I Y 1 Y

A A

© a 0 -on· : 9

* . \.,1 Z j z a 0
TM -J

K [{- "..,. ~ ..
+ . k a 0 ~ A , 8

\ I
0 , .. "...,-

, < L I a u Q .A c

] } " . - .
~ -(1~

".,.,

- - M m ~ U :~: 0 -D

N
A I'"J

,. A

IE IT . > n e u ce E

/ ? () '\

0 . - 0 e u fll ce f

SP stands for a space .
...., stands for ~ nonbreak i ng space) same width as numbers.

The first four characters are only in the system font (Chicago).
The shaded characters are only in the Geneva, Monaco and system fonts.

ASCII codes $9D 1hrough $FF are reserved for future expansion.

Figure 2. Font Characters

6/11/84 Rose-Hacker /FMGR/FONT.2

USING THE FONT MANAGER 9

USING THE FONT MANAGER

This section introduces you to the Font Manager routines and how they
fit into the general flow of an application pro~ram. the routines
themselves are described in detail in the next section.

The InitFonts procedure initializes the Font Manager; you should call
it after initializing 'QuickDraw but before initializing the Window
Manager.

You can set up a menu of fonts in your application by using the Menu
Manager procedure AddResMenu (see the .Menu Manager manual for details).
When the user chooses a menu item from the font menu, call the Menu
Manager procedure GetItem to get the name of the corresponding font,
and then the Font Manager function GetFNum to get the font number. The
GetFontName function does the reverse of GetFNum: given a font ID, it
returns the font name.

In a menu of font sizes in your application, you may want to let the
user know which sizes the current font is available in and therefore
will not require scaling. You can call the RealFont function to find
out whether a font is available in a given size.

If you know you'll be using a font a lot and don't want it to be
purged, you can use the SetFontLock procedure to make the font
unpurgeable during that time.

Advanced programmers who want to write their own font editors or
otherwise manipulate fonts ~an access fonts directly with the SwapFont
function.

FONT MANAGER ROUTINES

This section describes all the Font Manager procedures and functions.
The routines are presented in their Pascal form; for information on
using them from assembly language, see the manual Programming Macintosh
Applications in Assembly Language.

Initializing the Font Manager

PROCEDURE InitFonts;

InitFonts initializes the Font Manager. If the system font isn't
already in memory, InitFonts reads it into memory. Call this procedure
once before ~ll other Font Manager routines or any Toolbox routine that
will call the Font Manager.

6/11/84 Rose-Hacker /FMGR/FONT.R

10 Font Manager Programmer's Guide

Getting Font Information

PROCEDURE GetFontName (fontNum: INTEGER; VAR theName: Str255);

GetFontName returns in theNa~e the name of the font having the font
number fontNum. If there's no such font, GetFontName returns the empty
string.

Assembly-language note: The macro you invoke to call
GetFontName from assembly language is named GetFName.

PROCEDURE GetFNum (fontName: Str255; VAR theNum: INTEGER);

GetFNum returns in theNum the font number for the font having the given
fontName. If there's no such font, GetFNum returns 0.

FUNCTION RealFont (fontNum: INTEGER; size: INTEGER) : BOOLEAN;

RealFont returns TRUE if the font having the font number fontNum is
available in the given size in ~ resource file, or FALSE if the font
has to be scaled to that size.

Keeping Fonts in Memory

PROCEDURE SetFontLock (lockFlag: BOOLEAN);

SetFontLock applies to the font in which text was most recently drawn;
it makes the font unpurgeable if 10ckFIag is TRUE or purgeable if
lockFlag is 'FALSE. Since fonts are normally purgeable, this procedure
is useful for making a font temporarily unpurgeable.

Advanced Routine

The following low-level routine will not normally be used by an
appl~cation directly, but may be of interest to advanced programmers
who want to bypass the QuickDraw routines that deal with text.

6/11/84 Rose-Hacker /FMGR/FONT.R

FONT MANAGER ROUTINES 11

FUNCTION SwapFont (inRec: ,FMInput) : FMOutPtr;

SwapFont returns a pointer to an FMOutput record containing the size,
style, and other information about an adapted version of the font
requested in the given FMInput record. (FMInput and FMOutput records
,are explained in the following section.) SwapFont is called by
QuickDraw every time a QuickDraw routine that does anything with text
is used. If you want to call SwapFont yourself, you must build an
FMInput record and then use the returned pointer to access the
resulting FMOutpu't record.

Assembly-language note: The macro you invoke to call SwapFont
from assembly language is named _FMSwapFont.

COMMUNICATION BETWEEN QUICKDRAW AND THE FONT MANAGER

This section describes the data structures that allow QuickDraw and the
Font Manager to exchange information. lt also discusses the
communication that may occur between the Font Manager and the driver of
the device on which the characters are being drawn or printed. You can
skip this section if you want to change fonts, character style, and
font sizes by calling QuickDraw and aren't interested in the lower
level data structures and routines of the Font Manager. To understand
this section fully, you'll have to be familiar with device drivers and
the Device Manager. *** (Device Manager manual doesn't yet' exist.)

Whenever you call a QuickDraw routine that does anything with text,
QuickDraw requests information from the Font Manager about the
characters. The Font Manager performs any necessary calculations and
returns the requested information to QuickDraw. As illustrated in
Figure 3, this information exchange occurs via two data structures, a
font input record (type FMInput) and a font output record (type
FMOutput).

6/11/84 Rose-Hacker /FMGR/FONT.D

12 Font Manager Programmer's Guide·

•••••••• "1 ,. ...

.. '" '" '" ,. '" '" '" '" .. '" '" '" '"

..
.. p
-:-:':-:-:-:':,i

I ~ •

for all device~;
if t-ti gh -order by1e of dey ice fi e I d
isr(t (I

.-:-:-:-:':- .~ .. '" '" '" '" '" '" '" .. ,. '" '" '" '"
j ~ ~ Statuto cofl H

.. .. '" '"

~~~~ ~o.n!~~ . 
~ : Manager : ~ 
: : : : : : ; : : : : : : ; : L-. font character-
· .............. '''~~-~.. I--
:::;:::;::::::: ~ fzat.on table 
.. ............ .. .. .......... ... .. ............ .. .. .......... ... .. ............ .. .. .......... . .. ......... - .. .. .. .......... .. .. .. .. .. ~ .. .. .. .. .......... .. .. ........... .. .. ......... .. .. .. .. .. .. .. .. .. .. .......... .. " ............ .. .. .......... .. .. ............ .. 

. ........ . · ,. . '" . ,. . '" '" .......... '" · .......... '" '" 

~))~H1 
~ ~ ~ ~)~\~ i?~ ~ ! ~ 
~ : ~ Dr i ver ~: ~ .............. ................... .. .. .. '" ...... .. .. .. .. .. .. .. .. .. '" .... '" .. .. .. '" .. '" ...... .. ............. .. .. .. .. .. .. .. '" .............. .. .. .. .. .. .. '" .. .. .. .. .. .. .. '" .. '" '" '" .. '" .... .. ........ '" .. .. ............ .. ,. .......... .. 
'" .......... '" .. .. '" ........ .. .. ............ '" .. '" ...... '" .. .. .... '" '" '" .. .. .. ...... '" .. .. .. ............ .-.. .... '" .. '" .. 
'" '" .. '" '" .... '" .. .... '" ... .. 
.. .... 4 .... '" .. .. .......... '" .. .......... '" '" .. ...... '" .. .. '" ............ '" .. .......... .. .. ...... '" ... .. .. .......... .. .. ........... .. .. .. .. .. .. ~ .. .. .. .. ~ .. .. .. .. .. ......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. ................. .............. ................ .. .......... .. .. ............ .. .. ......... .. ................ .. .......... .. .. ............ .. 

.. ........ p .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. 

I final mOljification~; :~----'HnHHHHHj 

Figure 3. Communication About Fonts , 

First, QuickDraw pa~ses the Font Manager a font input record: 

TYPE FMInput = PACKED RECORD 
family: 
size: 
face: 
needBits: 
device: 
numer: 
denom: 

END; 

INTEGER; 
INTEGER; 
Style; 
BOOLEAN; 
INTEGER; 
Point; 
Point 

{font number} 
{font size} 
{character style} 
{TRUE if drawing} 
{device-specific information} 
{numerators of scaling factors} 
{denominators of scaling factors} 

The first three fields contain the font number, size, and character 
style that QuickDraw wants to use. The needBits field· indicates 
whether the characters actually will be drawn or not. If the 
characters are being drawn, all of the information describing the font, 
including the bit image comprising,the characters, will be read into 
memory. If the characters aren't being drawn·and there's a resource 
consisting of only the character widths and general font information, 
that resource will be read instead. 

The high-order byte of the device field contains a device driver 
reference number. From the driver reference number, the Font Manager 
can determine the optimum styli'stic variations on the font to produce 
the highest quality printing or drawing available on a device (as 
explained below). The low-order byte of the device field is ignored by 
the Font Manager but may contain information used by the device driver. 

The numer and denom fields contain the scaling factors to be used; 
numer.v divided by denom.v gives the vertical scaling, and numer.h 

6/11/84 Rose-Hacker /FMGR/FONT.n 



COMMUNICATION BETWEEN QUICKDRAW AND THE FONT MANAGER 13 

I 

divided by denom.h gives the horizontal scaling. 

The Font Manager takes the FMInput record and asks the Resource Manager 
for the font. If the requested size isn't available~ the Font Manager 
scales another size to match (as described previously). 

Then the Font Manager gets the font characterization table via the 
device field. If the high-order byte of the device field is 0, the 
Font Manager gets the font characterization table for the screen (which 
is stored in the Font Manager). If the high-order byte of the device 
field is rionzero, the Font Manager calls the status routine of the 
device driver having that. reference number, and the status routine 
returns a font characterization table. The status routine may use the 
value of the low-order byte of the device field to determine the font 
characterization table it returns. 

( note) 
If you want to make your own calls to the device driver's 

/ . 
status routine, the refNum parameter of the Status 
function must contain tHe driver reference number from 
the font input record's device field, the csCode 
parameter must be 8, and the csParam parameter must 
contain a pointer to the following: a pointer to where 
the device driver shouid put the font characterization 
table followed by 'an integer containing the value of the 
font input record's device field. 

Figure 4 shows the structure of a font characterization table and, on 
the right, the values it contains for the Macintosh screen and 
Imagewriter printer driver. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



14 Font Manager Programmer's Guide 

::;creen I magewr iter 

dots per vert i cal i nct-. on dev i ce 80 80 

dots per horizontal i ncrl on dev i ce ao 80 

4 bo I d character i ::;t i C3 0 .. 1 .• 1 0.. ? 
'-.. 

.., 
~ 

7 ital ic characteristics 1J 8., 1 1, c· 
L'} 

.-, 

.!. 

10 not used 0., OJ 0 0 .. 0, I) 

out line characte'r i 31 i cs 13 ~I •• 1, 1 5, 1, .-, 
r!.. 

16 shado\,ll ct-.aracter i s1 i cs 5.1 2, 2 5, "'"I 
'-, 4 

19 , condensed character i st i C:?, OJ OJ -1 OJ OJ -2 

22 extended character i 31 j cs 0.. OJ 1 0 .• 0 .. --, 
r!.. 

under line character i st i cs 1, 1.1 1 . 1J "". "::'.1 
,-, 
r!.. 

Figure 4. Font Characterization Table 

The first two words of the font characterization table contain the 
number of dots per inch on the- device. The remainder of the table 
consists of 3-byte triplets providing information about the different 
stylistic variations. For all but the triplet defining the underline 
characteristics: 

- The first byte in the triplet indicates which byte beyond the bold 
field of the FMOutput record (see below) is affected by the 
triplet. 

The second byte contains the amount to be stored in the affected 
field. 

- The third byte indicates the amount by which the extra field of 
the FMOutput record is to be incremented (starting from 0). 

The triplet defining the underline characteristics indicates the amount 
by which the FMOutput record's ulOffset, ulShadow, and ulThick fields 
(respectively) should be incremented. 

Based on the'information in the font characterization table, the Font 
Manager determines the optimum ascent, descent, and leading, so that 
the highest quality printing rir drawing available will be produced. It 
then stores this information in a font output record: 

6/11/84 Rose-Hacker /FMGR/FONT.O 



COMMUNICATION BETWEEN QUICKDRAW AND THE FONT MANAGER 15 

TYPE FMOu t pu t = PACKED RECORD 
errNum: INTEGER; {not used} 
fontHandle: Handle; {handle to font record} 
bold: Byte; {bold factor} 
italic: Byte; {italic factor} 
ulOff se t: Byte; {underline offset} 
ulShadow: Byte; {underline shadow} 
ulThick: Byte; {underline thickness} 
shadow: Byte; {shadow factor} 
extra: Signed Byte; {width of style} 
ascent: Byte; {ascent} 
descent: Byte; {descent} 
widMax: Byte; {maximum character width} 
leading: SignedByte; {leading} 
unused: Byte; {not used} 
numer: Point; {numerators of scaling factors} 
denom: Point {denominators of scaling factors} 

END; 

ErrNum is reserved for future use, and is set to 0. FontHandle is a 
handle to the font record of the font, as described in the next 
section. Bold, -italic, ulOffset, ulShadow, ulThick, and shadow are all 
fields that modify the way stylistic variations are done; .their values 
are taken from the font characterization table, and are used by 
QuickDraw. (You'll need to experiment with these values if you want to 
determine exactly how they're used.) Extra indicates the number of 
pixels that each ·character has been widened by stylistic variation. 
For example, using the ~alues shown in the rightmost column of Figure 
4, the extra field for bold italic characters would be 4. Ascent, 
descent, widMax, and leading are the same as the fields of the FontInfo 
record returned by the QuickDraw procedure GetFontInfo. Numer and 
denom contain the scaling factors. 

Just before returning this record to QuickDraw, the Font Manager calls 
the device driver's control routine to allow the driver to make any 
final modifications to the record. Finally, the font information is 
returned to QuickDraw via a pointer to the record, defined 'as follows: 

(note) 

TYPE FMOutPtr = -FMOutput; 

If you want to make your own calls to the ,device driver's 
control routine, the refNum parameter of the Control 
function must contain the driver reference number from 
the font input record's device field, ~he csCode 
parameter must be 8, and the csParam parameter must 
contain a pointer to the following: a pointer to the 
font output record followed by an integer containing the 
value of the font input record's device field. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



16 Font Manager Programmer's Guide 

FORMAT OF A FONT 

This section describes the data structure that defines a font; you need 
to read it only if you're going to define your own fonts with the 
Resource Editor *** doesn't yet exist *** or write your own font 
editor. 

Each character in a font is defined by pixels arranged in rows and 
columns. This pixel arrangement is called a character image; it's the 
image inside each of the character rectangles shown in Figure S. 

character 
origin 

character 
origin 

1- character width---. 
ascent line 

character 
rectangle 

base· line 

____ ......IL-...:.--..:..._ descent line-
1- image width..J 

,-- character width --, 
--:---- ascent line -

······~·······l·······l······· 

..................... 

character 
~-;--

rectangle 

base line 

'-- image width __ I descent line-

Figure 5. Character Images 

character 
height 

character 
height 

The base line is a horizontal line coincident with the bottom of each 
character, excluding descenders. The character origin is a point on 
the base line used as a reference location for drawing the character. 
Conceptually the base line is the line that the pen is on when it 
starts drawing a character, and the characer origin is the point where 
the pen 'starts drawing. 

The character, rectangle is a rectangle enclosing the character image; 
its sides are defined by the image width and the character height: 

6/11/84 Rose-Hacker /FMGR/FONT.D 



, / 

FORMAT OF A FONT 17 

- The image width is simply the horizontal extent of the character 
image, which varies among characters in-the font. It mayor may 
not include space on either side of the character; to minimize the 
amount of memory required to store the font, it should not include 
space. 

- The character height is the number of pixels from the ascent line 
to the descent line (which is the same for all characters in the 
font). - \ 

The image width is different from the character width, which is the 
distance to move the pen from this character's origin to the next while 
drawing--in other words, the image width plus the amount of blank space 
to leave before the next character. The character width may be ~, in 
which case the character that follows will be s~perimposed on this 
character (useful for accents, underscores, and so on). Characters 
whose image width is 0 (such as a space) can have a nonzero character 
width. 

Characters in a proportional font all have character widths 
proportional to their image width, whereas characters in a fixed-width 
font all have the same character width. 

Characters can kern; that is, they can overlap adjacent characters. 
The first character in Figure 5 above doesn't kern, but the second one 
kerns left. 

In addition to the terms used to describe individual characters, there 
are terms describing .features of the font as a whole (see Figure 6)., 

(:lscent I; ne 

recta~~7! ~ ····:f:::J:·:::f:::}:·]::···I.]:::::: 
······I·······I······-I-······j·····+······I······I·····. 

::::r:::,::::::I::::::r::::::.::::::I:::~:I:::::: 
--+-/1-~.~:~-";"1-~-;---;~~"""';'-1--- base Ii ne 

chlJrocter -' ~·····l·······l·······t·······r······l····· .. (·····l··· ... 
or"igin 

}. descent 
descent Ii ne 

Figure 6. Features of Fonts 

The font rectangle is somewhat analogous to a character rectangle. 
Imagine that all the character images in the font are superimposed with 
their origins coinciding. The smallest rectangle enclosing all the 
superimposed images is the font rectangle. 

The ascent is the distance from-the base line to the top of the font 
rectangle, and the descent is the distance from' the base line to the 
bottom of the font rectangle. 

6/11/84 Rose-Hacker /FMGR/FONT.n 



18 Font Manager Programmer's Guide 

The character height is the vertical extent of the font rectangle. The 
maximum character height is 127 pixels. The maximum width of the font 
rectangle is 254 pixels. 

The leading is the amount of blank space to draw between lines of 
single-spaced text--the number of pixels between the descent line of 
one line of text and the ascent line of the next line of text. 

Finally, for each character in a font there's a character offset. As 
illustrated in Figure 7, the character offset is simply the difference 
in position of' the character rectangle for a given character and the 
font rectangle. 

character 
--f--:H 

rectangle 

font 
rectangle 

character 
origin L.t' 

character 
offset 

Figure 7. Character Offset 

Every font has a bit image that contains a complete sequence of all its 
character images (see Figure 8 on the following page). The number of 
rows in the bit image is equivalent to the character height. The 
character images in the font are stored in the bit image as though the 
characters were laid out horizontally (in ASCII order, by convention) 
along a common base line. 

The bit image doesn't have to contain a character image for every 
character in the font. Instead, any characters marked as being missing 
from the font are omitted from the bit image. When QuickDraw tries to 
draw such 'characters, a missing symbol is drawn instead. The missing 
symbol is stored in the bit image after all the other character images. 

(warning) 
Every font must have a missing symbol. The characters 
with ASCII codes ~ (NUL), $~9 (horizontal tab), and $~D 
(return) must not be missing from the font; usually 
they'll be zero-length, but you may want to store a space 
for the tab character. 

6/11/84 Rose-Hacker /FMGR/FONT.n 



Figure 8. 

6/11/84 Rose-Hacker 

FORMAT OF A FONT 19 

c) 
::r 

=r~ 
([I co 

, _____ 0- ~ 
":::J'ro----
~ ~ 

r···············il~·~·~·~·~·~························· .. ~ 
: ~. . ..... 
~ ~:: .. :: .. 
: :.. . .. . 
: :.. . .. . 
: :.. . .. . 
: :.. . .. . 
; :.. . .. . 
: :.. . .. . . s· ..... . ! : •• :: •• 
~ .: .. 
: ~. 
;~. .. 
::/11. •• 
j ;::::::::::::::::: 
: ~. .... 
: ;: :::: 
: ~. .... 
; :: :::: 
: jI. •••• : I:.. ..:: ••• ::. : : ........ . .. . 
~:. ::. . .. . 

• • •• •••• 
~. ..:: .. :: 
•• •••••• •• • ••• •••••••• •••••••• •• • ••• •• •••••• •• •••• •• : ..... . · ... . •• ... ..:: 
i
~:::· .... • ••• I.:: 
• ••• •• •• ••• •• ~. ... .. 

~. ... .. 
;II. ••• •• 
;II. ••••• 

J: .::. == 
.~~:: -I:::: 

i .~~ ••••• • ••• 
: ........ . 
: ... . .. 
: .. .. •• •• •• •• •• •• a. •• 
: .. .. :.. . . ••••••••••••• ••••••••••••• •• •• • • •••••••••••••••••• •••••••••••••••••• : .. ' .. 
: .. .. •• •• •• •• •• •• •• •• : .. .. 
; ... . .. 
: ........ . 

::. .::!':' ••••• 
.. :; .. 

: ........ . .. : .......... . ... : ... . . .. :.. .. 
•• •• •• •• •• •• I. • • .. : .. ... : .. . . ................ . _ ........... . 

: .. ••• • •• •••• • •• ••••• •• •• ••• •• •• ••• •• •• ••• •• •• ••••• •• • •••• •• • •••• ••• • ••• ••• • •• •••••••••••••••••• • • • • • • • • 
--~i.-------'~= : 7. • • • • • '. . :: : : 

: ................. ,. ...................... " .... " .. " ...... : 

Partial Bit Image for a Font 

. /FMGR/FONT. D 



20 Font Manager Programmer's Guide 

Font Records 

The information describing a font is contained in a data structure 
called a font record, which contains the following: 

- the font type (fixed-width or proportional) 

the ASCII code of the first character and the last character in 
the font 

the maximum character width and maximum amount any character kerns 

- the character height, ascent, descent, and leading 

- the bit image of the font 

- a location table, whi~h is an array of words specifying the 
location of each character image within the bit image 

- an offset/width table, which is an array of words specifying the 
character offset and character width for each character in the 
font. 

For every character, the location table contains a word that specifies 
the bit offset to the location of that character's image in the bit 
image. The entry for a character missing from the font contains the 
same value as the entry for the next character. The last word of the 
table contains the offset to one bit beyond the end of the bit image 
(that is, beyond the character image for the missing symbol). The 
image width of each character is determined from the location table by 
subtracting the bit offset to that character from the bit offset to the 
next character in the table. 

There's also one word in the offset/width table for every character: 
th~ high-order byte specifies the character offset and the low-order 
byte specifies the character width. Missing characters are flagged in 
this table by a word value of -1. The last word is also -1, indicating 
the end of the table. 

Figure 9 illustrates a sample location 'table and offset/width table 
corresponding to the bit image in Figure 6. 

6/11/84 Rose-Hacker /FMGR/FONT.O 



word 0 

~. 

,. 
L 

320 

336 
:351 

351 

:351 
" 
351 

351 

351 

:351 
364 

650 
664 
67~, 

Be9 

location 
table 

~ .t."7 

~. 

,. 
~ 

FORMAT OF A FONT 21 

0 20 II~." 

0 15 IIBII 
/T 

.: 

0 16 IIY" 

(I 15 IIZft 

-1 

. -1 

-1 

-1 
ro i :~s ing character::; 

-1 

-1 
-

0 1'j ... 1 
Uall 

0 16 Ub ll 

/T 
.: 

0 14 

0 11 
(I 16 dummy image 

-1 

offset I \I.ti dth 
I 

table 

Figure 9. Sample Location Table and Offset/Width Table 

A font record is referred to by a handle that you can get by calling 
the SwapFont function or the Resource Manager function GetResource. 
The data type for a font record is as follows: 

6/11/84 Rose-Hacker /FMGR/FONT.D 



22 Font Manager Programmer's Guide 

TYPE FontRec = RECORD 
fontType: 
firstChar: 
lastChar: 
widMax: 
kernMax: 
nDescent: 
fRectWid: 
chHeight: 
owTLoc: 
ascent: 
descent: 
leading: 
rowWords: 

(note) 

{ 

{ 

{ 

bitlmage: 

locTable: 

owTable: 

END; 

INTEGER; {font type} 
INTEGER; {ASCII code of first character} 
INTEGER; {ASCII code of last character} 
INTEGER; {maximum character width} 
INTEGER; {maximum character kern} 
INTEGER; {~egative of descent} 
INTEGER; {width of font rectangle} 
INTEGER; {character height} 
INTEGER; {offset to offset/width table} 
INTEGER; {ascent} 
INTEGER; {descent} 
INTEGER; {leading} 
INTEGER; {row width of bit image / 2} 
ARRAY [l •• rowWords, 1 •• chHeight] OF INTEGER; } 

{bit image} 
ARRAY [firstChar •• lastChar+2] OF INTEGE~; } 

{location 'table} 
ARRAY [firstChar •• lastChar+2] OF INTEGER; } 

{offset/width table} 

The variable-length arrays appear as comments because 
they're not valid Pascal syntax; they're used only as 
conceptual ai~. '. 

The fontType field must contain one of the following predefined 
constants: 

CONST propFont 
fixedFont 

= $9000; 
$B000; 

{proportional font} 
{fixed-width font} 

The values in the widMax, kernMax, nDescent, fRectWid, chHeight, 
ascent, descent, and leading fields all specify a number of pixels. 
KernMax indicates the largest number of pixels any character kerns, and 
should always be negative or 0, becau~e kerning is specified by 
negative bumbers (the kerned pi~els-are to the left of the character 
origin). NDescent must be set to the negative o~ the descent. 

The owTLoc field contains a word offset from itself to the offset/width 
table; it's equivalent to 

4 + (rowWords * chHeight) + (lastChar - firstChar + 3) + 1 

(warning) 
Remember, the offset and row width in a font record are 
given in words, not bytes. 

Normally, the Resource Editor will change the fields in a font record 
for you. You shouldn't have to change any fields unless you edit the 
font without the aid of the Resource Editor. 

6/11/84 Ros~-Hacker /FMGR/FONT.D 



FORMAT OF A FONT 23 

Assembly-language note: The global variable romFont~ contains a 
handle to the font record for the system font. 

Font Widths 

A resource can be defined that consists of only the character widths 
and general font information--everything but the font's bit image and 
location table. If there is such a resource, it will be read in 
whenever QuickDraw doesn't need to draw the text, such as when you call 
one of the routines CharWidth, HidePen, or OpenPicture (which calls 
HidePen). The FontRec data type described above, minus the rowWords, 
bitlmage, and locTable fields, reflects the structure of,this type of 
resource. The owTLoc field will contain 4, and the fontType field will 
contain the following predefined constant: 

CONST fontWid = $ACB~; {font width data} 

How QuickDraw Draws Text . 

This section provides a conceptual discussion of the steps QuickDraw 
takes to draw characters (without scaling or stylistic variations such 
as bold and outline). Basically, QuickDraw simply copies the character 
image onto the drawing area at a" specific location. 

1. Take the initial pen location as the character origin for the 
first character. 

2. Check the word in the offset/width table for the character to see, 
if it's -1. The word to check is entry (charCode - firstChar), 
where charCode is the ASCII code of the character to be drawn. 

2a. The character exists if the entry in the offset/width table 
isn't -1. Determine the character offset and character width 
from the bytes of this same word. Find the character image 
at the location in the bit image specified by the location 
table. Calculate the image width by subtracting this word 
from the succeeding word in the location table. Determine 
the number of pixels the character kerns by subtracting 
kernMax from the character offset. 

'2b. The character is missing if the entry in the offset/width 
table is -1; information about the missing symbol is needed. 
,Determine the missing symbol's character offset and character 
width from the next-to-Iast word in the offset/width table. 
Find the missing symbol at the location in the bit image 
specified by the next~to-last word in the location table 
(lastChar - firstChar + 1). Calculate the image width by 

6/11/84 Rose-Hacker /FMGR/FONT.n 



24 Font Manager Programmer's Guide 

subtracting the next-to-Iast word in the location table from 
the last word (lastChar - firstChar + 2). Determine'the 
number of pixels the missing symbol kerns by subtracting 
kernMax from the character offset. 

3. 1 Move the pen to the left the number of pixels that the character 
kerns. Move the pen up the number of pixels specified by the 
ascent. 

4. If the fontType field is fontWid, skip to step 5; otherwise, copy 
each row of the character image onto the screen or paper~ one row 
at 'a time. The number of bits to copy from each word is given by 
the image width, and the number of words is given by the chHeight 
field. 

5. If the fontType field is fontWid, move the pen to the right the 
number of pixels specified by the character width. If fontType is 
fixedFont, move the pen to the right the number of pixels 
specified by the widMax field. 

6. Return to step 2. 

FONTS IN A RESOURCE FILE 

This section contains details about fonts in resource files that most 
programmers need not be concerned about, since they can use the 
Resource Editor *** eventually *** to define fonts. It's included here 
to give background information to those who are interested. 

Every size of a font is stored as a separate resource. The resource 
type for a font is 'FONT'. The resource data for a font is simply a 
font record: 

6/11/84 Rose-Hacker /FMGR/FONT.D 



Number of bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
n bytes 

m bytes 

m bytes 

FONTS IN A RESOURCE FILE 25 

Contents 
FontType field of font record 
FirstChar field of font record 
LastChar field of font record 
WidMax field of font record 
KernMax field of font record 
NDescent field of font record 
FRectWid field of font record 
ChHeight field of font record 
OWTLoc field of font record 
Ascent field of font record 
Descent field of font record 
Leading field of font record 
RowWords field of font record 
Bit image of font 

n = 2 * rowWords * chHeight 
Location table of font 

m = 2 * (lastChar - firstChar + 3) 
Offset/width table of font 

m = 2 * (lastChar - firstChar +·3) 

The resource type 'FWID' is used to store only the character widths and 
general information for a font; its resource data is a font record 
without the rowWords field, bit image, and location table. 

As shown in Figure 10, the resource ID of a font is composed of two 
parts: bits 7 to 15 are the font number, and bits 0 to 6 are the font 
size. Thus the resource ID corresponding to a given font number and 
size is 

(128 * font number) + font size 

15 7 6 0 

I font number font size 

Figure 10. Resource ID for a Font 

Since 0 is not a valid font size, the resource ID having 0 in the size 
field is used to.provide only the name of the font: the name of the 
resource is the font name. For example, for a font named Griffin and 
numbered' 400, the resource naming the font would have a resource ID of 
51200 and the resource name 'Griffin'. Size 10 of that font would be 
stored in a resource numbered 51210. 

Font numbers 0 through 127 are reserved for fonts provided by Apple, 
and font numbers 128 through 383 are reserved for assignment, by Apple, 
to software vendors. Each font will be assigned a unique number, and 
that font number should be used to identify only that font (for 
example, font number 9 will always be Toronto). Font numbers 384 
through 511 are available for your use in whatever way you wish. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



26 Font Manager Programmer's Guide 

SUMMARY OF THE FONT MANAGER 

Constants 

CONST { Font numbers } 

systemFont 0; {system font} 
applFont 1 ; {application font} 
new York = 2-, 
geneva = 3; 
monaco 4-, 
venice = 5-, 
london 6; 
athens 7 -, 
sanFran = 8; 
toronto 9; 

{ Font types } 

propFont 
fixed Font 
fontWid 

Data Types 

= $9000; 
$B000; 

= $ACB0; 

{proportional font} 
{fixed-width font} 
{font width data} 

TYPE FMInput = PACKED RECORD 
family: INTEGER; {font number} 
size: INTEGER; {'font size} 
face: Style; {character style} 

{TRUE if drawing} needBits: BOOLEAN; 
device: INTEGER; 
numer: 
denom: 

Point; 
Point 

{device-specific information} 
{numerators of scaling factors} 
{denominators of scaling factors } 

END; 

6/11/84 Rose-Hacker /FMGR/FONT.S 



SUMMARY OF THE FONT MANAGER 27 

FMOutPtr = "FMOutput; 
FMOutput PACKED RECORD 

errNum: 
fontHandle: 
bold: 
italic: 
ulOffset: 
ulShadow: 
ulThick: 
shadow: 
extra: 
ascent: 
descent: 
widMax: 
leading: 
unused: 

INTEGER; 
Handle; 
Byte; 
Byte; 
Byte; 
Byte; 
Byte; 
Byte; 
SignedByte; 
Byte; 
Byte; 
Byte; 
SignedByte; 
Byte; 

{not used} 
{handle to font record} 
{bold factor} 
{italic factor} 
{underline offset} 
{underline shadow} 
{underline thickness} 
{shadow factor} 
{width of style} 
{ascent} 
{descent} 
{maximum character width} 
{leading} 
{not used} 

numer: 
denom: 

Point; 
Point 

{numerators of scaling factors} 
{denominators of scaling factors} 

END; 

FontRec RECORD 
fontType: INTEGER; {font type} 
firstChar: INTEGER; . {ASCII code of first character} 
lastChar: INTEGER; {ASCII code of last character} 
widMax: INTEGER; {maximum character width} 
kernMax: INTEGER; {maximum character kern} 
nDescent: INTEGER; {negative of descent} 
fRectl1ax: INTEGER; {width of font rectangle} 
chHeight: INTEGER; {character height} 
owTLoc: INTEGER; {offset tu offset/width table} 
ascent: INTEGER; {ascent} 
descent: INTEGER; {descent} 
leading: INTEGER; {leading} 
rowWords: INTEGER; {row width of bit image / 2} 

{ bitImage: ARRAY [1.~rowWords, 1 •• chHeight] OF INTEGER; } 
{bit image} 

{ locTable: ARRAY [firstChar •• lastChar+2] OF INTEGER; } 
{location table} 

{ owTable: ARRAY [firstChar •• la~tChar+2] PF INTEGER } . 
{offset/width table) 

END; 

Routines 

Initializing the Font Manager 

PROCEDURE InitFonts; 

6/11/84 Rose-Hacker /FMGR/FONT.S 



28 Font Manager Programmer's Guide 

Getting Font Information 

PROCEDURE GetFontName (fontNum: INTEGER; VAR theName: Str255); 
PROCEDURE GetFNum '(fontName: Str255; VAR theNum: INTEGER); 
FUNCTION RealFont (fontNum: INTEGER; size: INTEGER) : BOOLEAN; 

Keeping Fonts in Memory 

PROCEDURE SetFontLock (lockFlag: BOOLEAN); 

Advanced Routine 

· FUNCTION SwapFont (inRec: 'FMInput) FMOutPtr; 

Assembly-Language Information 

Constants 

; Font numbers 

sysFont .EQU 
applFont .EQU 

· new York .EQU 
geneva .EQU 
monaco .EQU 
venice .EQU 
london .EQU 
athens .EQU 
sanFran .EQU 

· toronto .EQU 

; Font types 

propFont .EQU 
fixed Font .EQU 
fontWid .EQU, 

~ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

;system font 
;application font 

~ 

$9000 
$B000 
$ACB0 

;proportional font 
;fixed~width font 
;font width data 

; Control and Status call code 

fMgrCtll .EQU 8 ;code used to get and modify font 
; characterization table 

Font Input Record Data Structure 

fmInFamily 
fmInSize 
fmInFace 

6/11/84 Rose-Hacker 

Font number 
Font size 
Character style 

/FMGR/FONT.S 



SUHHARY OF THE FONT MANAGER 29 

fmlnNeedBits 
fmlnDevice 
fmlnNumer 
fmlnDenom 

TRUE if drawing 
Device-specific information 
Numerators of scaling factors 
Denominators of scaling factors 

Font Output Record Data Structure 

*** these offsets don't exist yet *** 
fmOutError Not used 
fmOutFontHandle Handle to font record 
fmOutBold Bold factor 
fmOutltalic 
fmOutUIOffset 
fmOutUIShadow 
fmOutUIThick 
fmOutShadow 
fmOutExtra 
fmOutAscent 
fmOutDescent 
fmOutWidMax 
fmOutLeading 
fmOutUnused 
fmOutNum~r 
fmOutDenom 

Italic factor 
Underline offset 
Underline shadow 
Underline thickness 
Shadow factor 
Width of style 
Ascent 
Descent 
Maximum character width 
Leading 
Not used 
Numerators of scal~ng factors 
Denominators of scaling factors 

Font Record Data Structure 

fFormat 
fMinChar 
fMaxChar 
fMaxWd. 
fBBOX 
fBBOY 
fBBDX 
fBBDY 
fLength 
fAscent 
fDescent 
fLeading 
fRaster 

Font type 
ASCII code of first character 
ASCII code of last character 
Maximum character width 
Maximum character kern 
Negative of descent 
Width of font rectangle 
Character height 
Offset to offset/width table 
Ascent 
Descent 
Leading 
Row width of bit image / 2 

Sp.ecial Macro Names 

Routine name 
GetFontName 
SwapFont 

Macro name 
GetFName 

_FMSwapFont 

6/11/84 Rose-Hacker /FMGR/FONT.S 



30 Font Manager Programmer's Guide 

Variables 

Name 
apFontID 
fScaleDisable 
romFont0 

Size 
2 bytes 
1 byte 
4 bytes 

6/11/84 Rose-Hacker 

Contents 
Font number of application font 
Nonzero to disable scaling 
Handle to font record for system font 

/FMGR/FONT.S 



GLOSSARY 31 

GLOSSARY 

application font: The font your application will use unless you 
specify otherwise--Geneva, by default. 

ascent: The vertical distance from a font's base line to its ascent 
line. 

base line: A horizontal line coincident with the bottom of each 
character in a font, excluding descenders. 

character height: The vertical distance from a font's ascent line to· 
its descent line. 

character image: The bit image that defines a chqracter. 

character offset: The horizontal separation between a character 
rectangle and a font·rectangle. 

character orLg1n: The point on a base line used as a reference 
location for drawing a character. 

character rectangle: A rectangle enclosing an entire character image. 
Its sides are defined by the image width and the character height. 

character width: The distance to move the pen from one character's 
origin to the next; equivalent to the image width plus the amount of 
blank space to leave before the next character. 

descent: The vertical distance from a font's base line to its descent 
line. fixed-width font: A font whose characters all have the same 
width. 

font: The complete set of characters of one typeface. 

font characterization table: A table of parameters in a device driver 
that specifies how best to adapt fonts to that device. 

font number: The number by which you identify a font to QuickDraw or 
the Font Manager. 

font record: A data structure that contains all the information 
describing a font. 

font rectangle: The smallest .rectangle enclosing all the character 
images in a font, if the images were all superimposed over the same 
character origin. 

font size: The size of a font in points; equivalent to the distance 
between the ascent line of one line of text and the ascent line of the 
next of line of single-spaced text. 

6/11/84 Rose-Hacker /FMGR/FONT.G 



32 Font Manager Programmer's Guide 

image width: The horizontal extent of a character image. 

kern: To draw part of a character so that it overlaps an adjacent 
character. 

leading: The amount of blank vertical space between the descent line 
of one line of 'text and the ascent line of the next line of 
single-spaced text. 

location table: An array of words' (one for each character in a font) 
that specifies the location of each character's image in the font's bit 
image. 

missing symbol: A character to be drawn in case of a request to draw a 
character that's missing from a particular font. 

offset/width table: An array of words that specifies the character 
offsets and character widths of all characters in a font. 

point: The intersection of a horizontal grid line and a verti~al grid 
line on the coordinate plane, defined by a horizontal and a vertical 
coordinate; also, a typographical term meaning approximately 1/72 inch. 

proportional font: A font whose characters all have character widths 
that are proportional to their image width. 

scaling factor: A value, given as a fraction, that specifies the 
amount a character should be 'stretched or shrunk before it's· drawn. 

style: Same as character style. 

system font: The font that the system uses (in menus, for example). 
Its name is Chicago. 

system font size: The size of text drawn by the system in the system 
font; 12 points. 

6/11/84 Rose-Hacker /FMGR/FONT.G 



MACINTOSH USER EDUCATION 

The Toolbox Event Manager: A Programmer's Guide 

See Also: Inside Macintosh: A Road Map 
Macintosh Memory Management: An Introduction 
Macintosh User Interface ~uidelines 

/EMGR/EVENTS 

Programming Macintosh Applications in Assembly Language 
The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
Macintosh Packages: A Programmer's Guide 
The Operating System Event Manager: A Programmer's Guide 
The File Manager: A Programmer '_s Guide 
The Device Manager: A Programmer's Guide 

Modification History: First Draft (ROM 4) Steve Chernicoff 
Second Draft (ROM 7) Caroline Rose & 

6/20/83 

Brent Davis 11/19/84 

ABSTRACT 

This manual describes the Event Manager, the part of the Macintosh User 
Interface Toolbox that allows your application to monitor the user's 
actions·, such as those involving the mouse, keyboard, and keypad. The 
Event Manager is also used by other parts of the Toolbox; for instance, 
the Window Manager uses events to coordinate the ordering and display 
of windows on the screen. 

Summary of significant changes and additions since last draft: 

- PostEvent, FlushEvents, and SetEventMask have been moved to the 
Operating System Event Manager manual. The section on defining a 
nonstandard keyboard configuration was incorrect and has been 
removed; an accurate version of it will be included in the next 
draft of the Operating System Event Manager manual. 

- The changeFlag bit of the modifiers field of an event record is no 
longer documented; it's unreliable and should not be used. 

- Functions GetDblTime and GetCaretTime have been added (page 24). 

- Details have been added to GetNextEvent (page 21), GetKeys (page 
24) and the sections on keyboard events (page 7), event records 
(page 10), using the Event Manager (page 15), and journaling (page 
24) • 



2 Toolb~x Event Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Toolbox Event Manager 
4 Event Types 
6 Priority of Events 
7 Keyboard Events 

11 Event Records 
11 Event Code 
12 Event Message 
14 Modifier Flags 
15 Event Masks 
17 Using the Toolbox Event Manager 
18 Responding t~ Mouse Events 
19 Responding to Keyboard Events 
19 Responding to Activate and Update Events 
20 Responding to Disk-Inserted Events 
20 Other Operations 
21 Toolbox Event Manager Routines 

'21 Accessing Events 
23 Reading th~ Mouse 
24 Reading the Keyboard and Keypad 
24 Miscellaneous Routines 
25 The Journaling Mechanism 
26 Writing Your Own Journaling Device Driver 
28 Summary of the Toolbox Event Manager 
31 Glossary 

Copyright (c) 1984 Apple Computer Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Event Manager, the part of the Macintosh User 
Interface Toolbox that allows your application to monitor the user's 
actions, such as those involving the mouse, keyboard, and keypad. 
*** Eventually it will become part of the comprehensive Inside 
Macintosh manual. *** The Event Manager is also used by other parts of 
the Toolbox; for instance, the Window Manager uses events to coordinate 
the ordering and display of windows on the screen. 

, There are actually two Event Managers: one in the Operating System and 
one in the Toolbox. The Toolbox Event Manager calls the Operating 
System Event Manager and serves as an interface between it and your 
application; it also adds some features that aren't present at the 
Operating System level, such as,the window management facilities 
mentioned above.' This manual describes the Toolbox Event Manager, 
which is the one your application will ordinarily deal with. All 
references to "the Event Manager" should be understood to refer to the 
Toolbox Event Manager. For information on the Operating System's Event 
Manager, see the Operating System Event Manager manual. 

(note) 
Most of the constants and data types presented in this 
manual are actually defined in the Operating System Event 
Manager; they're explained here because they're essential 
to understanding the Toolbox Event Manager. 

Like all Toolbox documentation, this manual assumes you're familiar· 
with Lisa Pascal and the information in the following manuals: 

- Inside Macintosh: ! Road Map 

- Macintosh User Interface Guidelines 

- Macintosh Memory Management: An Introduction 

- Programming Macintosh Applications in Assembly Language, if you're 
using assembly language 

You should also be familiar with: 

- resources, as documented in the Resource Manager manual 

- the basic concepts and data structures behind QuickDraw 

ABOUT THE TOOLBOX EVENT MANAGER 

The Toolbox Ev~nt Manager is your application's link to its user. 
Whenever the user presses the mouse button, types on the keyboard or 
keypad, or inserts a disk in a disk drive, your application is notified 
by means of an event. A typical Macintosh application program is event-

11/19/84 Rose-Davis /EMGR/EVENTS.2 



4 Toolbox Event Manager Programmer's Guide 

driven: It decides what to do from moment to moment by asking the 
Event Manager for events and responding to them one by one in whatever 
way is appropriate. 

Although the Event Manager's primary purpose is to monitor the user's 
actions and pass them to your application in an orderly way, it also 
serves as a convenient mechanism for sending signals from one part of 
your application to another. For instance, the Window Manager uses 
events to coordinate the ordering and display of windows as the user 
activates and deactivates them and moves them around on the screen. 
You can also define your own types of events and use them in any way 
you wish. 

Most events waiting to be processed are kept in the event queue, where 
they were stored (posted) by the Operating System Event Manager. The 
Toolbox Event Manager retrieves events from this queue jor your 
application and also reports other events that aren't kept in the 
queue, such as those related to windows. In general, events are 
collected from a variety of sources and .reported to your application on 
demand, one at a time. Events aren't necessarily reported in the order 
they occurred; some have a higher priority than others. 

There are several different types of ev~nts. You can restrict some 
Event Manager routines to apply only to certain event types, in effect 
disabling the other types. 

Other operations your application can perform with Event Manager 
routines include: 

- directly reading the current state of the keyboard, keypad, and 
.mouse button 

- monitoring the location of the mouse 

- finding out how much time has elapsed since the system was last 
started up 

The Event Manager also provides a journaling mechanism, which enables 
events to be fed to the Event Manager from a source other than the 
user. 

EVENT TYPES 

Events are of various types, depending on their origin and meaning. 
Some report actions by the user; others are generated by the Window 
Manager, by device drivers, or by your application itself for its own 
purposes. Some events are handled by the system before your 
application ever sees them; others are left for your application to 

. handle in its own way. 

The most important event types are those that record actions by the 
user: 

,11/19/84 Rose-Davis /EMGR/EVENTS.2 



EVENT TYPES 5 

- Mouse-down and mouse-~ events occur when the user presses or 
releases the mouse button. 

- Key-down and key-~ events occur when the user presses or releases 
a key on the keyboard or keypad. Auto-key events are generated 
when the us~r holds down a repeating' key. Together, these three 
event types are called keyboard events. 

- Disk-inserted events occur when the user inserts a disk into a 
disk drive or takes any other action that requires a volume to be 
mounted (as described in the File Manager manual). For example, a 
hard disk that contains several volumes may' also post a disk
inserted event. 

(note) 
Mere movements of the mouse are not reported as events. 
If necessary, your application can keep track of them by 
periodically asking the Event Manager for the current 
location of the mouse. 

The following event types are generated by the Window Manager to 
coordinate the display of windows on the screen: 

- Activate events are generated whenever an inactive window becomes 
active or vice versa. They generally occur in pairs (that is, one 
window is deactivated and another activated at the same time). 

- Update events occur when all or part of a window's contents need 
to be drawn or redrawn, usually as a result of the user's opening, 
closing, activating, or moving a window. 

Another event type (device driver event) may be generated by device 
drivers in certain situations; for example, a driver might be set up to 
report an event when its transmission of data is interrupted. The 
documentation for the individual drivers will tell you about any 
specific device driver events that may occur. 

A network event may be generated by the. AppleBus Manager; for details, 
see the AppleBus Manager manual *** (doesn't yet exist) ***. 

In addition, your application can define as many as four event types of 
its own and use them for any desired purpose. 

(note) 
You place application-defined events in the event queue 
with the Operating System Event Manager procedure 
PostEvent. See the Operating System Event Manager manual 
for details. 

One final type of event is the null event, which is what the Event 
Manager returns if it has no other events to report. 

11/19/84 Rose-Davis /EMGR/EVENTS.2 



6 Toolbox Event Manager Programmer's Guide 

PRIORITY OF, EVENTS 

The event queue is a FIFO (first-in-first-out) list--that is, events 
are retrieved from the queue in the order they were originally posted. 
However, the way th~t various types of events are generated and 
detected causes some events to have higher priority than others. 
(Remember, not all events are kept in the event queue.) Furthermore, 
when you ask the Event Manager for an event, you can specify particular 
types that are of interest; doing so can cause some events to be passed 
over in favor of others that were actually posted later. The following 
discussion is limited to the event types you've specifically 'requested 
in your Event Manager call. 

The Event Manager always returns the highest-priority event available 
of the requested types. The priority ranking is as follows: 

1. activate (window becoming inactive before window becoming active) 

2. mouse-down, mouse-up, key-down, key-up, disk-inserted, network, 
device driver, application-defined (all in FIFO order) 

3. auto-key 

4. update (in front-to-back order of windows) 

5. null 

Activate events take priority over all others; they're detected in a 
special way, and are never actually placed in the event queue. The 
Event Manager checks for pending activate events before looking in the 
event queue, so it will always return such an event if one is 
available. Because of the special way activate even~s are detected, 
there can never be more than two such events pending at the same time; 
at most there will be one for a window becoming inactive followed by 
another for a window becoming active. 

Category 2 includes most of the event types. Within this category, 
events are retrieved from the queue in the order they were posted. 

If no event is available in categories 1 and 2, the Event Manager 
reports an auto-key event if the appropriate conditions hold for one. 
(These conditions are described in detail in the next section.) 

Next in priority are update events. Like activate events, these are 
not placed in the event queue, but are detected in another way. ~f no 
higher-priority event is available, the Event Manager checks for 
windows whose conte?ts need to be drawn. If it finds one, it generates 
and returns an update event for that window. Windows are checked in 
the order in which they're displayed on the screen, from front to back, 
so if two or more windows need to be updated, an update event will be 
generated for the frontmost such window. 

11/19/84 Rose-Davis /EMGR/EVENTS.2 



PRIORITY OF EVENTS 7 

Finally, if no other event is available, the Event Manager returns a 
null event. 

(note) 
The event queue'has a capacity of 20 events. If the 
queue should become full, the Operating System Event 
Manager will begin discarding old events to make room for ' 
new ones as they're posted. The events di~carded are 
always the oldest ones in the queue. Advanced 
programmers can configure the capacity of the event queue 
in the system startup information stored on a volume; for 
more information, see 'the section "Data Organization on 

'Volumes" in the File Manager manual. *** No more 
information is given there yet, but it will be included 
in the next draft of that manual.*** 

KEYBOARD EVENTS 

The character keys on the Macintosh keyboard and optional keypad 
generate key-down and key-up events when pressed and released; this 
includes all keys except Shift, Caps Lock, Command, and Option, which 
are called modifier keys. (Modifier keys are treated specially, as 
described below, and generate no keyboard events of their own.) In 
addition, an auto-key event is posted whenever all of the following 
conditions apply: 

- Auto-key events haven't been disabled. (This is discussed further 
under "Event Masks" below.) 

- No higher-priority event is available. 

- The user is currently holding down a character key. 

- The appropriate time interval (see below) has. elapsed since the 
last key-down or auto-key event. 

Two different time intervals are associated with auto-key events. The 
first auto-key event is generated after a certain initial gelay has 
elapsed since the original key-down event (that is, since the key was 
originally pressed); this is called the auto-key threshold. Subsequent 
auto-key events are then generated each time a cereain repeat interval 
has elapsed since the last such event; this is called the auto-key . 
rate. The default values are 16 ticks (sixtieths of a second) for the 
auto-key threshold and four ticks for the auto-key rate. The user can 
change these values with the Control Panel desk accessory, by adjusting 
the keyboard touch and the rate of repeating keys. 

11/19/84 Rose-Davis /EMGR/EVENTS.2 



8 Toolbox Event Manager Programmer's Guide 

Assembly-Ianguage~: The current values for the auto-key 
threshold and rate are stored in the global variables KeyThresh 
and KeyRepThresh, respectively. 

When the user presses, holds down, or releases a character key, the 
character generated by that key is identified internally with a 
character code. Character codes are given in the extended version of 
ASCII (the-x;erican Standard Code for Information Interchange) used by 
the Macintosh. A table 'showing the character codes for the standard 
Macintosh character set appears in Figure 1 on the following page. All 
character codes are given in hexadecimal in this table. The first 
digit of a character's hexadecimal value is shown at the top of the 
table, the second down the left side. For example, character code $47 
stands for "G", which appears in the table at the intersection of 
column 4 and row 7. 

Macintosh, the owner's guide, describes the method of generating the 
printing characters (codes $20 through $D8) shown in Figure 1. Notice 
that in addition to the regular space character ($20) there's a 
nonbreaking space ($CA), which is generated by pressing the space bar 
with the Option key down. 

Nonprinting or "control" characters ($00 through $IF, as well as $7F) 
are identified in the table by their traditional ASCII abbreviations; 
those that are shaded have no special meaning on the Macintosh and 
cannot normally be generated from the Macintosh keyboard or keypad. 
Those that can be generated are listed below along with the method of 
generating them: 

Code 
$03 
$08 
$09 
$0D 
$lB 
$IC 
$1D 
$1E 
$1F 

Abbreviation 
ETX 
BS 
HT 
CR 
ESC 
FS 
GS 
RS 
US 

11/19/84 Rose-Davis 

Key 
Enter key on keyboard or keypad 
Backspace key on keyboard 
Tab key on keyboard 
Return key on keyboard 
Clear key on keypad 
Left arrow key on keypad 
Right arrow key on keypad 
Up arrow key on keypad 
Down arrow key on keypad 

/EMGR/EVENTS.2 



Sfcond 
dlgit First digit 

KEYBOARD EVENTS 9 

1 0 2 3 4 5 6 7 8 gAB C D E 

a 
?q~f: ~.~ ~ ::: 1 ............... : : 1 
........... ,. 

BS 
8 

9 
HT 

CAN-: 

............ ...... ..... . 

( 

) 

4 
5 
6 
7 
8 
9 

Y.~ ::::: ESC 
B ...... + 

FF:-:::' FS 
C < 
D CR GS 

E :::::: > 
51:::::: U5 

F .... / ? 

@ p , 

A Q a 
B R b 

c s c 
D T d 

E U e 
F V f 

G W g 
H X h 

I Y 

J Z J 
K [ k 

L \ I 
M ] ·m 

n 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 

z 
{ 

I 
} 

A 

N 
o 
.. 

U 
, 
a 
, 
a 
..... 

a 
a 
,.., 

a 
o a 
~ 
.. 
e N 

o ~.~~::: ' o ...... e 

A 

e 
e 
'" 1 
, 
1 
..... 

1 

1 
,." n 
, 
a 
, 
o 
,... 

o 
.. 
o 
,." 

o 
'" u 
, 
u 
,... 

u 
.. 

u 

t 

o 

¢ 

§ 

• 
I3 
® 

© 
TM 

00 G 

+ 

¥ 
U 

a 

n 
n 
J 
~. 

Q 

o 

f 
--

« 
.» 

, 
A 
-A 
-o 

IECECE 
o IZl ce 

..... stands for a nonbreaking space, the same width as a digit. 

" 

" 

o 
y 

F 

The shaded characters cannot normally be generated from the Macintosh keyboard 
or keypad, 

Figure 1. Macintosh Character Set 

The association between characters and keys on the keyboard or the . 
keypad is defined by a keyboard configuration, which is a resource 
stored in a resource file. The particular character that's generated 
by a character key depends on three things: 

11/19/84 Rose-Davis /EMGR/EVENTS.2 



10 Toolbox Event Manager Programmer's Guide 

- the character key being pressed 

- which. if any. of the modifier keys were held down when the 
character key was pressed 

- the keyboard configuration currently in effect 

The modifier keys, instead of generating keyboard events themselves, 
modify the meaning of t~e character keys by changing the character 
codes that those keys generate. For example, under the standard u.s. 
keyboard configuration, the "c" key "generates any of the following, 
depending on which modifier keys are held down: 

Key(s) pressed 
"c" by itself 
"c" with Shift or Caps Lock down 
"c" with Option down 

"c" with Option and Shift down, or 
with Option and Caps Lock down 

Character generated 
Lowercase c 
Capital C 
Lowercase c with a cedilla (~), 
used in foreig'n languages 
Capital C with a cedilla (~) 

The state of each of the modifier keys is also reported in a field of 
the event record (see next section), where you~ applica~ion can examine 
it directly. 

(note) 
As described in the owner's guide, some accented 
characters are generated by pressing Option along with 
another key for the accent, and then typing the character 
to be accented. In these cases, a single key-down event 
occurs for the accented character; there's no event 
corresponding to the typing of the accent. 

Under the standard keyboard configuration only the Shift, Caps Lock, 
and Option keys actually modify the character .code generated by a 
character key on the keyboard; the Command key has no effect on the 
character code generated. Similarly, character codes for the keypad 
are affected only by the Shift key. To find out whether the Command 
key was down at the time of an event (or Caps Lock or Option in the 
case of one generated from the keypad), you have to examine the event 
record field containing the state of the modifier keys. 

Normally you'll just want to use the standard keyboard configuration, 
which is read from the system resource file every time the system is 
started up. Other keyboard configurations can be used for nonstandard 
layouts. In rare cases, you may want to define your own keyboard 
configuration to suit your application's special needs. You can make 
the Command key affect the character code generated (or, when a key is 
pressed on the keypad, the Caps Lock or Option key). For ·information 
on how to install an alternate keyboard configuration or define one of 
your own, see the Operating System Event Manager manual *** (the 
information isn't yet in that m~nual; it will be in the next draft) 
***. 

11/19/84 Rose-Davis , /EMGR/EVENTS.2 



EVENT RECORDS 11 

EVENT RECORDS 

Every event is represented internally by an event record containing all 
pertinent information about that event. The event record includes the 
following information: 

- the type of event 

- the time the event was posted (in ticks since system startup) 

- the location of the mouse at the time the event was posted (in 
global coordinates) 

- the state of the mouse button and modifier keys at the time the 
event was posted 

- any additional information required for a particular type of 
event, such as which key the user pressed or which window is being 
activated 

Every event has an event record containing this information--even null 
events. 

Event records are defined as follows: 

TYPE EventRecord = RECORD 
what: 
message: 
when: 
where: 
modifiers: 

ENDj 

INTEGER; 
LONGINTj 
LONGINT; 
Point; 
INTEGER 

{event code} 
{event.message} 
{ticks since startup} 
{mouse location} 
{modifier flags} 

The when field contains the number of ticks since the system was last 
started up, and the where field gives the location of the mouse, in 
global coordinates, at the time. the event was posted. The other three 
fields are described below. 

Event Code 

The what field of an event record contains an event code identifying 
the type of the event. The event codes are available-aB predefined 
constants: 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



12 Toolbox Event Manager Programmer's Guide 

CONST nullEvent = 0; 
mouseDown :=I 1; 
mouseUp =- 2; 
keyDown :=I 3; 
keyUp = 4; 
autoKey = 5; 
updateEvt = 6; 
diskEvt == 7; 
activateEvt = 8; 
networkEvt == 10; 
'driverEvt = 11; 
app1Evt = 12; 
app2Evt :=I 13; 
app3Evt = 14; 
app4Evt == 15; 

{null} 
{mouse-down} 
{mouse-up} 
{key-down} 
{key-up} 
{auto-key} 
{update} 
{disk-inserted} 
{activate} 
{network} 
{device driver} 
{application-defined} 
{application-defined} 
{application-defined} 
{application-defined} 

Event Message 

The message field of an event record contains the event message, which 
conveys additional important information about. the event. The nature 
of this information depends on the event type, as summarized in the 
following table and described below. 

Event type 
Keyboard 
Activate, update. 
Disk-inserted 

Mouse-down, 
mouse-up, null 
Network 
Device driver 
Application
defined 

Event message 
Character code and key code in low-order word 
Pointer to window 
Drive number in low-order word, File Manager 
result code in high-order word 
Meaningless 

See AppleBus Manager manual 
See driver documentation 
Whatever you wish 

For keyboard events, only the low-order word of the event message is 
used, as shown in Figure 2. The low-order byte of this word contains 
the ASCII character code generated by the key or combination of keys 
that was pressed or released; usually this is all you'll need. 

31 16 15 
not used 

'8 7 o 

L cherecter code 
'-------- key code 

Figure 2. Event Message for Keyboard Events 

The key code in the event message for a.keyboard event is an integer 
representing the character key that was pressed or released; this value 
is always the same for any given character key, regardless of the 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



EVENT RECORDS 13 

modifier keys pressed along with it. Key codes are useful in special 
cases--in a music generator, for example--where you want to treat the 

.keyboard as a set of keys unrelated to characters. Figure 3 gives the 
key codes for all the keys on the keyboard and keypad. (Key codes are 
shown for modifier keys here because they're meaningful in other 
contexts, as explained later.) Both the u.S. and foreign keyboards are 
shown; in some cases the codes are quite different (for example, space 
and Enter are reversed). 

U. S. keyboard 

Foreign keyboard (U.K. key cap~' ~ho\lln) 
r 

t:lpor - + .. I 

71 78 70 66 
7 8 9 l 

89 91 92 77 
4 5' 6 I 

86 87 88 72 
1 2 3 Ent~r 

83 84 85 
0 

82 65 76 

Keypad (both U.S. and foreign) 

Figure 3. Key Codes 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



14 Toolbox Event Manager Programmer's Guide 

The following predefined constants are available to help you access the 
character ,code and key code: 

(note) 

CONST charCodeMask = $000000FF; 
keyCodeMask = $0000FF00; 

{character code} 
{key code} 

You can use the Toolbox Utility function BitAnd with 
these constants;' for instance, to ~ccess the character 
code, use 

charCode := BitAnd(myEvent.message,charCodeMask) 

For activate and update events, the event message is a pointer to the 
window affected. (If the event is an activate event, additional 
important information about the event can be found in the modifiers 
field of the event record, as described below.) 

For disk-inserted events, the low-order word of the event message 
contains the drive number of the disk drive into which the disk was 
inserted: 1 for the Macintosh's built-in drive, and 2 for the external 
drive, if any. Numbers greater than 2 denote additional disk drives 
connected through one of the two serial ports. By the time your 
application receives a disk-inserted event, the system will already 
have attempted to mount the volume on the disk by calling the File 
Manager function MountVol; the high-order word of the event message 
will contain the result code returned by MountVol. 

For mouse-down, mouse-up, and null events, the event message is 
meaningless and should be ignored. For network and device driver 
events, the contents of the event message depend on the situation' under 
which the event was generated; the documentation describing those 
situations will give the details. Finally, you can use the event 
message however you wish for application-defined event types. 

Modifier Flags 
I 

As stated above, the modifiers field of an event record contains 
further information about activate events and the state of the modifier 
keys and mouse button at the time the event was posted (see Figure 4). 
You might look at this field to find out, for instance, whether the 
Command key was down when a mouse-down event was posted (which in many 
applications affects the way objects are selected) or when a key-down 
eve~t was posted (which could 'mean ~he user i~ choosing a menu item by 
typing its keyboard equivalent). 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



EVENT RECORDS 15 

15 12 l' 10 9 

• I I I 

1 if Option key down, 0 if not I I I 
' if Caps Lock key dow.n, 0 if not 
1 if Shift key down, 0 If not 

8 7 

I I 

1 if Command key down, 0 if not----~ 
1 if mouse button up, 0 if not---------

6 1 o 

1 if window being activated, 0 if deactivated---

• reserved for future use . 

Figure 4. Modifier Flags 

The following predefined constants are useful as masks for reading the 
flags in the modifiers field: 

CONST activeFlag 1 ; {set if window being activated} 
btnState = 128; , {set if mouse button up} 
cmdKey 256; {set if Command key down} 
shiftKey 512; {set if Shift key down} 
alphaLock = 1024; {set if Caps Lock key down} 
optionKey = 2048; (set if Option key down} 

The activeFlag bit gives further information about activate events; 
it's set if the window pointed to by the event message is being 
activated, or 0 if the window is being deactivated. The remaining bits 
indicate the state of the mouse button -and modifier keys. Notice that 
the btnState bit is set if the mouse button is up, whereas the bits for 
the four modifier keys are set if their corresponding keys are down. 

EVENT MASKS 

Some of the Event Manager routines can be restricted to operate on a 
specific event type or group of types; in other words, the specified 
event types are enabled while all others are disabled. For instance, 
instead of just requesting the next available event, you can 
specifically ask for the next keyboard event. 

You specify which event types a particular Event Manager call applies 
to by supplying an event mask as a parameter. This is'an integer in 
which there's one bit position for each event type, as shown in Figure 
5. The bit position representing a given type corresponds to the event 
code for that type--for example, update events (event code 6) are 
specified by bit 6 of the mask. A 1 in bit 6 means that this Event 
Manager call applies to update events; a 0 means that it doesn't. 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



v 

16 Toolbox Event Manager Programmer's Guide 

15 12 " 10 9 8 7 6 5 4 3 2 1 o 
I I 

~ 

network 
device driver 
application defined -

'" reserved for future use 

Figure 5. Event Mask 

not used 

mouse-down 
mouse-up 
key-down 
key-up 
auto-key 
update 
disk- inserted 
activate 

Masks for each individual event type are available as predefined 
constants: 

(note) 

CONST mDownMask = 2; {mouse-down} 
mUpMask = 4- {mouse-up} , 
keyDownMask = 8- {key-down} , 
keyUpMask = 16; {key-up} 
autoKeyMask = 32; {auto-key} 
updateMask = 64; {update} 
diskMask = 128; {disk-inserted} 
activMask = 256; {activate} 
networkMask = 1024; {network} 
driverMask = 2048; {device driver} 
app1Mask = 4096; {application-defined} 
app2Mask = ~192; {application-defined} 
app3Mask = 16384; {application-defined} 
app4Mask = -3~768; {application-defined} 

Null events can't be disabled; a null event will always 
be ,reported when none of the enabled types of events are 
available. 

The following predefined mask designates all event types: 

CONST everyEvent = -1; {all event types} 

11/19/84 Rose-Davis /EMGR/EVENTS. 3· 



EVENT MASKS 17 

You can form any mask you need by adding or subtracting these mask 
constants. For example, to specify every keyboard event, use 

keyDownMask + keyUpMask + autoKeyMask 

For every event except an update, use 

(note) 

everyEvent - updateMask 

It's recommended that you always use the event mask 
everyEvent unless there's a specific reason not to. 

There's also a global system event mask that controls which event types 
get posted into the event queue. Only event types corresponding to 
bits set in the system event mask are posted; all others are ignored. 
When the system is started up, the system event mask is initially set 
to post all except key-up events--that is, it's initialized to 

(note) 

everyEvent - keyUpMask 

Key-up events are meani~gless fOT most applications. 
Your application will usually want to ignore them; if 
not, it can set the system event mask with the Operating 
System Event Manager procedure SetEventMask. 

USING THE TOOLBOX EVENT MANAGER 

Betore using the Event Manager, you .should initialize the Window 
Manager by calling its procedure InitWindows; parts of the Event 
Manager rely on the Window Manager's data structures and will not work 
properly unless those structures have been properly initialized. 
Initializing the Window Manager requires you to have initialized 
QuickDraw and the Font Manager. 

Assembly-Ianguage~: If you want to use events but not 
windows, set the global variable WindowList to 0 instead of 
calling InitWindows. 

It's also usually a good idea to issue the Operating System Event 
Manager call FlushEvents(everyEvent,0) to empty the event queue of any 
stray events left over from· before your application was started up 
(such as keystrokes typed to the Finder). See the Operating System 
Event Manager manual for a description of FlushEvents. 

Most Macintosh application programs are event-driven. Such programs 
have a main loop that repeatedly calls GetNextEvent to retrieve the 
next available event, and then uses a CASE statement to take whatever 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



18 Toolbox Event Manager Programmer's Guide 

action is appropriate for each type of event; some typical ~esponses to 
commonly occurring events are described below. Your program is 
expected to respond only to those events that are directly related to 
its own operations. After calling GetNextEvent, you should test its 
Boolean result to find out whether your application needs to 'respond to 
the event: TRUE means the event may be of int~rest to your 
application; FALSE usually means it will not be of interest. 

In some cases, you may simply want to look at a pending event while 
leaving it available for subsequent retrieval by GetNextEvent. You can 
do this with the EventAvail function. 

Responding to Mouse Events 

On receiving a mouse-down event, your application should first call the 
Window Manager function FindWindow to find out where on the screen the 
mouse button was pressed, and then respond in whatever way is 
,appropriate. Depending on the part of the screen in which the button 
was pressed, this may involve calls to Toolbox routines such as the 
Menu Manager function MenuSelect, the Desk Manager procedure 
SystemClick, the Window Manager routines SelectWindow, DragWindow, 
GrowWindow, and TrackGoAway, and the Control Manager rputines 
FindControl, TrackControl, and DragControl. S~e the relevant manuals 
for details. 

If your application attaches some special significance to pressing a 
modifier key along with the mouse button, you can discover the state of 
,that modifier key while the mouse button is down by examining the 
appropriate flag in the modifiers field. 

If you're using the TextEdit part of the Toolbox to handle text 
editing, mouse double-clicks will work automatically as a means of 
selecting a word; to respond to double-clicks in any other context, 

\ however, you'll have to detect them yourself. You can do so by 
comparing the time and location of a mouse-up event with those of the 
immediately following mouse-down event. You should assume a 'double
click has occurred if both of the following are t~ue: 

- The times of the mouse-up event and the mouse-down event differ by 
a number of ticks less than or equal to the value returned by the 
Event Manager function GetDblTime. 

- The locations of the two mouse-down events separated by the mouse
up event are sufficiently· close to each other. Exactly what this 
means depends on the particular application. For instance, in a 
word-processing application, you might consider the two locations 
essentially the same if they fallon the same character, whereas 
in a graphics application you might consider them essentially the 
same if the' sum of the horizontal and vertical changes in position 
is no more than five pixels. 

Mouse-up events may be significant in other ways; for example , they. 
might signal the end of dragging in a graphics or spreadsheet 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



USING THE TOOLBOX EVENT MANAGER 19 

application. Many simple applications, however, will ignore mouse-up 
events. 

Responding to Keyboard Events 

For' a key-down event, you should first check the modifiers field to see 
whether the character was typed with the Command key held down; if so, 
the user may have been choosing a menu item by typing its keyboard 
equivalent. To find out, pass the character that was typed to the Menu 
Manager function MenuKey. (See the Menu Manager manual for details.) 

If the key-down event was not a.menu command, you should then respond 
to the event in whatever way is appropriate for your application. For 
example, if one of your windows is active, you might want to insert the 
typed character into the active document; if none of your windows is 
active, you might want to ignore the event. 

Usually your application can handle auto-key events the same as key
down events. You may, however, want to ignore auto-key events that 
invoke commands that shouldn't be continually repeated. 

(note) 
Remember that most applications will want to ignore key
up events; with the standard system event mask you won't 
get any. 

If you wish to periodically inspect the state of the keyboard or keypad 
--say, while the mouse button is being held down--use the procedure 
GetKeys; this procedure is also the only way to tell wheth~r a modifier 
key is being pressed alone. 

Responding to Activate and Update Events 

When your application receives an activate event for one of its own 
windows, the Window Manager will already have done 'all of the normal 
"housekeeping" associated with the event, such as highlighting or 
unhighlighting the window. You can then take any further action that 
your application may require, such as showing or hiding a scroll bar or 
highlighting or unhighlighting a selection. 

On receiving an update event for one of its own windows, your 
application should usually call the Window Manager procedure 
BeginUpdate, draw the window's contents, and then call EndUpdate. See 
the Window Manager manual for important additional information on 
activate and update events. 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



20 Toolbox Event Manager Programmer's Guide 

Responding to Disk-Inserted Events 

Most applications will use the Standard File Package, which responds to 
disk-inserted events for you during standard file saving and opening; 
you'll usually want to ignore any other disk-inserted events, su~h as 
the user's inserting a disk when not expected. If, however, you do. 
want to respond to other 'disk-inserted events, or if you plan not to 
use the Standard File Package, then you'll have to handle such events 
yourself. 

When you receive a disk-inserted event, the system will already have 
attempted to mount the volume on the .di~k by calling the File Manager 
function MountVol. You should examine the result code returned by the 
File Manager in the message field of the event record. If the result 
code indicates that the attempt to mount the volume was unsuccessful, 
you might want to take some special action, such as calling the Disk 
Initialization Package function DIBadMount. See the File Manager and 
Macintosh Packages manuals for further details. 

Other Operations 

In addition to receiving the user's mouse and keyboard ~ctions in the 
form of events, you can directly read the keyboard (and keypad), mouse 
location, and state of the mouse button by calling GetKeys, GetMouse, 
and Button, respectively. To follow the mouse when the user moves it 
with the button down, use StillDown or WaitMouseUp. 

The function TickCount returns the number of ticks since the last 
system startup; you might, for example, compare this value to the when 
field of an event record to discover the delay since that event was 
posted. 

Finally, the function GetCaretTime returns the number of ticks between 
blinks of the "caret" (usually a vertical bar) marking the insertion 
point in editable t~xt. You should call GetCaretTime if you aren't 
using TextEdit and therefore need to cause the caret to blink yourself. 
You would check this value each time through 'your program's .main event 
loop, to ensure a constant frequency of blinking. 

11/19/84 Rose-Davis /EMGR/EVENTS.3 



TOOLBOX EVENT MANAGER ROUTINES 21 

TOOLBOX EVENT MANAGER ROUTINES 

Accessing Events 

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord) 
BOOLEAN; 

GetNextEvent returns the next available event of a specified type or 
types and, if the event is in the event queue, removes it from the 
queue. The event is returned ~s the value of the parameter theEvent. 
The eventMask parameter specifies which event types are of interest. 
GetNextEvent returns the next available event of any type designated by 
the mask, subject to the priority rules discussed above under "Priority 
of Events". If no event of any of the designated types is available, 
GetNextEvent returns a null event. 

(note) 
Events in the que~e that aren't designated in the mask 
are kept in the queue; if you want to remove them, you 
can do so by calling the Operating System Event Manager 
procedure FlushEvents. 

Before reporting an event to your application, GetNextEvent first calls 
the Desk Manager function SystemEvent to see whether the system wants 
to intercept and respond to the event. If so, or if the event being 
reported is a null event, GetNextEvent returns a function result of 
FALSE; a function result of TRUE means that your application should 
handle the event itself. The Desk Manager intercepts the following 
events: 

- activate and update events directed to a desk accessory 

- keyboard events if the currently active window belongs to a desk 
accessory 

(note) 
In each case, the event is intercepted by the Desk 
Manager only if the desk' accessory can handle that type 
of event; however, as a rule all desk accessories should 
be set up to handle activate, update, and keyboard 
events. 

The Desk Manager also intercepts disk-inserted events: It attempts to 
mount the volume on the disk by calling the File Manager function 
MountVol. GetNextEvent will always return TRUE in this case, though, 
so that your application can take any further appropriate action after 
examining the result code returned by MountVol in the event message. 
(See the Desk Manager and File Manager manuals for further details.) 
GetNextEvent returns TRUE for all other non-null events '(including all 

11/19/84 Rose-Davis /EMGR/EVENTS.R 



22 Toolbox Event Manager Programmer's Guide 

mouse-down events, regardless of which window is active), leaving them 
for your application to handle. 

Assembly-language~: If for some reason you don't want 
GetNextEvent to call SystemEvent, set the global variable 
SEvtEnb' to 0. 

GetNextEvent also makes the following processing happen, invisible to 
your program: 

- If the "alarm" is set and the current time is the alarm time, the 
alarm goes off (a beep followed by blinking the title of the Apple 
menu). The user can set the alarm with the Alarm Clock desk 
accessory. 

- If the user holds down the Command and Shift keys while pressing a 
numeric key that has a special effect, that effect occurs. The 
standard such keys are 1 and 2 for ejecting the disk in the 
_internal or external drive, and 3 and 4 for writing a snapshot of 
the screen to a MacPaint document or to the printei. 

(note) 
Advanced programmers can implement their own code to be 
executed in response to Command-Shift-number combinations 
(except for Command-Shift-l and 2, which can't be 
changed). The code corresponding to a particular number 
must be a routine having no parameters, stored in a 
resource whose type is 'FKEY' and whose ID is the number. 
The system resource file contains code for the numbers 3 
and 4. 

Assembly-language note: You can disable GetNextEvent's 
processing of Command-Shift-number combinations by setting the 
global variable ScrDmpEnb to 0. 

FUNCTION EventAvail (eventMask: INTEGER; VAR theEvent: EventRecord) 
r 

BOOLEAN; 

EventAvail works exactly the same as GetNextEvent except that if the 
event is in the event queue, it's left there. 

(note) 
An event returned by EventA¥ail will not be accessible 
later if in the meantime the queu~ becomes full and the 
event is discarded from it; since the events discarded 

11/19/84 Rose-Davis /EMGR/EVENTS.R 



TOOLBOX EVENT MANAGER ROUTINES 23 

are always the oldest ones in the queue, however, this 
will happen only in an unusually busy environment. 

Reading the Mouse 

PROCEDURE GetMouse (VAR mouseLoc: Point); 

GetMouse returns the current mouse location in the mouseLoc parameter. 
The location is given in the local coordinate system of the current 
grafPort (which might be, for example, the currently active window). 
No"tice that this differs from the mouse location stored in the where 
field of an event record; that location is always in global 
coordinates. 

FUNCTION Button : BOOLEAN; 

The Button function returns TRUE if the mouse button is currently down, 
and FALSE if it isn't. 

FU.NCTION StillDown : BOOLEAN; 

Usually called after a mouse-down event, StillDown tests whether the 
mouse button is still down. It returns .TRUE if the button is currently 
down and there are no more mouse events pending in the event queue. 
This is a true test of whether the button is still down from the 
original.press--unlike Button (above), which retur~s TRUE whenever the 
button is currently down, even if it has been released ~nd pressed 
again since the original mouse-down event. 

FUNCTION WaitMouseUp : BOOLEAN; 

WaitMouseUp works exactly the same as StillDown (above), except that if 
-the button is not still down from the original press, WaitMouseUp 

removes the preceding mouse-up event before returning FALSE. If, for 
instance, your application attaches some special significance both to 
mouse double-clicks and to mouse-up events, this function would allow 
your application to recognize a double-click without being confused by 
the inter~ening mouse-up. 

11/19/84 Rose-Davis /EMGR/EVENTS.R 



24 Toolbox Event Manager Programmer's Guide 

Reading the Keyboard and Keypad 

PROCEDURE GetKeys (VAR theKeys: KeyMap);. 

GetKeys reads the current state of the keyboard (and keypad, i-f any) 
and returns it in the form of a keyMap: ' 

TYPE KeyMap = PACKED ARRAY [0 •• 127] OF BOOLEAN; 

Each key on the keyboard or keypad corresponds to an element in the 
keyMap. The index into the keyMap for a particular key is the same as 
the key code ~or that k~y. (The key codes are shown in Figure 3 
above.) The keyMap element is TRUE if the corresponding key is down 
and FALSE if it 'isn't. The maximum number of keys that. can be down 
simultaneously is two character keys plus any combination of the four 
modifier keys. 

Miscellaneous Routines 

FUNCTION TickCount : LONGINT; 

TickCount returns the current number of ticks (sixtieths of a second) 
since the system was last started up. 

Assembly-language note: The value returned by this function is . 
contained in the global variable Ticks. 

FUNCTION GetD~ITime : LONGINT; [No-trap macro] 

GetDblTime returns the suggested maximum difference (in ticks) that 
should exist between the .times of a mouse-up event and a mouse-down 
event for those two mouse clicks to be considered a double-click. The 
user can adjust this value by means of the Control Panel desk 
accessory. 

Assembly-language note: This value is available ,to assembly
language programmers in the global variable DoubleTime. 

11/19/84 Rose-Davis /EMGR/EVENTS.R 



TOOLBOX EVENT MANAGER ROUTINES 25 

FUNCTION GetCaretTime : LONGINT; [No trap macro] 

GetCaretTime returns the time (in ticks) between blinks of the "caret" 
(usually a vertical bar) marking an insertion point in editable text. 
If you aren't using TextEdit, you'll need to cause the caret to blink 
yourself; on every pass through your program's main event loop, you 
should check this value against the elapsed time since the last blink 
of the caret. ~ The user can adjust this value by means of the Control 
Panel desk accessory. 

Assembly-language note: This value is available to assembly
language programmers in the global variable CaretTime. 

THE JOURNALING MECHANISM 

So far, this manual has talked about the Event Manager as responding to 
events generated by users--keypresses, mouse clicks, disk insertions, 
and so on. By using the Event Manager's journaling mechanism, though, 
you can "decouple" the Event Manager from the user and feed it events 
from some other source. Such a source might be a file into which have 
been recorded all the events that occurred during some portion of a 
user's session with the Macintosh. This section describes the 
journaling mechanism briefly and gives some examples of its use; then, 
if you wish, you can read on to learn the technical information 
necessary to use it yourself. 

(note) i 
The journaling mechanism can be accessed only through 
assembly language; Pascal programmers may want to skip 
this discussion. 

In the usual sense, "journaling" means the recording of a sequence of 
user-generated events into a file; specifically, this file is a 
recording of all calls to the Event Manager routines GetNextEvent, 
EventAvail, GetMouse, Button, GetKeys, and TickCount. When a journal 
is being recorded, every call to any of these routines is sent to a 
journaling device driver, which records the call (and the results of 
the call) in a file. When the journal is played back, these recorded 
Event Manager calls are taken from the journal file and sent directly 
to the Event Manager. The result is that the recorded sequence of user
generated events:'is reproduced when the journal is played back. 

The Macintosh Guided Tour is an example of such a journal. It was 
recorded using the Journal desk accessory, a special device driver 
that's available to users who want to record standard journal files for 
the purpose of, say', making their own Guided Tours. For more 
information about the Journal 'desk accessory, see A Guide ~ Making 
Guided Tours *** (forthcoming from Macintosh User Education) *** 

11/19/84 Rose-Davis /EMGR/EVENTS.J 



26 Toolbox Event Manager Programmer's Guide 

Using the journaling mec~anism need not involve a file. 'Before 
Macintosh was introduced, Macintosh Software Engineering created a 
special desk accessory of its own for testing Macintosh software. This 
desk accessory, which was based on the journaling mechanism, didn't use 
a file--it generated events randomly, putting Macintosh "through its 
paces" for long periods of time without requiring a user's attention. 

So, the Event Manager's journaling mechanism has a much broader utility 
than a mechanism simply for "journali;ng" as it's normally defined. 
With the journaling mechanism, you can decouple the Event Manager from 
the user and feed it events from a journaling device driver of your own 
design. Figure 6 illustrates what happens when the journaling 
mechanism is off, in recording mode, and in playback mode. 

mouse, Event I your journal ing driver' 
keyboard, 
and di SK 

user 

user 
mouse, 

keyboard, 
and disk 

mouse, 
keyboard, 
and disk 

Manager 

Journa J ; ng off 

Event 
Manager 

Record i ng mode 

Event 
Manager 

Playback mode 

your appl ication 

your j ourne ling dr i ver 

your app I i cat i on 

yciur journal i ng dr i ver 

your app I i cat ion 

Figure 6. The Journaling Mechanism 

Writing Your Own Journaling Device Driver 

If you want to implement journaling in a new way, you'll need to write 
your own journaling device driver •. Details about how to do this are 
given below; however, you must already have read about writing your own 
device driver in the Device Manager manual. Furthermore, if you ·want 
to implement your journaling device driver as a desk accessory, you'll 
have to be familiar with details given in the Desk Manager manual. 

Whenever a call is made to any of the Event Manager routines 
GetNextEvent, EventAvail, GetMouse, Button, GetKeys, and TickCount, the 
information returned by the routine is passed to the journaling device 
driver by means of a Control call. The routine makes the Control call 
to the journaling device driver with the reference number stored in the 
global variable JournalRef, so be sure anead of time that JournalRef 
contains the reference number of your own journaling device driver •. 

11/.19/84 Rose-Davis /EMGR/EVENTS.J 



(note) 

THE JOURNALING MECHANISM 27 

The reference number of the standard journaling device" 
driver is -2 and is available as the global constant 
jRefNum. 

You control whether the journaling mechanism is playing or recording by 
setting the global variable JournalFlag to a negative or positive 
value. Before the Event Manager routine makes the Control call, it 
copies one of the following global constants into the csCode parameter 
of the Control call, depending on the value o~ JournalFlag: 

JournalFlag' 
Negative 
Positive 

Value of csCode 
jPlayCtl .EQU 16 
jRecordCtl .EQU 17 

Meaning 
Journal in playback mode 
Journal in recording mode 

If you set the value of JournalFlag to 0, the Control call won't be 
made at all. 

Before the Event Manager routine makes the Control call, it copies into 
csParam a pointer to the actual data being polled by the routine (for 
example, a pointer to a keyMap for GetKeys, or a pointer to an event 
record for GetNextEvent). It also copies, into csParam+4, a journal 
code designating which routine is making the call: 

Control call CsParam contains Journal code 
made during: pointer to: at csParam+4: 
TickCount long integer jcTickCount .EQU 0 
GetMouse 'point j cGetMouse .EQU 1 
Button Boolean j cButton ' .EQU 2 
GetKeys keyMap jcGetKeys .EQU 3 
GetNextEvent event record j cEvent .EQU 4 
EventAvail event record jcEvent .EQU 4 

11/19/84 Rose-Davis /EMGR/EVENTS.J 



28 Toolbox Event Manager Programmer's Guide 

SUMMARY OF THE TOOLBOX EVENT MANAGER 

Constants 

CONST { Event codes } 

nullEvent = 0; {null} 
mouseDown = 1 ; {mouse-down} 
mouseUp = 2" {mouse-up} , 
keyDown = 3; {key-down} 
keyUp 4" , {key-up} . 
autoKey = 5; {auto-key} 
updateEvt = 6; {update} 
diskEvt = 7; {disk-inserted} 
activateEvt 8" , {activate} 
networkEvt = 10; {network} 
driverEvt = 11; {device driver} 
applEvt = 12; {application-defined} 
app2Evt 13; {application-defined} 
app3Evt = 1{.; {application-defined} 
app4Evt 15; {application-defined} 

{ Masks for accessing keyboard event message } 

charCodeMask = $000000FF; {character code} 
keyCodeMask = $0000FF00; {key code} 

{ Masks for forming event mask } 

mDownMask 2" , {mouse-down} 
mUpMask = 4" {mouse-up} , 
keyDownMask = 8; {key-down} 
keyUpMask = 16; {key-up} 
autoKeyMask = 32; {auto-key} 
updateMask 64; {update} 
diskMask 128; {disk-inserted} 
activMask = 256; {activate} 
networkMask = 1024; {network} 
driverMask = 2048; {device driver} 
applMask = 4096; {application-defined} 
app2Mask. 8192; {application-defined} 
app3Mask = 16384; {application-defined} 
app4Mask -32768; {application-defined} 
everyEvent -1; {all event types} 

11/19/84 Rose-Davis /EMGR/EVENTS.S 



SUMMARY OF THE TOOLBOX EVENT.MANAGER 29 

{ Modifier flags in event record } 

activeFlag = 1 ; {set if window being activated} 
btnState = 128; {set if mouse button up} 
cmdKey 256j {set if Command key down} 
shiftKey = 512; {set if Shift key down} 

.alphaLock = 1024; {set if Caps Lock key down} 
optionKey = 2048; {set if Option key down} 

Data Types 

TYPE EventRecord = RECORD 
{event code} what: 

message: 
when: 
where: 
modifiers: 

INTEGER; 
LONGINTj 
LONGINT; 
Point; 
INTEGER 

{event message} 
{ticks since startup} 
{mouse location} 
{modifier flags} 

ENDj 

KeyMap PACKED ARRAY [0 •• 127] OF BOOLEAN;· 

Routines 

Accessing .Events 

FUNCTION GetNextEvent 

FUNCTION EventAvail 

Reading the Mouse 

PROCEDURE GetMouse 
FUNCTION Button: 
FUNCTION StillDown 
FUNCTION WaitMouseUp 

(eventMask: INTEGER; VAR 
BOOLEAN; 

(eventMask: INTEGER; VAR 
BOOLEAN; 

(VAR mouseLoc: Point); 
BOOLEAN; 
BOOLEAN; 
BOqLEAN; 

theEvent: 

theEvent: 

. Reading the Keyboard and Keypad 

PROCEDURE GetKeys (VAR theKeys: KeyMap); 

Miscellaneous Routines 

FUNCTION TickCount 
FUNCTION GetDblTime 
FUNCTION GetCaretTime 

11/19/84 Rose-Davis 

LONGINT; 
LONGINT; 
LONGINT; 

[No trap macro] 
[No trap macro] 

EventRecord) 

EventRecord) 

/EMGR/EVENTS.S 



30 Toolbox Event Manager Programmer's Guide 

Event Message in Event Record 

Event type 
Keyboard 
Activate, update 
Disk-inserted 

Mouse-down, 
mouse-up, null 
Network 
Device driver 
Application":' 
defined 

Event message 
Character code and key code in low-order word 
Pointer to window 
Drive number in low-order word, File Manager 
result code in high-order word 
Meaningless 

See AppleBus Manager manual 
See driver documentation· 
Whatever you wish 

Assembly-Language Information 

Constants 

; Event codes 

nullEvt .EQU 0 ;null 
mButDwnEvt .EQU 1 jmouse-down 
mButUpEvt .EQU 2 jmouse-up 
keyDwnEvt .EQU 3 jkey-down 
keyUpEvt .EQU 4 ;key-up 
autoKeyEvt .EQU 5 jauto-key 
updatEvt .EQU 6 ;update 
diskInsertEvt .EQU 7 jdisk-inserted 
activateEvt· .EQU 8 ;activate 
networkEvt .EQU 10 ; network 
ioDrvrEvt .EQU 11 ;device driver 
applEvt .EQU 12 ;application-defined 
app2Evt .EQU 13 ;application-defined 
app3Evt .EQU 14 ;application-defined 
app4Evt .EQU 15 ; application-defined 

; Modifier flags in event record 

activeFlag .EQU 0 jset if window being activated 
btnState .EQU 2 ;set if mouse button up 
cmdKey .EQU 3 ;set if Command key down 
shiftKey .EQU 4 ;set if Shift key down 
alphaLock .EQU 5 ;set if Caps Lock key down 
optionKey .EQU 6 ;set if Option key down 

11/19/84 Rose-Davis /EMGR/EVENTS.S 



SUMMARY OF THE TOOLBOX EVENT MANAGER 31 

j Journaling mechanism Control call 

jRefNum .EQU -2 jreference number of standard journaling 
jdevice driver 

jPlayCtl .EQU 16 jjournal in playback mode 
jRecordCtl .EQU 17 jjournal in recording mode 
jcTickCount .EQU 0 ;journal code for TickCount 
jcGetMouse .EQU 1 jjournal code for GetMouse 
jcButton .EQU 2 ;journal code for Button 
jcGetKeys .EQU 3 jjournal code for GetKeys 
jcEvent .EQU 4 ;journal code for GetNextEvent and EventAvail . 

Event Record Data Structure 

evtNum 
evtMessage 
evtTicks 
evtMouse 
evtMeta 
evtMBut 
evtBlkSize 

Variables 

Name· 
KeyThresh 
KeyRepThresh 
WindowList 

SEvtEnb 
ScrDmpEnb 

Ticks 
DoubleTime 
CaretTime 
JournalRef 
JournalFlag 

Event code 
Event message 
Ticks since startup 
Mouse location 
State of modifier keys 
State of mouse button 
Length of above structure 

Size 
2 bytes 
2 bytes 
4 bytes 

1 byte 
1 byte 

4 bytes 
4 bytes 
4 bytes 
4 bytes 
2 bytes 

Contents 
Auto-key threshold 
Auto-key rate 
Pointer to first window in window list; 
o if using events but not windows 
o if GetNextEvent shouldn't call SystemEvent 
o if GetNextEvent shouldn't process Command
Shift-number combinations 
Current number of ticks since system startup 
Double-click interval in ticks 
Caret-blink interval in ticks 
Reference number of journaling device driver 
Journaling mode 

11/19/84 Rose-Davis /EMGR/EVENTS.S 



32 Toolbox Event Manager Programmer's Guide 

GLOSSARY 

activate event: An event generated by the Window Manager when a window 
changes from active to inactive or vice versa. 

auto-key event: An event' generated repeatedly when the user presses 
and holds down a character key on the keyboard or keypad. 

auto-key rate: The rate at which a character key repeats after it's 
begun to do so. 

auto-key threshold: The length of time a character key must be held 
down before it begins to repeat. 

character code: An integer representing the character that a key or 
combination of keys on the keyboard or keypad stands for. 

character key: Any key except Shift, Caps Lock, Command, or Option. 

device driver event: An event generated by one of the Macintosh's 
device drivers. 

disk-inserted event: An event generated when the user inserts a disk 
in a disk drive or takes any other action that requires a volume to be 
mounted. 

event: A notification to an application of some occurrence that the 
application may want to respond to. 

event code: An integer representing a particular type of event. 

event mask: A parameter passed to a Toolbox or Operating System Event 
Manager routine to specify which types of events the routine should 
apply' to. 

event message: A field of an event record containing information 
specific to the particular type of event. 

event queue: The Operating System Event Manager's list of pending 
events. 

event record: The internal representation of an event, through which 
your program learns all pertinent information about that event.' 

journal code: A code passed by a Toolbox Event Manager routine in its 
Control call to the journaling device driver, to designate which 
routine is making the Control call. 

journaling mechanism: A mechanism that allows you to feed the Toolbox 
Event Manager events from some source other than the user. 

key code: An integer representing a key on the keyboard or keypad, 
without reference -to the character that the key stands for. 

11/19/84 Rose-Davis /ENGR/EVENTS.G 



GLOSSARY 33 

key-down event: An event generated when the user presses a character 
key on the keyboard or keypad. 

key-up event: An event generated when the user releases a character 
key on the keyboard or keypad. 

keyboard configuration: A resource that defines a particular keyboard 
layout by associating a.character code with each key or combination of 
keys on the keyboard or keypad. 

keyboard event: An event generated when the user presses, releases, or -
holds down a character key on the keyboard or keypad; any key-down, key
up, or auto-key event. 

modifier key: A key (Shift, Caps Lock, Option, or Command) that -
generates no keyboard events of its own, but changes the meaning of 
other keys or mouse actions. 

mouse-down event: An event generated when the user presses the mouse' 
button. 

mouse-up event: An event generated when the user releases the mouse 
button. 

network event: An event generated by the AppleBus Manager. 

null event: An event reported when there are no other events to 
report. 

post: To place an event in the event queue for later processing. 

system event mask: A global event mask that controls which types of 
event get posted into the event queue. 

tick: A sixtieth of a second. 

update event: An event generated by the Window -Manager when a window's 
contents need to be redrawn. 

11/19/84 Rose-Davis /EMGR/EVENTS.G 



MACINTOSH USER EDUCATION 

The Window Manager: A Programmer's Guide ,/WMGR/WINDOW 

See Also: Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Control Manager: A Programmer's Guide 
The Desk ,Manager: A Programmer's Guide 
The Dialog Manager: ~ Programmer's Guide 
Toolbox Utilities: A Programmer's Guide 
Programming Macintosh Applications in Assemblr Language 

Modification History: First Draft Pam Stanton-Wyman 
Interim Release Caroline Rose 
Second Draft Caroline Rose 
Revised Caroline Rose 
Third Draft (ROM 2.1) Caroline Rose 
Fourth Draft (ROM 7) Caroline Rose 
Fifth Draft Caroline Rose & 'Brent Davis 

8/16/82 
9/3~/82 
1~/8/82 
11/2/82 
3/1/83 

8/25/83 
5/3~/84 

ABSTRACT 

Windows'play an important part in Macintosh applications, since all 
information presented by an application appears in windows. The Window 
Manager provides routines for creating and manipula,ting windows. This 
manual describes those routines along with related concepts and data 
types. 

Summary of significant changes and additions since last draft: 

- New window definition IDs have been added (page 8) and the 
diameters of curvature for an rDocProc type of window can now be 
varied (page_9). 

The discussion of how a window is drawn has been corrected and 
refined (page 15). 

- Assembly-language notes were added where appropriate, and the 
summary was updated to include all assembly-language information. 



2 Window Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Window Manager 
6 Windows and GrafPorts 
6 Window Regions 
8 Windows and Resources 
10 Window Records 
11 Window Pointers 
12 The WindowRecord Data Type 
15 How a Window is Drawn 
17 Making a Window Active: Activate Events 
18 Using the Window Manager 
20 Window Manager Routines 
20 Initialization and Allocation 
23 Window Display 
26 Mouse Location 
28 Window Movement and Sizing 
31 Update Region Maintenance 
33. Miscellaneous Utilities 
35 Low-Level Routines 
37 Defining Your Own Windows 
38 The Window Definition Function 
39 The Draw Window Frame Routine 
40 The Hit Routine 
41 The Routine to Calculate Regions 
41 The Initialize Routine 
41 The Dispose Routine 
42 The Grow Routine 
42 The Draw Size Box Routine 
42 Formats of Resources for Windo~lS 
44 Summary of the Window Manager 
50 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Window Manager, a major component of the 
Macintosh User Interface Toolbox. *** Eventually it will become part 
of the comprehensive Inside Macintosh manual. *** The Window Manager 
allows you to create, manipulate, and dispose of windows in a way 
that's consistent with the Macintosh User Interface Guidelines. 

Like all Toolbox documentation, this manual assumes you're familiar 
with the Macintosh User Interface nuidelines, Lisa Pascal, and the 
Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

Resources, as discussed in the Resource Manager manual. 

- The basic concepts and structures behind QuickDraw, particularly 
points, rectangles, regions, g~afPorts, and picture~. You don't 
have to know the QuickDraw routines in order to use the Windo~ 
Manager, though you'll be using QuickDraw to draw 'inside a window. 

- The Toolbox Event Manager. Some Window Manager routines are 
called only ~n response to certain events. 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Window Manager and what 
you can do with it. It then discusses some basic concepts about 
windows: the relationship between windows and grafPorts; the various 
regions of a window; and the relationship between windows and 
resources. Following this is a discussion of window records, where the 
Window Manager keeps all the information it needs about a window. 
There are also sections on what happens when a window is drawn and when 
a window becomes active or inactive. 

Next, a section on using the Window Manager introduces its routines and 
tells how they fit into the flow of your application program. This is 
followed by detailed descriptions of all Window Manager procedures and 
functions, their parameters, calling protocol, effects, side effects, 
and so on. 

Following these descriptions are sections that will not interest all 
readers: special information is provided for programmers who want to 
define their own windows, and the exact formats of the resources 
related to windows are described. 

Finally, there's a summary of the Window Manager for quick reference, 
followed by a glossary of terms used in this manual. 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



4 Window Manager Programmer's Guide 

ABOUT THE WINDOW MANAGER 

The Window Manager is a tool for dealing with windows on the Macintosh 
screen. The screen represents a working surface or desktop; graphic 
objects appear on the desktop and can be manipulated with the mouse. A 
window is an object on the desktop that presents information, such as a 
document or a message. Windows can be any size or shape, and there can 
be one or many of them, depending on the application. 

Some types of windows are predefined. One of these is the standard 
document window, as "illustrated in Figure 1. Every document window has 
a title bar containing a title that's centered and. in the system font 
and system font size. In addition, a particular document window mayor 
may not have a close box or a size box; you'll learn in this manual how 
to i~p1ement them. There may also be scroll bars along the bottom 
and/or right edge of a document window. Scroll 9ars are controls, and 
are supported by the Control Manager. 

Close box 

Scroll bar 

Scroll bar 

Figure 1. An Active Document Window 

Your application can easily create standard types of windows such as 
document windows, and can also define its own types of windows. Some 
windows may be created indirectly for you when you use other parts of. 
the Toolbox; an example is the'window the Dialog Manager creates to 
display an alert box. Windows created either directly or indirectly by 
an application are collectively called application windqws. There's 
also a class of windows called system windows;, .these are the windows in 
which desk accessories are displayed. 

The document window shown in Figure 1 above is the frontmost (active) 
window, the one that will be acted on when the user types, gives 
commands, or whatever is appropriate to the application being used. 
Its title bar is high1ighted--displayed in a distinctive visual way--so 
that the window will stand out from other, inactive windows that may be 
on the screen. Since a close box, size box, and scroll bars will have 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



ABOUT THE WINDOW MANAGER 5 

an effect only in an active window, none of them appear in an inactive 
window (see Figure 2). 

(note) 

M8IIID 

dobTitl81 

Charg81 
Inactive 
windows 

The 
active 
window 

Figure 2. Overlapping Document Windows 

If a document window has neither a size box nor scroll 
bars, the lines delimiting those areas aren't drawn, as 
in the Hemo window in Figure 2. 

An important function of the Window Manager is to keep track of 
overlapping windows. You can draw in any window without running over 
onto windows in front of it. You can move windows to different places 
on the screen, change their plane (their front-to-back ordering), or 
change their size, all without concern for how the various windows 
overlap. The Window Manager keeps track of any newly exposed areas and 
provides a convenient mechanism for you to ensure that they're properly 
redrawn. 

Finally, you can easily set up your application so that mouse actions 
cause these standard responses inside a document window, or similar 
responses inside other wiridows: 

- Clicking anywhere in an inactive window makes it the active window 
by bringing it to the front and highlighting its title bar. 

- Clicking inside the close box of the active window closes the 
window" Depending on the application, this may mean that the 
window disappears altogether, or a representation of the window 
(such as an icon) may be left on the desktop. 

- Dragging anywhere inside the title bar of a window (except in the 
close box, if any) pulls an outline of the window across the 

5/30/84 Rose-Davis /WHGR/WINDOW.2 



6 Window Manager Programmer's Guide 

screen, and releasing the mouse button moves the window to the new 
location. If the window isn't the active window, it becomes the 
active window unless the Comma~d key was also held down. A window 
can never be moved completely off the screen; by convention, it 
can't be moved such that the visible area of the title bar is less 
than four pixels square. 

Dragging inside·the size box of the active window changes the size 
of the window. 

WINDOWS AND GRAFPORTS 

\ It's easy for applications 'to use windows: to the application, a 
window is a grafPort that it can draw into like any other with 
QuickDraw routines. When you create a window, you specify a rectangle 
that becomes the portRect of the grafPort in which the window contents 
will be drawn. The bitMap for this grafPort, its pen pattern, and 
other characteristics are the same as the default values set by 
QuickDraw, except for the character font, which is set to the 
application font. These characteristics will apply whenever the 
application draws in the window, and they can easily be changed with 
QuickDraw routines (SetPort ·to make the grafPort the current port, and 
other routines as appropriate). 

There is, however, more to a window than just the grafPort that the 
application draws in. In a standard document window, for example, the 
title bar and outline of the w~ndow are drawn by the Window Manager, 
not by the application. The part of a window that the Window Manager 
draws is called the window frame, since it usually surrounds the rest 
of the window. For drawing window frames, the Window Manager creates a 
grafPort that has the entire screen as its portRect; this grafPort is· 
called the Window Manager port. 

WINDOW REGIONS 

Every window has the following two regions: 

- the content region: the area that your application draws in 

- the structure region: the entire window; its complete "structure" 
(the content region plus the window frame) 

The content region is bounded by the rectangle you specify when you 
create the window (that is, the portRect of the window's grafPort); for 
a document window, it's the entire portRect. This is where your 
application presents information and where the size box and scroll bars 
of a document window are located'- By convention, clicking in the 
content region of an inactive window makes it the active window. 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



(note) 

WINDOW REGIONS 7 

The results of clicking and dragging that are discussed 
here don't happen automatically; you have to make the 
right Window Manager calls to cause them to happen. 

A window may also have any of the regions listed below. Clicking or, 
dragging in one of these regions causes the indicated action. 

A go-away region within the window frame. Clicking in this region 
of the active window closes the window. 

A drag region within the window frame. Dragging in this region 
pulls an outline of the window across the screen, moves the window 
to a new location, and makes it the active window unless the 
Command key was held down. 

A grow region, usually within the content region. Dragging in 
this region of the active window changes the size of the window. 
In a document window, the grow region is in the content region, 
but in windows of your own design it may be in either the content 
region or the window frame. 

Figure 3 illustrates the various regions of a standard document window 
and its window frame. 

Structure region Content region 
= Content region 
+ Window fr&me Grow region ~ 

• Go-away region 

.................... . : :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: 
:-... :.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:.:. 

Drag region 

11::::::::::::=:::::::::::=:=:=:=: 

T 
Window 

~ frame --7 

1 

Figure 3. Document Window Regions and Frame 

An example of a window that has no drag region is the window that 
displays an alert box. On the other hand, you ~ould design a window 
whose drag region is the entire structure region and whose content 
region is empty; such a window might present a fixed picture rather 
than information that's to. be manipulated. 

Another important window region is the update region. Unlike the 
regions described above, the update region is dynamic rather than 
fixed: the Window Manager keeps track- of all areas of the content 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



8 Window Manager Programmer's Guide 

region that have to be redrawn and accumulates them into the update 
region. For example, if you bring to the front a window that was 
overlapped by another window, the Window" Manager adds "the formerly 
overlapped (now exposed) area of the front window's content region to 
its update region. You'll also accumulate areas into the update region 
yourself; the Window Manager provides update region maintenance 
routines for this purpose. 

WINDOWS AND RESOURCES 

The general appearance and behavior of a window is determined by a 
routine called its window definition function, which is stored as a 
resource in a resource file. The window definition function performs 
all actions that differ from one window type to another, such as 
drawing the window frame. The Window Manager calls the window 
definition function whenever it needs to perform one of these type
dependent actions (passing it a message that tells which "action to 
perform). " 

The system resource file includes window definition functions for the 
standard document window and other' predefined types of windows. If you 
want to define your own, nons tandard window ty"pes, you'l1. have to wri te 
your own window definition functions for them, as described later in 
the section "Defining Your Own Windows". 

When you create a window, you specify its type with a window definition 
ID, which tells the Window Manager the resource ID of the definition 
function for that type of window. You can use one of the following 
constants as a window definition ID to refer to a predefined type of 
window (see Figure 4): 

CONST documentProc = 0; {standard document window} 
dBoxProc = 1 ; {alert box or modal dialog box} 
plainDBox = 2; {plain box} , 
altDBoxProc = 3; {plain box with shadow} 
noGrowDocProc = 4; {document window without size box} 
rDocProc = 16; {rounded-corner window} 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



WINDOWS AND RESOURCES 9 

50==: litle====: so==: Title ====== o ,Tith:~ 

documentProc noGrowDocProc rDocProc 

dBoxProc pfainDBox altDBoxProc 

Figure 4. Predefined Types of Windows 

DocumentProc represents a standard document window that mayor may not 
contain a size box; noGrowDocProc is exactly the same except that the 
window must not contain a size box. If you're working with a number- of 
document windows that need to be treated similarly, but some will have 
size boxes and some won't, you can use documentProc for all of them. 
If none of the windows will have size boxes, however, it's more 
convenient to use noGrowDocProc. 

The dBoxProc type of window resembles an alert box or a "modal" dialog 
box (~he kind that requires the user to respond before doing any other 
work on the desktop). It's a rectangular window with no go-away 
region, drag region, or grow region and with a two-pixel-thick border 
two pixels in from the edge. It has no special highlighted state 
because alerts and modal dialogs are always displayed in the frontmost 
window. PlainDBox and altDBoxProc are variations of dBoxProc: 
plainDBox is just a plain box with no inner border, and altDBoxProc has 
a two-pixel-thick shadow instead of a border. 

The rDocProc type of window is like a document window with no grow 
region, with rounded corners, and with a method of highlighting that 
inverts the entire title bar (that is, changes white to black and vice 
versa). It's sometimes used for desk accessories. Rounded-corner 
windows are drawn by the QuickDraw procedure FrameRoundRect, which 
requires that the diameters of curvature be passed as parameters. For 
an rDocProc type of window, the diameters of curvature are both 16. 
You can. add a number from 1 to 7 to rDocProc to get different 
diameters: 

\ 

5/30/84 Rose-Davis . /WMGR/WINDOW.2 



10 Window Manager Programmer's Guide 

Window definition ID Diameters of curvature 
rDocProc 16, 16 
rDocProc + 1 4, 4 
rDocProc + 2 6, 6 
rDocProc + 3 8, 8 
rDocProc + 4 10, 10 
rDocProc + 5 12, 12 
rDocProc + 6 20, 20 
rDocProc + 7 24, 24 

To create a window, the-Window Manager needs to know not only the 
window definitio~ ID but also other information specific to this 
window, such as its title (if any), its location, and its plane. You 
can supply all the needed information in individual parameters to a 
Window Manager routine or, better yet, you can store it as a single 
resource in a resource file and just pass the resource ID. This type 
of resource is called a window template. U~ing window templates 
simplifies the process of creating a number of windows of the same 
type. More important, it allows you to isolate specific window 
descriptions from your application's code. Translation of window 
titles into a foreign language, for example, would require only a 
change to the resource file. 

(note) 
You can create window templates and store them in 
resource files with the aid of the Resource Editor *** 
eventually (for now, the Resource Compiler) ***. The 
Resource Editor relieves you of having to know the exact 
format of a window template, but for interested 
programmers 'this information is given in the section 
"Formats of Resources for Windows". 

) WINDOW RECORDS 

The Window Manager keeps all the information it requires for its 
operations on a particular window in a window record. The window 
record contains the following: 

The grafPort for the window. 

- A handle to the window definition function. 

- A handle to the window's title, if any. 

The window class, which tells whether the window is a system 
window, a dialog or alert window, or a window created directly by 
the application. 

- A handle to the window's control list, which is a list of all the 
controls, if any, in the window. The Control Manager maintains 
this list. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



WINDOW RECORDS 11 

- A pointer to the next window in the window list, which is a list. 
of all windows ordered according to their front-to-back positions 
on the desktop. 

*** The handle to the window's title has a data type that you may want 
to use yourself elsewhere; it's defined in the Memory Manager as 
follows: 

TYPE Str255 
StringPtr 
StringHandle 

STRING[255]; 
.... Str255; 

= ..... StringPtr; 

Forthcoming Memory Manager documentation will include this. *** 

The window record also contains an indication of whether the window is 
currently visible or invisible. These terms refer only to whether the 
window is drawn in its plane, not necessarily whether you can see it on 
the screen. If, for example, it's completely overlapped by another 
window, it's still "visible" even though it can't be seen in its 
current location. 

The 32-bit reference value field of the window record is reserved for 
use by your application. You specify an initial reference value when 
you create a window, and can the~ read or change the reference value 
whenever you wish. For example, it might be a handle to data 
associated with the window, such as a TextEdit edit record. 

Finally, a window record may contain a handle to a QuickDraw picture of 
the window contents. The application can swap out the code and data 
that draw the window contents if desired, and instead use this picture. 
For more information, see "How a Window is Drawn". ' 

The data type for a window record is called WindowRecord. A window 
record is referred' to by a pointer, as discussed further under "Window 
Pointers" below. You can store into and access most of the fields of a 
window record with Window Manager routines, so normally you don't have 
to know the exact field names. Occasionally--particularly if you 
define your own type of wind'ow--you may need to know the exact 
structure; it's given below under "The WindowRecord Data Type". 

Window Pointers 

There are two types of pointer through which you can access windows: 
WindowPtr and WindowPeek. Most programmers will only need to use 
WindowPtr. 

The Window Manager defines the following type of window pointer: 

TYPE WindowPtr = GrafPtr; 

It can do this because the first thing stored in a window record is the 
window's grafPort. This.type of pointer can be used to access fields 
of the grafPort or can be passed to QuickDraw routines that expect 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



12 Window Manager Programmer's Guide 

pointers to grafPorts as parameters. The application might call such 
routines to draw into the window, and the Window Manager itself calls 
them to perform many of its operations. The Window Manager gets the 
additional information it needs from the rest of the window record 
beyond the grafPort. 

In some cases, however, a more direct way of ~ccessing the window 
record 'may be necessary or desirable. For this reason, the Window 
Manager also defines the following type of window pointer: 

TYPE WindowPeek = AWindowRecord; 

Programmers who want to access WindowRecord fields directly must use 
this type of pointer (which derives its name from the fact that it lets 
you "peek" at the additional information about the ~indow). A 
WindowPeek pointer is also used wherever the Window Manager will not be 
calling QuickDraw routines and will benefit from a more direct means of 
getting to the data stored in the window record. 

Assembly-language note: From assembly language, of course, 
there's no type checking on pointers, and the two types of 
pointer are equal. 

The WindowRecord Data Type 

For those who want to know more about the data structure of a window 
record or who will be defining their own types of windows, the exact 
data structure ,is given here. 

TYPE WindowRecord 
RECORD 

port: 
windowKind: 
visible: 
hilited: 
goAwayFlag: 
spareFlag: 
strucRgn: 
contRgn: 
updateRgn: 
windowDefProc: 
dataHandle: 
titleHandle: 
titleWidth: 
controlList: 
nextWindow: 
windowPic: 
ref Con: 

END; 

5/30/84 Rose-Davis 

~ 

GrafPort; {window's grafPort} 
INTEGER; {window class} 
BOOLEAN; {TRUE if visible} 
BOOLEAN; {TRUE i·f highlighted} 
BOOLEAN; {TRUE if has go-away region} 
BOOLEAN; {reserved for future use} 
RgnHandle; {structure region}' 
RgnHandle; {content region} 
RgnHandle; {update region} 
Handle; {window definition function} 
Handle; {data used by windowDefProc} 
StringHandle; {window's title} 
INTEGER; {width of title in pixels} 
Handle; {window's control list} 
WindowPeek; {next window' in window list} 
PicHandle; {picture for drawing window} 
LongInt {window's reference value} 

/WMGR/WINDOW.3 



WINDOW RECORDS 13 

The port is the window's grafPort. 

WindowKind identifies the window class. If negative, it means the 
window is a system window (it's the desk accessory's reference number, 
as described in the Desk Manager manual). It may also be one of the 
following predefined constants: 

CONST dialogKind 
userKind 

2; {dialog or alert window} 
8; {window creat~d directly by the application} 

WindowKind values 1 through 7 are reserved for system use. U~erKind is 
stored in this field when a window is created directly by application 
calls to the Window Manager (rather than indirectly through the Dialog 
Manager, as for dialogKind); for such windows the application can in 
fact set the window class to any value greater than 8 if desired. 

When visible is TRUE, the window is currently visible. 

Hilited and goAwayFlag are checked by the window definition function 
when it draws the window frame, to determine whether the window should 
be highlighted and whether it should have a go-away region. For a 
document window, this means that if hilited is TRUE, the title bar of 
the'window is highlighted, and if goAwayFlag is also TRUE, a close box 
appears in the highlighted title bat. 

(note) 
The Window Manager sets the visible and hilited flags to 
TRUE by storing 255 in them rather than 1. This may 
cause problems in Lisa Pascal; to be safe, you should 
check for the truth or falsity of these flags by 
comparing ORD of the flag to~. For example, you would 
check to see if the flag is TRUE with 
ORD(myWindow.visibl'e) <> ~ .• 

StrucRgn, contRgn, and updateRgn are region handles, as defined in 
QuickDraw, to the structure region, content region, and update region 
of the window. These regions are all in global coordinates. 

WindowDefProc is a handle to the window definition function for this 
type of window. When you create a window, you identify its type with a 
window definition ID, which is converted into a handle and stored in 
the windowDefProc field. Thereafter, the Window Manager uses this. 
handle to access the definition function; you should never need to 
access this field directly. 

(note) 
The high-order byte of the windowDefProc field contains 
some additional information that the Window Manager gets 
from the window definition ID; for details, see the 
section "Defining Your Own Windows". Also note that if 
you write your own window definition function, you can 
include it as part of your application's code and just 
store a handle to it in the windowDefProc field. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



14 Window Manager Programmer's Guide 

DataHandle is reserved for use by the window definition function. If 
the window is one of your own definition, your window definition 
function may use this field to store and access any desired 
information. If no mo~e than four bytes of information are needed, the 
definition function can store the information directly in the 
dataHandle field rath~r than use a handle. For example, the definition 
function for rounded-corner windows uses this field to store the 
diameters of curvature. 

TitleHandle is a stringHandle to the window's title, if any. 

TitleWidth is the width, in pixels, of the window's title in the system 
font and system font size. This width is determined by the Window 
Manager and is normally of no concern to the application. 

ControlList is a handle to the window's control list. 

NextWindow is a pointer to the next window in the window list, that is, 
the window behind this window. If this window is the farthest back 
(with no windows between it and the desktop), nextWindow is NIL. 

Assembly-language note: The global variable windowList contains 
a pointer to the first window in the window list. Remember that 
any window in the list may be invisible. 

WindowPic is a handle to a QuickDraw picture of the window contents, or 
NIL if the application will draw the window contents in response to an 
update event, as described under "How a Window is Drawn", below. 

Ref Con is the window's reference value field, which the application may 
store into and access for any purpose. 

(note) 
,'Notice that the go-away, drag, and grow regions are not 
included in the window record. Although these are 
conceptually regions, they don't necessarily have the 
formal data structure for regions as defined in 
QuickDraw. The window definition function determines 
where these regions are, and it can do so with great 
flexibility. 

Assembly-language note: The,global constant windowSize equals 
the length in bytes of a window record. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



HOW A WINDOW IS DRAWN 15 

HOW A WINDOW IS DRAWN 

When a window is drawn or redrawn, the following two-step process 
usually takes place: 'the Window Manager draws the window frame and the 
application draws the window contents. 

To perform the first step of this process, the'Window Manager calls the 
window definition function with a request that the window frame be 
drawn. It manipulates regions of the Window Manager port as necessary 
before calling the window definition function, to ensure that only what 
should and must be drawn is actually drawn on the screen. Depending on 
a parameter passed to the routine that created the window, the window 
definition function mayor may not draw a go-away region in the window 
frame (a close box in the title bar, for a document window). 

Usually the second step is that the Window Manager generates an update 
event to get the application to draw the window contents. It does this 
by accumulating in the update region the areas of the window's content 
region that need updating. The Toolbox Event Manager periodically 
checks to see if there's any window whose update region is not empty; 
if it finds one, it reports (via the GetNextEvent function) that an 
update event has occurred, and passes along the window pointer in the 
event message. (If it finds more than one such window, it issues an 
update event for the frontmost one, so that update events are reported 
in front-to-back order.) The application should respond as follows: . 

1. Call BeginUpdate. This procedure temporarily replaces the visRgn 
of the window's grafPort with the intersection of the visRgn and 
the update region. It then sets the update region to the empty 
region; this "clears," the update event so it won't be reported 
again. 

2. Draw the window contents, entirely or in part. Normally it's more 
convenient to draw the entire content region, but it suffices to 
draw only the visRgn. In either case, since the visRgn is limited 
to where it intersects the old update region, only the parts of 
the window that require updating will actually be drawn on the 
screen. 

3. Call EndUpdate, which restores the normal visRgn. 

Figure 5 illustrates the effect of BeginUpdate and EndUpdate on the 
visRgn and update region of a window that's redrawn after being brought 
to the front. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



16 Window Manager Programmer's Guide 

When L5J changes to cQ 
Before BeginUpdate 

visRgn 

update 
region 

After BeginUpdate 

visRgn ~ 
(update region 

is empty) 

After EndUpdate 

visRgn ~ 
(update region 

is empty) 

Figure 5. Updating Window Contents 

If you choose to draw only the visRgn in step 2 above, there are 
various ways you can check to see-whether what you need to draw falls 
in that region. With the QuickDraw functions PtInRgn and RectInRgn, 
you can check whether a point or rectangle lies in the visRgn. Or it 
m~y be more convenient to look at the visRgn's enclosing rectangle, 
which is stored in its bBox field. The QuickDraw functions PtInRect 
and SectRect let you check for intersection with a rectangle. 

To be able to respond to update events for one of its windows, the 
application has to keep track of the window's contents, usually in a 
data structure. In most case's, it's best never to draw immediately 
into a'window; when you need to draw something, just keep track ~f it 
and add the area where it should be drawn to the window's update region 
(by calling one of the Window Manager's update region maintenance 
routines, InvalRect and InvalRgn). Do the actual drawing only in 
response to an update event. Usually this will simplify the structure 
of your application considerably, but be aware of the following 
possible problems: 

- This method isn't convenient to apply to areas that aren't easily 
defined by a rectangle or a region; in those cases, you would just 
draw directly into the window. 

- If you find that sometimes there's too long a delay before the 
update event happens, you can "force" update events where 
necessary by calling GetNextEvent with a mask that accepts only 
that type of event. 

The Window Manager allows an alternative to the update event mechanism 
that may be useful for some windows: a handle to a QuickDraw picture 
may be stored in the window record. If this is done, the Window 
Manager doesn't generate an update event to get the application to draw 
the window contents; instead, it calls the QuickDraw procedure 

~ 5/30/84 Rose-Davis /WMGR/WINDOW.3 



HOW A WINDOW IS DRAWN 17 

DrawPicture to draw the picture whose handle is stored in the window 
record (and it does all the necessary region manipulation). If the 
amount of storage occupied by the picture is less than the size of the 
code and data necessary to draw the window contents, and the 
application can swap out that code and data, this drawing method is 
more economical (and probably faster) than the usual updating process. 

Assembly-language note: The global variables saveUpdate and 
paintWhite are flags that determine whether the Window Manager 
will generate any update events and whether it will paint the 
update region of a window white before generating an update 
event, respectively. Normally they're both set, but you can 
clear them to prevent the behavior that they control; for 
example, clearing paintWhite is useful if the background of the 
window isn't white. The Window Manager sets both flags -
periodically, so you should clear the appropriate flag just 
before each situation you wish it to apply to. 

MAKING A WINDOW ACTIVE: ACTIVATE EVENTS 

A number of Window Manager routines change the state of a window from 
inactive to active or from active to inactive. For each such change, 
the Window Manager generates an activate event, passing along the 
window pointer in the event message.and, in the modifiers field of the 
event record, bits that indicate the following: 

- Whether this window has become active or inactive. (If active, 
the activeFlag bit is set; if inactive, it's 0.) 

- Whether the active window is changing from an application w~ndow 
to a system window or vice versa. (If so, the changeFlag bit is 
set; qtherwise, it's 0.) 

When the Toolbox Event Manager finds out from the Window Manager that 
an activate event has been generated, it passes the event oi to the 
application (via the GetNextEvent function). Activate events have the 
highest priority of any type of event. 

Usually when one window becomes active another becomes inactive, and 
vice versa, so activate events are most commonly generated in pairs. 
When this happens, the Window Manager generates first the event for the 
window becoming inactive, and then the event for the window becoming 
active. Sometimes only a single activate event is generated, such as 
when there's only one window in the window list, or when the active 
window is permanently disposed of (since it no longer exists). 

Activate events for dialog and alert windows are handled by the Dialog 
Manager. In response to activate events for windows created directly 

5/30/84 Rose-Davis /WMGR/WINDOW.3· 



18 Window Manager Programmer's Guide 

by your application. you might take actions such as the following: 

- In a document window containing a size. box or scroll bars. erase 
the size box icon or scroll bars when the window becomes inactive 
and'redraw them when it becomes active. 

/ 

In a window that contains text being edited. remove the 
highlighting or blinking vertical bar from the text when the 
window becomes inactive and restore it when the window becomes 
active. 

- Enable or disable a menu or certain menu items as appropriate to 
match what the user can do when the window becomes active or 
inactive. 

Assembly-language note: The global variable curActivate 
contains a pointer to a window for which an activate event has 
been generated; the event. however. may not yet have been 
reported to the application via GetNextEvent. so you may be able 
to keep the event from happening by clearing curActivate. 
Similarly. you may be able tO,keep a deactivate event from 
happening by clearing the global variable curDeactive. 

USING THE WINDOW MANAGER 

This section discusses how the Window Manager routines fit into the 
general flow of an application program and gives you an idea of which , 
routines you'll need to use. The routines themselves' are described in 
detail in the next section. 

To use the Window Manager. you must have previously called InitGraf to 
initialize QuickDraw and InitFonts to initialize the Font Manager. The 
first Window Manager routine to call is the initialization routine 
InitWindows. which draws the'desktop and the (empty) menu ,bar. 

Where appropriate in your program. use NewWindow or GetNewWindow to 
create any windows you need; these functions return a window pointer. 
which you can then use to refer to the window. NewWindow takes 
descriptive information about the window from its parameters. whereas 
GetNewWindow gets the information from window templates in a resource 
file. You can supply a pointer to the storage for the window record or 
let it be allocated by the routine creating the window; when you 'no 
longer need a window. call CloseWindow if you supplied the storage. or 
DisposeWindow if not. 

When the Toolbox Event Manager function GetNextEvent reports that an 
update event has occurred. call BeginUpdate, draw the visRgn or the 
entire content region. and call EndUpdate (see "How a Window is Drawn", 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



USING THE WINDOW MANAGER 19 

above). You can also use InvalRect or InvalRgn to prepare a window for 
updating, and ValidRect or ValidRg~ to temporarily protect portions of 
the window from updating. 

When drawing the contents of a window that contains a size box in its 
content region, you'll draw the size box if the window is active or 
just the lines delimiting the size box and scroll bar areas if it's 
inactive. The FrontWindow function tells you which is the'active 
window; the DrawGrowIcon procedure helps you draw the size box or 
delimiting lines. You'll also call the latter procedure when an 
activate event occurs that makes the window active or inactive. 

(note) 
Although unlikely, it's possible that a desk accessory 
may not be set up to handle update or activate events, so 
GetNextEvent may return TRUE for a system window's update 
or activate ,~vent. For this reason, it's a good idea to 
check whether such an event applies to one of your own \ 
windows rather than a system window, and ignore it if it. 

When GetNextEvent reports a mouse-down event, call the FindWindow 
function to find out which part of which window the mouse button was 
pressed in. 

If it was pressed in the content region of an inactive window, 
make that window the active window by calling SelectWindow. 

- If it was pressed in the grow region of the active window, call 
GrowWindow to pull around an image that shows the window's size 
will change, and then SizeWindow to actually change the size. 

- If .it pressed in the drag region of any window, call DragWindow, 
which will pull an outline of the window across the screen, move 
the window to a new location, and, if the window is inactive, make 
it the active window (unless the Command key was held down). 

- If it was pressed in the go-away region of the active window, call 
TrackGoAway to handle the highlighting of the go-away region and 
to determine whether the mouse is inside the region when the 
button is released. Then do whatever is app~opriate as a response 
to this mouse action in the particular application. For example, 
call Close Window or DisposeWindow if you want the window to go 
away permanently, or HideWindow if you want it to disappear 
temporarily. 

(no~e) 
If the mouse button was pressed in the content region of 
an active window (but not in the grow region), call the 
Control Manager function FindControl if the window 
contains controls. If it was pressed in a system window, 
call the Desk Manager procedure SystemClick. See the 
Control Manager and Desk Manager manuals for details. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



20 Window Manager Programmer's Guide 

The procedure that simply moves a window without pulling around an 
outline of it, MoveWindow, can be called at any time, as can SizeWindow 
--though the application should not surprise the user by taking these 
actions unexpectedly. There are also routines fo~ changing the title 
of a window, placing a window behind another window, and making a 
window visible or invisible. Call these Window Manager routines 
wherever needed in your program. 

WINDOW MANAGER ROUTINES 

This section describes first the Window Manager procedures and 
functions that are used in most applications, and then the low-level 
routines for use by programmers who have their own ideas about what to 
do with windows. All routines are presented in their Pascal form; for 
information on using them from assembly language, see Programming 
Macintosh Applications in Assembly Language. . 

Initialization and Allocation 

PROCEDURE InitWindows; 

InitWindows initializes the Window Manager. It creates the Window 
Manager port; you can get a pointer to this port with the GetWMgrPort 
procedure. InitWindows draws the desktop and the (empty) menu bar. 
Call this procedure once before all other Window Manager routines. 

(note) 
InitWindows creates the Window Manager port as a 
nonrelocatable block in the application heap. For 
information on how this may affect your application's use 
of memory, see the Memory Manager manual. *** (A section 
on how to survive with limited memory will be added to 
that manual.) *** 

" 

Assembly-language note: InitWindows draws as the desktop the 
region whose handle is in the global variable grayRgn (normally 
a rounded-corner rectangle occupying the entire screen, minus 
the menu bar). It paints this region with the pattern in the 
global variable deskPattern (normally gray). Any subsequent 
time that the desktop needs to be drawn, such as when a new area 
of it is exposed after a window is closed or moved, the Window 
Manager calls the procedure whose pointer is stored in tpe 
global variable deskHook, if any (normally deskHook is 0). The 
deskHook procedure is called with 0 in D~ to distinguish this 
use of it from its use in responding to clicks on the desktop 
(as discussed in the description of FindWindow); it should 
respond by painting thePortA;clipRgn with deskPattern and then 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



WINDOW MANAGER ROUTINES 21 

doing anything else it wants. 

PROCEDURE GetWMgrPort (VAR wPo~t: GrafPtr);" 

GetWMgrPort returns in wPort a pOinter to the Window Manager port. 

Assembly-language note: Thi's pointer is stored in the global 
variable wMgrPort. 

FUNCTION NewWi~dow (wStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEAN; procID: INTEGER; behind: WindowPtr; 

"goAwayFlag: BOOLEAN; ref Con: LongInt) : WindowPtr; 

NewWindow creates a window as specified by its parameters, adds it to 
the window list, and returns a windowPtr to the new window. It 
allocates space for the structure and content regions of the window and 
asks the window definition .function to calculate those regions. 

WStorage is a pointer to where to store the window record. For 
example, if you've declared the variable wRecord of type WindowRecord, 
you can pass @wRecord as the first parameter to NewWindow. If you pass 
NIL for wStorage, the window record will be allocated on the heap; in 
that case, though, the record will be nonrelocatable, and so you risk 
ending up with a fragmented heap. You should therefore not pass NIL 
for wStorage unless your program has an unusually large amount 'of 
memory available or has been set up to dispose of windows dynamically. 
Even then, you should avoid passing NIL for wStorage if there's no 
limit to the number of windows that your application can open. *** 
(Some of this may be moved to the Memory Manager ~anual when that 
manual is updated to have a section on how to survive with limited 
memory.) *** 
BoundsRect, a rectangle given in global coordinates, determines the 
window's size and location. It becomes the portRect of the window's 
grafPort; note, however, that the portRect is in local coordinates. 
NewWindow makes the QuickDraw call SetOrigin(0,0), so that the top left 
corner of the portRect will be (0,0). 

(note) 
The bitMap, pen pattern, and other characteristics of the' 
window's grafPort are the same as the default values set 
by the OpenPort procedure in QuickDraw, except for the 
character font, which is set to the application font 
rather than the system font. Note, however, that the 
SetOrigin(0,0) call changes the coordinates of the 
grafPort's portBits.bounds and visRgn as well as its 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



22 Window Manager Programmer's Guide 

portRect. 

Title is the window's title. If the title of a document windo\~ is 
longer than will fit in the title bar, only as much of the beginning of 
the title as will fit is displayed. 

If the visible parameter is TRUE, NewWindow draws the window. First it 
calls the window definition function to draw the window frame; if 
goAwayFlag is also TRUE and the window is frontmost (as specified by 
the behind parameter, below), it draws a go-away region in the frame. 
Then it generates an update event for the entire window contents. 

ProcID is the window definition ID, which leads to the window 
definition function for this type of window. The window definition IDs 
for the predefined types of windows are listed above under "Windows and 
Resources". Window definition IDs for windows of your own design are 
discussed later under "Defining Your Own Windows". 

The behind parameter determines the window's plane. The new window is 
inserted in back of the window pointed to by this parameter~ To put 
the new window behind all other windows, use behind=NIL. To place it 
in front of all other windows, use behind=POINTER(-l); in this case, 
NewWindow will unhighlight the previously active window, highlight the 
window being created, and generate appropriate activate events. 

Ref Con is. the window's reference value, set and used only by your 
application. 

NewWindow also sets the window class in the win40w record to indicate 
that the window was created directly by the application. 

FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr; behind: 
WindowPtr) : WindowPtr; 

Like NewWindow (above), GetNewWindow cre'ates a window as specified by 
its parameters, adds it to the window ·list, and returns a windowPtr to 
the new window. The only difference between the two functions is that 
instead of having the parameters QoundsRect" title, visible, procID, 
goAwayFlag, and ref Con, GetNewWindow has a single windowID parameter, 
where windowID is the resource ID of a window template that supplies 
the same information as those parameters. The wStorage and behind 
parameters of GetNewWindow have the same meaning as in NewWindow. 

PROCEDURE CloseWindow (theWindow: WindowPtr); 

CloseWindow removes the given window from the screen and deletes it 
from the window list. It releases the memory occ~pied by all data 
structures associated with the window, but not the memory taken up by 
the window record itself. Call this procedure when you're done with a 
window if you supplied NewWindow or GetNewWindow a,pointer to the 
window storage (in the wStorage parameter) when you created the window. 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



WINDOW MANAGER ROUTINES 23 

Any update events for the window are discarded. If the window was the 
frontmost window and there was another window behind it, the latter 
window is highlighted and an appropriate activate event is generated. 

PROCEDURE DisposeWindow (theWindow: WindowPtr); 

DisposeWindow calls CloseWindow (above) and then releases the memory 
occupied by the window record. ~all this procedure,when you're done 
with a window if you let the window record be allocated on the heap 
when you created the window (by passing NIL as the wStorage parameter 
to NewWindow or GetNewWindow). 

Assembly-language note: The macro you invoke to call 
DisposeWindow from assembly language is named _DisposWindow. 

Window Display 

These procedures affect the appearance or plane of a window but not its 
size or location. 

PROCEDQRE SetWTitle (theWindow: WindowPtr; title: Str255); 

SetWTitle sets theWindow's title to the given string, performing any 
necessary redrawing of the window frame. 

PROCEDURE GetWTitle (theWindow: WindowPtr; VAR title: Str255); 

GetWTitle returns theWindow's title as the value of the title 
parameter. 

PROCEDURE SelectWindow (theWindow: WindowPtr); 

SelectWindow makes theWindow the active window as follows: it 
unhighlights the previously active window, brings theWindow in front of 
all 'other windows, highlights theWindow, and generates the appropriate 
activate events. Call this procedure if there's a mouse~down event in 
the content region of an inactive window. 

PROCEDURE HideWindow (theWindow: WindowPtr); 

HideWindow makes theWindow invisible. If theWindow is the frontmost 
window and there's a window behind it, HideWindow also unhigh1ights 
theWindow, brings the window behind it to the front, highlights that 
window, and generates appropriate activate events (see Figure 6). If 

5/30/84 Rose-Davis /WMGR/WINDm-l. R 



24 Window Manager Programme~'s Guide 

theWindow is already invisible, HideWindow has no effect. 

I Cha .... _ I Cbarge. 
I I 

iCiM ..... = sCEMemo= 

~ 

wPtr poi nts to the 
frontmost window 

After 
HideWindow{wPtr) 

After 
StlowWindow(wPtr) 

Figure 6. Hiding and Showing Document Windows 

PROCEDURE ShowWindow (theWindow: WindowPtr); 

ShowWindow makes theWindow visible. It does not change the front-to
back ordering of the windows. Remember that if you previously hid the 
frontmost window with HideWindow, HideWindow will have brought the 
window behind it to the front; so if you then do a ShowWindow of the 
window you hid, it will no longer be frontmost (see Figure 6 above'). 
If theWindow is already visible, ShowWindow has no "effect. 

(note) 
Although it's inadvisable, you can create a situation 
where the frontmost window is invisible. If you do a 
ShowWindow of such a window, it will highlight the window 
if it's not already highlighted and will generate an 
activate event to force this window from inactive to 
active. 

PROCEDURE ShowHide (theWindow: WindowPtr; showFlag: BOOLEAN); 

If showFlag is FALSE, ShowHide makes theWindow invisible if it's not 
already invisible and has no effect if it is already invisible. If 
showFlag is TRUE, ShowHide makes theWindow visible if it's not already 
visible and has no effect if it is already visible. Unlike HideWindow 
and ShowWindow, ShowHide never changes the highlighting or front-to
bacK ordering of windows or generates activate events. 

(warnin'g) . 
Use this procedure carefully, and only in special 
circumstances where you need more control than allowed by 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



WINDOW MANAGER ROUTINES 25 

HideWindow and ShowWindow. 

PROCEDURE Hili teWindow (theWindow:' WindowPtr; fHili te: BOOLEAN); 

If fHilite is TRUE, this procedure highlights theWindow if it's not 
already highlighted and has no effect if it is highlighted. If fHili~e 
is FALSE, HiliteWindow unhighlights theWindow if it is highlighted and 
has no effect if it's not highlighted. The exact way a window is 
highlighted depends on its window definition functipn. 

Normally you won't have to call this procedure, since you should call 
SelectWindow to make a window active, and SelectWindow takes care of 
the necessary highlighting changes. Highlighting a window that isn't 
the active window is contrary to the Macintosh User Interface 
Guidelines. 

PROCEDURE BringToFront (theWindow: Wind~wPtr); 

BringToFront brings theWindow to the front of all other windows and 
redraws the window as necessary. Normally you won't have to call this 
procedure, since you should call SelectWindow to make a window active, 
and SelectWindow takes care of bringing the window to the front.' If 
you do call BringToFront, however, remember to call HiliteWindow to 
make the' necessary highlighting c~anges. 

PROCEDURE SendBehind (theWindow: WindowPtr; behindWindow: WindowPtr); 

SendBehind sends theWindow behind behindWindow, redrawing any exposed 
windows. If behindWindow is NIL, it sends theWindow behind all other 
windows. If theWindow is the active window, it unhighlights theWindow, 
highlights the new active window, and generates the appropriate 
activate events. 

(warning) 

(note) 

Do not use SendBehind to deactivate a previously' active 
window. Calling SelectWindow to make a window active 
takes care of deactivating the previously active window. 

If you're moving theWindow closer to the front (that is, 
if it's initially even farther behind behindWindow), you 
must make the following calls after calling SendBehind: 

wPeek := POINTER(theWindow); 
PaintOne(wPeek, wPeekA.strucRgn); 
CalcVis(wPeek, wPeekA.strucRgn) 

PaintOne and Cal,cVis are described below under "Low-Level 
Rou'tines" • 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



26 Window Manager Programmer's Guide 

FUNCTION FrontWindow : WindowPtr; 

FrontWindow returns a pointer to the first visible window in the window 
list (that is, the active window). If there are no visible windows, it 
returns NIL. 

Assembly-language note: In the global variable ghostWindow, you 
can store a pointer to a window that's not to be considered, 
frontmost even if it is (for example, if you want to have a 
special editing window always present and floating above all the 
others). If the window pointed to by ghostWindow is the first 
window in the window list, FrontWindow will return a pointer to 
the next visible window. 

PROCEDURE DrawGrowlcon (theWindow: WindowPtr); 

Call DrawGrowIcon in response to an update or activate event involving 
a wind9w that contains a size box in its content region. If theWindow 
is active (highlighted), DrawGrowIcon draws the size box; otherwise, it 
draws whatever is appropriate to show that the window\temporarily 
cannot be sized. The exact appearance and location of what's drawn 
depend on the window definition function. For an active document 
window, DrawGrowIcon draws the size box icon in the bottom right corner 
of the portRect of the window's grafPort, along with the'lines . 
delimiting the size box and scroll bar areas (15 pixels in from the 
right edge and bottom of the portRect). It doesn't erase the scroll 
bar areas, so if the window doesn't contain scroll bars you should 
erase those areas yourself after the window's size changes. For an 
inactive document window, DrawGrowlcon draws only the delimiting lines 
(again, without erasing anything). 

Mouse Location 

FUNCTION FindWindow (thePt: Point; VAR'whichWindow: WindowPtr) 
INTEGER; 

When a mouse-down event occurs, the application should call FindWindow 
with thePt equal to the point where the mOQse button was pressed (in 
global coordinates, as stored in the where field of the event record). 
FindWindow tells wh~ch part of which window, if any, the mouse button 
was pressed in. If it was pressed in a window, the whichWindow 
parameter is set· to the window pointer; otherwise, it's set to NIL. 
The integer returned by FindWindow is one of the following predefined 
constants: 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



WINDOW MANAGER ROUTINES 27 

CONST inDesk ~; {none of the following} 
inHenuBar 1 ; {in menu bar} 
inSysWindow = 2- {in system window} , 
inContent = 3; {in content region (except grow, if active)} 
inDrag 4; {in drag region} 
inGrow = 5; {in grow region (active window only)} 
inGoAway = 6; {in go-away region (active window only)} 

InDesk usually means that the mouse button was pressed on the desktop, 
outside the menu bar or any windows; however, it may also mean that the 
mouse button was pressed inside a window frame but not in the drag 
region or go-away region of the window. Usually one of the last four 
values is returned for windows created by the application. 

Assembly-Ianguage~: If you store a pointer to a procedure 
in the global variable deskHook, it will be called when the 
mouse button is pressed on the desktop. The deskHook procedure 
will be called with -1 in D~ to distinguish this use of it from 
its use in drawing the desktop (discussed in the description of 
InitWindows). A~ will contain a pointer to the event record for 
the mouse-down event. When you use deskHook in this way, 
FindWindow does not return inDesk when the mouse button is 
pressed on the desktop; it returns inSysWindow, and the Desk 
Manager procedure SystemClick calls the deskHook procedure. 

If the window is a documentProc type of window that doesn't contain a 
size box, the application should treat inGrow the same as inContent; if 
it's a noGrowDocProc type of window, FindWindow will never return 
inGrow for that window. If the window is a documentProc, 
noGrowDocProc, or rDocProc type of window with no close box, FindWindow 
will never return inGoAway for that window. 

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point) : BOOLEAN; 

When there's a mouse-down event in the. go-away region of theWindow, the 
application should call TrackGoAway with thePt equal to the point where 
the mouse button was pressed (in global coordinates, as stored in the 
where field of the event record). TrackGoAway keeps control until the 
mouse button is released, highlighting the go-away region as long as 
the mouse position remains inside it, and unhighlighting it when the 
mouse moves outside it. The exact way a window's go-away region is 
highlighted depends on its window definition function; the highlighting 
of a document window's close box is illustrated in Figure 7. When the 
mouse button is released, TrackGoAway unhighlights the go-away region 
and returns TRUE if the mouse is inside the go-away region or FALSE if 
it's outside the region (in which case the application should do 
nothing). 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



28 Window Manager Programmer's Guide 

ID 
Llnhighlighted close box 

Highl ighted close box 

Figure 7. 'A Document Window's Close Box 

Window Movement and Sizing 

PROCEDURE MoveWindow (theWindow: WindowPtr; hGlobal,vGlobal: INTEGER; 
front: BOOLEAN); , 

MoveWindow moves theWindow to another part of the screen, without 
affecting its size or plane. The top left corner of the portRect of 
the window's grafPort is moved to the screen point indicated by the 
global coordinates hGlobal and vGlobal. The local coordinates of the 
top left corner remain the same; MoveWindow saves those coordinates 
before moving the window and calls the QuickDraw procedure SetOrigin to 
restore them before returning. If the front parameter is TRUE and 
theWindow isn't the active window, MoveWindow makes it the active 
window by calling SelectWindow(theWindow). 

PROCEDURE DragWindow (theWindow: WindowPtr; startPt: Point; boundsRect: 
Rect) ; 

When there's a mouse-down event in the drag region of theWindow, the 
application should call DragWindow with startPt equal to the point 
where the mouse button was pressed (in global coordinates, as stored in 
the where field of the event record). DragWindow pulls a gray outline 

\ of theWindow around, following the movements of the mouse until the 
button is released. When the mouse button is released, DragWindow 
calls MoveWindow to move theWindow to the location to which it was 
dragged. If theWindow is not the active window and the Command key was 
not being held down, DragWindow makes it the active window (by passing 
TRUE for the front parameter when calling MoveWindow). 

BoundsRect is also given in 'global coordinates. If the mouse button is 
released when the mouse position is outside the limits of boundsRect, 
DragWindow return's wi thout moving theWindow or making it the ac ti ve 
window. For a document window, boundsRect typically will be four 
pixels in from the menu bar and from the other edges of the screen, to 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 29 

ensure that there won't be less than a four-pixel-square area of the 
title bar visible on the screen. 

Assembly-language note: By storing a pointer to a procedure in 
the global variable dragHook, you can specify a procedure to be 
executed repeatedly for as long as the user holds down the mouse 
button. (DragWindow calls DragGrayRgn, described under 
"Miscellaneous Utilities" below, and passes the pointer in 
dragHook as DragGrayRgn's actionProc parameter.) 

FUNCTION GrowWindow (theWindow: WindowPtr; st~rtPt: Point; sizeRect: 
Rect) : LongInt; 

When there's a mouse-down event in the grow region of theWindow, the 
application should call GrowWindow with startPt" equal to the point 
where the mouse button was pressed (in global coordinates, as stored in 
the where field of the event record). GrowWindow pulls a grow image of 
the window around, following the movements of the mouse until the 
button is released. The grow image for a document window, is a gray 
outline ,of the entire window and also the lines delimiting the title 
bar, size box, and scroll bar areas; Figure 8 illustrates this for a 
document window containing a. size box and scroll bars, but the grow 
image would be the same even if the window contained no size box, one 
scroll bar, or no scroll bars. In general, the grow image is defined 
in the window definition function and is whatever is appropriate to 
show that the window's size will change. 

~E]····-·"·"··--Titie·····-··········-····· .......... -.... ~ 
,..._._ .. _ ......................................... _........ .. . .......•.. _ ... : 
! ~ ~ 
~ ~ ~ 
~ i ~ 
i ! ! 
! : : 
i i ! 
! ! ! 
! E ~ : : : 
i ; ~ 
. ~ ~ 

[====~==~~~~~~~:.==:~_~I 
size returned in low-order word, 

s i2e returned in 
high.order word 

Figure 8. GrowWindow Operation on a Document Window 

The application should subsequently call SizeWindow (see below) to 
change the portRect of the window's grafPort to the new one outlined by 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



30 Window Manager 'Programmer's Guide 

the grow image. The sizeRect parameter specifies limits, in pixels, on 
the vertical and horizontal measurements of what will be the new 
portRect. SizeRect.top is the minimum vertical measurement, 
sizeRect.left is the ~inimum horizontal measurement, sizeRect.bottom is 
the maximum vertical measurement, and sizeRect.right is the maximum 
horizontal measurement. 

GrowWindow returns the actual size for the new portRect as outlined by 
the ,grow image when the mouse button is released. The high-order word 
of the LongInt is the vertical measurement in pixels and the low-order 
word is the horizontal measurement. A return value of ~ indicates that 
the size is the same as that of the current portRect. 

(note) 
The Toolbox Utility function HiWord takes a long integer 
as a parameter and returns an integer equal to its high
order word; the function LoWord returns the low-order 
word. 

PROCEDURE SizeWindow (theWindow: WindowPtr; w,h: INTEGER; fUpdate: 
BOOLEAN) ; 

Sizewindow enlarges or shrinks the portRect of theWindow's grafPort to 
the width and height specified by wand h, or does nothing if wand h 
are ~e The window's position on the screen does not change. The new 
\'lindo\rl frame is drawn; if the width of a document window changes, the 
title is again centered in the title bar, or is truncated at its end if 
it no longer fits. If fUpdate' is TRUE, SizeWindow accumulates any 
newly created area of the content region into the update region (see 
Figure 9); normally this is what you'll want. If you pass FALSE for 
fUpdate, you're responsible for the update region maintenance yourself. 
For more information, see InvalRect and ValidRect below. 

h1 

After SizeWindow(wPtr, w1, h1, TRUE) 

Title 

I 
w1 

Area marked ~ 
is accumulated 
into update region 

Figure 9. SizeWindow Operation on a Document Window 

5/30/84 Rose-Davis ,/WMGR/WINDOW. Rl 



WINDOW MANAGER ROUTINES 31 

(note) 
You should change the window's size only when the user 
has done something specific to make it change. 

Update Region Maintenance 

PROCEDURE InvalRect (badRect: Rect); 

InvalRect accumulates the given rectangle into the update region of the 
window whose grafPort is the current,port. This tells the Window 
Manager that the rectangle has changed and must be updated. The 
rectangle lies within the window's content region and is given in the 
local coordinates.· 

For example, this procedure is useful when you're calling SizeWindow 
(described above) for a document window that contains a size box or 
scroll bars. Suppose you're going to call SizeWindow with 
fUpdate=TRUE. If the window is enlarged as shown in Figure 8 above, 
you'll want not only the newly created part of the content region to be 
updated, but also the two rectangular areas containing the (former) 
size box and scroll bars; before calling Siz~Window, you can call 
InvalRect twice to accumulate those areas into the update region. In 
case the window is made smaller, you'll want the new size box and 
scroll bar areas to be updated, and so can similarly call InvalRect for 
those areas after calling SizeWindow. See Figure 1~ for an 
illustration of this type of update region maintenance. 

Before SizeWindow with fUpdate= TRUE: 

The original windo~ 

Af1er SizeWindow: 

The new window 

In case the window is enlarged, 

ca II InvalRect for ~ 
and I I 

In case the window was made smaller" 

call InvslAectfor 0 
and 'L--__ I ... I 

Figure 1~. Update Region Maintenance with InvalRect 

As another example, suppose your application scrolls up text in a 
document window and wants to show new text added at the bottom of the 

5/30/84 Rose-Davis /WMGR/WINDOW.R1 



32 Window Manager Programmer's Guide 

window. You can cause the added text to be redrawn by accumulating 
that area into the update region with InvalRect. 

PROCEDURE InvalRgn (badRgn: RgnHandle); 

InvalRgn is the same as In~alRect (above) but for a region that has 
changed rather than a rectangle. 

PROCEDURE ValidRect (goodRect: Rect); 

ValidRect removes goodRect from the update region of th~ window whose 
grafPort is the current port. This tells the Window Manager that the 
application has already drawn the rectangle and to cancel any updates 
accumulated for that area. The rec~angle lies' within the window's 
content region and is given in local coordinates. Using ValidRect 
results in better performance and less redundant redrawing in the 
window. 

For example, suppose you've called SizeWindow (described above) with 
fUpdate=TRUE for a document window that contains a size box or scroll 
bars. Depending on the dimensions of the newly sized window, the new 
size box and scroll bar areas mayor may not have been accumulated into 
the window's update region. After calling SizeWindow, you can redraw 
the size box or scroll bars immediately and then call ValidRect for the 
areas they occupy in case they were in fact accumulated into the update 
region; this will avoid redundant drawing. 

PROCEDURE ValidRgn (goodRgn: RgnHandle); 

ValidRgn is the same as ValidRect (above) but for a region that has 
been drawn rather than a rectangle. 

PROCEDURE BeginUpdate (theWindow: WindowPtr); 

Call BeginUpdate when an update event occurs for theWindow •. 
BeginUpdate replaces the visRgn of,the window's grafPort with the 
intersection of the visRgn and the update region and then sets the 
window's up,date region to the empty region. You would then usually 
draw the entire content region, though it suffices to draw only the 
visRgn; in either case, only the parts of the window that require 
updating will actually be drawn on the screen. Every call to 
BeginUpdate must be balanced by a call to EndUpdate. (See below, and 
see "How a Window is Drawn".) 

PROCEDURE EndUpdate (theWindow: WindowPtr); 

Call EndUpdate to restore the normal visRgn of theWindow's grafPort, 
which was changed by BeginUpdate as described above. 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 33 

Miscellaneous Utilities 
) 

/ 

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt); 

SetWRefCon sets theWindow's reference value to the given data. 

FUNCTION GetWRefCon (theWindo~: WindowPtr) : LongInt; 

GetWRefCon returns theWindow's current reference value. 

PROCEDURE SetWindowPic (theWindow: WindowPtr; pic: PicHandle); 

SetWindowPic stores the given picture handle in the window record for 
theWindow, so that when theWindow's contents are to be drawn, the 
Window Manager will draw this picture rather than generate a'n update 
event. 

FUNCTION GetWindowPic (theWindow: WindowPtr) : PicHandle; 

GetWindowPic .returns the handle to the picture that draws theWindow's 
contents, previously stored with SetWindowPic (above). 

FUNCTION PinRect (theRect: Rect; thePt: Point) : LongInt; 

PinRect "pins" thePt inside theRect: The high-order word of the 
function result is the vertical coordinate of thePt or, if thePt lies 
above or below theRect, the vertical coordinate of the t?P or bottom of 
theRect, respectively. The low-order word of the function result is 
the horizontal coordinate of thePt or, if thePt lies to the left or 
right of theRect, the horizontal coordinate of the left or right edge 
of theRect. 

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point; 
limitRect,slopRect: Rect; axis: INTEGER; actionProc: 
ProcPtr) : LongInt; 

Called when the mouse button is down inside theRgn, DragGrayRgn pulls a 
gray outline of the region around, following the movements of the mouse 
until the button is released. DragWindow calls this function before 
actually moving the window, and the Control Manager routine DragControl 
similarly calls it for controls. You can call it yourself to pull 
around the outline of any region, and then use the information it 
returns to determine 'where to move the region. 

The startPt parameter is assumed to be, the point where the mouse button 
was originally pressed, in the local coordinates of the current 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



34 Window Manager Programmer's Guide 

grafPort. 

LimitRect and slopRect are also in the local coordinates of the current 
( , 

grafPort. To explain these parameters, the concept of "offset point" 
'must be introduced: this is the point whose vertical and horizontal 
offsets from the top left corner of the region's enclosing rectangle 
are the same as those of~startPt. Initially the offset point is the 
same as the mouse position, but they may differ, depending on where the 
user moves the mouse. DragGrayRgn will never move the offset point 
outside limitRect; this limits the travel of the region's outline (but 
not the movements of the mouse). SlopRect, which should completely 
enclose limitRect, allows the user some "slop" in moving the mouse. 
DragGrayRgn's behavior while tracking the mouse depends on the position 
of the mouse with respect to these two rectangles: 

- When the mouse is inside ,limitRect, the region's outline follows 
it normally. If the mouse button is released there, the region 
should be moved to the mouse position. 

- When the mouse is outside limitRect but inside slopRect, 
DragGrayRgn "pins" the offset point to the edge of limitRect. If 
the mouse button is released there, the region should be moved to 
this pinned location. 

- When the mouse is outside slopRect, the outline disappears from' 
the screen, but DragGrayRgn continues to follow the mouse; if it 
moves back into slopRect, the outline reappears. If the mouse 
button is released outside slopRect, the region should not be 
moved from its original position. 

Figure 11 illustrates what happens when t~e mouse is moved outside 
limitRect but inside slopRect, for a rectangular region. The offset 
point is pinned as the mouse position moves on. 

------~-------------I ~-------------------
i---- ---- ------ --i 

! 1.5:"::"":] '! 
I I 

__ L_-_T_-_-_-_-_-_-___ -_i-_-___ J 
__ 

1 i mi tRect 310pRect 

: i-~-:-·-----l-----i 
I Iii I 
I I ~ ! I 
I I L ............. J I 
I I I 
I , I 
I I I 
I , I 
I I I 

:- ------1-----------------------------t ' 
lim itRect s lopRect 

Initial offset point and mouse Offset point II pinned II 
position 
Figure 11. DragGrayRgn Operation on a Rectangular Region 

If the mouse button is released outside slopRect, DragGrayRgn returns 
-32768 ($8000); otherwise, the high-order word of the value returned 
contains the vertical coordinate of the ending mouse point minus that 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 35 

of startPt and the low-order word contains the difference between the 
horizontal coordinates. 

The axis parameter allows you to constrain the outline's motion to only 
one axis. It has one of the following values: 

CONST noConstraint 
hAxisOnly 
vAxisOnly 

0;, {no constraint} 
1; {horizontal axis only} 
2; {vertical axis only} 

If an axis constraint is in effect, the outline will follow the mouse's 
movements along the specified axis only, ignoring motion along the 
other axis. With or without an axis constraint, the mouse must still 
be inside the slop rectangle for the outline to appear at all. 

The actionProc parameter is a pointer to a procedure that defines some 
action'to be performed repeatedly for as long as the user holds down 
the mouse button; the procedure should have no parameters. If 
actionProc is NIL, DragGrayRgn simply retains control until the mouse 
button is released, performing no action while the mouse button is 
down. 

Assembly-language note: If you want the region's outline to be 
drawn in a pattern other than gray, you can store the pattern in 
the global variable dragPattern and call the above function at 
the entry point _DragTheRgn. 

Low-Level Routines 

These low-level routines are not normally used by an application but 
may be of interest to advanced programmers. 

FUNCTION CheckUpdate (VAR theEvent: EventRecord) BOOLEAN; 

CheckUpdate is called by the Toolbox Event Manager. From the front to 
the back in the window list, it looks for a visible window that needs 
updating (that is, whose update region is not empty). If it finds one 
whose window record contains a picture handle, it draws the picture 
(doing all the necessary region manipulation) and looks for the next 
visible window that needs updating. If it ever finds one whose window 
record doesn't contain a picture handle, it stores an update event for 
that window in theEvent and returns TRUE. If it never finds such a 
window, it returns FALSE. 

5/30/84 Rose-Davis /WMGR/WINDOW.R1 



36, Window Manager Programmer's Guide 

PROCEDURE ClipAbove (window: WindowPeek); 

ClipAbove sets the clipRgn of the Window Manager port to be the desktop 
(global variable grayRgn) intersected with the current clipRgn, minus 
the structure regions of all the windows above the given window. 

PROCEDURE SaveOld (window: WindowPeek); 

SaveOld saves the given window's current structure region and content 
region for the DrawNew operation (see below). It must be balanced by a 
subsequent call to DrawNew. 

PROCEDURE DrawNew (window: WindowPeek; update: BOOLEAN); 

If the update parameter is TRUE, DrawNew updates the area 

(oldStruct XOR newStruct) UNION (oldContent XOR newContent) 

where oldStruct and oldContent are the structure and content regions 
saved by the SaveOld procedure, and newStruct and newContent are the 
current structure and content regions. It paints the area white and 
adds it to the window's update region. If update is FALSE, it only 
paints the area white. 

(warning) 
Save Old and DrawNew are not nestable. 

PROCEDURE PaintOne (window: WindowPeek; clobberedRgn: RgnHandle); 

PaintOne "paints" the given window, clipped to clobberedRgn and all 
windows above it: it draw~ the window frame and, if some content is 
exposed, paints the exposed area white and adds it to the window's 
update region. If the window parameter is NIL, the window is the 
desktop and so is painted gray. 

PROCEDURE PaintBehind (startWindow: WindowPeek; clobberedRgn: 
RgnHandle) ;. 

PaintBehind calls PaintOne (above) for startWindow and all the windows 
behind startWindow, clipped to clobberedRgn. 

PROCEDURE CalcVis (window: WindowPeek); 

CalcVis calculates the visRgn of the given window by starting with its 
content ,region and subtracting the structure region of each window in 
front of it. 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 37 

PROCEDURE CalcVisBehind (startWindow: WindowPeek; clobbe"redRgn: 
RgnHand Ie ) ; 

CalcVisBehind calculates the visRgns of startWindow and all windows 
behind startWindow that intersect with clobberedRgn. It's called after 
PaintBehind ($ee above). 

Assembly-language note: The macro you invoke to call 
CalcVisBehind from assembly language is named CalcVBehind. 

DEFINING YOUR OWN WINDOWS 

Certain types of windows, such as the standard document window, are 
predefined for you. However, you may want to define your own type of, 
window--maybe a round or hexagon-shaped window, or even a window shaped 
like an apple. QuickDraw and the Window Manager make it possible for 
you to do this. 

(note) 
For the convenience of your application's user, remember 
to conform to the Macintosh User Interface Guidelines for 
windows as much as possible. 

To define your own type of window, you write a window definition 
function and (usually) store it in a resource file. '¥hen you create a 
w~ndow, you provide a window definition ID, which leads to the window 
definition function. The window definition ID is an integer that 
contains the resource ID of the window definition function in its upper 
12 bits and a variation code in its lower four bits. Thus" for a given 
resource ID and variation code, the window definition ID is: 

16 * resource ID + variation code 

The variation code allows a single window definition function to 
implement several related types of window as "variations on a theme". 
For example, the dBoxProc type of window is a variation of the standard 
document' window; both use the window definition functio~ whose resource 
ID is 0, but the document window has a variation code of 0 while the 
dBoxProc window has a variation code of 1. 

The Window Manager calls the Resource Manager to access the window 
definition function with the given resource ID. The'Resource Manager 
reads the window definition function into memory and returns a handle 
to it. The Window Manager stores this handle in the windowDefProc 
field of the window record, along with the variation code in the high
order byte of that field. Later, when it needs to perform a type
dependent action on the window, it calls the window definition function 
and passes it the variation code as a parameter. Figure 12 summarizes 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



\ 

38 Window Manager Programmer's Guide 

this process. 

(note) 

You supply the window definition 10: 

15 4 3 0 

I resource 10 I code I 
(resource '.10 of window 
definition function· 
and variation code) 

The Window Manager calls the Resource Manager with 

defHandle := GetResource ('WDEF' .. resourcelO) 

and stores into the windowOefProc field of the window record: 

I code I defHandle 

The var i8t ion code is passed to the window defi nition function. 

Figure 12. Wifidow Definition Handling 

You may find it more convenient to include the window 
definition function with the code of your program instead 
of storing it as a separate resource. If you do this, 
you should supply the window definitionID of any 
standard window type when you create the window, and 
specify that the window initially be invisible. Once the 
window is created, you can replace the contents of the 
windowDefProc field with as handle to the actual window 
definition function (along with a variation code, if 
needed, in the high-order byte of the field). You can 
then call ShowWindow to make the window visible. 

The Window Definition Function 

The window definition function may be written in Pascal or assembly 
language; the only requirement is that its entry point must be at the 
beginning. You may choose any name you wish for your window definition 
function. Here's how you would declare one named MyWindow: 

FUNCTION MyWindow (varCode: INTEGER; theWindow: WindowPtr;. 
message: INTEGER; param: LongInt) : LongInt; 

VarCode is the variation code, as described above. 

TheWindow indicates the window that the operation will affect. If the 
window definition function needs to use a WindowPeek type of pointer 
more than a WindowPtr, you can simply specify WindowPeek instead of 
WindowPtr in the function declaration. 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



DEFINING YOUR OWN WINDOWS 39 

I 

The message parameter identifies the desired operation. It has one of 
the following values: 

CONST wDraw ~; . {draw window frame} 
wHit 
wCalcRgns 
wNew 
wDispose 
wGrow = 
wDrawGIcon 

1 ; 
2; 
3; 
4; 
5; 
6; 

{tell what region mouse button was pressed.in} 
{calculate strucRgn and contRgn} 
{do any additional window initialization} 
{take any additional disposal actions} 
{draw window's grow image} . 
{draw size box in content region} 

As described below in the discussions of the routines that perform 
these operations, the value passed for param, the last parameter of the 
window definition function, depends on the operation. Where it's not 
mentioned below, this parameter is ignored. Similarly, the window 
definition function is expected to return a function result only where 
indicated; in other cases, the function should return ~. 

(note) 
"Routine" here does not necessarily mean a procedure or 
function. While it's a good idea to set these up as 
subprograms inside the window definition function, you're 
not required to do so. 

The Draw Window Frame Routine 

When the window definition function receives a wDraw message, it should 
draw the window frame in the current grafPort, which will be the Window 

.Manager port. (For details on drawing, see the QuickDraw manual.) 

(warning) 
Do not change the visRgn or clipRgn of the Window Manager 
port, or overlapping windows may not be handled properly. 

This routine should make c~rtain checks to determine exactly what it 
should do. If the visible field in the window record is FALSE, the 
routine should do nothing; otherwise, it should examine the value of 
param received by the window definition function, as described below. 

If param is ~, the routine should draw the entire window frame. If the 
hili ted field in the window record is TRUE, the window frame should be 
highlighted in whatever way is appropriate to show that this is -the 
active window. If goAwayFlag in the window record is aiso TRUE, the 
highlighted window frame should include a go-away region; this is 
useful when you want to define a window such that a particular window 
of that type mayor may not have a go-away region, depending on the 
situation. 

Special action should be taken if the value of param is wlnGoAway (a 
predefined constant, equal to 4, which is one of those returned by the 
hit routine described below). If param is wInGoAway, the routine 
should do nothing but "toggle" the state of the window's go-away region 
from unhighlighted to highlighted 'or vice versa. The high~ighting 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



40 Window Manager Programmer's Guide 

should be whatever is appropriate to show that the mouse button has 
been pressed inside the region. Simple inverse highlighting may be 
used or, as in document windows, the appearance of the region may 
change considerably. In the latter case, the .routine could use a 
"mask" consisting of the unhighlighted state of the region XORed with 
its highlighted state (where XOR stands for the logic'al operation 
"exclusive or"). When such a mask is itself XORed with either state of 
the region, the result is the other state; Figure 13 illustrates this. 

Dx~ ,1/ [lli = 
/1' /1' 

Unhi gill ighted ~ighlighted Mask 
state . state 

DXOR [lli ,1/ 
= /1' /1' 

XOA~=D ~ 
Figure 13. Toggling the Go-Away Region 

Typically the window frame will include the window's title, which 
should be in the system font and system font size for consistency with 
the Macintosh User Interface Guidelines. The Window Manager port will 
already be set to use the sy,stem font and system font size. 

(note) 
Nothing drawn outside the window's structure region will 
be visible. 

The Hit Routine 

When the window definition function receives a wHit message, it also 
receives as its param value the' point where the mouse button was 
pressed. This point is given in global coordinates, with the vertical 
coordinate in the high-order word of the LongInt and the horizontal 
coordinate in the low-order ·word. The window definition furiction 
should determine where the mouse button "hit" and then return one of 
these'predefined constants: 

CONST wNoHit = ~; {none of the following} 
wInContent = 1 ; {in content region (except grow, if active)} 
wInDrag = 2; {in drag region} 
wInGrow 3; {in grow region (active window only)} 
wInGoAway = 4" {in go-away region (active window only)} , 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



DEFINING YOUR OWN WINDOWS 41 

Usually, wNoHit means the given point isn't anywhere within the window, 
but this is not necessarily so. For example, the document window's hit 
routine returnswNoHit if the point is in the window frame but not in 
the title bar. 

The constants wlnGrow and wlnGoAway should be returned only if the 
window is active, since by convention the size box and go-away region 
won't be drawn if the window is inactive (or, if drawn, won't be 
operable). In an inactive document window, if the mouse button is 
pressed in the title bar where the close box would be if the window 
were active, the hit routine should return wInDrag. 

Of the regions that may have been hit, only the content region 
necessarily has the structure of a region and is included in the window 
record. The hit routine can determine in any way it likes whether the 
drag, grow, or go-away "region" has been hit. 

The Routine to Calculate Regions 

The routine executed in response to a wCalcRgns message should 
calculate the window's structure region and content region based on the 
current grafPort's portRect. These regions, whose handles are in the 
strucRgn and contRgn fields, are in global coordinates. The Window 
Manager will request this operation only if the window is visible. 

(warning) 
When you calculate regions for your own type of window, 
do not alter the clipRgn or the visRgn of the window's 
grafport. The Window Manager and QuickDraw take care of 
this for you. Altering the clipRgn or visRgn may result 
in damage to other windows. 

The Initialize Routine 

~ After initializing fields as appropriate when creating a new window, 
the Window Manager sends the message wNew to the window definition 
function. This gives the definition function 'a chance to perform any 
type-specific initialization it may require.- For example, if the 
content region is unusually shaped" the initialize routine might 
allocate space for the region and store the region handle in the 
dataHandle field of the window record. The initialize routine for a 
document window does nothing. 

The Dispose Routine 

The Window Manager's CloseWindow and DisposeWindow procedures send the 
message wDispose to the window definition function, telling it to carry 
out any additional actions required when disposing of the window. The 

'dispose routine might, for example, release space that was allocated by 
the initialize routine. The dispose routine for a document window does 
nothing. 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



42 Window Manager Programmer's Guide 

The Grow Routine 

When the window definition function receives a wGrow message, it also 
receives a pointer to a rectangle as its param value. The rectangle is 
in global coordinates and is usually aligned at its top left corner 
with the portRect of the window's grafPort. The grow routine should 
draw a grow image of the window to fit the given rectangle (that- is, 
whatever is appropriate to show that the window's size will change, 

'such as an outline of the content region). The Window Manager requests 
this operation repeatedly as the user drags inside the grow region. 
The grow routine should draw in the current grafPort, which will be the 
Window Manager port, and should use the grafPort's current pen pattern 
and pen mode, which are set up (as gray and notPatXor) to conform to 
the Macintosh User Interface Guidelines. 

The grow routine for a document window draws a gray outline of the 
window and also the lines delimiting the title bar, size box, and 
scroll bar areas. 

The Draw Size Box Routine 

Thw wDrawGIcon message tells the window definition function to draw the 
size box in the ~ontent region of the window if the window is active 
(highlighted) or, if the window is inactive, whatever is appropriate to 
show that it temporarily can't be sized. For active document windows, 
this routine draws the size box icon in the bottom right corner of the 
portRect of the window's grafPort, along with the lines delimiting the 
size box and scroll bar areas; for inactive windows, it draws just the 
delimiting lines. 

(note) 
If the size box is located in the window frame rather 
than the content region, this routine should do nothing. 

FORMATS OF RESOURCES FOR WINDOWS 

The Window Manager function GetNewWindow takes the resource ID of a 
window template as a parameter, and gets from the template the same 
infomation that the NewWindow function gets from six of its parameters. 
The resource type for a window template is 'WIND', and the resource 
data has the following format: 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



Number of bytes 
8 bytes 
2 bytes 
2 bytes 
2 bytes 
4 bytes 
n bytes 

FORMATS OF RESOURCES FOR WINDOWS 43 

Contents 
Same as boundsRect parameter to NewWindow 
Same as procID parameter to NewWindow 
Same as visible parameter to NewWindow 
Same as goAwayFlag parameter to NewWindow . 
Same as ref Con parameter to NewWindow 
Same as title parameter to NewWindow 
(I-byte length in bytes) followed by 
the characters of the title) 

The resource type for a window definition function is 'WDEF') and the 
resource data is simply the compiled or assembled code of the function. 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



44 Window Manager Programmer's Guide 

SUMMARY OF THE WINDOW MANAGER 

Constants 

CONST { Window definition IDs } 

documentProc ~; {standard document window} 
dBoxProc 1 ; {alert box or modal dialog box} 
plainDBox 2; {plain box} 
altDBoxProc 3; {plain box with shadow} 
noGrowDocProc 4· , {document window without size box} 
rDocProc 16; {rounded-corner window} 

{ Window class, in windowKind field of window record} 

dialogKind 
userKind 

= 2; 
= 8; 

{dialog or alert window} 
{window created directly by the application} 

{ Values returned by FindWindow } 

inDesk ~; 
inMenuBar 1; 
inSysWindow = 2; 
inContent 3;-
inDrag 4; 
inGrow 5; 
inGoAway 6; 

{none of ~he following} 
{in menu bar} 
{in system window} 
{in content region (except grow, if active)} 
{in drag region} 
{in grow region (active window only)} 
{in go-away region (active window only)} 

{ Axis constraints for DragGrayRgn } 

noConstraint 
hAxisOnly 
vAxisOnly 

~; {no constraint} 
1; {horizontal axis only} 
2; {vertical axis only} 

{ Messages to window definition function } 

wDraw 
wHit 
wCalcRgns 
wNew 
wDispose 
wGrow 
wDrawGlcon 

~; 
1 ; 
2; 
3; 
4; 
5 ;' 
6; 

{draw the window frame} 
{tell what region mouse button was pressed in} 
{calculate strucRgn and contRgn} 
{do any additional window initialization} 
{take any additional disposal actions} 
{draw window's grow image} 
{draw size box in content region} 

{ Values returned by window definition function's hit routine} 

wNoHit 
wlnContent 
wInD rag 
wlriGrow 
wInGo Away 

5/30/84 Rose-Davis 

~; 
1 ; 
2; 
3; 
4; 

{none of the following} 
{in content region (except grow, if active)} 
{in drag region} 
{in grow region (active window 'only)} 
{in go-away region (active window only)} 

/WMGR/WINDOW.S 



SUMMARY OF THE WINDOW MANAGER 45 

Data Types 

TYPE WindowPtr = GrafPtr; 
WindowPeek = AWindowRecord; 

WindowRecord 

Routines 

RECORD 
port: 
windowKind: 
visible: 
hilited: 
goAwayFlag: 
spareFlag: 
strucRgn: 
contRgn: 
updateRgn: 
windowDefProc: 
dataHandle: 
titleHandle: 
titleWidth: 
controlList: 
nextWindow: 
windowPic: 
ref Con: 

END; 

Initialization and Allocation 

GrafPort; {window's grafPort} 
INTEGER; {window class} 
BOOLEAN; {TRUE if visible} 
BOOLEAN; {TRUE if highlighted} 
BOOLEAN; {TRUE if has go-away region} 
BOOLEAN; {reserved for future use} 
RgnHandle; {structure region} 
RgnHandle; {content region} 
RgnHandle; {update region} 
Handle; {window definition function} 
Handle;' {data used by windowDefProc} 
StringHandle; {window's title} 
INTEGER; {width of title in pixels} 
Handle; {window's control list} 
WindowPeek; {next window in window list} 
PicHandle; {picture for drawing window} 
L~ngInt {window's reference value} 

PROCEDURE InitWindows; 
PROCEDURE GetWMgrPort 
FUNCTION NewWindow 

(VAR wPort: GrafPtr); 

FUNCTION GetNewWindow 

PROCEDURE CloseWindow 
PROCEDURE DisposeWindow 

Window Display 

PROCEDURE SetWTitle 
PROCEDURE GetWTitle 
PROCEDURE SelectWindow 
PROCEDURE HideWindow 
PROCEDURE ShowWindow 
PROCEDURE ShowHide 

5/30/84 Rose-Davis 

(wStorage: Ptr; boundsRect:' Rect; ti tIe: Str255; 
visible: BOOLEAN; procID: INTEGER; behind: 
WindowPtr; goAwayFlag: BOOLEAN; ref Con: LongInt) 
: WindowPtr; 

(windowID: INTEGER; wStorage: Ptr; behind: 
WindowPtr) : WindowPtr; 

(theWindow: WindowPtr); 
(theWindow: WindowPtr); 

(theWindow: 
(theWindow: 
(theWindow: 
(theWindow: 
(theWindow: 
(theWindow: 

WindowPtr; title: Str255);' 
WindowPtr; VAR title: Str255); 
WindowPtr) ; 
WindowPtr); 
WindowPtr); 
WindowPtr; showFlag: BOOLEAN); 

/WMGR/WINDOW.S 



46 Window Manager Programmer'~ Guide 

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: BOOLEAN); 
PROCEDURE BringToFront (theWindow: WindowPtr); 
PROCEDURE SendBehind (theWindow: WindowPtr; behindWindow: WindowPtr); 
FUNCTION FrontWindow: WindowPtr; 
PROCEDURE DrawGrowlcon (theWindow: WindowPtr); 

Mouse Location 

FUNCTION FindWindow (thePt: Point; VAR whichWindow: WindowPtr) : 
INTEGER; 

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point) : BOOLEAN; 

Window Movement and Sizing 

PROCEDURE MoveWindow (theWindow: WindowPtr; hGlobal,vGlobal: INTEGER; 
front: BOOLEAN) ; 

PROCEDURE DragWindow (theWindow: WindowPtr; startPt: Point; boundsRect: 
Rect) ; 

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; sizeRect: 
Rect) : LongInt; 

PROCEDURE SizeWindow (theWindow: WindowPtr; w,h: INTEGER; fUpdate: 
BOOLEAN) ; 

Update Region Maintenance 

PROCEDURE 
PROCEDURE 
PROCEDURE 
PROCEDURE 
PROCEDURE 
PROCEDURE 

InvalRect 
InvalRgn 
ValidRect 
ValidRgn 
BeginUpdate 
EndUpdate 

(badRect: Rect); 
.(badRgn: RgnHandle); 
(goodRect: Rect); 
(goodRgn: RgnHandle); 
(theWindow: WindowPtr); 
(theWindow: WindowPtr); 

Miscellaneous Utilities 

PROCEDURE 
FUNCTION 
PROCEDURE 
FUNCTION 
FUNCTION 
FUNCTION 

SetWRefCon (theWindow: WindowPtr; data: LongInt); 
GetWRefCon (theWindow: MindowPtr) : LongInt; 
SetWindowPic (theWindow: WirtdowPtr; pic: PicHandle); 
GetWindowPic (theWindow: WindowPtr) : PicHandle; 
PinRect (theRect: Rect; thePt: Point) : LongInt; 
DragGrayRgn (theRgn: RgnHandle; startPt: Point; limitRect, 

Low-Level Routines 

FUNCTION CheckUpdate 
PROCEDURE ClipAbove 
PROCEDURE SaveOld 
PROCEDURE DrawNew 

5/30/84 Rose-Davis 

slopRect: Rect; axis: INTEGER; actionProc: 
ProcPtr) : LongInt; 

(VAR theEvent: EventRecord) BOOLEAN; 
(window: WindowPeek); , 
(window: WindowPeek); 
(window: WindowPeek; update: BOOLEAN); 

/WMGR/WINDOW.S 



PROCEDURE PaintOne 
PROCEDURE PaintBehind 

PROCEDURE CalcVis 
PROCEDURE CalcVisBehind 

SUMMARY OF THE WINDOW MANAGER 47 

(window: WindowPeek; clobberedRgn: RgnHandle); 
(startWindow: WindowPeek; clobberedRgn: 
RgnHandle) ; 

(window: WindowPeek); I 

(startWindow: WindowPeek; clobberedRgn: 
RgnHandle) ; 

Diameters of Curvature for Rounded-Corner Windows 

Window definition 10 Diameters of curvature 
rDocProc 16, 16 
rDocProc + 1 4, 4 
rDocProc + 2 6, 6 
rDocProc + 3 8, 8 
rDocProc + 4 10, 10 
rDocProc + 5 12, 12 
rDocProc + 6 20, 20 
rDocProc + 7 24, 24 

Window Definition Function 

FUNCTION MyWindow (varCode: INTEGER; theWindow: WindowPtr; message: 
INTEGER; param: LongInt) : LongInt; 

Assembly-Language Information 

Constants 

j Window definition IDs 

documentProc .EQU 0 ;standard document window 
dBoxProc .EQU 1 ;alert box or modal dialog box 
plainDBox .EQU 2 ;dBoxProc without border 
alrDBoxProc .EQU 3 ;dBoxProc with shadow instead of border 
noGrowDocProc .EQU 4 ;document window without size box 
rDocProc .EQU 16 ;rounded-corner window 

; Window class, in windowKind field of window record 
~. 

jdialog or alert window dialogKind 
userKind 

.EQU 2 

.EQU 8 ;window created directly by the application 

; Values returned by FindWindow 

inDesk 
in~enuBar 

inSysWindow 
inContent 
inDrag 

.EQU 0 

.EQU 1 

.EQU 2 

.EQU 3 

.EQU 4 

5/30/84 Rose-Davis 

;none of the following 
jin menu bar 
jin system window 
;in content region (except grow, if active) 
;in-drag region 

/WMGR/WINDOW.S 



48 'Window Manager Programmer's Guide 

inGrow 
inGoAway 

.EQU 5 

.EQU 6 
;in grow region (active window only) 
;in go-away region (active window only) 

; Axis constraints for DragGrayRgn 

noConstraint 
hAxisOn1y 
vAxisOnly 

.EQU 0 

.EQU 1 

.EQU 2 

;no constraint 
;horizontal axis only 
;vertica1 axis only 

; Messages to window definition function 

wDrawMsg .EQU 0 ;draw the window frame 
wHitMsg .EQU 1 ;te11 what region mouse button was pressed 
wCa1cRgnMsg .EQU 2 ;calcu1ate strucRgn and contRgn 
wInitMsg .EQU 3 ;do any additional window initialization 
wDisposeMsg .EQU 4 ;take any additional disposal actions 
wGrowMsg .EQU 5 ;draw window's grow image 
wGIconMsg .EQU 6 ;draw size box in content region 

; Value returned by window definition function's hit routine 

wNoHit .EQU 0 ;none of the following 
wInContent .EQU 1 ;in content region (except grow, if active) 
wInDrag .EQU 2 jin drag region 
wInGrow .EQU 3 jin grow region (active window only) 
wInGo Away .EQU 4 ;in go-away region (active window 

Window Record Data Structure 

w!ndowPort 
windowKind 
wVisib1e 
wHilited 
wGoAway 
structRgn 
contRgn 
updateRgn 
windowDef 
wDataHand1e 
wTit1eHand1e 
wTit1eWidth 
wContro1List 
nextWindow 
windowPic 
wRefCon 
windowSize 

Window's grafPort 
Window class 
Flag for whether window is visible 
Flag for whether window is highlighted 
Flag for whether window has go-away region 
Handle to structure region of window 
Handle to content region of window 
Handle to update region of window 
Handle to window definition function 
Data used by window definition function 
Handle to window's title 
Width of title in pixels 
Handle to window's control list 
Pointer to next window in window list 
Picture handle for drawing window 
Window's reference value 
Length of above structure 

Special Macro Names 

Routine name 
Ca1cVisBehind 
DisposeWinc;low 

Macro name 
Ca1cVBehind 

_DisposWindow 

only) 

\ 
in 

5/30/84 Rose-Davis /WMGR/WINDOW.S 



DragGrayRgn 

Variables 

Name 
windowList 
saveUpdate 
paintWhite 

curActivate 
curDeactive 
grayRgn 
deskPattern 
deskHook 

wMgrPort 
ghostWindow 
dragHook 
dragPattern 

SUMMARY OF THE WINDOW MANAGER 49 

_DragGrayRgn or, after setting the global variable 
dragPattern, _DragTheRgn 

Size 
4 bytes 
2 bytes 
2 bytes 

4 bytes 
4 bytes 
4 bytes 
8 bytes 
4 bytes 

4 bytes 
4 bytes 
4 bytes 
8 bytes 

Contents 
Pointer to first window in window list 
Flag for whether to generate update events 
Flag for whether to paint window white before 
update event 
Pointer to window to receive activate event 
Pointer to window to receive deactivate event 
Handle to region to be drawn as desktop 
Pattern with which desktop is to be painted 
Pointer to procedure for painting desktop or 
responding to clicks on desktop 
Pointer to Window Manager port 
Pointer to window never to be considered frontmost 
Pointer to procedure to execute during DragWindow 
Pattern of dragged region's outline 

5/30/84 Rose-Davis /WMGR/WINDOW.S 



50 Window Manager Programmer's Guide, 

GLOSSARY 

activate event: An event generated by the Window Manager when a window 
changes from active to inactive or vice versa. 

active window: The frontmost window on the desktop. 

application window: A window created as the result of something done 
by the application, either directly or indirectly (as through the 
Dialog Manager). 

r 

content region: The area of a window that the application draws in. 

control list: A list of all the controls associated with a given 
window. 

desktop: The screen as a surface for doing work on the Macintosh. 

document window: A s"tandard Macintosh window for presenting a 
document. 

drag region: A region in the window frame. Dragging inside this 
region moves the window to a new location and makes it the active 
window unless the Command key was down. 

go-away region: A region in the window frame. Clicking inside this 
region of the active window makes the window close or disappear. 

grow image: The image pulled around when dragging inside the grow 
region occurs; 'whatever is appropriate to show that the window's size 
will change. 

grow region: A window region, usually within the content region, where 
dragging changes the size of an active window. 

highlight: To display an object on the screen in a distinctive yisual 
way, such as inverting it. 

inactive window: Any window that isn't the frontmost window on the 
desktop. 

invert: To highlight by ,changing white pixels to black and vice versa. 

invisible window: A window that's not drawn in its plane on the 
desktop. 

modal dialog: A dialog that requires the.user to respond before doing 
any other work on the desktop. 

modeless dialog: A dialog that allows the user to work elsewhere on 
the desktop before responding. 

5/30/84 Rose-Davis /WMGR/WINDOW.G 



GLOSSARY 51 

plane: The front-to-back position of a window on the desktop. 

reference value: In a window record, a 32-bit field that the 
application program may store into and access for any purpose. 

structure region: An entire window; its complete "structure". 

system window: A window in which a desk accessory is displayed. 

update event: An event generated by the Window Manager when the update 
region of a window is to be drawn. 

update region: A window region consisting of all areas of the content 
region that have to be redrawn. 

variation code: A number that distinguishes closely related types of 
windows and is passed as part of a window definition 10 when a window 
is created. 

visible window: A window that's drawn in its plane on the desktop (but 
may be completely overlapped by another window or object on the 
screen) • 

window: An obj~ct on the desktop that presents information, such as a 
document or a message. 

window class: An indication of whether a window is a system window, a 
dialog or alert window, or a window created directly by the 
application. 

window definition function: A function called by the Window Manager 
when it needs to perform certain type-dependent operations on a 
particular type of window, such as drawing the window frame. 

window definition 10: A number passed to window-creation routines to 
indicate the type of window. -It consists of the window definition 
function's resource 10 and a variation code. 

window frame: The structure region minus the content region. 

window list: A list of all windows ordered according to th~ir front-to
back positions on the desktop. 

Window Manager port: A grafPort' that has the entire screen as its 
portRect and is used by the Window Manager to draw window frames. 

window record: The internal representation of a window, where the 
Window Manager stores all the information it needs for its operations 
on that window. 

window template: A resource that contains information from which the 
Window Manage'r can create a window. 

5/30/84 Rose-Davis /WMGR/WINDOW.G 



MACINTOSH USER EDUCATION 

The Control Manager: A Programmmer's Guide /CMGR/CONTROLS 

See Also: Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide, 
The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
Programming Macintosh'Applications in Assembly Language 

Modification History: First Draft 
Interim release 
Second Draft (ROM 2.1) 
Third Draft (ROM 7) 

Chris Espinosa 
Chris Espinosa 
Steve'Chernicoff 
Caroline Rose 

8/13/82 
9/7/82 

3/16/83 
5/30/84 

ABSTRACT 

Controls are special objects on the Macintosh screen with which the 
user, using the mouse, can cause instant action with graphic results or 
change settings to modify a future action. The Macintosh Control 
Manager is the part of the User Interface Toolbox that enables 
applications to create and man.ipulate controls in a way that's 
consistent with the Macintosh User Interface Guidelines. This manual 
describes the Control Manager. 

Summary of significant changes and additions since last draft: • 

- There's now a way to specify that you want the standard control 
definition functions to use the font associated with the control's 
window rather than the system font (page 8). 

- You can now detect when the mouse button was pressed in an 
inactive control as opposed to not in any control; see 
HiliteControl, TestControl, and FindControl (page 18). 

- The control definition function may itself contain an action 
procedure (pages 20 and 30). 

- Assembly-language notes were added ~here appropriate, and the 
summary was updated to include all assembly-language information. 



2 Control Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Control Manager 
7 Controls and Windows 
8 Controls and Resources 
9 Part Codes 
10 Control Records 
11 The ControlRecord Data Type 
13 Using the Control Manager 
15 Control Manager Routines 
15 Initialization and Allocation 
17 Control Display 
18 'Mouse Location 
21 Control Movement and Sizing 
22 Control ,Setting and Range 
24 Miscellaneous Utilities 
24 Defining Your Own Controls 
26 The Control Definition Function 
26 The Draw Routine 
27 The Test Routine 
27 The Routine to Calculate Regions 
28 The Initialize Routine 
28 The Dispose Routine 
29 The Drag Routine 
29 The Position Routine 
29 The Thumb Routine 
30 The Track Routine 
30 Formats of Resources for Controls 
31 Summary of the Control Manager 
36 Glossary 

Copyright (c) 1984 Apple Computer) '-rnc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Control Manager of the Macintosh User 
Interface Toolbox. *** Eventually it will become a chapter in the 
comprehensive Inside Macintosh manual. *** The Control Manager is the 
part of the Toolbox that deals with controls, such as buttons, check' 
boxes, and scroll bars. Using it, your application can create, 
manipulate, and dispose of controls in a way that's consistent with the 
Macintosh User Interface Guidelines. 

Like all Toolbox documentation, this manual assumes you'~e familiar 
with the Macintosh User Interface Guidelines, Lisa Pascal, and the 
Macintosh Operating System's Memory Manager. You should also be 
familiar wiih the followi~g: 

Resources, as discussed in the Resource Manager manual. 

- The basic concepts and structures behind QuickDraw, particularly 
rectangles, regions, and grafPorts. You don't need a detailed 
knowledge of QuickDraw, since implementing controls through the 
Control Manager doesn't require calling QuickDraw directly. 

- The Toolbox Event Manager. The essence of a control is to respond 
to the user's actions with the mouse; your application finds out 
about those actions by calling the Event Manager. 

- The Window Manager. Every control you create with the Control 
Manager "belongs" to some window. The Window Manager and Control 
Manager are designed to be used together, and their structure and 
operation are parallel in many ways. 

(note) 
Except for scroll bars, most controls appear only in 
dialog or alert boxes. To learn how to implement dialogs 
and alerts in your application, you'll have to read the 
Dialog Manager manual. 

This manual is intended to serve the needs of both Pascal and assembly
l~nguage programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Control Manager and what 
you can do with it. It then discusses some basic concepts about 
controls: the relationship between controls and windows; the 
relationship between controls and resources; and how controls and their 
various parts are identified. Following this is a discussion of 
control records, where the Control Manager keeps all the information it 
needs about a control. 

Next, a section on using the Control Manager introduces its routines 
and tells how they fit into the flow of your application program. This 
is followed by detailed descriptions of all Control Manager procedures 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



4 Control Manager Programmer's Guide 

and functions, their parameters, calling protocol, effects, side 
effects, and so on. 

Following these descriptions are sections that will not interest all 
readers: special information is provided for programmers who want to 
define their own controls, and the exact formats of resources related 
to controls are described. 

Finally, there's a 'summary of the Control Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

ABOUT THE CONTROL MANAGER 

The Control Manager is the part of ' the Macintosh User Interface Toolbox 
that deals with controls. A control is an object on the Macintosh 
screen with which the user, using the mouse, can cause instant action 
with graphic results or change settings to ~odify a future action. 
Using the Control Manager, your application can: 

create and dispose of controls 

- display or hide controls 

- monitor the user's operation of a control with the mouse and 
respond accordingly 

- read or change the setting or other properties of a control 

- change the size, location, or appearance of a control 

Your application performs these actions by calling th~ appropriate 
Control Manager routines. The Control Manager carries out the actual 
operations, but it's up to you to decide when, where, and how. 

Controls' may be of various types (see Figure 1), each with its own 
characteristic appearance on the sc~een and responses to the mouse. 
Each individual coritrol has its own specific properties--such as its 
location, size, and setting--but controls of the same type behave in 
the same general way. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



ABOUT THE CONTROL MANAGER 5 

( Button 1 ) 

( Button 2 ) 

t8l Check DOH 1 

~ Check DOH 2 
o Check DOH:5 

o Radio Button 1 

@ Radio Button 2 

o Radio Button 3 

Figure 1. Controls 

·· .. ·· .. ·· ... r .... ····IOl V·· .. ·:··· .. ·::·~w ...... : .... :::: -.::::-:-:-:-:::::.:-::::::::::: 

Certain standard types of controls are predefined for you. Your 
application can easily create and use controls of these standard types, 
and can also define its own "custom" control types. Among the standard 
control types are the following: 

- Buttons cause an immediate or continuous action when clicked or 
pressed with the mouse. They appear on the screen as rounded
corner rectangles with a title centered inside. 

- Check boxes retain and d~splay a setting, either checked (on) or 
unchecked (off); clicking with the mouse reverses the setting. On 
the screen, a check box appears as a small square with a title 
alongside it; the box is either filled in with an "X" (checked) or 
empty (unchecked). Check boxes are frequently used to control or 
modify some future action, instead of causing an immediate action, 
of their own. 

- Radio buttons also retain and display an on-or-off setting. 
They're organized into groups, with the property that only one 
button in the group can be on at a time: clicking any button on 
turns off all the others in the group, like the buttons on a car 
radio. Radio buttons are used to offer a choice among several 
alternatives. On the screen, they look like round check boxes; 
the radio button that's on is filled with a small black circle 
instead of an "X". 

(note) 
The Control Manager doesn't know how radio buttons are 
grouped, and doesn't automatically turn one off when the 
user clicks another one on: it's up to your program to 
handle this. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



6 Control Manager Programmer's Guide 

Another important category of controls is dials. These display a 
quantitative setting or value, typically in some pseudoanalog form such 
as the position of a sliding switch, the reading on a thermometer 
scale, or the angle of a needle on a gauge; the setting may be 
displayed digitally as well. The control's moving part that displays 
the current setting is called the indicator. The user may be able to 
change a dial's setting by dragging its indicator with the mouse, or 
the dial may simply display a value not under the user's direct control 
(such as the amount of free space remaining on a disk). 

One type of dial is predefined for you: the standard Macintosh scroll 
bars. Figure 2 shows the five parts of a scroll bar and the terms used 
by the Control Manager (and this manual) to refer to them. Notice that 
the part of the scroll bar that Macintosh users know as the "scroll 
box" is called the "thumb" here. Also, for simplicity, the terms "up" 
and "down" are' used even when referring to horizontal scroll bars (in 
which case "up" really means "left" and "down" means "right"). 

Up arrow -----------

"Page up" region -------

Thumb --------

"Page down" 

Down arrow ---

t · .. · .... ······ .... · .. ···IOI '::':':-:-:::::':':'::':'::':':':':':':-:: !::::::::::::::::::::::::'- .. 
(¢ti·· ............ , .... _ ...... -

Figure 2. Parts of a Scroll Bar-

The up and down arrows scroll the window's contents a line at a time. 
The two paging regions scroll a "page" (windowful) at a time. The 
thumb can be dragged to any position in the scroll bar, to 'scroll to a 
corresponding position within the document. Although they may seem to 
behave like individual controls, these are all parts of a single 

\ control, the scroll bar type of d~al. You can define other dials of 
any shape or complexity for yourself if your application needs them. 

When clicked or pressed, a control is usually highlighted (see Figure 
3). Standard button controls ~re inverted, but some control types may 
use other forms of highlighting, such as making the outline heavier. 
It's also possible for just a part of a control to be highlighted: for 
example, when the user presses the mouse button fnside a scroll arrow 
or the thumb in a scroll bar, the arrow or thumb (not the whole scroll 
bar) becomes highlighted until the button is released. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



ABOUT THE CONTROL MANAGER 7 

Button 

~ Check BOH 

<l: Radio Button 

I~ ~.~.:.:.:.: .. :.~.:.:.:t J.:.:-:.:-:~.:.:-:~.:-:~.:.-:.7..:.:.:'.:.01 ~1 
. ¥ ~ ~ !:.:~.:~.:.:~.:~:.:~~~~~.:~~~.:~~ '9'1t 

Figure 3. Highlighted Controls 

A control may,be active or inactive. Active controls respond to the 
user's mouse actions; inactive controls don't. A control is made 

-inactive when it has no meaning or effect in the current context, such 
as an "Openl~ button when no document has been selected to open, or a 
scroll bar when there's currently nothing to scroll to. An inactive 
control remains visible, but is highlighted in some special way, 
depending on its control type (see Figure 4). For example, the title 
of an inactive button, check box, or radio button is dimmed (drawn in 
gray rather than black). 

( Ilu110n ) 

I¢I 101 
Figure 4. Inactive Controls 

CONTROLS AND WINDOWS 

Every control "belongs" to a particular window: When displayed, the
control appears within that window's content region; when manipulated 
with the mouse, it acts on that window •. All coordinates pertaining to 
the control (such as those describing its location) are given in its 
window's local coordinate system. 

(warning) 
In order for the Control Manager to draw a control 
properly, the control's window must have the top left 
corner of its grafPort's portRect at coordinates (0,0). 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



8 Control Manager Programmer's Guide 

If you change a window's local coordinate system for any 
reason (with the QuickDraw procedure SetOrigin), be sure 
to change it back--so ,that the top left- corner is again 
at (0,0)--before drawing any of its controls. Since 
almost all of the Control Manager routines can (at least 
potentially) redraw a control, the safes t polic'y is 
simply to change the coordinate system back before 
calling any Control Manager routine. 

Normally you'll include buttons and check boxes in dialog or alert 
windows only. You create such windows with the Dialog Manager, and the 
Dialog Manager takes care of drawing the controls and letting you know 
whether the user clicked one of them. See the Dialog Manager manual 
for,details. 

CONTROLS AND RESOURCES 

The relationship between controls and resources is analogous to the 
relationship between windows and resources: just as there are window 
definition functions and window templates, there are control definition 
functions and control templates. 

Each type of control has a control definition function that determines 
how controls of that type look and behave. The Control Manager calls 
the control definition function whenever it needs to perform a type
dependent action, such as drawing the control on the screen. Control 
definition functions are stored as resources and accessed through the 
Resource Manager. The system resource file includes definition 
functions for'the standard control types (buttons, check boxes, radio 
buttons, and scroll bars). If you want to define your own, nonstandard 
control types, you'll have to write your own definition functions for 
them, as described later in the section "Defining Your Own Controls". 

When you create a control, you specify its type with a control 
definition ID, which tells the Control Manager the resource ID of the 
definition function for that control type. The Control Manager, 
provides the following predefined constants for the definition IDs of 
the standard control types: 

CONST pushButProc = O; {simple button} 
checkBoxProc 1 ; {check box} 
radioButProc = 2; {radio button} 
scrollBarProc = 16; {scroll bar} 

The title of a button, check box, or radio button normally appears in 
the system font, but you can add the following constant to the 
definition ID to specify that you instead want to use the fortt 
currently associated with the window's grafPort:, 

CONST useWFont.= 8; {use window's font} 

~ 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



CONTROLS AND RESOURCES 9 

To create a control, the Control Manager needs to know not only the 
control definition ID but also other information specific to this 

"control, such as its title (if any), the window it belongs to, and its 
location within the window. You can supply all the needed information 
in individual parameters to a Control Manager routine, or you ,can store 
it in a control template in a resource file and just pass the 
~emplate's resource ID. Using templates is highly recommended, since 
it simplifies the process of creating controls and isolates the control 
descriptions from your applicati~n's code. ' 

(note) 
You can create control templates and store them in 
resource ,files with the aid of the Resource Editor *** 
eventually (for now, the Resource Compiler) ***. The 
Resource Editor relieves you of having to know the exact 
format of a control template, but if you're interested, 
you'll find details in the section "Formats of Resources 
for Controls". 

PART CODES 

Some controls, such as buttons, are simple and straightforward. Others 
can be complex objects with many parts: for example, a scroll bar has 
two scroll arrows, two paging regions, and a thumb (see Figure 2). To 
allow different parts of a control to respond to the mouse in different 
ways, many of the Control Manager routines accept a part code as a 
parameter or return one as a result. 

A part code is an integer between 1 and 253 that stands for a 
particular part 'of a control. Each type of control. has its own set of 
part codes, assigned by the control definition function for that type •. 
A simple control such as a button or check box might have just one 
"part" that encompasses the entire control; a more complex control such 
as a scroll bar can have as many parts as are needed to define how the 
control operates. Some of the Control Manager routines need to give 
special treatment to the indicator of a dial (such as the thumb of a 
scroll bar). To, allow the Control Manager to recognize such 
indicators, they always have part codes greater than 128. 

(note) 
The values 254 and 255 are not used for part codes 
because to some Control Manager routines they represent 
the entire control in its inactive state. 

The part codes for the standard control types are as follows: 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



10 Control Manager Programmer's Guide 

CONST inButton 
inCheckBox 
inUpButton 
inDownButton 
inPageUp 
inPageDoWn 
inThumb 

=' 10; 
11; 

= 20; 
= 21; 

22; 
23; 
129; 

{simple button} 
{check box or radio button} 
{up arrow of a scroll bar} 
{down arrow of a scroll bar} 
{"page up" region of a scroll bar} 
{"page down" 'region of a scroll bar} 
{thumb of a scroll 'bar} 

Notice that inCheckBox applies to both check boxes and radio buttons. 

(note) 
The part code 128 is reserved for special use by the 
Control Manager and so should not be used for parts of 
your controls. 

CONTROL RECORDS 

Every control is represented internally by a control record containing 
all pertinent information about that control. The control record 
contains the following: 

- A pointer to the window the control belongs to. 

- A handle to the next control in the window's control list. 

- A handle to the control definition function. 

- The control's title, if any. 

- A rectangle that completely encloses the control, which determines 
the control's size and location within its window. The entire 
control, including the title of a check box or radio button, is 

, drawn inside th~s rectangle. 

An indication of whether the control is currently active and how 
it's to be highlighted. 

- The current setting of the control (if this type of control 
retains a setting) and the minimum and maximum'values the setting 
can assume. For check boxes and radio buttons, a setting of 0 
means the control. is off and 1 means it's on. 

The control record also contains an indication of whether the contr'ol 
is currently visible or invisible. These 'terms refer only to whether 
the control is drawn in its window, not to whether you can see it on 
the screen. A control may be "visible" and still not appear on the 
screen, because it's obscured by overlapping windows or other objects. 

There's a field in the control record for a pointer to the control's 
default action procedure. An action procedure defines some action to 
be performed repeatedly for as long as the user holds down the mouse 
button inside the control. The default action procedure may be used by 

5/30/84 Chernicoff-Rose /'CMGR/CONTROLS.2 



CONTROL RECORDS 11 

the Control Manager function TrackControl if you call it without 
passing a pointer to an action procedure; this is discussed in detail 
in the description of TrackControl in the "Control Manager Routines" .' 
section. 

Finally, the control record includes a 32-bit reference value field, 
which is reserved for use by your application. You specify an initial 
reference value when you create a control, and can then read or change 
the reference value whenever you wish. 

The data type for a control record is called ControlRecord. A control 
record is referred to by a handle: 

TYPE ControlPtr 
ControlHandle 

.... ControlRecord; 

.... ControlPtr; 

The Control Manager functions for creating a control return a handle to 
a newly allocated control record; thereafter, your program should 
normally refer to the control by this handle. Most of the Control 
Manager routines expect a control handle as their first parameter. 

You can store into and access most o.f a control record's fields wi th 
Control Manager routines, so normally you don't have to know the exact 
field names. However, if you want more information about the exact 
structure of a control record--if you're defining your own control 
types, for instance--it's given below. 

The ControlRecord Data Type 

The type ControlRecord is defined as follows: 

TYPE ControlRecord = 
RECORD 

nextControl: 
contrlOwner: 
contrlRect: 
contrlVis: 
contrlHilite: 
contrlValue: 
contrlMin: 
contrlMax: 
contrlDefProc: 
contrlData: 
contrlAction: 
contrlRfCon: 
contrlTitle: 

END; 

ControlHandle; 
WindowPtr; 
Rect; 
BOOLEAN; 
BOOLEAN; 
INTEGER; 
INTEGER;, 
INTEGER; 

"Handle; 
Handle; 
ProcPtr; 
LongInt; 
Str255 

{next control} 
{control's window} 
{enclosing rectangle} 
{TRUE if visible} 
{highlight state} 
{current setting} 
{minimum setting} 
{maximum setting} 
{control definition function} 
{data used by contrlDefProc} 
{default action procedure} 
{control's reference value} 
{control's title} 

NextControl is a handle to the next control associated with this 
control's window. All the controls belonging to a given window are 
kept in a linked list, beginning in the controlList field of the window 
record and chained together through the nextControl fields of the 
individual control records. The end of the list is marked by a NIL 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



· 12 Control Manager Programmer's Guide 

value; as new controls are created, they are added to the beginning of 
the list. 

ContrlOwner is a pointer to the window that this control belongs to. 

ContrlRect is the rectangle that completely encloses the control, in 
the local coordinates of the control's window. 

When contrlVis is TRUE, the control is currently visible. 

(note) 
The Control Manager sets the contrlVis field FALSE by 
storing 255 in it rather than 1. This may cause problems 
in Lisa Pascal; to be safe, you should check for the 
truth or falsity of this flag by comparing ORD of the 
flag to 0. 

ContrlHilite is an integer between 0 and 255 that specifies wheth~r and 
how the control is to be highlighted. It's declared as BOOLEAN so that 
Pascal will put the value in a byte; if declared as Byte, it would be 
put it in a word because of Pascal's packing conventions. Storing 
directly into the contrlHilite field limits it to a Boolean value, so 
you'll probably instead want to use the Control Manager routine that 
sets it (HiliteControl). See the description of HiliteControl in the 
"Control Manager Routines" section for information about the meaning of 
this field's value. 

ContrlValue is the control's current setting. For check boxes and 
radio buttons, 0 means the control is off and 1 means it's on. For 
dials, the fields contrlMin and contrlMax define the range of possible 
settings; contrlValue may take on any value within that range. Other 
(custom) control types can use these three fields as they see fit. 

j 

ContrlOefProc is a handle to the control definition function for this 
type of control. When you cr~ate a control, you identify its type with 
a control definition 10, which is converted into a handle to the 
control definition function and stored in the contrlOefProc field. 
Thereafter, the Control Manager uses this handle to access the 
definition function; you should never need to refer to this field 
directly. 

(note) 
The high-order byte of the contrlDefProc field contains 
some additional information that the Control Manager gets 
from the control definition 10; for details, see the 
section "Defining Your Own Controls". Also note that if 
you write your own control definition function, you can 
include it as part of your- application's code and just 
store a handle to it in the contrlDefProc field.· 

ContrlData is reserved for use by the control definition-function, 
typi~ally to hold additional information specific to a particular 
control ~ype. For example, the standard definition function for scroll 
bars uses this field for a1handle to the region containing the scroll 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



CONTROL RECORDS 13 

bar's thumb. If no more than four bytes of additional information are 
needed, the definition function can store the information directly in 
the contrlData field rather than use a handle. 

ContrlAction is a pointer to the control's default action procedure, if 
any. The Control Manager function TrackControl may call this procedure 
to respond to the user's dragging the mouse inside the control. 

ContrlRfCon is the control's reference value field, which the 
application may store into and access for any purpose. 

ContrlTitle is the control's title, if any. 

Assembly-language note: The global constant contrlSize equals 
the length in bytes of a control record less its contrlTitle 
field. 

USING THE CONTROL MANAGER 

This section discusses how the Control Manager' routines fit into the 
general flow of an application program and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

(note) 
For controls in d~alogs or alerts, the Dialog Manager 
makes some of the basic Control Manager calls for you; 
see the Dialog Manager manual for more information. 

To use the Control Manager, you must have previously called InitGraf to 
initialize QuickDraw, InitFonts to initialize the Font Manager, and 
InitWindows to initialize the Window Manager. . 

Where appropriate in your program, use NewControl or GetNewControl to 
create any controls you need. NewControl takes descriptive information 
about the new control from its parameters; GetNewControl gets the 
information from a control template in a- resource file. When you no 
longer need a control, call DisposeControl to remove it from its 
window's control list and release the memory it occupies. To dispose 
of a~l' of a given window's controls at once, use KillControls. 

(note) 
The Window Manager procedures DisposeWindow and 
CloseWindow automatically dispose of all the controls 
associated with the given window. 

When the Toolbox Event Manager function GetNextEvent reports that an 
update event has occurred for a window, the application should call 

5(30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



14 Control Manager Programmer's Guide 

DrawControls to redraw the window's controls as part of the process of 
updating the window. 

After receiving a mouse-down event from GetNextEvent, do the following: 

1. First call FindWindow to determine which part of which window the 
mouse button was pressed in. 

2. If it was in the content region of the active window, next call 
FindControl for that window to find out whether it was in an 
active control, and if so, in which part of which control. 

3. Finally, take whatever action ·is appropriate when the user presses 
the mouse button in that part of the control, using routines such 
as TrackControl (to perform some action repeatedly for as long as 
the mouse button is down, or to allow the user to drag the 
control's indicator with the mouse), DragControl (to pull an 
outline of the control across the screen and move the control to a 
new location), and HiliteControl (to change the way the control is 
highlighted). 

For the standard control types; step 3 involves calling TrackControl. 
TrackControl handles the highlighting of the control and determines 
whether the mouse is still in the control when the mouse button is 
released. It also handles the dragging of the thumb in a scroll bar 
and, via your action procedure, the response to presses or clicks in 
the other parts of a scroll bar. When TrackControl returns the part 
code for a button, check box, or radio button, the application must do 
whatever is appropriate as a response to a click of that control. When 
TrackControl returns the part ~ode for the thumb of a scroll bar, the 
application must scroll to the corresponding relative position in the 
document. 

The application's exact response to mouse activity in a control that 
retains a setting will depend on the current setting of the control, 
which is available from the GetCtlValue function. For controls whose 
values can be set by the user, the SetCtlValue procedure may be called 
to change the control's setting and redraw the control accordingly. 
You'll call SetCtlValue, for example, when a check box or radio button 
is clicked, to change the setting and draw or clear the mark inside the 
control. 

Wherever needed in your program, you can call HideControl to make a 
control invisible or ShowControl to make it visible. Similarly, 
MoveControl, which simply changes a control's location without pulling 
around an outline of it, can be called at any time, as 9an SizeControl, 
which changes its size. For example, when the user changes the size of 
a document window that contains a scroll bar, you'll call HideControl 
to remove the old scroll bar, MoveControl and SizeControl to change its 
location and size, and ShowControl to display it as changed. 

Whenever necessary, you can read various attributes. of a control with 
6etCTitle, GetCtlMin, GetCtlMax, GetCRefCon, or GetCtlAction; you can 
change them with SetCTitle, SetCtlMin, SetCtlMax, SetCRefCon, or 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



CONTROL MANAGER ROUTINES 15 

SetCtlAction. 

CONTROL MANAGER ROUTINES 

This section describes all the Control Manager procedures and 
functions. They're presented in their Pascal form; for information on 
using them from assembly language, see Programming Macintosh 
Applications in Assembly Language. 

Initialization and Allocation 

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect; title: 
Str255; visible: BOOLEAN; value: INTEGER; min,max: INTEGER; 
procID: INTEGER; ref Con: LongInt) : ControlHandle; 

NewControl creates a control, adds it to the beginning of theWindow's 
control list, and returns a handle to the new control. The values 
passed as parameters are stored in the corresponding fields of the 
control record, as described below. The field that determines 
highlighting is set to ~ (no highlighting) and the pointer to the 
default action procedure is set to NIL (none). 

(note) 
The control definition function may do additional 
initialization, including changing any of the fields of 
the control record. The only standard control for which 
additional initialization is done is the,scroll bar; its 
control definition function allocates space for a region 
to hold the thumb and stores the region handle in the 
contrlData field of the control record. 

TheWindow is the window the/new control will belong to. All 
coordinates pertaining to the control will be interpreted in this 
window's local coordinate system. 

BoundsRect, given in theWindow's local coordinates, is the rec~angle 
that encloses the control and thus determines its size and location. 
Note the following about the enclosing rectangle for the standard 
controls: 

- Simple buttons are drawn to fit the rectangle exactly. (The 
control definition function calls the QuickDraw pro~edure 
FrameRoundRect.) To allow for the tallest characters in the 
system font, there should be at -least a 2~-point difference 
between the top and bottom coordinates of the rectangle. 

- For check boxes and radio buttons, there should be at least a 
16-point difference between the top and bottom coordinates. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



16 Control Manager Programmer's Guide 

- By convention, scroll bars are 16 pixels wide, so there should be 
a 16-point difference between,the left and right (or top and 
bottom) coordinates. If there isn~t, the scroll bar will be 
scaled to fit the rectangle. 

Title is the control's title, if any (if none, you can just pass the 
empty string as the title). Be sure the ,title will fit in the 
control's enclosing rectangle; if it won't, it will be truncated on the 
right for check boxes and radio buttons, or centered and truncated on 
both ends for simple buttons. 

If the visible parameter is TRUE, NewControl draws the control. 

(note) 
It does not use the standard window updating mechanism, 
but instead draws the control immediately in the window. 

The min and max parameters define the control's range of possible 
settings; the value parameter gives the initial setting. For controls 
that don't retain a setting, such as buttons, the values you supply for 
these parameters will be stored in the control record but will never be 
used. So it doesn't matter what values you give for those controls--0 
for all three parameters will do. For controls that just retain an 
on-or-off setting, such as check boxes or radio buttons, min should be 
o (meaning the control is off) and max should be 1 (meaning it's on). 
For dials, you can specify whatever values are appropriate for min, 
max, and value. 

ProcID is the control definition ID, which leads to the control 
definition function for this type of control. The control definition 
IDs for the standard control types are listed above under "Controls and 
Resources". Control definition IDs for custom control types are 
discussed later under "Defining Your Own Controls". 

Ref Con is the control's reference value, set and used only by your 
application. 

FUNCTION G~tNewControl (controIID: INTEGER; theWindow: WindowPtr) 
ControlHandle; 

GetN'ewControl creates a control from a control template stored in a 
resource file, adds it to the beginning of theWindow's control list, 
and returns a handle to the new control. ControlID is the resource ID 
of the template. 'GetNewControl works exactly the same as NewControl 
(above), except that it gets the initial values for the new control's 
fields from the specified control template instead of accepting them as 
parameters. 

PROCEDURE DisposeControl (theControl: ControIHandle)'; 

DisposeControl removes theControl from the screen, deletes it frQm its 
window's control list, and releases the memory occupied by the control 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 17 

record and all data structures associated with the control. 

Assembly-language note: The macro you invoke. to call 
DisposeControl from assembly language is named _DisposControl. 

PROCEDURE KillControls (theWindow: WindowPtr); 

KillControls disposes of all controls associated with theWindow by 
calling DisposeControl (above) for each. 

Control Display 

These procedures affect the appearance of a control but not its size or 
location. 

PROCEDURE SetCTitle (theControl: ControlHandle; title: Str255); 

SetCTitle sets theControl's title to the given string and redraws the 
control. 

PROCEDURE GetCTitle (theControl: ControlHandle; VAR title: Str255); 

GetCTitle returns theGontrol's title as the value of the title 
parameter. 

PROCEDURE HideControl (theControl: ControlHandle); 

HideControl makes theControl invisible. It fills the region the· 
control occupies within its window with the background pattern of the 
window's grafPort. It also adds the control's enclosing rectangle to 
the window's update region, so that anything else that was previously 
obscured by the control will reappear on the screen. If the control is 
already invisible, HideControl has no effect. 

PROCEDURE ShowControl (theControl: ControlHandle); 

ShowControl makes theControl visible. The control is drawn in its 
window but may be completely or partially obscured by overlapping 
windows or other objects. If the control is already visible, 
ShowControl has no effect. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



18 "Control Manager Programmer's Guide 

PROCEDURE DrawControls (theWindow: WindowPtr); 

DrawControls draws all controls currently visible in theWindow. The 
controls are drawn in reverse order of creation; thus in case of 
overlap the earliest-created controls appear frontmost in the window. 

(note) 
Window Manager routines such as SelectWindow, ShowWindow, 
and BringToFront do not automatically call DrawControls 
to display the window's controls. They just add the 
appropriate regions to the window's update region, 
generating an update event. Your program should always 
call DrawControls explicitly upon receiving an update 
event for a window that contains controls. 

PROCEDURE HiliteControl (theControl: ControlHandle; hiliteState: 
INTEGER) ; 

HiliteControl changes the way theControl is highlighted. HiliteState 
is an int~ger between 0 and 255: 

- A value of 0 means no highlighting. 

- A value between 1 and 253 is interpreted as a part code 
designating the part of the control to be highlighted. 

- A value of 254 or 255 means that the control is to be made 
inactive and highlighted accordingly. Usually you'll want to use 
254, because it enables you to detect when the mouse button was 
pressed in the inactive control as opposed to ~ot in any control; 
for more information, see FindControl under "Mouse Location" 
below. 

HiliteControl calls the control definition function to redraw the 
control with its new highlighting. 

Mouse Location 

FUNCTION TestControl (theControl: ControlHandle; thePoint: Point) 
INTEGER; 

If theControl is visible and active, TestControl tests which part of 
the control contains the Point (in 'the local coordinates of the 
control's window); it returns the corresponding part code, or ~ if the 
point is outside the control. If the control is visible and inactive 
with 254 highlighting, TestControl returns 254. If the control is 
invisible, or inactive with 255 highlighting, TestControl returns 0. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 19 

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; VAR 
whichContro1: Contro1Handle) : INTEGER; 

When the Window Manager function FindWindow reports that the mouse 
button was pressed in the content region of- a window, and the window 
contains controls, the application should call FindControl with 
theWindow equal to the window pointer and thePoint equal to the point 
where the mouse button was pressed (in the window's local coordinates). 
FindControl tells which of the window's controls, if any, the mouse 
button was pressed in: 

If it was pressed in a visible, active control, FindControl sets 
the whichControl parameter to the control handle and returns a 
part code identifying the part of the control that it was pressed 
in. 

If it was pressed in a visible, inactive control with 254 
highlighting, FindControl sets whichControl to the control handle 
and returns 254 as its result. 

- If it was pressed in an invisible control, an inactive control 
with 255 highlighting, or not in any control, FindControl sets 
whichControl to NIL and returns 0 as its result. 

(warning) 

(note) 

Notice that FindControl expects the mouse point in the 
window's local coordinates, whereas FindWindow expects it 
in global coordinates. Always be sure to convert the 
point to local coordinates with the QuickDraw procedure 
GlobalToLocal before calling FindControl. 

FindControl also returns NIL for whichControl and 0 as 
its result if the window is invisible or doesn't contain 
the given point. In these cases, however, FindWindow 
wouldn't have returned this window in the first place, so 
the situation should never arise. 

FUNCTION TrackControl (theControl: ControlHandle; startPt: Point; 
actionProc: ProcPtr) INTEGER; 

When the mouse button is pressed in a visible, active control, the 
application s~ould call TrackControl with theControl equal to the 
control handl~ and startPt equal to the point where the mouse button 
was pressed (in the local coordinates of the control's window). 
TrackControl follows the movements of the mouse and responds in 
whatever way is appropriate until the mouse button is released; the 
exact response depends on the type of control and the part of the 
control in which the mouse button was pressed. If highlighting is 
appropriate, TrackControl does the highlighting, and undoes it before
returning. When the mouse button is released, TrackControl returns 
with the part code if the mouse is in the same part of the control that 
it was originally in, or with 0 if not (in which case" the application 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



20 Control Manager Programmer's Guide 

should do nothing). 

If the mouse button was pressed in an indicator, TrackControl drags a 
gray outline of it to follow the mouse (by calling the Window Manager 
utility function DragGrayRgn). When the mouse button is released, 
TrackControl calls the control definition function to reposition the 
control's indicator. The control definition function for scroll bars 
responds by redrawing the thumb, calculating ~he control's current 
setting based on the new relative position of the thumb, and storing 
the current setting in the control record; for example, if the minimum 
and maximum settings are 0 and 10, and the thumb is in the middle of 
the scroll bar, 5 is stored as the current setting. The application 
must then scroll to the corresponding relative position in the 
document. 

TrackControl may take additional actions beyond highlighting the 
control or dragging the indicator, depending on the value passed in the 
actionProc parameter, as described below. Here you'll learn what to 
pass, for the standard control types; for a custom control, what you 
pass will depend on how the control is defined. 

- If actionProc is NIL, TrackControl performs no additional actions. 
This is appropriate for simple buttons, check boxes, radio 
buttons, and the thumb of a scroll bar. 

- ActionProc may be a pointer to an action procedure that defines 
some action to be performed repeatedly for as long as the user 
holds down the mouse button. (See below for details.) , 

- If actionProc is POINTER(-1), TrackControl looks in the control 
record for a pointer to the control's default action procedure. 
If that fie~d of the control record contains a procedure pointer, 
TrackControl uses the action procedure it points to; if the field 
contains POINTER(-1), TrackControl calls the control definition 
function to perform the necessary action. (If the field contains 
NIL, TrackControl does nothing.) 

The action procedure in t~e control definition function is described in 
the section "Defining Your Own Controls". The following paragraphs 
describe only the action procedure whose pointer is passed in the 
actionProc parameter or stored in the control record. 

If the mouse button was pressed in an indicator, the action procedure 
(if any) should have no parameters. This procedure must allow for the 
fact that the mouse may not be inside the original control part~ 

If the mouse button was pressed in a control part other than an 
indicator, the acti~n procedure should be of the form 

PROCEDURE MyAction (theControl: ControlHandle; partCode: INTEGER); 

In this case, TrackControl passes the control handle and the part code 
to the action procedure. (It passes 0 in the partCode parameter if the 
mouse has moved outside the original control part.) As an example of 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 21 

this type of action procedure, consider what should happen when the 
mouse button is pressed in a scroll arrow or paging region in a scroll 
bar. For these cases, your action procedure should examine the part 
code to determine exactly where the mouse button was pressed, scroll up 
or down a line or page as appropriate, and call SetCtlValue to change 
the control's setting and redraw the thumb. 

(warning) 
Since it has a different number of parameters depending 
on whether the mouse button was piessed in an indicator 
or elsewhere, the action procedure you pass to 
TrackControl (or whose pointer you store in the control 
record) can be set up for only one case or the other. If 
you store a pointer to a default action procedure in a 
control record, be sure it will be used only when 
appropriate for that type of action procedure. The only 
way to specify actions in response to all mouse-down 
events in a control, regardless of whether they're in an 
indicator, is via, the control definition function. 

Control Movement and Sizing 

PROCEDURE MoveControl (theControl: ControlHandle; h,v: INTEGER); 

MoveControl moves theControl to a new location within its window. The 
top left corner of the control's enclosing rectangle is moved to the 
horizontal and vertical coordinates h and v (given in the local 
coordinates of the control's window); the bottom right corner is 
adjusted accordingly, to keep the size of the rectangle the same as 
before. If the control is currently visible, it's hidden and then 
redrawn at its new location. 

PROCEDURE DragControl (theControl: ControlHandle; startPt: Point; 
1 imi tRect, slopRect: Rec t; axis:, INTEGER); 

Called with the mouse button down inside theControl, DragControl pulls 
a gray ou'tline of the control around the screen, ,following the 
movements of the mouse until the button is released. When the mouse 
button is released, DragControl calls MoveControl to move the control 
to the location to which it was dragged. 

(note) 
Before beginning to follow the mouse, DragControl calls 
the control definition function to allow it to do its own 
"custom dragging" if it chooses. If the definition 
function doesn't choose to do any custom dragging, 
DragControl uses the default method of dragging described 
here. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



l 

22 Control Manager Programmer's Guide 

DragControl calls the Window Manager utility function DragGrayRgn and 
then moves the control accordingly. The startPt, limitRect, slopRect, 
and axis parameters have the same meaning as for DragGrayRgn. These 
parameters are reviewed briefly below; see the description of 
DragGrayRgn in the Window Manager manual for more details. 

- StartPt parameter is assumed to be the point where the mouse 
button was originally pressed, in the local coordinates of the 
control's window. 

- LimitRect limits the travel of, the control's outline, and should 
normally coincide with or be contained within the window's content 
region. 

SlopRect allows the user some "slop" in moving the mouse; it 
should completely enclose limitRect. 

- The axis parameter allows you to constrain the control's motion to 
only'one axis. It has one of the following values: 

CONST noConstraint 
hAxisOnly 
vAxisOnly 

{no constraint} 
{horizontal axis only} 
{vertical axis only} 

PROCEDURE SizeControl (theControl: ControlHandle; w,h: INTEGER); 

SizeControl changes the size of theControl's enclosing rectangle. The 
bottom right corner of the rectangle is adjusted to set the rectangle's 
width and height to the number of pixels specified by wand h; the 
position of the top left corner is not changed. If the control is 
currently visible, it's hidden and then redrawn in its new size. 

Control Setting and Range 

PROCEDURE S~tCtlValue (theControl: ControlHandle; theValue: INTEGER); 

SetCtlValue sets theCoQtrol's current setting to theValue and redraws 
the control to reflect the new setting. For check boxes and radio 
buttons, the value 1 fills the control with the appropriate mark, and 0 
clears it. For scroll bars, SetCtlValue redraws the thumb where 
appropriate. 

If the specified value is out of range, it's forced to the nearest 
endpoint of the current range (that is, if theValue is less than the 
minimum. setting, SetCtlValue sets the current setting to the minimum; 
if theValue is greater than the maximum setting, it sets the current 
setting to the maximum). 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 23 

FUNCTION GetCtlValue (theControl: ControlHandle) : INTEGER; 

GetCtlValue returns theControl's current setting. 

PROCEDURE SetCtlMin (theControl: ControlHandle; minValue: INTEGER); 

SetCtlMin sets theControl's minimum setting to minValue and redraws the 
control to reflect the new range. If the control's,current setting is 
less than minValue,. the setting is changed to the new minimum. 

Assembly-language note: The macro you invoke to call SetCtlMin 
from assembly language is named SetMinCtl. 

FUNCTION GetCtlMin (theControl: ControlHandle) : INTEGER; 

GetCtlMin returns theControl's minimum setting. 

Assembly-Ianguage~: The macro you invoke to call GetCtlMin 
from assembly language is named GetMinCtl. 

PROCEDURE SetCtlMax (theControl: ControlHandle; maxValue: INTEGER); 

SetCtlMax sets theControl's maximum setting to maxValue and redraws the 
control to reflect the new range. If maxValue is less than the 
control's current setting, the setting is. changed to the new ~aximum. 

Assembly-Ianguage~: The macro you invoke to call SetCtlMax 
from assembly language is named SetMaxCtl. 

FUNCTION GetCtlMax (theControl: ControlHandle) : INTEGER; 

GetCtlMax returns theControl's maximum setting. 

Assembly-language note: The macro you invoke to call GetCtlMax 
from assembly language is named _GetMaxCtl. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



24 Control Manager Programmer's Guide 

Hiscellaneous Utilities 

PROCEDURE SetCRefCon (theControl: ControlHandle; data: LongInt); 

SetCRefCon sets theControl's reference value to the given data. 

FUNCTION GetCRefCon (theControl: ControlHandle) : LongInt; 

GetCRefCon returns theControl's current reference value. 

PROCEDURE SetCtlAction (theControl: ControlHandle; actionPro~: 
ProcPtr) ; 

SetCtlAction sets theControl's default action procedure to actionProc. 

FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr; 

GetCtlAction returns a pointer to theControl's default action 
procedure, if any. (It returns whatever is in that field of the 
control record.) 

DEFINING YOUR OWN CONTROLS 

In addition to the standard, built-in control types (buttons, check 
boxes, radio buttons, and scroll bars), the Control Manager allows you 
to define "custom" control types of your own. Maybe you need a three
way selector ~witch, a memory-space indicator that looks like a 
thermomet~r, or a thruster control for a spacecraft simulator--whatever 
your application calls for. Controls and their indicators may occupy 
regions of any shape, in the full generality permitted by QuickDraw. 

To define your own type of control, you write a control definition 
function and (usually) store it in a resource file. When you create a 
control, you provide a control definition ID, which leads to the 
control definition function. The control definition ID is an integer 
that contains the resource ID of the control definition function in its 
upper 12 bits and a variation code in its lower four bits. Thus, for a 
given resource ID and variation code, the control definition ID is: 

16 * resource ID + variation code 

For example, buttons, check boxes, a~d radio buttons all use the 
standard definition function whose resource ID is ~, but they have 
variati~n codes of ~, 1, and 2, respectively. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



DEFINING YOUR OWN CONTROLS 25 

The Control Manager calls the Resource Manager to access the control 
definition function with the given resource ID. The Resource Manager 
reads the control definition function into memory and returns a handle 
to it. The Control Manager stores this handle in the contrlDefProc 
field of the control record, along with the variation code in the high
order byte of the field. Later, when it needs to perform a type
dependent action on the control, it calls the control definition 
function and passes it the variation code as a parameter. Figure 5 
illustrates this process. 

You supply the control definition 10: 

15 4 3 0 

I resourcelD I code I 
(resource 10 of control 
definition function 
end variation code) 

The Control Manager calls the Resource Manager with 

defHandle : = GetResource (I COEF', resourcelD) 

and stores into the contrlDefProc field of the control record: 

Icodet defHendle 

The variation code is passed to the control definition function. 

Figure 5. Control Definition Handling 

Keep in mind that the calls your application makes to use a control 
depend heavily on the" control defini tion function. What you pass to 
the TrackControl function, for example, depends on whether the 
definition function contains an action ptocedure for the control. Just 
as you need to know how to call TrackControl for the standard controls, 
each custom control type will have a particular calling protocol that 
must be followed for the control to work properly. 

(note) 
You may find it more convenient to include the control 
definition function with the code of your program instead 
of storing it as a separate resource. If you do this, 
you should supply the control definition ID of any 
standard control type when you create the control, and
specify that the control initially be invisible. Once 
the control is created, you can replace the contents of 
the contrlDefProc field with a handle to the actual 
control definition function (along with a variation code, 
if needed, in the high-order byte of the field). You can 
then call ShowControl to make the control visible. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



26 'Contro1 Manager Programmer's Guide 

The Control Definition Function 

The control definition 'function may be written in Pascal or assembly 
language; the only requirement is that its entry point must be at the 
beginning. You can give your control definition function any name you 
like. Here's how you would declare one named MyContro1: 

FUNCTION MyControl (varCode: INTEGER; theContro1: Contro1Hand1e; 
message: INTEGER; param: LongInt) : LongInt; 

VarCode is the variation code, as described above. 

TheContro1 .is a handle to the control that the operation will affect. 

The message parameter identifies the desired operation. It has one of 
the following values: 

CONST drawCnt1 
testCnt1 

= J~; 
1 ; 
2; 

= 3; 
4; 
5j 
6; 
7 ; 

ca1cCRgns 
initCnt1 
dispCnt1 
posCnt1 
thumbCnt1'= 
dragCnt1 
auto Track 8; 

{draw the control (or control part)} 
{test where mouse button was pressed} 
{calculate control's region (or indicator's)} 
{do any additional control initialization} 
{take any additional disposal actions} 
{reposition control's indicator and update it} 
-{calculate parameters fqr dragging indicator} 
{drag control (or its indicator)} 
{execute control's action procedure} 

As described below in the discussions of the routines that perform 
these operations, the value passed for param, the last parameter of the 
control definition function, depends on the operation. Where it's not 
mentioned below, this parameter is ignored. Similarly, the control 
definition func,tion is expected to return a function result only where 
indicated; in other cases, the function should return 0. 

(note) 
"Routine" here does not necessarily mean a procedure or 
function. While it's a good idea to set these up as 
subprograms inside the control definition function, 
you're not required to do so. 

The Draw Routine 

The message drawCnt1 asks the control definition function to draw all 
or part of the control within its enclosing ·rectang1e. Th~ value of 
param is a part code specifying which part of the control to draw, or 0 
for the entire control. If the control is invisible (that is, if its 
contr1Vis field is FALSE), there's nothing to do; if it's visible, the 
definition function should draw it (or the requested part), taking into 
account the current values of its contr1Hi1ite and contr1Va1ue fields. 
The control may be either scaled or clipped to the enclosing rectangle. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLs.n 



DEFINING YOUR OWN CONTROLS 27 

If param is the part code of the control's indicator t the draw routine 
can assume that the indicator hasn't moved; it might be called t for 
example t to highlight the indicator. There's a special case t though, 
in which the draw routine has to allow for the fact that the indicator 
may have moved: this happens when the Control Manager procedures 
SetCtlValue t SetCtlMin, and SetCtlMax call the control definition 
function to redraw the indicator after changing the control setting. 
Since they have no way of knowing what part code you chose for your 
indicator t they all pass 128 (the special reserved part code) to mean 
the indicator. The draw routine must detect this part code as a 
special case t and remove the indicator from its former location before 
drawing it. 

(note) 
If your control has more than one indicator, 128 should 
be interpreted to mean all indicators. 

The Test Routine 

-The Control Manager function FindControl sends the message testCntl to 
the control definition function when the mouse button is pressed in a 
visible control. This message asks in which part of the control, if 
anYt a given point lies. The point is passed as the value of param t in 
the local coordinates of the control's window; the vertical coordinate 

'is in the high-order word of the Longlnt and the horizontal coordinate 
is in the low-order word. The control definition function should 
return the part code for the part of the control that contains the 
point; it should return 254 if the control is inactive with .254 
highlighting, or ~ if the point is outside the control or if the 
control is inactive with 255 highlighting. 

The Routine to Calculate Regions 

The control definition function should respond to the message calcCRgns 
by calculating the region the control occupies within its window. 
Param is a QuickDraw region handle; the definition function should 
update this region to the region occupied by the control, expressed in 
the local coordinate system of its window. 

If the high-order bit of param is set t the region requested is that of 
the control's indicator rather than the control as a whole. The 
definition function should clear the high byte (not just the high bit) 
of the region handle before attempting to update the region. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



28 Control Manager Programmer's Guide 

The Initialize Routine 

After initializing fields as appropriate when creating a new control, 
the Control Manager sends the message initCntl to the control 
definition function. This gives the definition function a chance to 
perform any type-specific initialization it may require. For example, 
if you implement the control's action procedure in its control 
definition func~ion, you'll set up the initialize routine to store 
POINTER(-l) in the contrlAction field; TrackControl calls for this 
control would pass POINTER(-l) in the actionProc parameter. 

The control definition function for scroll bars allocates space for a 
region to hold the scroll bar's thumb and stores the region handle in 
the contrlData field of the new control record. The initialize routine 
for standard buttons, check boxes, and. radio buttons does nothing. 

The Dispose Routine 

The Control Manager's DisposeControl procedure sends the message 
dispCntl to the control definition function, telling it to carry out 
any additional actions required when disposing of the control. For 
example, the standard definition function for scroll bars releases the 
space occupied by the thumb region, whose handle is kept in the 
control's contrlData field. The dispose routine for standard buttons, 
check boxes, and radio buttons does nothing. 

The Drag Routine 

The message dragCntl asks the control definition function to drag the 
control or its indicator·around on the screen to follow the mouse until 
the user releases the mouse button. Param specifies whether to drag 
the indicator or the whole control: ~ means drag the whole control, 
while a nonzero value means just drag the indicator. 

The control·definition function need not implement any form of "custom 
dragging"; if it returns a result of ~, the Control Manager will use 
its own default method of dragging (calling DragControl to drag the 
control or the Window Manager function DragGrayRgn to drag its 
indicator). Conversely, if the control ~definition (unction chooses to 
do ,its own custom dragging, it should signal the Control Manager not to 
use the default method ,by returning a nonzero result. 

If the whole control is being dragged, the definition function should 
call MoveControl to reposition the control to its new location after 
the user releases the mouse button. If just the indicator is being 
dragged, the definition function should execute its own pos{tion 
routine (see below) to update the control's setting and redraw it in 
its window. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



DEFINING YOUR OWN CONTROLS 29 

The Position Routine 

For controls that don't use the Control Manager's default method of 
dragging the control's indicator (as performed by DragGrayRgn), the 
control definition function must include a position routine. When the 
mouse button is released inside the indicator of such a contiol, 
TrackControl calls the control definition function with the message 
~osCntl to reposition the indicator and update the control's setting 
accordingly. The value of param is a point giving the vertical and 
horizontal offset, in pixels, by which the indicator is to be moved 
relative to its,current position. (Typically, this is the offset 
between the poi~ts where the user pressed and released the mouse button 
while dragging the indicator.) The vertical offset is given in the 
high-order ·word of the LongInt and the horizontal offset in the low
order word. The definition function should calculate the control's new 
setting based on the given offset, update the contrlValue field, and 
redraw the control within its window to reflect the new setting. 

(note) 
The Control Manager procedures SetCtlValue, SetCtlMin, 
and SetCtlMax do not call the control definition function 
with this message; instead, they pass the drawCntl 
message to execute the draw routine (see above) •. 

The Thumb Routine 

Like the position routine, the thumb routine is required only for 
controls that don't use the Control Manager's default method of 
dragging the control's indicator. The control definition function for 
such a control should respond to the message thumbCntl by calculating 
the limiting rectangle, slop rectangle, and axis constraint for 
dragging the control's indicator. Param is a pointer to the following 
data structure: 

RECORD 
limitRect, slopRect: Rect; 
axis: INTEGER 

END; 

On entry, paramA.limitRect.topLeft contains the point where the mouse 
button was first pressed. The definition function should store the 
appropriate values into the fields of the record pointed to by param; 
they're analogous to the similarly named parameters to DragGrayRgn. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



30 Control Manager Programmer's Guide 

The Track Routine 

You can design a control to have its action procedure in the control 
definition function. To do this, set up the control's initialize 
routine to store POINTER(-I) in the contrlAction field of the control 
record, and pass POINTER(-I) in the actionProc parameter to 
TrackControl. TrackControl will respond by calling the control 
definition function with the message autoTrack. The definition 
function sho~ld respond like an action procedure, as discussed in 
detail in the description of TrackControl. It can tell which part of 
the control the mouse button was pressed in from param" which contains 
the part code. The 'track routine for each of the standard control 
types does 'nothing. 

FORMATS OF RESOURCES FOR CONTROLS-

The GetNewControl function takes the resource ID of a control template 
as a parameter, and gets from that template the same information that 
the NewControl function gets from eight of its parameters. The 
resource type for a control template is 'CNTL', and the resource data 
has the following format: 

Number of bytes 
8 bytes 
2 bytes . 
2 bytes 
2 bytes 
2 bytes 
4 bytes 
4 bytes 
n bytes 

Contents 
Same as boundsRect parameter to NewControl 
Same as value parameter to NewControl 
Same as visible parameter to NewControl 
Same as max parameter to NewControl 
Same as min parameter to NewControl 

~ 

Same as procID parameter to NewControl 
Same as ref Con parameter to NewControl 
Same as title parameter to NewControl 
(I-byte length in bytes, followed by the 
characters of the title) 

The resource type for a control definition function is 'CDEF'. The 
resource data is simply the compiled or assembled code'of the function. 

5/30/84'Chernicoff-Rose /CMGR/CONTROLS.D 



SUMMARY OF THE CONTROL MANAGER 31 

SUMMARY OF THE CONTROL MANAGER 

Constants 

CONST { Control definition IDs } 

pushButProc ~; ,{simple button} 
checkBoxProc = 1 ; {check box} 
radioButProc 2; {radio button} 
useWFont = 8; {add to above to use window's font} 
scrollBarProc 16; {scroll bar} 

{ Part codes } 

inButton 
,inCheckBox 
inUpButton 
inDownButton 
inPageUp 
inPageDown 
inThumb 

1~; 
11 ; 
2~; 

= 21; 
= 22; 
= 23;· 

129; 

{simple button} 
{check box or radio button} 
{up arrow of a scroll bar} 
{down arrow of a scroll bar} 
{"page up" region of a scroll bar} 
{"page down" region of' a scroll bar} 
{thumb of a scroll bar} . 

{ Axis constraints for DragControl } 

noConstraint 
hAxisOnly 
vAxisOnly 

= 0; 
1 ; 

= 2; 

{no constraint} 
{horizontal axis only} 
{vertical axis only} 

{ Messages to control definition function } 

drawCntl 
testCntl = 
calcCRgns 
initCntl = 
ciispCntl 
posCntl 
thumbCntl 
dragCntl = 
autoTrack 

Data Types 

~; 
1 ; 
2; 
3; 
4; 
5; 
6; 
7 ; 
8; 

{draw the control (or control part)} 
{test where mouse button was pressed} 
{calculate control's region (or indicator's)} 
{do any additional control initialization} 
{take any additional disposal actions} 
{reposition control's indicator and upd?te it} 
{calculate parameters for dragging indicator} 
{drag control (or its indicator)} 
{execute control's action procedure} 

TYPE ControlHandle AControlPtr; 
ControlPtr = AControlRecord; 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.S 



32 Control Manager Programmer's Guide 

ControlRecord = 

Routines 

RECORD 
nextControl: 
contrlOwner: 
contrlRect: 
contrlVis: 
contrlHili te :1 
contrlValue: 
contrlMin: 
contrlMax: 
contrlDefProc: 
contrlData: 
contrlAction: 
contrlRfCon: 
contrlTitle: 

END; 

Initialization and Allocation 

ControlHandle; 
WindowPtr; 
Rect; 
BOOLEAN; 
BOOLEAN; 
INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
Handle; 
ProcPtr; 
LongInt; 
Str255 

/ 

{next control} 
{control's window} 
{enclosing rectangle}
{TRUE if visible} 
{highlight state} 
{current setting} 
{minimum setting} 

. {maximum setting} 
{control definition function} 
{data used by contrlDefProc} 
{default action procedure} 
{control's reference value} 
{control's title} 

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect; 
title: Str255; visible: BOOLEAN; value: 

FUNCTION GetNewControl 

PROCEDURE DisposeControl 
PROCEDURE KillControls 

Control Display 

PROCEDURE SetCTitle 
PROCEDURE GetCTitle 

PROCEDURE HideControl 
PROCEDURE ShowControl 
PROCEDURE DrawControls 
PROCEDURE HiliteControl 

Mouse Location 

INTEGER; min,max: INTEGER; procID: INTEGER; 
ref Con: LongInt) : ControlHandle; 

(controIID: INTEGER; theWindow: WindowPtr) : 
ControlHandle; 

(theControl: ControlHandle); 
(theWindow: WindowPtr); 

(theControl: ControlHandle; title: Str255); 
(theControl: ControlHandle; VAR title: 
Str255); 

(theControl: ControlHandle); 
(theControl: ControlHandle); 
(theWindow: WindowPtr); 
(theControl: ControlHandle; hiliteState: 

INTEGER) ; 

FUNCTION TestControl (theControl: ControlHandle; thePoint: Point) 
INTEGER; 

FUNCTION FindControl (thePoint: Point; theWindow: Wind~wPtr; VAR 
whichControl: ControlHandle) : INTEGER; 

FUNCTION TrackControl (theControl: ControlHandle; startPt: Point; 
actionProc: ProcPtr) : INTEGER; 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.S 



SUMMARY OF THE CONTROL MANAGER 33 

Control Movement and Sizing 

PROCEDURE MoveControl (theControl: ControlHandle; h,v: INTEGER); 
PROCEDURE DragControl (theControl: ControlHandle; startPt: Point; 

limitRect,slopRect: Rect; axis: INTEGER); 
PROCEDURE SizeControl (theControl: ControlHandle; w,h: INTEGER); 

Control Setting and Range 

PROCEDURE SetCtlValue 
FUNCTION GetCtlValue 
PROCEDURE SetCtlMin 
FUNCTION GetCtlMin 
PROCEDURE SetCtlMax 
FUNCTION GetCtlMax 

(theControl: 
(theControl: 
(theControl: 
(theControl: 
(theControl: 
(theControl: 

Miscellaneous Utilities 

ControlHandle; theValue: INTEGER); 
ControlHandle) : INTEGER; 
ControlHandle; minValue: INTEGER); 
Cont'rolHandle) : INTEGER; 
ControlHandle; maxValue: INTEGER); 
ControlHandle) : INTEGER; 

PROCEDURE SetCRefCon (theControl: ControlHandle; data: LongInt); 
FUNCTION GetCRefCon (theControl: ControlHandle) : LongInt; 
PROCEDURE SetCtlAction (theControl: ControlHandle; actionProc: ProcP~r); 
FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr; 

Action Procedure for TrackControl 

If an indicator: PROCEDURE MyAction; 
If not an indicator: PROCEDURE MyAction (theControl: ControlHandle; 

partCode: INTEGER); 

Control Definition Function 

FUNCTION MyControl (varCode: INTEGER; theControl: ControlHand~e; 
message: INTEGER; param: Longlnt) : Longlnt; 

Assembly-Language Information 

Constants 

; Control definition IDs 

pushButProc 
checkBoxProc 
radioButProc 
useWFont 
scrollBarProc 

.EQU 

.EQU 

.EQU 

.EQU 
'.EQU 

5/30/84 Chernicoff-Rose 

o 
1 
2 
8 

16 

;si~ple button 
;check box 
;radio button 
;add to above to use window's font 
;scroll bar 

/CMGR/CONTROLS.S 



34 Control Manager Programmer's Guide 

; Part codes 

inButton 
inCheckBox 
inUpButton 
inDownButton 
inPageUp 
inPageDown 
inThumb, 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

1~ 
11 
2~ 
21 
22 
23 

129 

;simple button 
;check box or radio button 
;up arrow of scroll bar 
;down arrow of scroll bar 
;"page up" region of scroll bar 
;"pag~ down" region of scroll bar 
;thumb of scroll bar 

; Axis constraints for DragControl 

noConstraint 
hAxisOnly 
vAxisOnly 

.EQU 

.EQU 

.EQU 

~ 
1 
2 

;no constraint 
;horizontal axis only 
;vertical axis only 

; Messages to control definition function 

drawCtlMsg 
hitCtlMsg 
calcCtlMsg 
newCtlMsg 
dispCtlMsg 
posCtlMsg 
thumbCtlMsg 
dragCtlMsg 
trackCtlMsg 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 
.EQU 
.EQU 
.EQU 

o ;draw the control (or control part) 
1 ;test where mouse button was pressed 
2 ;calculate control's region (or indicator's) 
3 ;do any additional control initialization 
4 ;take any additional disposal actions 
5 ;reposition control's indicator and update it 
6 ;calculate parameters for dragging indicator 
7 ;drag control (or its ,indicator) 
8 ;execute control's action procedure 

Control Record Data Structure 

next Control 
contrlOwner 
contrlRect 

·contrlVis 
contrlHilite 
contrlValue 
contrlMin 
contrlMax 
contrlDefHandle 
contrlData 
contrlAction 
contrlRfCon 
contrlTitle 
contrlSize 

Handle to next control in control list 
Pointer to this control's window 
Control's enclosing rectangle 
Flag for whether control is visible 
Highlight state 
Control's current setting 
Control's minimum setting 
Control's maximum setting 
Handle to control definition function 
Data used by control definition function 
Default action procedure 
Control's reference value 
Control's title 
Length of above structure except contrlTitle 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.S 



Special Macro Names 

Routine name 
DisposeControl 
,GetCtlMax 
GetCtlMin 
SetCtlMax 
SetCtlMin 

Macro name 
_DisposControl 

GetMaxCtl 
GetMinCtl 
SetMaxCtl 
SetMinCtl 

5/30/84 Chernicoff-Rose 

SUMMARY OF THE CONTROL MANAGER 35 

/CMGR/CONTROLS.S 



36 Control Manager Programmer's Guide 

GLOSSARY 

action procedure: A procedure, used by the Control Manager function 
TrackControl, that defines an action to be performed repeatedly for as 
long as the mouse button is held down. 

active control: A control that will respond to the user's actions with 
the mouse. 

button: A standard Macintosh control that causes some immediate or 
continuous action when clicked or pressed with the mouse. (See also: 
radio button) 

check box: A standard Macintosh control that displays a setting, 
either checked (on) or unchecked (off). Clicking inside a check box 
reverses its setting. 

control: An object in a window on the Macintosh screen with which the 
user, using the mouse, can cause instant action with graphic results or 
change settings to modify a future action. 

control definition function: A function called by the Control Manager 
when it needs to perform type-dependent operations on a particular type 
of control, such as drawing the control. 

control definition ID: A number passed to control-creation routines to 
indicate' the type of control. It consists of the control definition 
function's resource ID and a variation code. 

control list: A list of all the controls associated with a given 
window. 

control record: The internal representation of a control, where the 
Control Manager stores all the information it needs for its operations 
on that control. 

control template: A resource that contains information from which the 
Control Manager can create a control. 

dial: A control with a moving indicator that displays a quantitative 
setting or value. Depending on the type of dial, the user mayor may 
not be able to change the ,setting by dragging the indicator with the 
mouse. 

dimmed: Drawn in gray rather than black. 

inactive control: A control that will not respond to the user's 
actions with the mouse. An inactive control is high~ighted in some 
special way, such as dimmed. 

indicator: The moving part of a dial that displays its current 
setting. The part code of an indicator is always greater than 128 by 
convention. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.G 



GLOSSARY 37 

invert: To highlight by changing white pixels to black and vice versa. 

invisible control: A control that's not drawn in its window. 

part code: An integer between 1 and 253 that stands for a particular 
part of a control (possibly the entire control). Part codes greater 
than 128 represent indicators. 

radio button: A standard Macintosh control that displays a setting, 
either on or off, and is part of a group in which only one button can 
be on at a time. Clicking a radio button on turns off all the others 
in the group, like the buttons on a car radio. 

reference value: In a window record or control record, a 32-bit field 
that the application program may store into and access for any purpose. 

thumb: The Control Manager's term for the scroll box (the indicator of 
a scroll bar). 

variation code: The part of a window or control definition ID that 
distinguishes closely related types of windows or controls. 

visible control: A control that's drawn in its window (but may be 
completely overlapped by another window or other object on the screen). 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.G 



I 

MACINTOSH USER EDUCATION 

The Menu Manager: A Programmer's Guide /MMGR/MENUS 

See Also: Macintosh User Interface Guidelines 
Inside Macintosh: A Road Map 
Macintosh Memory Management: An Introduction 
QuickDraw: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Progra~er's Guide 
The Desk Manager: A Programmer's Guide 
The Toolbox Utilities: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 

Modification History: First Draft Pam Stanton-Wyman 5/82 
Chris Espinosa 12/23/82 
Chris Espinosa 1/24/83 
Chris Espinosa & 

Second Draft 
Updated (ROM 2.0) 
Third Draft (ROM 3.0) 

Fourth Draft (ROM 7) 
Fifth Draft 

Caroline Rose 5/17/83 
Caroline Rose 11/1/83 
Katie Withey 9/24/84 

ABSTRACT, 

Menus free the user from having to remember long strings of command 
words. The menu bar and pull-down menus let the user see all 
available menu- choices at any time. This manual describes the nature 
of pull-down menus and how to implement them with the Macintosh Menu 
Manager. 

Summary of significant changes and additions since last draft: 

- For menus stored in resource files t the menu ID isn't necessarily 
the resource ID (though the Resource Compiler sets the menu ID to 
the resource ID) (page 8). 

- Two new constants have been defined for symbols to mark menu items 
(the Command key symbol and a diamond symbol), and the constant 
appleSymbol has been changed to appleMark (page 12). 

- If no item is chosen from a menu, only the high-order word of the 
long integer returned by MenuSelect or MenuKey is 0; the low-order 
word is undefined. 

- Important changes have been made to "Defining Your Own Menus" 
(page 27). 



2 Menu Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Hanual 
3 About the Menu Manager 
4 The Menu Bar 
5 Appearance of Menus 
6 Keyboard Equivalents for Commands 
7 Menus and Resources 
8 Menu Records 
8 The Menu Info Data Type 
9 Menu Lists 
10 . Creating a Menu in Your Program 
11 'Multiple Items 
11 Items with Icons 
12 Marked· Items 
12 Character Style of Items 
13 Items with Keyboard Equivalents 
13 Disabled Items 
13 Using the Menu Manager 
15 Menu Manager Routines 
15 Ini.tialization and Allocation 
17 Forming the Menus 
19 Forming the Menu Bar 
21 Choosing From a Menu 
23 Controlling Items' Appearance 
26 Miscellaneous Routines 
27 Defining Your Own Menus 
28 The Menu Definition Procedure 
29 Formats of Resources for Menus 
30 Menus in a Resource File 
31 Menu Bars in a Resource File 
32 Summary of the Menu Manager 
36 Glossary 

Copyright (c) 1984 Apple Computer,. Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Menu Manager, a major component of the 
Macintosh User Interface Toolbox •••• Eventually it will become-part 
of the comprehensive Inside Macintosh manual. ••• The Menu Manager 
allows you to create sets of menus, and allows the user to choose from 
the commands in those menus in a manner consistent wfth the Macintosh 
User Interface guidelines. 

Like all Toolbox documentation, this manual assumes you're familiar 
with Lisa Pascal and the information in the following manuals: 

- Inside Macintosh: A Road Map 

- Macintosh ~ Interface Guidelines 

- Macintosh Memory Management: An Introduction 

- Programming Macintosh Applications in Assembly Language, if you're 
using assembly language 

You should also be familiar with: 

- Resources, as described in the Resource Manager manual. 

- The basic concepts and structures behind QuickDraw, particularly 
points, rectangles, and character style. 

- The Toolbox Event Manager. Some Menu Manager routines should be 
called only in response to certain events. 

ABOUT THE MENU MANAGER 

The Menu Manager supports the use of menus, an integral part of the 
Macintosh user interface. Menus allow users to examine all choices 
available to them at any time without being -forced to choose one of 
them, and without having to remember command words or special keys. 
The Macintosh user simply positions the cursor.in the menu bar. and 
presses the mouse button over a menu title. The application then calls 
the Menu Manager, which highlights that title (by inverting it) and 
"pulls down" the menu below it. As long as the mouse button is held 
down, the menu is displayed. Dragging through the menu causes each of 
the menu items to be highlighted in turn. If the mouse button is 
released over an item, that item is "chosen". The item blinks briefly 
to confirm the choice, and the menu disappears. 

When the user chooses an item, the Menu Manager ,tells the application 
which item was chosen, and t~e application performs the corresponding 
action. When the application completes the action, it removes the 
highlighting from the menu title, indicating to the user that the 
operation is complete. ~ 

9/24/84 Rose-Withey /MMGR/MENUS.2 



4 Menu Manager Programmer's Guide 

If the user moves the cursor out of the menu with the mouse button held 
down, the menu remains 'visible, though no menu items are highlighted. 
If the mouse button is released outside the menu, no choice is made: 
the menu just disappears and the application takes no action. The user 
can always look at a menu without causing any changes in the document 
or on the screen. 

The Menu Bar 

The menu bar always appears at the top of the Macintosh 8cre'en; nothing 
but the cur_sor ever appears in front of it,. The menu bar i.s white, 20 
pixels high, and as wide as the screen, with a thin black lower border. 
The menu titles in it are always in the system font and the system font 
size (see Figure 1). 

titles of 
eneb led menJS 

title of It 

disabled meru 

Figure 1. The Menu Bar 

In applications 'that support desk accessories, the first menu should be 
the standard Apple menu (the menu whose title is an apple symbol). The 
Apple menu contains the names of all available desk accessories.. When 
the user chooses a desk accessory from the menu, the title of a menu 
belonging to the desk accessory may appear in the menu bar, for as long 
as the accessory is active, or the entire menu bar 'may be replaced by 
menus belonging to the desk accessory. (Desk accessories are discussed 
in detail in the Desk Manager manual.) 

A menu may be temporarily disabled, so that none of the items in it can 
be chosen. A Aisabled menu can still be' pulled down, but its title and 
all the items in it are dimmed. 

The maximum number of menu titles in the menu bar is 16; however, ten 
to twelve titles are usually all that will fit. If you're having 
trouble fitting your menus in the menu bar, you should review your menu 
organization and menu titles. 

9/24/84 Rose-Withey /l-n-lGR/MENUS.2 



ABOUT THE MENU MANAGER 5 

Appearance of Menus 

A standard menu consists of a number of menu items listed vertically 
inside a shadowed rectangle. A menu item may be the text of a command, 
or just a line dividing groups of choices (see Figure 2). An ellipsis 
( ••• ) following the text of an item indicates that selecting the item 
will bring up a dialog box to get further information before the 
command is executed. Menus always appear in front of everything else 
(except the cursor); in Fig.ure 2, the menu appears in front of a 
document window already on the screen. 

meru 
with 

8 rnerMJ 
items 

(including 
2 dividing 

lines) 

vWord Wrap 

Figure 2. A Standard Menu 

The text of a menu item always appears in the system font and the 
system font size. Each item can have a few visual variations from the 
standard appearance: 

- An icon to the left of the item's text, to give a symbolic 
representation of the item's meaning or effect. 

- A check mark or other character to the left of the item's text (or 
icon, if any), to denote the status of the item or of the mode it 
controls. 

- The Command key symbol and another character to the right of the 
item's text, to show that the item may be invoked from the 
keyboard (that is, it has a keyboard equivalent). Pressing this 
key while holding down the Command key invokes the item just as if 
it had been chosen from the menu (see "Keyboard Equivalents for 

. Command s" below). 

- A character style other than the standard, such as bold,. italic, 
underline, or a combination of these. (The QuickDraw manual gives 
a full discussion of character style.) 

- A dimmed appearance, to indicate that the item is disabled, and 
can't be chosen. The Cut, Copy, and Clear commands in Figure 2 
are disabled; dividing lines are always disabled. 

9/24/84 Rose-Withey /MMGR/MENuS.2 



6 Menu Manager Programmer's Guide 

(note) 
Special symbols or icons may have an unusual appearance 
when dimmed; notice the dimmed Command symbol in the Cut 
and Copy menu items in Figure 2. 

The maximum number of menu items that will fit in a standard menu is 20 
(less 1 for each item that contains an icon). The fewer menu items you 
have, the simpler and clearer the menu appears to the user. 

If the standard menu doesn't suit your needs (for example, if you want 
more graphics or perhaps a nonlinear text arrangement), you can define 
a custom menu that, although visibly different to the user, responds to 
your application "s Menu Manager calls just like a standard menu. I 

Keyboard Equivalents for Commands 

Your program can set up a keyboard equivalent for any of its menu 
commands so the command can be invoked from the keyboard. The 
character you specify for a keyboard equivalent will usually be a 
letter. The user can type the letter in either uppercase or lowercase. 
For ~xample, typ.ing. either "c" or "c" while holding down the Command 
key invokes the command whose equivalent is "C". 

I 

(note) 
For consistency between applications, you should specify 
the letter in uppercase in the menu. 

You can specify characters other than letters for keyboard equivalents. 
However, the Shift key will be ignored when the equivalent is typed, so 
you shouldn't specify shifted characters. For example, when the user 
types Command-Shift-+, the system reads it as Command-Shift--. 

Command-Shift-number combinations are not keyboard equivalents. 
They're detected and handled by the Toolbox Event Manager function 
GetNextEvent, and are never returned to your program. (This is how 
disk ejection with Command-Shift-l or 2 is implemented.) Although it's 
possible to use unshifted, Command-number combinations as keyboard 
equivalents, you shouldn't do so, to avoid confusion. *** (Command
Shift-number will be documented in the next draft of the· Toolbox Event 
Manager manual.) *** 
(warning) 

You must use the standard keyboard equivalents Z, X, C, 
and V for the editing commands Undo, Cut, Copy, and 
Paste, or editing won't work correctly in desk 
accessories. 

9/24/84 Rose-Withey /MMGR/MENUS.2 



HENUS AND RESOURCES 7 

MENUS AND RESOURCES 

The general appearance and behavior of, a menu is determined by a 
routine called its ~ definition procedure, which is usually stored 
as a resource in a resource file. The menu definition procedure 
performs all actions that differ from o~e men~ type to another, such as 
drawing the menu. The Menu Manager calls the menu definition procedure 
whenever it needs to perform one of these basic actions, passing it a 
message that tells which action to perform. 

The standard menu definition procedure is part of the system resource 
file. It lists the menu items vertically, and each item may have an 
icon, a check mark or other symbol, a keyboard equivalent, a different 
character style, or a dimmed appearance. If y~u want to define your 
own, nonstandard menu types, you'll have to write your own menu 
definition procedure for them, as described later in the section 
"Defining Your Own Menus". 

You can also use a resource file to store the contents of your 
application's menus. This allows the menus to be edited or translated 
to foreign languages without affecting the application's source code. 
The ,Menu Manager lets.you read complete menu bars as well as individual 
menus from a resource file. 

Even if you don't store entire menus in resource file8~ it's a good 
idea to store the text striqgs they contain as_resources; you can call 
the Resource Manager directly to read them in. Icons in menus are read 
from resource files; the Menu Manager calls the Resource Ma~ager to 
read in the icons. 

(note) 
You can create menu-related resources and store them in 
resource files with the aid of the Resource Editor *** 
eventually (for now, the Respurce Compiler) ***. The 
Resource Editor relieves you of having to know the exact 
formats of these resources in the file, but for 
interested programmers this information is given in the 
section "Formats of Resources for Menus". 

There's a Menu Manager procedure that scans all open resource files for 
resources of a given type and installs the names of all available 
resources of that type into a given menu. This is how you fill a menu 
with the names of all available desk accessories or fonts, for example. 

9/24/84 Rose-Withey /MHGR/MENUS.2 



8 Menu Manager Programmer's Guide 

HENU RECORDS 

The Menu Manager keeps all the information it needs for its operations 
on a particular menu in a ~,record. The menu record contains the 
following: 

- The menu ID, a number that identifies the menu. The menu ID can 
be the sa;; number as the menu's resource ID,lthough it doesn't 
have to be. 

- The menu title. 

- The contents of the menu--the text and other parts of each item. 

- The horizontal and vertical dimensions of the menu, in pixels. 
The menu items appear inside the rectangle formed by these 
dimensions; the black border and shadow of the menu appear 'outside 
that rectangle. 

- A handle to the menu definition procedure • 

.:. Flags telling whe,ther each menu item is enabled or disabled, and 
whether the menu itself is enabled or disabled. 

The data type for a menu record is called Menu Info. A menu record is 
referred to by a handle: 

TYPE MenuPtr - iMenuInfo; 
MenuHandle - iMenuPtr; 

You can store into and access all the necessary fields of a mens record 
with Menu Manager routines, so normally you don't have to know the 
exact field names.. However, if you want more informatdon about the 
exact structure of a menu record--if you're defining your own menu 
types, for instance--it's given below. 

The Me'nuInfo Data Type 

The type MenuInfo is defined as follows: 

'lYPE; MenuInfo • RECORD 
menuID: 
menuWidth: 
menuHeight: 
menuProc: 
enableFlags: 

menuData: 
END; 

9/24/84 Rose-Withey 

INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
LONGINT; 

{tells 
Str255 

{menu ID} 
{menu width in pixels} 
{menu height in pixels} 

,{menu definition procedure} 

if menu or items are enabled} 
{menu title (and other data)} 

/MMGR/MENUS.2 



MENU RECORDS 9 

The menuID field contains the menu ID. MenuWidth and menuHeight are 
the menu's horizontal and, vertical dimensions in pixels. MenuProc is a 
handle to the menu definition procedure for this type of menu. 

Bit 0 of the enableFlags field is 1 if the menu is enabled, or 0 if 
it's disabled. ,Bits 1 to 31 similarly tell whether each item in the 
menu is enabled or disabled. 

The menuData field contains the menu title followed by variable-length 
data that defines the text and other parts of the menu items. The 
Str255 data type enables you to access the title from Pascal; there's 
actually additional data beyond the title that's inaccessible from 
Pascal and is not reflected in the Menulnfo data structure. 

(warning) 
You can read the menu title directly from the menuData 
field, but do not change the title directly, or the da~a 
defining the menu items mar be destroyed. 

Assembly-language~: The global constant me~uBlkSize equals 
the length in bytes- of all the f'felds of a menu record except 
menuData. 

MENU LISTS 

A menu list contains handles to one or more menus, along with 
information about the position of each menu in the menu bar. The 
current menu list contains handles to all the menus currently in the 
menu bar; the menu bar shows the titles, in order, of all menus in the 
menu list. When you initialize the Menu Manager, it allocates space 
for the maximum size menu list. 

The Menu Manager provid,es all the necessary routines for manipulating 
the current menu list, so there's no need to access it directly 
yourself. As a general rule, routines that deal specifically with 
menus in the menu list use the menu ID to refer to menus; those that 
deal with any menus, whether in the menu list or not, use the menu 
handle to refer to menus. Some routines refer to the menu list as a 
whole, with a handle. 

9/24/84 Rose-Withey /HMGR/MENUS.2 



10 Menu Manager Programmer's Guide 

Assembly-Ianguage~: The global variable MenuList contains a 
handle to the current menu list. The menu list has the format 
shown below. 

Number of bytes 
2 bytes 

Contents' 
Offset from beginning of menu list to 
last menu handle (the number of menus 
in the list times 6) 

2 bytes 

2 bytes 

Horizontal coordinate of right edge of 
menu title of last menu in list 
Not used 

For each menu: 
4 bytes Menu handle 
2 bytes Horizontal coord~nate of left edge of 

menu 

CREATING A MENU IN YOUR PROGRAM 

The best way to create your application's menus is to set them up as 
resources and read them in from a resource file. If you want your 
application to create the menus itself, though, it must call the 
NewMenu and AppendMenu routines. NewMenu creates a new menu.data 
structure, returning a handle to it •. AppendMenu takes a string and a 
handle to a menu and adds the items in the string to the end of the 
menu. 

The string passed to AppendMenu consists mainly of the text of the menu 
items. For a dividing line, use one hyphen (-); AppendMenu ignores any 
following characters, and draws a continuous line across the width of 
the menu. For a blank item, use one or more spaces. Other characters 
interspersed in the string have special meaning to the Menu Manager. 
These characters, called meta-characters, are used in conjunction with 
text to separate menu items or alter their appearance. The meta
characters aren't displayed in the menu. 

~ Meta-character 
; or Return 

< 
/ 
( 

Meaning 
Separates items 
Item has an icon 
Item has a check or other mark 
Item has a special character style 
Item has a keyboard equivalent 
Item is disabled 

None, any, or all of these meta-characters can appear in the AppendMenu 
string; they're described in detail below. To add one text-only item 
to a menu would require a simple string without any meta-characters: 

9/24/84 Rose-Withey /MMGR/MENUS.2 

) 



CREATING A MENU IN YOUR PROGRAM 11 

AppendMenu(thisMenu,'Just Enough') 

An extreme example could use many meta-characters: 

AppendMenu(thisMenu,'(Too MuchAl(B/T') 

This example adds to the menu an item whose text is "Too Much", which 
is disabled, has icon number 1, is boldfaced, and can be invoked by 
Command-T. Your menu items shoula be much simpler than this. 

(note) 
If you want ~ny of the meta-characters to appear in the 
text of a menu item, you can include them by changing the 
text. with the Menu Manager procedure Setltem. 

Multiple Items 

Each call to AppendMenu can add one or many items to the menu. To add 
multiple items in the same call, use a semicolon (;) or a Return 
character to separate the items. The call 

AppendMenu(thisMenu~'Cut;Copy!). 

has exactly the same effect as the calls 

AppendMenu(thisMenu,'Cut'); 
AppendMenu(thisMenu,'Copy') 

Items with Icons 

A circumflex (A) followed by a digit from 1 to 9 indicates that an icon 
should appear to the left of the text in ~he menu. The digit, called 
the icon number, yields the resource ID of the icon in the resource 
file:--Icon resource IDs 257 through 511 are reserved for menu icons; 
thus the Menu Manager adds 256 to the icon number to get the proper 
resource ID. 

(note) 
The Menu Manager gets the icon number by subtracting 48 
from the ASCII code of the character following the itA" 

(since, for example, the ASCII code of "I" is 49). You 
can actually follow the itA" with any character that has 
an ASCII code greater than 48. 

You can also use the SetItemIcon procedure to install icons in a menu;~ 
it accepts any icon number from 1 to 255. 

9/24/84 Rose-Withey /MMGR/MENUS.2 



12 Menu Manager Programmer's Guide 

For example, suppose you want to use AppendMenu to specify a menu item 
that has the text "Word Wrap" (nine characters) and a check mark to its 
left. You can declare the string variable 

VAR s: STRING[ll]; 

and do the following: 

s' := 'Word Wrap! • 
.s[ll] :- CHR(checkMark); 
AppendMenu(thisMenu,s); 

Character Style of Items 

The system font is the only font available for menus; however, you can 
vary the character style for clarity and distinction. The 
meta-character used to specify the character style is the left angle 
bracket, "(". With AppendMenu. you can assign one and only one of the 
stylistic variations listed below. 

(B Bold 
<I Italic 
<U Underline 
<0 Outline 
(S Shadow 

The SetitemStyle procedure allows you to assign any character style to 
an item. For a further discussion of character style, see the 
QuickDraw manual. 

Items with Keyboard EqUivalents 

Any menu item that can be chosen from a menu may also be associated 
with a key on the keyboard. Pressing this key while holding down the 
Command key invokes the item just as if it had been chosen from the 
menu. 

A slash (tt/") followed by a character associates that character with 
the item. The specified character (preceded by the Command key symbol) 
appears at the right of the item's text in the menu. For consistency 
between applications, the character should be uppercase if it's a 
letter. When invoking the item, the user can type tpe letter in either 
uppercase or lowercase. For example, if you specify 'Copy/ct. the Copy 
command can be invoked by holding down the Command key and typing 
either C or c. 

An application that receives a key down event with the Command key held 
down can call the Menu Manager with the typed character and receive the 
menu ID and item number of the item associated with that character. 

11/1/83 Espinosa-Rose /HMGR/MENUS.2 



CREATING A MENU IN YOUR PROGRAM 13 

The SetItemStyle procedure allows' you to assign any combination of 
stylistic variations to an item. For a further discussion of character 
style, see the OuickDraw manual. 

Items with Keyboard Equivalents 

A slash (I) followed by a character associates that character ~ith the 
item, allOtiing the item to be invoked from the keyboard with the 
Command key. The specified character (preceded by the-Command key 
symbol) appears at the right of the item's text in the menu. 

(note) 
Remember to specify the character in uppercase if it's a 
letter, and not to, specify other shifted characters or 
numbers. 

Given a keyboard equivalent typed by the user, you call the MenuKey 
function to find out what menu item was invoked. 

Disabled Items 

The meta-character that disables an item is the left parenthesis, "(". 
A disabled item cannot be chosen; it appears dimmed in the menu and 1s 
not highlighted when the cursor moves over it. 

Menu items that are used to ,separate groups of items (such as a line or 
a blank item) should always be disabled. For example, the call 

AppendMenu(thisMenu,'Undo;(-;Cut') 

adds two enabled menu items, Undo and Cut, with a disabled item 
consisting of a line between them. 

You can' change the enabled or disabled state of a menu item with the 
DisableItem and EnableItem procedures. 

USING THE MENU MANAGER 

This section discusses how the Menu Manager routines fit into the 
general flow of an application program, and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

To use the Menu Manager, you must have previously called InitGraf to 
initialize QuickDraw, InitFonts to initialize the Font Manager, and 
InitWindows to initialize the Window Manager. The first Menu Manager 
routine to call is the initialization procedure InitMenus. 

9/24/84 Rose-Hithey 1 MMGRI MENU s • 2 



14 Menu Manager Programmer's Guide 

Your application can set up the menus it needs in any number of ways: 

- Read an entire prepared menu list from a resource file with 
GetNewMBar, and place it in the menu bar with SetMenuBar. 

- Read the menus individually from a resource file using GetMenu, 
and place them in the menu-bar using,InsertMenu. 

- Allocate the menus with NewMenu, fill them with items using 
AppendMenu, ~nd place them in the menu bar using InsertMenu. 

- Allocate a menu with NewMenu, fill it with items using AddResMenu 
to get the namp.s of all available resources of a given type, and 
place the menu in the menu bar using InsertMenu. 

You can use AddResMenu or InsertResMenu to add items from resource 
files to any menu, regardless of how you created the menu or whether it 
already contains any items. 

When you no longer need a menu, call the Resource Manager procedure 
Re1easeResource if you read the menu from a resource file, or 
DisposeMenu if you allocated it with NewMenu. 

If you call Ne~nu to allocate a menu, it will store a handle to the 
standard menu definition procedure in the menu record, so if you want 

. the menu to be one you've designed, you must replace that handle with a 
handle to your own menu definition procedure. For more information, 
~ee "Defining Your Own Menus". 

After setting up the menu bar, you n~ed to draw it with the DrawMenuBar 
procedure. 

At any time you can change or examine a menu item's text with the 
Setltem and Getltem procedures, or its icon, style, or mark with the 
procedures SetItemIcon, GetItemIcon, SetItemSty1e, GetItemSty1e, 
Checkltem, Set ItemMark , and GetItemMark. Individual items or whole 
menus can be enabled or disabled with the EnableItem and Disab1eItem 
procedures. You can change the number of menus in the menu list with 
InsertMenu or De1eteMenu, remove all the menus with C1earMenuBar, or 
change the entire menu list with GetNewMBar or GetMenuBar followed by 
SetMenuBar. 

When your application receives a mouse-down event, and the Window 
Man~ger's FindWindow function returns the predefined constant 
inMenuBar, your application should call the Menu Manager's MenuSe1ect 
function, supplying it with the point where the mouse button was 
pressed. MenuSe1ect will pull down the appropriate menu, and retain 
contro1--tracking the mouse, highlighting menu items, and pulling down 
other menus--unti1 the user releases the mouse button. MenuSe1ect 
returns a long integer to the appiication: the high-order word 
contains the menu ID of the menu that was chosen, and the low-order 
word contains the menu item number of the item that was chosen. The 
menu item number is the index, starting from 1, of the item in the 

9/24/84 Rose-Withey /MMGR/MENUS.2 



USING THE tfENU MANAGER 15 

menu. If no item was chosen, the high-order word of the long integer 
is 0, and the low-order word is undefined. 

- If the high-order word of the long integer returned is 0, the 
application should just continue to poll for further events. 

- If the high-order word is nonzero, the application should invoke 
the menu item specified by the low-order word, in the menu 
specified by the high-order word. Only after the action is 
completely finished (after all dialogs, alerts, or screen actions 
have been taken care of) should the application remove the 
highlighting from the menu bar by calling HiliteMenu(0), signaling 
the completion of the action. 

Keyboard equivalents are handled in much the same manner. When your 
application receives a key-down event with the Command key held down, 
it should call the MenuKey function, supplying it with the character 
that was typed. MenuKey will return a long integer with the same 
format as that of MenuSelect, and the application can handle the long 
integer in the manner described above. Applications should respond the 
same way to auto-key events as to key-down events when the Command key 
is held down.if the command being invoked is repeatable. 

(note) 
You can use the Toolbox Utility routines LoWord and 
HiWord to extract the high-order and low-order words of a 
given long integer, as described in the Toolbox Utilities 
manual. 

There are several miscellaneous Menu Manager routines that you normally 
won't need to use. CalcMenuSize calculates the dimensions of a menu. 
CountMltems counts the number of items in a menu. Get.MHandle returns 
the handle of a menu in the menu list. FlashMenuBar inverts the menu 
bar. SetMenuFlash controls the number of times a menu item blinks when 
it's chosen. 

MENU MANAGER ROUTINES 

Initialization and Allocation 

PROCEDURE InitMenus; 

InitMenus initializes the Menu Manager. It allocates space for the 
menu list (a relocatable block on the heap large enough for the maximum 
size menu list), and draws the (empty) menu bar. Call InitMenus once 
before all other Menu Manager routines. An application should never 
have to call this procedure more than once; to start afresh with all 
new menus, use ClearMenuBar. 

9/24/84 Rose-Withey /MMGR/MENUS. R 



16 Menu Manager Programmer's Guide 

(note) 
The Window Manager initialization procedure InitWindows 
has already drawn' the empty menu barj InitMenus redraws 
it. 

FUNCTION NewMenu (menuID: INTEGERj menuTitle: Str255) : MenuHandle; 

NewMenu allocates space for a new menu with the given menu ID and 
title, and returns a handle to it. It sets up the menu to use the 
standard menu definition procedure. The new menu (which is created 
empty) is not installed in the menu list. To use this menu, you must 
first call AppendMenu or AddResMenu to fill it with items, InsertMenu 
to place it in the 'menu list, and DrawMenuBar to update the menu bar to 
include the new title. 

Application menus should always have positive menu IDs. Negative menu 
IDs are reserved for menus belonging to desk accessories. No menu 
should ever have a menu ID of 0. 

If you want to set up the title of the Apple menu from your program 
instead of reading it in from a resource file, you can use the 
predefined constant appleMark (equal to $14, the value of the apple 
symbol). For example, you can declare the string variable 

VAR myTitle: STRING[1]; 

and do the following: 

myTitle := ' '; 
myTitle[1] := CHR(appleMark) 

To release the memory occupied by a menu that you created with NewMenu, 
call DisposeMenu. 

FUNCTION GetMe~u (resourceID: INTEGER) : MenuHandle; 

GetMenu returns a menu handle for the menu having the given resource 
ID. It calls the Resource Manager to read the menu from the resource 
file into a menu record in memory. It stores the handle to the menu 
defi~ition procedure in the menu record, reading the procedure from the 
resource file into memory if necessary. To use this menu, you must 
call InsertMenu to place it in the menu list and DrawMenuBar to upd,ate 
the menu bar to include the new title. 

(warning) 
Only call GetMenu once for a particular menu. If you 
need the menu handle to a menu that's already in memory, 
use the Resource Manager function GetResource. 

To release the memory occupied by a menu that you read from a resource 
file with GetMenu, use ,the Resource Manager procedure ReleaseResource. 

9/24/84 Rose-Withey /MMGR/MENUS. R 



MENU MANAGER ROUTINES 17 

Assembly-Ianguage~: The macro you ,invoke to call GetMenu 
from assembly language is named _GetRHenu • 

. PROCEDURE DisposeHenu (theMenu: HenuHandle); 

Call DisposeHenu to release the memory occupied by a menu that you 
allocated with NewMenu. (For menus read from a resource file with 
GetMenu, use the Resource Manager procedure ReleaseResource instead.) 
This is useful if you've created temporary menus that you no longer 
need. 

(warning) 
Make sure you remove the menu from the menu list (with 
DeleteMenu) before disposing of it. Also be careful not 
to use the menu handle after disposing of the menu. 

Assembly-Ianguage~: The macro you invoke to call 
DisposeMenu from assembly language is named _DlsposMenu. 

F~rmlng the Menus 

PROCEDURE AppendMenu (theMenu: MenuHandle; data: Str255); 

AppendMenu adds an item or items to the end of the given menu, which 
must previously have been allocated by NewMenu or read from a resource 
file by GetMenu. The data string consists of the text of the menu 
item; it may be blank but should not be the null string. If it begins 
with a hyphen (-), the item will be- a dividing line across the width of 
the menu. As described in the section "Creating a Menu in Your 
Program", the following meta-characters may be embedded in the data 
string: 

9/24/84 Rose-Withey /MMGR/MENUS. R 



18 Menu Manager Programmer's Guide 

Meta-character 
; or Return 

A 

< 

/ 

{ 

Usage 
Separates multiple items 
Followed by an icon number, adds that icon to 
the item 
Followed by a character, marks the· item-with 
that character 
Followed by B, I, U, 0, or S, sets the 
character style of the item 
Followed by a character, associates a keyboard 
equivalent with the item 
Disables the item 

Once items have been appended to a menu, they cannot be removed or 
rearranged. AppendMenu works properly whether or not the menu is in 
the menu list. 

PROCEDURE AddResMenu (theMenu: MenuHandle; theType: ResType); 

AddResMenu searches all open resource files for resources of type 
theType and appends the names of all resources it finds' to the given 
menu. Each resource name appears in the menu as an enabled item, 
without an icon or mark, and in the normal character style~ The 
standard Menu Manager calls can be used to get the name or change its 
appearance, as described below under "Controlling Items" Appe~rance". 

(note) 
So that you can have resources of the given type that 
won't appear in the menu, any resource names that begin 
with a period (.) or a percent sign (%) aren't appended 
by AddResMenu. 

Use this procedure to fill a menu with the names of all available fonts 
or desk accessories. For example, if you declare a variable as 

VAR fontMenu: MenuHandle; 

you can set up a menu containing all font names as follows: 

fontMenu := NewMenu{5, 'Fonts'); 
AddResMenu(fontMenu, 'FONT') 

PROCEDURE InsertResMenu (theMenu: MenuHandle; theType: ResType; 
afterI~em: INTEGER); 

InsertResMenu is_ the same as AddResMenu (above) except that it inserts 
the resource names in the menu where specified by the afterItem 
parameter: if afterltem is 0, the names are inserted before the first 
menu item; if it's the item number of an item in the menu, they're 
inserted after that item; if it's equal to or greater than the last 
item number, they're appended to the menu. 

9/24/84 Ros~-Withey /MMGR/MENUS.R 



(note) 

MENU MANAGER ROUTINES 19 

InsertResMenu inserts the names in the reverse of the 
order that AddResMenu appends them. For consistency 
between applications in the appearance of menus. use 
AddResMenu instead of InsertResMenu if posslble. 

Forming the Menu Bar 

PROCEDURE InsertMenu (theMenu: MenuHandle; beforeID: INTEGER); 

InsertMenu inse~ts a menu into the menu list before the menu whose menu 
ID equals beforeID. If beforeID Is 0 (or Isn't the ID of any menu in 
the menu list). the new menu is added after all others. If the menu is 
already in the menu list or the menu list is already full. InsertMenu 
does nothing. Be sure to call DrawMenuBar to update the menu bar. 

PROCEDURE DrawMenuBar; 

DrawMenuBar redraws the menu bar accord-ing to the'" menu list. 
incorporating any changes since the last call to DrawMenuBar. Any 
highlighted menu ,title remains highlighted when drawn by DrawMenuBar. 
This procedure should always be called after a sequence of InsertMenu 
or DeleteMenu calls. and· after ClearMenuBar'. SetMenuBar. or any other 
routine that changes the menu list. 

PROCEDURE DeleteMenu (menuID: INTEGER); 

DeleteMenu deletes a menu from the menu list. If there's no menu with 
the given menu ID in the menu list. DeleteMenu has no effect. Be sure 
to call DrawMenuBar to update the menu bar; the menu titles following 
the deleted menu will move over to fill the vacancy. 

(note) 
DeleteMenu simply removes the menu from the list of 
currently available menus; it doesn't release the memory 
occupied by the menu data structure. 

PROCEDURE ClearMenuBar; 

Call ClearMenuBar to remove all menus from the menu list when you want 
to start afresh with all new menus. Be sure to call DrawMenuBar to 
update the menu bar. 

(note) 
ClearMenuBar, like DeleteMenu, doesn't release the memory 
occupied by the menu data structures; it merely removes 
them from the menu list. 

9/24/84. Rose-Withey /MMGR/MENUS. R 



20 Menu Manager Programmer's Guide 

You d'on't have to call ClearMenuBar at the beginning of your program, 
because In1 tMenus clears the menu list fo'r you. 

FUNCTION GetNewMBar (~enuBarIO: INTEGER) : Handle; 

GetNewMBar creates a menu list as defined by the menu bar resource 
having the given resource 10, and returns s handle to it. If the 
resource isn't already in memory, GetNewMBar reads it .into memory from 
the resource file •. It calls GetMenu to get each of the individual 
menus. 

To make the menu list created by GetNewMBar the current menu list, call 
SetMenuBar. To release the memory o~cupied by the menu list, use the 
Memory Manager procedure OisposHandle. 

(warning) 
You don't have to know the individual menu IDs to use 
GetNewMBar, but that doesn't mean you don't have to know 
them at all: to do anything further with's particular 
menu~ you have to know its 10 or its handle (which you 
can get by passing the 10 to GetHHandle, as described 
below under "Miscellaneous Routines"). 

FUNCTION GetMenuBar : Handle; 

GetMenuBar cteates a copy of the current menu list and returns a handle 
to ,the copy. You can then add or remove menus from the menu list (with 
InsertMenu, DeleteMenu, or ClearMenuBar), and later restore the saved 
menu list with SetMenuBar. To release the memory occupied b'y the saved 
menu list, use the Memory Manager procedure OisposHandle •. 

(warning) 
GetMenuBar doesn't copy the menus themselves, only a list 
containing their handles. Do not dispose of any menus ' 
that might be in a saved menu list. 

PROCEDURE SetMenuBar (menuList: Handle); 

SetMenuBar copies the given menu list to the current menu list. You 
can use this procedure to restore a menu list previously saved by 
GetMenuBar, or pass it a handle returned by GetNewMBar. Be sure to 
call DrawMenuBar to update the menu bar. 

9/24/84 Rose-Withey /MMGR/MENUS.R 



MENU MANAGER ROUTINES 21 

Choosing From a MenU' 

FUNCT~ON MenuSelect (startPt: Point) : LONGINT; 

When there's a mouse-down event in the menu bar, the application should 
call MenuSelect with startPt equal to the point (in global coordinates) 
where the mouse button was pressed. MenuSelect keeps control until the 
mouse button is released, tracking the mouse, pulling down menus as 
needed, and highligh.ting enabled menu items under the cursor. When the 
mouse button is released over an enabled item in an application menu, 
MenuSelect returns a long integer whose high-order word is the menu ID 
of the menu, and whose low-order word is the menu item number for the 
item chosen (see Figure 3). It leaves the selected menu title 
highlighted. After performing the chosen task, your applIcation should 
call HiliteMenu(0) to remove the highlighting from the menu titl~. 

menu IDS 

128 1.29 130 131 
• File .. ~------------~------------------------

menu 
item 

runbers 

1 
2 
3 
4 

S rnouseP1 is where 
6 
7 

the CU"SOf is pointing 

8 ~ord Wrap 

Menu5elect(mousePt) or MenuKey('V') returns: 

I 130 I 5 
high-order word low-order word 

Figure 3. MenuSelect and MenuKey 

If no choice is made, MenuSelect returns 0 in the high-order word of 
the long integer, and the low-order word is undefined. This includes 
the case where the mouse button is released over a disabled menu item 
(such as Cut, Copy, Clear, or one of the dividing lines in Figure 3), 
over any menu title, or outside the menu. 

If the mouse button is released over an enabled item-in a menu 
belonging to a desk accessory, MenuSelect passes the menu ID and item 
number to the Desk Manager procedure SystemMenu for processing, and 
returns 0 to your application in the high-order word of the result. 

9/24/84 Rose-Withey /MMGR/MENUS. R 



22 Menu Manager Progra~er's Guide 

Assembly-language~: If the global variable MBarEnable is 
nonzero, MenuSelect knows that every menu currently in the menu 
bar belongs to a desk accessory. (See the Desk Manager manual 
for more information.) The global variable MenuHook normally 
contains 0; if you store the address of a routine in MenuHook, 
MenuSelect will call that routine repeatedly (with no 
parameters) while the mouse button is down. 

FUNCTION MenuKey (ch: CHAR) : LONGINT; 

MenuKey maps the given character to the associated menu and item for 
that character. When you get a key-down event with the Command key 
held down--or an auto-key event, if the command being invoked is 
repeatable--call MenuKey with the character that was typed. MenuKey 
highlights the appropriate menu title, and returns a long integer 
containing the menu 10 in its high-order word and the menu item number 
in its low-order word, just as MenuSelect does (see Figure 3 above). 
After performing the ehosen task, your application shduld call 
HiliteMenu(0) to remove the highlighting from the menu title. 

If the given character isn't associated with any enabled menu item 
currently in the menu list, MenuKey returns ~ in the high-order word of 
the long integer, and the low-order word is undefined. 

If the given character invokes a menu item in a menu belonging to a 
desk accessory, HenuKey (like MenuSelect) passes the menu 10 and item 
number to the Desk Manager procedure SystemMenu for processing, and 
returns 0 to your application in the high-order word of the result. 

(note) 
There should never be more than one item in the menu list 
with the same keyboard equivalent, but if there is, 
MenuKey returns the first such item it encounters, 
scanning the menus from right to left and their items 
from top to bottom. 

PROCEOURE HiliteMenu (menuIO: INTEGER); 

HiliteMenu highlights the title of the given menu, or does nothing if 
the title is already highlighted. Since only one menu title can be 
highlighted at a time, it unhighlights any previously highlighted menu 
title. If menuIO is 0 (or isn't the 10 of any menu in the menu list), 
HlliteMenu simply unhighlights whichever menu title is highlighted (if 
any). 

After MenuSelect or MenuKey, your application should perform the chosen 
task and then call HiliteMenu(0) to unhighlight the chosen menu title. 

9/24/84 Rose-Withey /MMGR/MENUS.R 



MENU .MANAGER ROUTINES 23 

Assembly-language~: The global variable TheMenu contains 
the menu ID of the currently highlighted menu. 

Controlling Items' Appearance 

PROCEDURE SetItem (theMenu: MenuHandle; item: INTEGER; itemString: 
Str255) ; 

SetItem changes the text of the given menu item to itemString. It 
doesn't recogn~ze the meta-characters used in AppendMenu; if you 
include them in itemString, they will appear in the text of the menu 
item. The attributes already in effect for this item--its character 
style, icon, and so on--remain in effect. ItemString may be blank but 
should not be the null string. 

(nate) 
It's good practice to store the text of itemString in a 
resource file instead of passing it directly. 

Use SetItem to flip between two alternative menu items-- for example, 
to change "Show Clipboard" to "Hide Clipboard" when the Clipboard is 
already showing. 

(note) 
To avoid confusing the user, don't capriciously change 
the text of menu items. 

PROCEDURE GetItem (theMenu: MenuHandle; item: INTEGER; VAR itemString: 
Str25S); 

GetItem returns the text of the given menu item in itemString. It 
doesn't place any meta-characters in the string. This procedure is 
useful for getting the name of a menu item that was installed with 
AddResMenu or insertResMenu. 

PROCEDURE DisableItem (theMenu: MenuHandle; item: INTEGER); 

Given a menu item number in the item parameter, DisableItem disables 
that menu item; given 0 in the item parameter, it disables the entire 
menu. 

Disabled menu items appear dimmed and are not highlighted when the 
cursor moves over them. MenuSelect and MenuKey return 0 in the high
order word of their result if the user attempts t·o invoke a disabled 
item. Use DisableItem to disable all menu choices that aren't 

9/24/84 .Rose-Withey /MMGR/MENUS.Ii 



24 Menu Manager Programmer's Guide 

appropriate at a given time (such as a Cut command when there's no text 
selection). 

All menu items are initially enabled unless you specify otherwise (such 
as by using the n( .. meta-character in a call t'o AppendMenu). 

Every menu item in a disabled menu is dimmed. The menu title is also 
dimmed. but you must ca11'DrawMenuBar to update the menu bar to show 
the dimmed title. 

PROCEDURE Enab1eItem (theMenu: MenuHandle; item: INTEGER); 

Given a menu item number in the item parameter. EnableItem enables the 
item; given 0 in the item parameter, it enables the entire menu. (The 
item or menu may have been disabled with the DisableItem procedure, or 
the item may have been disabled with the "(" meta-character in the 
AppendMenu string.) The item or menu title will no longer appear 
dimmed and can be chosen like any other enabled item or menu. 

PROCEDURE CheckItem (theMenu: MenuHandle; item: INTEGER; checked: 
BOOLEAN); 

CheckItem places or removes a check ma'tk at the left of the given menu 
item. After you call Check Item with checked-TRUE. a check mark will 
appear each subsequent time the menu is pulled down. Calling CheckItem 
with checked-FALSE removes the check mark from the menu item (or. if 
it's marked with a different character, removes that mark). 

Menu items are initially unmarked unless you ,specify otherwis-e (such as 
with the "!n meta-character in a call to AppendMenu). 

PROCEDURE SetItemMark (theMenu: MenuHandle; item: INTEGER; markChar: 
CHAR) ; 

SetItemMark marks the given menu item in a more general manner than 
CheckItem. It allows you to place any character in the system font, 
not just the check mark, to the left of the item. You can Ispecify some 
useful values for the markCharparameter with the following predefined 
constants: 

CONST noMark - 0; 
commandMark - $11; 
checkMark - $12; 
diamondMark - $13; 
appleMark - $14; 

{NUL character, to remove a mark} 
{Command key symbol} 
{check mark} 
{diamond symbol} 
{apple symbol} 

· Assembly-language~: The macro you invoke to call 
SetItemMark from assembly language is named Set ItmMark. 

9/24/84 Rose-Withey /HMGR/MENUS. R 



MENU MANAGER ROUTINES 2S 

PROCEDURE GetItemHBrk (theMenu: MenuHandle; item: INTEGER; VAR 
markChar: CHAR); 

GetItemHark returns in markChar whatever character the given menu item 
is marked with, or the NUL character (ASCII code 0) if no mark is 
present. 

Assembly-Ianguage~: The macro you invoke to call 
GetItemMark from assembly language is named Get ItmMark. 

PROCEDURE SetItemIcon (theMenu: MenuHandle; item: INTEGER; icon: Byte); 

Setltemlcon associates the given menu item with an icon. It sets the 
item's icon number to the given value (an integer from 1 to 255). The 
Menu Manager adds 256 to the icon number to get the icon's resource ID, 
which it passes to ,the Resource Manager to get the corresponding icon. 

(warning) 
If you deal directly with the Resource Manager to read or 
store menu icons, be sure to adjust your icon numbers 
accordingly. 

Menu items initially have no icons unless you specify otherwise (such 
as with the "A" meta-character in a call to AppendMenu). 

Assembly-Ianguage~: The macro you invoke to call 
SetItemlcon from assembly language is named Setltmlcon. 

PROCEDURE GetItemIcon (theMenu: MenuHandle; item: INTEGER; VAR icon: 
Byte) ; 

GetltemIcon returns the icon number associated with the given menu 
item, as an integer from 1 to 255, or 0 if the item has not been 
associated with an icon •. The icon number is 256 less than the icon's 
resource ID. 

Assembly-Ianguage~: The macro you invoke to call 
Getltemlcon from assembly language is named GetltmIcon. 

9/24/84 Rose-Withey /MMGR/MENUS. R 



26 Menu Manager Programmer's Guide 

PROCEDURE setItemStyle (theMenu: MenuHandle; item: INTEGER; chStyle: 
Style) ; 

SetItemStyle changes the character style of the given menu item to 
chStyle. For example: 

SetItemStyle(thisMenu,l,[bold,italic]} {bold and italic} 

Menu items are initially in the normal char'acter style unless you 
specify otherwise (such as with the "<" meta-character in a call to 
AppendKenu) • 

Assembly-language note: . The macro you invoke to call 
SetItemStyle from assembly language is named _SetItmStyle. 

PROCEDURE GetItemStyle (theMenu: MenuHandle; item: INTEGER; VAR 
chStyle: Style); 

GetItemStyle returns the character style of the given menu item in 
chStyle. 

Assembly-language note: The macro you invoke to call 
GetItemStyle from assembly language is named _GetItmStyle. 

Miscellaneous Routines 

PROCEDURE CalcMenuSize (theMenu: MenuHandle); 

You can use CalcMenuSize to recalculate the horizontal and vertical 
dimensions of a menu whose contents have been changed (and store them 
in the appropriate fields of the menu record). CalcKenuSize is called 
internally by the Menu Manager after every AppendMenu, Setltem, 
SetltemIcon, and SetItemStyle call. 

FUNCTION CountMItems (theMenu: MenuHandle) : INTEGER; 

CountMItems returns ~he number of menu items in the given menu. 

9/24/84 Rose-Withey /HMGR/MENUS. R 



\ 

MENU MANAGER ROUTINES 27 

FUNCTION GetHHandle (menuID: INTEGER) : HenuHandle; 

Given the menu 1D of a menu currently installed in the menu list, 
GetHHandle returns a handle to that .menu; given any other menu ID, it 
returns NIL. 

PROCEDURE FlashMenuBar (menuID: INTEGER); 

If menuID is 0 (or isn't the ID of any menu in the menu list), 
FlashMenuBar inverts the entire menu bar; otherwise, it inverts the 
title of the given menu. 

PROCEDURE SetMenuFlash (count: INTEGER); 

When the mouse button is released over an enabled menu item, the item 
blinks· briefly to confirm the choice. Normally, your application 
shouldn't be concerned with this blinking; the user sets it with the 
Control Panel desk accessory. If you're writing ,a desk accessory like 
the Control Panel, though, SetMenuFlash allows you to control the 
duration of this blinking. Count is the number of times menu items 
will blink; it's tnit.ially'3 if the user hasn't changed it. A count of 
o disables blinking. Values greater than 3 can be annoyingly slow. 

(warning) 

(note) 

Don't call SetMen~Flash from your main program. 

Assembly-language note: The macro you invoke to call 
SetMenuFlash from assembly language is named _SetMFlash. The 
current count is stored in the global variable MenuFlash. 

Items in both $tandard and nonstandard menus blink when 
chosen. The appearance of the blinking for a nonstandard 
menu depends on the menu definition procedure, as 
described below. 

DEFINING YOUR OWN MENUS 

The standard type of Macintosh menu is predefined for you. However, 
you may'want to define your own type of menu--one with more graphics, 
or perhaps a nonlinear text arrangement. QuickDraw. and the Menu 
Manager make it possible for you to do this. 

To define your own type of menu, you write a menu definition procedure 
and (usually) store it in a resource file. The Menu Manager calls the 

9/24/84 Rose-Withey /HMGR/MENUS.D 



28 Menu Manager Programmer's Guide 

menu definition procedure to perform basic operations Buch os drawing 
the menu. 

A menu in a resource file contains the resource ID of itB menu 
,definition procedure. The routine you use to read in the menu is 
GetMenu (or GetNewMBar, which calls GetMenu). If you store the 
resource ID of your own menu definition procedure in a ~enu in a 
resource file, GetMenu will take care of reading the procedure into 
memory and storing a handle to it in the menuProc field of the menu 
record. 

If you create your' menus with NewMenu instead of storing them as 
resources, NewMenu stores a handle to the standard menu definition 
procedure in the menu record's menuProc field. You must replace this 
with a handle to your own menu definition procedure, then call 
CalcMenuSize. If your menu definition procedure is in a resource file, 
you get the handle by calling the Resource Manager to read it from the 
resource file into memory. 

(note) 
Advanced programmers can include the menu definition 
procedure in with the program code instead of storing it 
as a separate ~esource. 

The Menu Definition Procedure 

The menu definition procedure may be written in Pascal or assembly 
language; the only requirement is that its entry point must be at the 
beginning. You may choose any name you wish. for the procedure. Here's 
how you would declare one named MyMenu: 

PROCEDURE MyMenu (message: INTEGER; theMenu: MenuHandle; VAR 
menuRect: Rect; hitPt: Point; VAR whichltem: INTEGER); 

The message parameter identifies the operation to be performed. Its 
value will be one of the following predefined constants: 

CONST mDrawHsg - 0; 
mChooseMsg - 1; 

mSizeMsg = 2; 

{draw the menu} 
{tell which item was chosen and } 
{ highlight it} 
{calculate the menu's dimensions} 

The parameter theMenu indicates the menu that the operation will 
affect. MenuRect is the rectangle (in global coordinates) in which the 
menu is located; it's used when the message is mDrawMsg or mChooseMsg. 

(note) 
MenuRect is declared as a VAR parameter not because its 
value is changed, but because of a Pascal feature that 
will cause an error when that parameter isn't used. 

The message mDrawMsg tells the menu definition procedure to draw the 
menu inside menuRect. The current ,grafPort will be the Window Manager 

9/24/84 Rose-Withey /MMGR/MENUS.D 



DEFINING YOUR OWN MENUS 29 

port. (For details on drawing,' see the QuickDraw manual.) The 
standard menu definition procedure figures out how to draw the menu 
items ,by looking in the menu record at the data that defines them; thio 
data is described in detail under "Formats of Resources for Menus" 
below. For menus of your own definition, you may set up the data 
defining the menu items any way you like, or even omit it altogether. 
(in which case all the information necessary to draw the menu would be 
in the menu definition procedure itself). You should also check the 
enableFlags field of the menu record to see if the menu is disabled (or 
if any of the menu items are disabled, if you're using all the flags), 
and if so, draw it in gray. 

(warning) 
Don't change the font from the, system font for menu text. 
(The Window ~~nager port uses the system font.) , 

When the menu definition procedure receives the message mChooseMsg, th~ 

hitPt parameter is ~he point (in global coordinates) where the mouse 
button was released, and the whichItem parameter is the item number of 
the last item that was chosen from this menu. The procedure should 
determine if the mouse button was released in an enabled menu item, by 
checking, whether hitPt is inside menuRect, whether the menu is enabled II 

and whether hitPt is in an enabled menu item: , 
- If the mouse button was released in an enabled menu item, 

unhighlight whichltem and highlight the newly chosen item (unless 
the new item is the same as the whichltem), and return the item 
number of the new item in which Item. 

- If the mouse button wasn't released in an enabled item, 
unhighlight whichltem and return 0. 

(note) 
When the Menu Manager needs to make a chosen menu item 
blink, it repeatedly calls the menu definition procedure 
with the message mChooseMsg, causing the item to be 
alternately highlighted and unhighlig~ted. 

Finally, the message mSizeMsg tells the menu definition procedure to 
calculate the horizontal and vertical dimensions of the menu and store 
them in the menuWidth and menuHeight fields of the menu record. 

FORMATS OF RESOURCES FOR MENUS 

The resource type for a menu definition procedure is 'MDEF'. The 
resource data is simply the compiled or assembled code of the 
procedure. 

Icons in menus must be stored in a resource file under the resource 
type 'ICON' with resource IDs from 257 to 511. Strings in resource 
files have the resource type 'STR '; if you use the Setltem procedure 

9/24/84 Rose-Withey /MMGR/MENUS .. D 



30 Menu Manager Programmer's Guide 

to change a menu item's text, you sh9uld store the alternate text as a 
string resource. 

I 

The ~ormats of menus and menu bars in resource files are given below. 

Menus in a Resource File 

The resource type for a menu is 'MENU'. The resource data for a menu 
has the format shown below. Once read into memory, this data Is stored 
in a menu record (described earlier in the ''Menu Records" section). 

Number of bytes 
2 bytes 
2 bytes 
2 bytes-
2 bytes 
2 bytes 
4 by,tes 
1 byte 
n bytes 
'For each menu 

1 byte 
m bytes 
1 byte 
1 byte 
1 byte 
1 byte 

1 byte 

Contents 
Menu ID 
0; placeholder for menu width 
0; placeholder for menu height 
Resource ID of menu definition procedure 
o (see comment below) 
Same as enableFlags field of menu record 
Length of following title in bytes 
Characters of menu title 

item: 
Length of following text in bytes 
Text of menu item 
Icon number, or 0 if no icon 
Keyboard equivalent, or 0 if none 
Character marking menu item, or 0 if none 
Character style of item's text 
0, indicating end of menu items 

The four bytes beginning with the resource ID of the menu definition 
procedure' serve as a placeholder for the ha~dle to the procedure: When 
GetMenu is called to read the menu from the resource file, it also 
reads in the menu definition procedure if necessary, and replaces these 
four bytes with a handle to the procedure. The resource ID of, the 
standard menu definition procedure is: 

CONST textMenuProc ~ 0; 

The resource data for a nonstandard menu can define menu items in any 
way whatsoever,or not at all, depending on the requirements of its 
menu definition procedure. If the appearance of ' the items is basically 
the same as the standard, the resource data might be as shown above, 
but in fact everything following "For each menu item" can have any 
desired format or can be omitted altogether. Similarly, bits 1 to 31 
of the enableFlags field may be set and used 'in any way desired by the 
menu definition procedure; bit 0 applies to the entire menu and must 
reflect whether it's enabled or disabled. 

If your menu definition procedure does use the enableFlags field, menus 
of that type may contain no more than 31 items (I per available bit); 
otherwise, the number of items they may contain is limited only by the 
amount of room on the screen. 

9/24/84 Rose-Withey /MMGR/MENUS. D 



(note) 

FORMATS OF RESOURCES FOR MENUS 31 

See "Using OuickDraw from Assembly Language" in the 
OuickDraw manual for the exact format of the character 
style byte. 

(warning) 
Menus in resource files must not be purgeable. 

Menu Bars in a Resource File 

The resource type for the contents of a menu bar is 'MBAR' and the 
resource data has the following format: 

Number of bytes 
2 bytes 
For each menu: 

2 bytes 

9/24/84 Rose-Withey 

Contents 
Number of menus 

Resource 1D of menu 

/MMGR/MENUS. D 



32 Menu Manager Programmer'. Guide 

SUMMARY OF THE MENU MANAGER 

Constants 

CONST { Special characters } 

'noMark • 0; 
commandMark • $11; 
checkMark • $12; 
diamondMark • $13; 
appleMark • $14; 

{NUL character, to remove a mark} 
{Command key symbol} 
{check mark} 
{diamond symbol} 
{apple symbol} 

{ Messages to menu definition procedure } 

mDrawMsg • 0; 
mChoose~g - 1; 
,mSizeMsg - 2; 

{draw the menu} , 
{tell which item was chosen and highlight it} 
{calculate the menu's dimensions} 

{ Resource ID of standard menu definition procedure } 

textMenuProc - 0; 

Data Types 

TYPE HenuHandle = AMenuPtr; 
MenuPtr - iMenuInfo; 
Menu Info - RECORD 

Routines 

menuID: 
menuWidth: 
menuHeight: 
menuProc: 
enableFlags: 

menuData: 
Elm; 

Initialization and Allocation 

INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
LONGINT; 

{tells 
Str255 

{lIlenu' ID} 
{menu width in pixels} 
{menu height in pixels} 
{menu definition procedure} 

if menu or items are enabled} 
{menu title (and other data)} 

PROCEDURE InitMenus; 
FUNCTION NewMenu (menuID: INTEGER; menuTitle: Str255) 

MenuHandle; 
FUNCTION GetMenu 
PROCEDURE DisposeMenu 

9/24/84 Rose-Withey 

(resourceID: INTEGER) : MenuHandle; 
(theMenu: MenuHandle); 

/MMGR/MENUS.S 



SUMMARY OF THE MENU MANAGER 33 

Forming the Menus 

PROCEDURE AppendMenu (theMenu: MenuHandle; data: Str255); 
PROCEDURE AddResMenu (theMenu: Me nuH and Ie ; the Type : Res Type ); 
PROCEDURE InsertResMenu (theMenu: MenuHandle; theType: Res Type ; 

I afterltem: INTEGER); 

Forming the Menu Bar 

PROCEDURE InsertMenu 
PROCEDURE DrawMenuBarj 
PROCEDURE DeleteMenu 
PROCEDURE ClearMenuBar; 
FUNCTION GetNewMBar 
FUNCTION GetMenuBar 
PROCEDURE SetMenuBar 

(theMenu: MenuRandle; beforeID: INTEGER); 

(menuID: INTEGER); 

(menuBarID: INTEGER) Handle; 
Handle; 

(menuList: Handle); 

Choosing from a Menu 

FUNCTION KenuSelect (startPt: Point) --: LONGINT; 
FUNCTION MenuKey (ch: CHAR) : LONGINT; 
PROCEDURE HiliteMenu (menuID: INTEGER); 

Controlling Items' Appearance 

PROCEDURE Set Item (theMenu: MenuHandle; item: INTEGER; itemString: 
Str255) ; 

PROCEDURE Get Item ( the Menu : MenuHand Ie ; item: INTEGER; VAR 
itemString: Str255) ; 

PROCEDURE Disable~tem (theMenu: MenuHandle; item: INTEGER) ; 
PROCEDURE EnableItem (theMenu: MenuHaodle; item: INTEGER) ; 
PROCEDURE Check Item (theMenu: MenuHandle; item: INTEGER; checked: 

BOOLEAN) ; 
PROCEDURE Set ItemMark (theMenu: MenuHandle; item: INTEGER; markChar: 

CHAR); 
PROCEDURE GetItemMark (theMenu: MenuHandle; item: INTEGER; VAR markChar: 

CHAR); 
PROCEDURE SetItemrcon (theMenu: MenuHandle; item: INTEGER; icon: Byte); 
PROCEDURE GetItemlcon (theMenu: MenuHaodle; item: INTEGER; VAR icon: 

Byte) ; 
PROCEDUR~ SetItemStyle (theMenu: MenuHandle; item: INTEGER; chStyle: 

Style) ; 
PROCEDURE GetItemStyle (theMenu: MenuHandle; item: INTEGER; VAR chStyle: 

Style) ; 

) 

9/24/84 Rose-Withey /MMGR/MENUS.S 



34 Menu Manager Programmer's Guide 

Miscellaneous Routines 

PROCEDURE CalcMenuSize 
FUNCTION CountMItems 
FUNCTION GetMHandle 
PROCEDURE FlashMenuBar 
PROCEDURE SetMenuFlash 

(theMenu: MenuHandle); 
(theMenu: MenuHandle) : INTEGER; 
(menuID: INTEGER) : MenuHandle; 
(menuID: INTEGER); 
(count: INTEGER); 

Meta-Characters for AppendMenu 

Meta-character 
; or Return 

< 

/ 

( 

Usage 
Separates multiple items 
Followed by an icon number, adds that icon to 
the item 
Followed by a character, marks the item with 
that character 
Followed by B, I, U, 0, or S, sets the character 
style of the item 
Followed by a character, associates a keyboard 
equivalent with the item 
Disables the item 

Menu Definition Procedure 

PROCEDURE MyMenu (mp.ssage: INTEGER; menu: MenuHandle; VAR-menuRedt: 
Rect; hitPt: Point; VAR whichItem: INTEGER); 

Assembly-Language Information 

Constants 

; Special characters 

noMark 
commandMark 
checkMark 
diamondMark 
appleMark 

.EOU 
.EOU 
.EOU 
.EOU 
.EOU 

o 
$11 
$12 
$13 
$14 

;NUL character, to remove a mark 
jCommand key symbol 
;check mark 
jdiamond symbol 
;apple symbol 

; Messages to menu definition procedure 

mDrawMsg 
mChooseMsg 

mSizeMsg 

.EOU 
.EOU 

.EQU 

9/24/84 Rose-Withey 

o 
1 

2 

jdraw the menu 
;tell which item was chosen and 
; highlight it 
;calculate the menu's dimensions 

/MMGR/MENUS.S 



SUMMARY OF THE MENU MANAGER 35 

; Resource ID of standard menu definition procedure 

textMenuProc .EQU 

Menu Record Data Structure 

menuID 
menuWidth 
menuHeight 
menuDefHandle 
menuEnable 
menuData 
menuBlkSize 

Menu ID 
Menu width in pixels 
Menu height in pixels 
Handle to menu definition procedure 
Enable flags 
Menu title followed by data defining the items 
Length of above structure except menuData 

Special Macro Names 

Routine name 
DisposeMenu 
Get ItemIcon 
Get ItemMark. 
GetltemStyle 
GetMenu 
Set Itemlcon 
Set ItemKark 
SetltemStyle 
SetMenuFlash 

Variables 

Name 
MenuList 
MBarEnable 

MenuHook 

TheMenu 
MenuFlash 

Macro name 
DisposMenu 

-Get ItmIcon 
Get I tmMark 

GetltmStYle 
-GetRMenu 

Set Itmlcon 
-Set ItmMark 

SetItmStyle 
SetMFlash 

Size 
4 bytes 
2 bytes 

4 bytes 

2 bytes 
2 bytes 

Contents 
Handle to current menu list 
Nonzero if menu bar belongs to a desk 
accessory 
Hook for routine to be called during 

I Menu Select 
Menu ID of currently highlighted menu 
Count for duration of menu item blinking 

9/24/84 Rose-Withey /MMGR/MENUS.S 



36 Menu Manager Programmer's Guide 

GLOSSARY 

character style: A set of stylistic variations. such 8S bold. italic. 
and underline. The empty set indicates plain text (no stylistic 
variations). 

dimmed: Drawn in gray rather than black. 

disabled: A disabled menu item or menu is one that cannot be chosen; 
the menu item or menu title appears dimmed. 

icon: A 32-by-32 bit image that graphically represents an object. 
concept, or message. 

icon number: A digit from 1 to 255 to which the Menu Manager adds 256 
to get the resource ID of an icon associated with a menu item. 

keyboard equivalent: The combination of the Command key and another 
key. used to invoke a menu item from the keyboard • 

. menu: A list of menu items that appears when the uoer points to a menu 
title in the menu bar and ·presses the mouse button. Dragging through 
the menu and releasing over an enabled menu- item chooses that item. 

I 

menu bar: The horizontal strip at the top of the ~mcintosh screen that 
contains the menu titles of all menus in the menu list. 

menu definition procedure: A procedure called by the Menu Manager when 
it needs to perform basic operations on a particular type of menu, such 
as drawing the menu. 

menu ID: A number in the menu record that identifies .the menu. 

menu item: A choice in a menu. usually a command to the current 
application. 

menu item number: The index. starting from 1, of a menu item in a 
menu. 

menu list: A list containing menu handles for all menus in the menu 
bar, along with information on the position of each menu. 

menu record: The internal representation of a menu, where the Menu 
Manager stores all the information it needs for its operations on that 
menu. 

menu title: A word or phrase in the menu bar that designates one menu. 

meta-character: One of the characters; A ! < / ( or Return appearing 
in the string passed to the Menu Manager routine AppendMenu, to 
separate menu items or alter their appearance. 

9/24/~4 Rose-Withey /MHGR/MENUS.G 



MACINTOSH USER EDUCATION 

TextEdit: A Progralnmer's Guide /TEXTEDIT/EDIT 

See Also: The Macintosh User Interface Guidelines 
Inside Macintosh: A Road Map 
Hacintosh Memory Management: An Introduction 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Control Manager: A Programmer's Guide 
The Event Manager: A PrQgrammer's Guide 
The Scrap Manager: A Programmer's Guide 
The Toolbox Utilities: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 

Modification History: First Draft (ROM 7) 
Second Draft 

Bradley Hacker 
Katie Withey 

9/28/83 
1/14/85 

ABSTRACT 

TextEdit is the part of the Maci~tosh User Interface Toolbox'that 
handles basic text formatting and editing capabilities in a Macintosh 
application. This manual describes the TextEdit routines and data types 
in detail. 

Summary of significant changes and additions since,last draft: 

- Several field names in the edit record and the descriptions of 
some of the fields have changed; all fields are now shown (page 
9). 

Writing word break and automatic scrolling routines is now 
documented (pages 12-13). 

- Routines for cutting and pasting text between applications have 
been' added: TEFromScrap, TEToScrap, TEScrapHandle, TEGetScrapLen, 
and TESetScrapLen (pages 23-24). 

- Assembly-language information has been added. (See especially 
pages 25-26.) 



2 (TextEdit Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About TextEdit 
4 Edit Records 
5 The Destination and View Rectangles 
6 The Selection Range 
8 Justification 
9 The TERec Data Type 
12 The WordBreak Field 
13 The ClikLoop Field 
14 Using TextEdit 
16 TextEdit Routines 
16 Initialization and Allocation 
17 Accessing the Text of an Edit Record 
18 The Insertion Point and Selection Range 
19 Editing 
21 Text Display and Scrolling 
23 Scrap Handling 
25 Advanced Routines 
27 Summary of TextEdit 
32 Glossary 

Copyright (c) 1985 Apple Computer, Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

TextEdit is the part of the Macintosh User Interface Toolbox that 
handles basic text formatting and editing capabilities in a Macintosh 
application. This manual describes the TextEdit routines and data 
types in detail. *** Eventually it will become a chapter in the 
comprehensive Inside Macintosh manual. *** 

Like all Toolbox documentation, this manual assumes you're familiar 
with Lisa Pascal and the information in the following manuals: 

- Inside Macintosh: ! Road Map 

- Macintosh User Interface Guidelines 

- Macintosh Memory Management: An Introduction 

- Programming Macintosh Applications in Ass-embly Language, if you're 
using assembly language 

You should also be familiar with: 

- the basic concepts and structures behind QuickDraw, particularly 
points, rectangles, grafPorts, fonts, and character style 

- the Toolbox Event Manager 

- the Window Manager, particularly update and activate events 

ABOUT TEXTEDIT 

TextEdit is a set of routines and data types that provide the basic 
text editing and formatting capabilities needed' in an application. 
These capabilities include: 

- inserting new text 

- deleting characters that are backspaced over 

- translating mouse activity into text selection 

- scrolling' text within a window 

- deleting selected text and possibly inserting it elsewhere, or 
copying text without deleting it 

The TextEdit routines follow the Macintosh User Interface Guidelines; 
using them ensures that your application will present a consistent user 
interface. For example, the Dialog Manager uses TextEdit for text 
editing in dialog boxes. 

1/14/85 Ha'cker-Withey /TEXTEDIT/EDIT.2 



4 TextEdit Programmer's Guide 

TextEdit supports these standard features: 

- Selecting text by clicking and dragging with the mouse, double
clicking to select words. To TextEdit, a word is any series of 
printing characters, excluding spaces (ASCII code $2~) but 
including nonbreaking spaces (ASCII code $CA). 

- Extending or shortening the selection by Shift-clicking. 

- Inverse highlighting of the current text selection, or display of 
a blinking vertical bar at the insertion point. 

- Word wraparound, which prevents a word from being split between 
lines when text is drawn. \ 

Cutting (or copying) and pasting within an application via the 
Clipboard. TextEdit puts text you cut or copy into the TextEdit 
scrap. 

(note) 
The TextEdit scrap is used only by TextEdit; it's not the 
same as the "desk scrap" used by the Scrap Manager. To 
support cutting and pasting between applications, or 
between applications and desk accessories, you must 
transfer information between the two scraps. 

Although TextEdit is useful for'many standard text editing operations, 
there are some additional features that it doesn't support. TextEdit 
does not support: 

- use of more than one font or stylistic variation in a single edit 
record 

- fully justified text (text aligned with both the left and right 
margins) 

- "intelligent cut and paste" (adjusting spaces between words during 
cutting and .pasting) 

- tabs 

TextEdit also provides "hooks" for implementing some features such as 
automatic scrolling or a more precise definition of a word than that 
given above. 

EDIT RECORDS 

To edit text on the screen, the text editing routines need to know 
where and how to display the text, where to store the text, and other 
information related to editing. This display, storage, and editing 
information is contained in an edit record that defines the complete 
editing environment. The data type of an edit record is called TERec. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



EDIT RECORDS 5 

You prepare to edit text by specifying a destination rectangle in which 
to draw the text and a view rectangle in which the text will be 
visible. TextEdit incorporates the rectangles and the dra~ing 
environment of the current grafPort into an edit record, and returns a 
handle of type TEHand1e to the record: 

TYPE TEPtr 
TEHand1e 

ATERec; 
= ATEPtr; 

Most of the text editing routines require you to pass this handle as a 
parameter. 

In addition to the two rectangles and a description of the drawing 
environment, the edit record also contains: 

- a handle to the text to be edited 

- a pointer to the,grafPort 

- the current selection range, which determines exactly which 
characters will be affected by the next editing operation 

- the justification of the text, as left, right, or center 

The special terms introduced here are described in detail below. 

For most operations, you don't need to know the exact structure of an 
edit record; TextEdit routines access the record for you. However, to 
support some operations, such as scrolling, you need to access the 
fields of the edit record directly. The structure of an edit record is 
given below. 

The Destination and View Rectangles 

The destination rectangle is the rectangle in which the text is drawn. 
The view rectangle is the rectangle within which the text is actually 
visible. In other words, the view of the text drawn in the destination 
rectangle is clipped to the view rectangle (see Figure 1). _ 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



6 TextEdit Programmer's Guide 

Th i s document i s :Th'i';"'d'~'~'~~~~'t"'i'~"f~'i'i"l 
full of choice lchoice bits of readin~j 
bits of reading lmaterial. Note that tE~ 
material. Note view idrawn within the destj 
that text is drawn ~:::.~:.(-- ·rectangle. ---+.)~rectangle} but visible 1 
within the jthe view rectangle. : 
dest i net i on 
recteng I e, but 
visible only in 

·r·u.wwuw.u .. uuu .. uw~ .... _. __ d~:~:~~~I~n , ........................................................ , 

Figure 1. Destination and Vie~ Rectangles 

You specify both rectangles in the local coordinates of the grafPort. 
To ensure that the first and last characters in each line are legible 
in a document window, you may want to inset the destination rectangle 
at least four pixels from the left and right edg~s of the grafPort's 
portRect (20 pixels from the right edge if there's a scroll bar or size 
box) • 

Edit operations may of course lengthen or shorten the text. If the, 
text becomes too long to be enclosed by the destination rectangle, it's 
simply drawn beyond the bottom. In other words, you can think of the 
destination rectangle as bottomless--its sides determine/the beginning 
and end of each line of text, and its t,op determines the position of 
the first line. 

Normally, at the right edge of the destihation rectangle, the text 
automatically wraps around to the left edge to begin a new line. A new 
line also begins where explicitly specified by a Return character in 
the text. Word wraparound ensures that no word is ever split between 
lines unless it's too long to fit entirely on one line, in which case 
it's split at the right edge of the destination rectangle. 

The Selection Range 

In the text editing environment, a character position is an index into 
the text, with position 0 corresponding to the first character. The 
edit record includes fields for character positions that specify the 
beginning and end of the current selection range, which is the series 
of characters where the next editing operation will occur. For 
example, the procedures that cut or copy from the text of an edit 
record do so to the current selection range. 

The selection range, which is inversely highlighted when the window is 
active, extends from the beginning character position to the end 
character position. Figure 2 shows a selection range between positions 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



EDIT RECORDS 7 

3 and 8, consisting of five characters (the character at position 8 
isn't included). The end position of a selection range may be 1 
greater than the position of the last character of the text, so that 
the selection range can include the last character. 

setection range 
beginning at p03ition 3 

,gnd end i ng at pos i t ion 8 

Insertion point 
at p03iti,')r. ,~ 

Figure 2. Selection Range and Insertion Point 

If the selection range is empty--that is, its beginning and end 
positions are the same--that position is the text's insertion point, 
the position where characters will be inserted. By default, it's 
marked with a blinking caret. If, for example, the insertion point is 
as illustrated in Figure 2 and the inserted characters are "edit ", the 
text will read "the edit insertion point". 

(note) 
We use the word caret here generically, to mean a symbol 
indicating where something is to be inserted; the 
specific symbol ~s a vertical bar (I). 

If you call a procedure to insert characters when there's a selection 
range of one or more characters rather than an insertion point, t~e 

editing procedure automatically 'deletes the selection range and 
replaces 'it with an insertion point before inserting the characters. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



8 TextEdit Programmer's Guide 

Justification 

TextEdit allows you to specify the justification of the lines of text, 
that is, their horizontal placement with- respect to the left and right 
edges of the destination rectangle. The different types of 
justification supported by TextEdit are illustrated in.Figure 3. 

- Left justification aligns the text with the left edge of the. 
destination rectangle. This is the default type of justification. 

- Center justification centers each line of text between the left 
and right edges of the destination rectangle. 

- Right justification aligns the text with the right edge of the 
destination rectangle. 

(note) 

This is an example 
of'left 
justification. See 
how the text is 
aligned with the 
left edge of the 
rectangle. 

This is an example 
of center 

justification. See 
how the text is 

centered between 
the edges of the 

rectangle. 

Figure 3. Justification 

This is an example 
of right 

justification. See 
how the text is 

aligned with the 
right edge of the 

rectangle. 

Trailing spaces on a line are ignored for justification. 
For example, "Fred" and "Fred "will be aligned 
identically. (Leading spaces are not ignored.) 

TextEdit provides three predefined constants for setting the 
justification: 

CONST teJustLeft 
teJustCenter 
teJustRight 

1/14/85 Hacker-Withey 

0; 
1 ; 
-1; 

. /TEXTEDIT/EDIT.2 



EDIT RECORDS 9 

The TERec Data Type 

The structure of an edit record is given here. Some TextEdit features 
are available only if you access fields of the edit record directly. 

TYPE TERec = RECORD 
destRect: Rect; {destination rectangle} 
viewRect: Rect; {view rectangle} 
selRect: Rect; {used from assembly language} 
lineHeight: INTEGER; {for line, spacing} 
fontAscent: INTEGER; {caret/highlighting position} 
selPoint: Point; {used from assembly language} 
selStart: INTEGER; {start of selection range} 
selEnd: INTEGER; {end of selection range} 
active: INTEGER; {used internally} 
wordBreak: ,ProcPtr; {for word break routine} 
clikLoop: ProcPtr; {for click loop routine} 
clickTime: LONGINT; {used internally} 
clickLoc: INTEGER; {used Lnternally} 
caretTime: LONGINT; {used internally} 
caretState: INTEGER; {used internally~ 
just: INTEGER; {justification of text} 
teLength: INTEGER; {length of text} 
·hText: Handle; {text to be edited} 
r,ecaIBack: INTEGER; {used internally} 
recalLines: INTEGER; {used internally} 
clikStuff: INTEGER; {used internally} 
crOnly: INTEGER; {if <0, new line at Return only} 
txFont: INTEGER; {text font} 
txFace: Style; {character style} 
txMode: INTEGER; {pen mode} 
txSize: INTEGER; {font size} 
inPort: GrafPtr; {grafPort} 
highHook: ProcPtr; {used from assembly language} 
caretHook: ProcPtr; {used from assembly language} 
nLines: INTEGER; {number of lines} 
lineStarts: ARRAY[0 •• 1600QJ] OF INTEGER 

{positions of line starts} 
END; 

(warning) 
Don't change any of the fi"elds marked "used internally"-
these exist solely for internal use among the TextEdit 
routines. 

The destRect and viewRect fields specify the destination and view 
rectangles, respectively. 

The lineHeight and fontAscent fields have to do with the vertical 
spacing of the lines of text, and where the caret or highlighting of 
the selection range is drawn relative, to the text. The fontAscent 
field specifies how far above the base line the pen is positioned to 
begin drawing the care~ or highlighting. 'For single-spaced text, this 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



10 TextEdit Programmer's Guide 

is the ascent of ,the text in pixels (the height of the tallest 
characters in the font from the base line). The lineHeight field 
specifies the vertical distance from the ascent line of one, line of 
text down to the ascent line of the next. For single-spaced text, this 
is the same as the font size, but in pixels. The values of the 
lineHeight and fontAscent fields for single-spaced text are shown in 
Figure 4. For more information on fonts, see the Font Manager manual. ' 

as:::~ :::: :"'e[gli" I ineHeight 
......................... , ..................... . ascent I ~ne -+ ....... ··K· .. r .. · .. ···· ..... · .. · 

base line -+ ... J..:: ................... ~ .. . 
font Ascent 

Figure 4. LineHeight and FontAscent 

If you want to change the vertical spacing of the text, you should 
change both the lineHeight and fontAscent fields by the same amount, 
otherwise the placement of the caret or highlighting of the selection 
range may not look right. For example, to double the line spacing, add 
the value of lineHeight to both fields. (This doesn't change the size 
of the characters; it affects only the spacing between lines.) If you 
change the size of the text, you should also, change these fields; you 
can get font measurements you'~l need with the QuickDraw procedure 
GetFontInfo. 

Assembly-language note: The selPoint field (whose 
assembly-language offset is named teSelPoint) contains the point 
selected with the mouse, in the local coordinates of the current 
grafPort. You'll need this for hit-testing if you use the 
routine pointed to by the global. variable TEDoText (see 
"Advanced Routines" in the "TextEdit Routines" section). 

The selStart and selEnd fields ,specify the character positions of the 
beginning and end of the selection range. Remember that character 
position 0 refers to the first character, and that the end of a 
selection range can be 1 grea~er than the position of the last 
character of the text. 

The wordBreak field lets you change TextEdit's definition of a word, 
and the clikLoop field lets you implement automatic scrolling. These 
two fields are described in separate sections below. 

The just field specifies the justification of the text. (See 
"Justification", above.) 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



EDIT RECORDS 11 

The teLength f~eld contains the number of characters in the text to be 
edited, and the hText field is a handle to the text. You can directly 
change the text of an edit record by changing these two fields. 

The crOnly field specifies whether or not text ,wraps around at the 
right edge of the destination rectangle, as shown in Figure 5. If 
crOnly is positive, text does wrap around. If crOnly is negative, text 
does not wrap around at the edge of the destination rectangle, and new 
lines are specified explicitly by Return characters only. This is 
faster than word wraparound, and is useful in an application similar to 
a programming-language editor, where you may not want a single line of 
code to be split onto two lines. 

There's a Return 
character at the end 
of this line. 
But not at the end of 
this line. Or this line. 

new line 81' Return 
characters and edge of' 
dest i nati on rectang I e 

Figure 5. 

There's a Return charec 
But not at the end, of tt 

new I ine at Return 
characters onl y 

New Lines 

The txFont, txFace, txMode, and txSize fields' specify the font, 
character style, pen mode, and font size, respectively, of all the text 
in the edit record. (See the QuickDraw manua~ for more details about 
these characteristics.) If you change one of these values, the entire 
text of this edit record will have the new characteristics when it's 
redrawn. If you change the txSize field, remember to change the 
lineHeight and fontAscent fields, too. 

The inPort field contains a pointer to the grafPort associated with 
this edit record. 

(warning) 
The current port is not preserved when TextEdit is 
called; you must preserve it before all calls to TextEdit 
routines. 

Assembly-language note': The highHook and caretHook fields--at 
the offsets teHiHook and teCarHook in assembly language--contain 
t~e addresses ~f routines that deal with text highlighting and 
the caret. These routines pass arguments in registers; the 
application must save and restore the registers. 

If you store the address of a routine in teHiHook, that routine 
. will be used instead of the QuickDraw procedur~ InvertRect 

whenever a selection range is to be highlighted. The routine 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



12 TextEdit Programmer's Guide 

can destroy the contents of registers A0, AI, D0, Dl, and D2. 
On entry, A3 should-be a dereferenced handle to a locked edit 
record; teSelRect(A3) is the rectangle enclosing the text being 
highlighted. For example, if you store the a~dress of the 
following routine in teHiHook, selection ranges will be 
underlined instead of inverted: 

UnderHigh 
PEA 
MOVE.L 
MOVE 
SUBQ 

teSelRect(A3) 
(SP) ,A0 
bottom(A0),top(A0) 
111, top (A0) 

InverRect 
RTS 

jget address of rectangle to be 
; highlighted 
;make the top coordinate equal to 
; the bottom coordinate minus 1 
jinvert the resulting rectangle 

The routine whose address is stored in teCarHook acts-exactly 
the same way as the teHiHook routine, but on the caret instead 
of the selection highlighting, allowing you to change the 
appearance of the caret. The routine is called with 
teSelRect(A3) containing the rectangle that encloses the caret. 

The nLines field contains the number of" lines in the text. The 
lineStarts array contains the character position of the first character 
in each ~ine. It's declared to have 16001 elements to comply with 
Pascal range checking; it's actually a dynamic data structure having 
only as many elements as needed. You sho~ldn't change the elements of 
lineStarts. 

(note) 
The values of selStart, selEnd, and the elements of the 
lineStarts array are stored internally as unsigned 
integers. 

The Word Break Field 

The wordBreak field of an edit record lets you specify the record's 
word break routine--the routine tha_t determines the "word" that's 
highlighted when the user double-clicks in the text, and the position 
at which text is wrapped around at the end of a line. The default 
routine breaks words at any character with an ASCII value of $20 or 
less (the space character or nonprinting control characters). 

Normally the word break routine is written in assembly language. To 
write it in Pascal, 'you must declare it as follows: 

FUNCTION PasWordBre~k (text: Ptr; charPos: INTEGER) BOOLEAN; 

The function must be named "PasWordBreak". It should return TRUE to 
break a word at the character at position charPos in the specified 
text, or FALSE not to break there. To access PasWordBreak, set: 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



EDIT RECORDS 13 

myEditRecAA.wordBreak := @AsmWordBreak 

AsmWordBreak is an assembly-language procedure provided for the 
convenience of Pascal programmers. It sets the necessary registers and 
calls PasWordBreak. 

Assembly-language note: You can set this field to point to your 
own assembly-language word break routine instead of using 
AsmWordBreak. The registers must contain the following: 

On entry 

On exit 

The ClikLoop Field 

A0: pointer to text 
D0: character position (word) 

Z (zero) condition code: 
o to break at specified character 
1 not to break there 

The clikLoop field contains the address of a routine that's called 
repeatedly (by the TEClick procedure, described below) as long as the 
mouse button is held down within the text. You can use this to 
implement the automatic scrolling of text when the user is making a 
selection and drags the cursor out of the view rectangle. 

The click loop routine, like the word break routine, is normally 
written in assembly language. To write it in Pascal, you must declar~ 
it as follows: 

FUNCTION PasClikLoop : BOOLEAN; 

The function must be named "PasClikLoop". It should return TRUE. To 
access PasClikLoop, set: 

myEditRecAA.clikLoop := @AsmClikLoop 

AsmClikLoop is an assembly-language procedure provided for 'the 
convenience of Pascal programmers. It sets the necessary registers and 
calls PasClikLoop. 

An automatic scrolling routine might check the mouse position, and call 
a scrolling routine if the mouse position is outside the view 
rectangle. (The scrolling routine can be the same routine that the 
Control Manager function TrackControl calls.) The handle to the 
current edit record should be kept as a global variable so the 
scrolling routine can access it. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



14 TextEdit Programmer's Guide 

(warning) 
Returning FALSE from PasClikLoop tells the TEClick 
procedure that the mouse button has been released, which 
aborts TEClick. 

Assembly-language note: Your routine should set register D0 to 
1, and preserve register D2. (Returning 0 in register D0 aborts 
TEClick.) 

USING TEXTEDIT 

Before using TextEdit, you should initialize QuickDraw, the Font 
Manager, and the Window Manager, in that order. 

The first TextEdit routine to call is the initialization procedure 
TEInit. Call TENew to allocate an edit record; it returns a handle to 
the record. Most of the text editing routines require you to pass this 
handle as a parameter. 

When you've finished working with the text of an edit record, you can 
get a handle to the text as a packed· array of characters with' the 
TEGetText function. 

(note) 
To convert text from an edit record to a Pascal string, 
you can use the Dialog Manager procedure GetIText, 
passing it the text handle from the edit record. 

When you're completely done with an edit record and want to dispose of 
it, call TEDispose. 

(note) 
To change the cursor to an I-beam, you can call the 
Toolbox Utility functibn GetCursor and the QuickDraw 
procedure SetCursor. The resource ID for the I-beam 
cursor is defined in the ToolBox Utilities as the 
constant iBeamCursor. 

To make a blinking caret appear at the insertion point, call the TEldle 
procedure as often as possible (at least once each time through the 
main event loop); if it's not called often enough, the caret will blink 
irregularly. 

When a mouse-down event occurs in the view rectangle (and the window is 
active) call the TEClick procedure. TEClick controls the placement and 
highlighting o~ the selection range, including supporting use of the 
Shift key to make extended selections. . 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



USING TEXTEDIT 15 

Key-down, auto-key, and mouse events that pertain to text editing can 
be handled by several TextEdit procedures: 

- TEKey inserts characters and deletes characters backspaced over. 

- TECut transfers the selection range to the TextEdit scrap,. 
removing the selection range from the text. 

- TEPaste inserts the contents of the TextEdit scrap. By calling 
TECut, changing the insertion point, and then calling TEPaste, you 
can perform a~ "cut and paste" operation, moving text from one 
place to another. 

- TECopy copies the selection range to the TextEdit scrap. By 
calling TECopy, changing the insertion point, and then calling 
TEPaste, you can make multiple copies of text. 

- TEDelete removes the selection range (without transferring it to 
the scrap). You can use TEDelete to implement the Clear command. 

- TEInsert inserts specified text. You can use this to combine two 
or more documents. TEDelete and TEInsert do not modify the scrap, 
so they're useful for implementing the Undo command. 

After each editing procedure, TextEdit redraws the text if necessary 
from the insertion point to the end of the destination rectangle. You 
never have to set the ~election range or insertion point yourself; 
TEClick and the editing procedures leave it where it should be. If you 
want to modify the selection range directly, however--to highlight an 
initia'l default name or value, fo,r example--you can use the TESetSelect 
procedure. 

When GetNextEvent reports an update event for a text editing window, 
call TEUpdate--along with the Window Manager procedures BeginUpdate and 
EndUpdate--to redraw the text. 

(I).ote) 
You must call TEUpdate after you change any fields of the 
edit record if the fields affect the appearance, of the 
text. This ensures that the screen accurately reflects 
the changed ed~ting environment. 

The procedures TEActivate and TEDeactivate must be called each time 
GetNextEvent reports an activate event for a text editing window. 
TEActivate simply highlights 'the selection range or displays a caret at 
the insertion point; TEDeactivate unhighlights the selection range or 
removes the caret. 

To specify the justification of the text, you can use TESetJust. If 
you change the justification, be sure to call TEUpdate to redraw the 
text. 

To scroll text within the view rectangle, you can use the TEScro11 
procedure. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.2 



16 TextEdit Programmer's Guide 

The TESetText procedure lets you change the text being edited. For 
example, if your application has several separate pieces of text that 
must be edited one at a time, you don't have to allocate an edit record 
for each of them. Allocate a single edit record, then use TESetText to 
change th~ text. (This is the method used in dialog boxes.) 

(note) 
TESetText actually makes a copy of the text to be edited. 
Advanced programmers can save space by storing a handle 
to the text.in the hText field of the edit record itself, 
then calling TECalText to recalculate the beginning of 
each line. 

If you ever want to draw noneditable text in any given rectangle, you 
can use the TextBox procedure. 

To implement cutting and pasting of text between different 
applications, or between applications and desk accessories, you need to 
transfer the text between the TextEdit scrap (which is a private scrap 
used only by TextEdit) and the Scrap Manager's desk scrap. You can do 
this using the functions TEFromScrap and TEToScrap. For programmers 
who wish to access scrap information directly, the low-level routines 
TEScrapHandle, TEGetScrapLen, and TESetScrapLen are also provided. 
(See the Scrap Manager manual for more information about scrap 
handling.) 

TEXTEDIT ROUTINES 

Initialization and Allocation 

PROCEDURE TElnit; 

TEInit initializes TextEdit by allocating a handle for the' TextEdit 
scrap. Thesc~ap is initially empty. Call this procedure once and 
only once at the beginning of your program. 

(note) 
You should call TEInit even if your application doesn't 
us~ TextEdit, so that desk accessories and dialog and 
alert boxes will work correctly. 

FUNCTION TENew (destRect,viewRect: Rect) : TEHandle; 

TENew allocates a handle ~or the text, creates and initializes an edit 
record, and returns a handle to the new edit record. DestRect and \ 
viewRect are the destination and view rectangles, respectively. Both 
rectangles ~te specified in the current grafPort's coordinates. The 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



TEXTEDIT ROUTINES 17 

destination rectangle must always be at least as wide as the first 
character drawn (about 20 pixels is usually a good width). The view 
rectangle must not be empty (for example, don't make its right edge 
less than its left edge if you don't want any text visible--specify a 
rectangle off the screen instead). 

Call TENew once for every edit record you want allocated. The edit 
record incorporates the drawing environment of the grafPort, and is 
initialized for left-justified, single-spaced text with an insertion 
point at character position 0. 

(note) 
The caret won't appear until you call TEActivate. 

PROCEDURE TEDispose (hTE: TEHandle); 

TEDispose releases the memory allocated for the edit record and text 
specified by hTE. Call this procedure when you're completely through 
with an edit record. 

Accessing the Text of an Edit Record 

PROCEDURE TESetText (text: Ptrj length: LONGINT; hTE: TEHandle); 

TESetText incorporates a copy of the specified text into the edit 
record specified by hTE. The text parameter points to the text, and 
the length parameter indicates the number of characters in the text. 
The selection range is set to an insertion point at the end of the 
text. TESetText doesn't affect the text drawn in the destination 
rectangle, so call TEUpdate afterward if necessary. TESetText doesn't 
dispose of any ~ext currently in the edit record. 

FUNCTION TEGetText (hTE: TEHandle) : CharsHandle; 

TEGetText returns a handle to the text of the specified edit record. 
The result is the same as the handle in the hText field of the edit 
record, but has the CharsHandle data type, which is defined as: . 

TYPE CharsHandle 
CharsPtr 
Chars 

ACharsPtrj 
AChars; 
PACKED ARRAY[0 •• 320001 OF CHAR; 

You can get the length of the text from the teLength field of the edit 
record. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



18 TextEdit Programmer's Guide 

The Insertion Point and Selection Range 

PROCEDURE TEIdle (hTE: TEHandle); 

Call TEIdle repeatedly to make a blinking caret appear at the insertion 
point (if any) in the text specified by'hTE. (The caret appears only 

'when the window containing that text is active, of course.) TextEdit 
observes a minimum blink interval: No matter how often you call 
TEIdle, the time between blinks will never be less than the minimum 
interval. 

(note) 
The initial minimum blink interval setting is 30 ticks. 
The user can adjust this setting with the Control Panel 
desk accessory. 

To provide a constant frequency of blinking, you should call TEIdle as 
often as possible--at least once each time through your main event 
loop. Call it more than once if your application does an unusually 
large amount of processing each time through the loop. 

(note) 
You actually need to call TEIdle only when the window 
containing the text is active. 

PROCEDURE TEClick (pt: Point; extend: BOOLEAN; hTE: TEHandle); 

TEClick controls the placement and highlighting of the selection range 
as determined by mouse events. Call TEClick whenever a mouse-down 
event occurs in the view rectangle of the edit record specified by hTE, 
and the window associated with that edit record is active. TEClick 
keeps control until the mouse button is released. Pt is the mouse 
location (in local coordinates) at the time the button was pressed, 
obtainable from the event record. ' 

(note) 
Use the QuickDraw procedure GlobalToLocal to convert the 
global coordinates of the mouse location given in the 
event record to the local coordinate system for pt. 

Pass TRUE for the extend parameter if the Event Manager indicates that 
the Shift key was held down at the time of the click (to extend the 
selection) • 

TEClick unhighlights the old selection range unless the selection range 
is being extended. If the mouse moves, meaning that a drag is 
occurring, TEClick expands, or shortens the selection range accordingly. 
In the case of a double-click, the word under the cursor becomes the 
selection range; dragging expands or shortens the selection a word at a 
time. ' 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



TEXTEOIT ROUTINES 19 

. PROCEDURE TESetSelect (selStart,selEnd: LONGINT; hTE: TEHandle); 

TESetSelect sets the selection range to the text between selStart and 
selEnd in the text specified by hTE. The old selection range is 
unhighlighted, and the new one is highlighted. If selStart equals 
selEnd, the selection range is an insertion point, and a caret is 
displayed. 

SelEnd and selStart can range from ~ to 32767. If selEnd is anywhere 
beyond the last character of the text, the position just past the last 
character is used. 

PROCEDURE TEActi vate (hTE:, TEHandle); 

TEActivate highlights the selection range in the view rectangle of the 
edit record specified by hTE. If the selection range is an insertion 
point, it displays a caret there. This procedure should be called 
every time the Toolbox Event Manager function GetNextEvent reports that 
the window containing the edit record has become active. 

PROCEDURE TEDeactivate (hTE: TEHandle); 

TEDeactivate unhighlights the selection range in the view rectangle of 
the edit record specified by hTE. If the selection range is an 
insertion point, it removes th~~aret. This procedure should be called 
every time the Toolbox Event Manager function GetNextEvent reports that 
the window containing the edit ,record has become inactive. 

Editing 

PROCEDURE TEKey (key: CHAR; hTE: TEHandle); 

TEKey replaces the selection range in the text specified by hTE with 
the character given by the key parameter, and leaves an insertion point 
just past the inserted character. If the selection range is an 
insertion point, TEKey just inserts the character there. If the key 
parameter contains a Backspace character, the selection range or the 
character immediately to the left of the insertion point is deleted. 
TEKey redraws the text as necessary. Call TEKey every time the Toolbox 
Event Manager function GetNextEvent reports a keyboard event that your 
application decides should be handled~by TextEdit. 

(note) 
TEKey inserts every character passed in the key 
parameter, so it's up to your application to filter out 
all characters that aren't actual text (such as keys 
typed {n conjunction with the Command key). 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



20 TextEdit Programmer's Guide 

PROCEDURE TECut (hTE: TEHandle); 

TECut removes the selection range from the text specified by hTE and 
places it in the TextEdit scrap. The text is regrawn as necessary. 
Anything previously in the scrap is lost. (See Figure 6.) If the 
selection range is an insertion point, the scrap is emptied. 

Before TECut: This isi.'iiiilia good illustration. 

text 

After TECut: IThis is a good illll3tration. 

text 

Figure 6. Cutting 

PROCEDURE TECopy (hTE: TEHandle); 

T extE di t scrap 

I lL...--pr_ob_sb_IY_-..J 
TextEdit scrap 

TECopy copies the selection range from the text specified by hTE into 
the TextEdit scrap. Anything previously in the scrap is deleted. The 
selection range is not deleted. If the selection range is an insertion 
point, the scrap is emptied. 

PROCEDURE TEPaste (hTE: TEHandle); 

TEPaste replaces the selection range in the text specified by hTE with 
the contents of the TextEdit scrap, and leaves an insertion point just 
past the inserted text. (See Figure 7.) The text is redrawn as 
necessary. If the scrap is empty, the selection range is deleted. If 
the selection range is an insertion point, TEPaste just inserts the 
scrap there. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



TEXTEDIT ROUTINES 21 

Before TECut: IllllJlbefore you leep 

text 

After rEcut: Ilbefore you leap 

text 

Before TE F'8ste: I before you II eap 

text 

, After TEF'8$te: I before you look.r leap 

text 

Figure 7. Cutting and Pasting 

PROCEDURE'TEDelete (hTE: TEHandle); 

T extE d it scrap 

T extE d it scrap 

T extE d it scrap 

1 look, 

T extE d i t ::crap 

TEDelete removes the selection range from the text specified by hTE, 
and redraws the text as necessary. TEDelete is the same as TECut 
(above) except that it doesn't transfer the selection range to the 
scrap. If the selection range is an insertion point, nothing happens. 

PROCEDURE TEInsert (text: Ptr; length: LONGINT; hTE: TEHandle); 

TEInsert takes the specified text and inserts it just before the 
selection range into the text indicated by hTE, redrawing the text as 
necessary. The text parameter points to the text to be inserted: and 
the length parameter indicates the number of characters to be inserted. 
TEInsert doesn't affect either the current sel.ection range or the 

. scrap. 

Text Display and Scrolling 

PROCEDURE TESetJust (just: INTEGER, hTE: TEHandle); 

TESetJust sets the justification of the text specified by hTE to just. 
(See "Justification" under "Edit Records".) TextEdit provides three 
predefined constants for setting justification: 

CONST teJustLeft =~; 
teJustCenter 1; 
teJustRight -1; 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



22 TextEdit Programmer's Guide 

By default, text is left-justified. If you change the justification, 
call TEUpdate after TESetJust, to redraw the text with the new 
justification. 

PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle); 

TEUpdate draws the text specified by hTE within the rectangle specified 
,by rUpdate. The rUpdate rectangle must be given in the coordinates of 
the current grafPort. Call TEUpdate every time the Toolbox Event 
Manager function GetNextEvent reports an update event for a text 
edi~ing w~ndow--after you call the Window Manager procedure 
BeginUpdate, and before you call EndUpdate. 

Normally you'll do the following when an update event occurs: 

BeginUpdate(myWindow); 
EraseRect(myWindowA.portRect); 
TEUpdate(myWindowA.portRect,hTE); 
EndUpdate(myWindow) 

If you don't include the EraseRect call, the caret may sometimes remain 
visible when the window is deactivated. 

PROCEDURE TextBox (text: Ptr; length: LONGINT; box: Rect; just: 
INTEGER) ; 

TextBox draws the specified text in the rectangle indicated by the box 
parameter, \vith justification just. (See "Justification" under "Edit 
Records".) The text parameter points to the text, and the length 
parameter indicates the number of characters to draw. The rectangle is 
specified in local coordinates, and must be at least as 'wide as the 
first character drawn (about 2~ pixels is usually a good width). 
TextBox does not create an edit record, nor can the text that it draws 
be edtted; it's used solely for drawin~ text. For example: 

str := 'String in a box';' 
SetRect(r,100,100,200,200); 
TextBox(POINTER(ORD(@str)+l),LENGTH(str),r,teJustCenter); 
FrameRect(r) 

Because Pascal strings start with a length byte, you must advance I the 
pointer one position past the beginning of the string to point to the 
start of the text. 

PROCEDURE TEScroll (dh ,dv: INTEGER; hTE: TEHandle'); 

TEScroll scrolls the text within the view rectangle of the specified 
edit record by the number of pixels specified in the db and dv 
parameters. The edit record is specified by the hTE parameter. 
Positive dh and dv values move the text right and down, respectively, 
and negative values move the text left and up. For example, 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



TEXTEDIT ROUTINES 23 

TEScroll(0,-hTE AA .lineHeight,hTE) 

scrolls the text up one line. Remember that you scroll text up when 
the user clicks in the scroll arrow pointing down. The destination 
rectangle is offset by the amount you scroll. 

(note) 
To implement automatic scrolling, you store the address 
of a routine in the clikLoop field of the edit record, as 
described above under "The TERec Data Type". 

Scrap Handling 

The TEFromScrap and TEToScrap functions return a result code of the 
type OSErr (defined as INTEGER in the Operating System Utilities) 
indicating whether an error occurred. If no error occurred, they 
return the result code 

CONST noErr = 0 {no error} 

Otherwise, they return an Operating System result code indicating an 
error. (See the Operating System Utilities manual for a list of all 
result codes.) 

FUNCTION TEFromScrap : OSErr; [Not in ROM] 

TEFromScrap copies the desk scrap to ~he TextEdit scrap. 

Assembly-language note: From assembly language, you can store a 
handle to the desk scrap in the global variable TEScrpHandle, 
and the length of the desk scrap in global variable 
TEScrpLength; you can get these values with ~he Scrap Manager 
function GetScrap. 

FUNCTION TEToScrap : OSErr; [Not in ROM] 

TEToScrap copies the TextEdit scrap to the desk scrap. 

(warning) 
You must call the Scrap Manager function ZeroScrap to 
initialize the desk scrap or clear its previous contents 
before calling TEToScrap. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



24 TextEdit Programmer's Guide 

Assembly-language note: From assembly language, you can call 
the Scrap Manager function PutScrap; you can get the values you 
need from the global variables TEScrpHandle and TEScrpLength. 

FUNCTION TEScrapHandle : Handle; [,Not in ROM] 

TEScrapHandle returns a handle to the TextEdit scrap. 

Assembly-language note: The global variable TEScrpHandle 
contains a handle to the TextEdit scrap. 

FUNCTION TEGetScrapLen : LONGINT; [Not in ROM] 

TEGetScrapLen returns the size of the TextEdit scrap in bytes. 

Assembly-language note: The global variable TEScrpLength 
contains the size of the TextEdit scrap in bytes. 

PROCEDURE TESetScrapLen (length: LONGINT); [Not in ROM] 

TESetScrapLen sets the size of the TextEdit scrap to the given number 
of bytes. 

Assembly-language note: From assembly language, you can set the 
global variable TEScrpLength. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



TEXTEDIT ROUTINES 25 

Advanced Routines 

PROCEDURE TECalText (hTE: TEHandle); 

TECalText recalculates the beginnings of all lines of text in the edit 
record specified by hTE, updating elements of the lineStarts array. 
Call TECalText if you've changed the destination rectangle, the hText 
field, or any other field that'affects the number of characters per 
line. 

(note) 
There are two ways to specify text to be edited. The 
easiest method is to use TESetText, which takes an 
existing edit record, creates a copy of the specified 
text, and stores a handle to the copy in the edit record. 
You can instead directly change the hText field of the 
edit record, and then call TECalText to recalculate the 
lineStarts array to match the new text. If you have a 
lot of text, you can use the latter method to save space. 

Assembly-language note: The global variable TEReCal contains 
the address of the routine called by TECalText to recalculate 
the line starts and set the first and last characters that need 
to be redrawn. The registers should contain the following: 

On entry 

On exit ---

A3: dereferenced handle to the locked edit 
record 

D7: change in the length of the record (word) 

D2: line start of the line containing the first 
character to be redrawn (word) 

D3: position of first character to'be redrawn 
(word) 

D4: position of last character to be redrawn 
(word) 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.R 



26 TextEdit Programmer's Guide 

Assembly-language note: The global variable TEDoText contains 
the address of a multi-purpose text editing 'routine that 
advanced programmers may find useful. It lets you display, 
highlight, and hit-test characters, and position the pen to draw 
the caret. "Hit-test" means decide where to place the insertion 
point when the user clicks the mouse button; the point selected 
with the mouse is in the teSelPoint field. The registers should 
contain the following: 

On entry 

On exit 

1/14/85 Hacker-Withey 

A3: dereferenced handle to the locked edit 
record 

D3: position of first character to be redrawn 
(word) 

D4: position of last character to be redrawn 
(word) 

D7: (word) 0 to hit-test a character 
1 to highlight the selection range 

-1 to display the text 
-2 to position the pen to draw the 

caret 

A0: pointer to current grafPort 
D0: if hit-testing, character position or 

-1 for none (word) 

/TEXTEDIT/EDIT.R 



SUMMARY OF TEXTEDIT 

Constants 

CONST { Text justification } 

teJustLeft 
teJustCenter 
teJustRight 

Data Types 

= 0; 
1 ; 

= -1; 

TYPE CharsHandle = ACharsPtr; 
CharsPtr 'AChars; 
Chars PACKED ARRAY[0 •• 320001 OF 'CHAR; 

TEHandle ATEPtr; 
TEPtr = ATERec; 

1/14/85 Hacker-Withey 

SUMMARY OF TEXTEDIT 27 

/TEXTEDIT/EDIT.S 



28 TextEdit Programmer's Guide 

TERec RECORD 
destRect: Rect; {destination rectangle} 
viewRect: Rect; {view rectangle} 
selRect: Rect; {used from assembly language} 
lineHeight: INTEGER; {for line spacing} 
fontAscent: INTEGER; {caret/highlighting position} 
selPoint: Point; {used from, assembly language} 
selStart: INTEGER; {start of selection range} 
selEnd: INTEGER; {end of selection range} 
active: INTEGER; {used internally} ! 

wordBreak: ProcPtr; {for word break routine} 
clikLoop: ProcPtr; {for click loop routine} 
clickTime: LONGINT; {used internally} 
clickLoc: INTEGER; {used internally} 
caretTime: LONGINT; {used internally} 
caretState: INTEGER; {used internally} 
just: INTEGER; {justification of te(Ct} 
teLength: INTEGER; {length of text} 
hText: Handle; {text to be edited} 
recalBack: INTEGER; {used internally} 
recalLines: INTEGER; {used internally} 
clikStuff: INTEGER; {used internally} 
crOnly: INTEGER; {if <0, new line at Return only} 
txFont: INTEGER; {text font} 
txFace: Style; {character style} 
txMode: INTEGER; {pen mode} 
txSize: INTEGER; {font size} 
inPort: GrafPtr; {grafPort} 
highHook: ProcPtr; {used from assembly language} 
caretHook: ProcPtr; {used from assembly language} 
nLines: INTEGER; {number of lines} 
lineStarts: ARRAY[0 •• 16000] OF INTEGER 

{positions of line starts} 
END; 

Routines 

Initialization and Allocation 

PROCEDUR"E TEInit; 
FUNCTION TENew (destRect,viewRect: Rect) TEHandle; , 
PROCEDURE TEDispose (hTE: TEHandle); 

Accessing the Text of an Edit Record 

PROCEDURE TESetText (text: Ptr; length: LONGINT; hTE: TEHandle); 
FUNCTION TEGetText (hTE: TEHandle) : CharsHandle; 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.S 



SUMNARY OF TEXTEDIT 29 

The Insertion Point and Selection Range 

(hTE: TEHandle); PROCEDURE TEIdle 
PROCEDURE TEClick 
PROCEDURE TESetSelect 
PROCEDURE TEActivate 
PROCEDURE TEDeactivate 

(pt: Point; extend: BOOLEAN; hTE: TEHandle); 
(selStart,selEnd: LONGINT; hTE: TEHandle); 
(hTE: TEHandle); 
(hTE: TEHandle); 

Editing 

PROCEDURE TEKey (key: CHAR; hTE: TEHandle); 
PROCEDURE TECut (hTE: TEHandle); 
PROCEDURE TECopy (hTE: TEHandle); 
PROCEDURE TEPaste (hTE: TEHandle) ;. 

, PROCEDURE TEDelete (hTE: TEHandle); 
PROCEDURE TEInsert (te~t: Ptr; length: LONGINT; hTE: 

Text Display and Scrolling 

PROCEDURE TESetJust (just: INTEGER; hTE: TEHandle); 
PROCEDURE TEUpdate· (rUpdate: Rect; hTE: TEHandle); 

TEHandle); 

PROCEDURE TextBox (text: Ptr; length: LONGINT; box: Rect; just: INTEGER); 
PROCEDURE TEScroll (dh,dv: INTEGER; hTE: TEHandle); 

Scrap Handling [Not in ROM] 

FUNCTION 
FUNCTION 
FUNCTION 
FUNCTION 
PROCEDURE 

TEFromScrap : 
TEToScrap : 
TEScrapHandle 
TEGetScrapLen 
TESetScrapLen 

Advanced Routines 

OSErr; 
OSErr; 
Handle; 
LONGINT; 

(length: LONGINT); 

PROCEDURE TECalText (hTE: TEHandle); 

Word Break Routine 

FUNCTION PasWordBreak (text: Ptr; charPos: INTEGER) 

myEditRec~~.wordBreak := @AsmWordBreak 

Click· Loop Routine 

FUNCTION PasClikLoop : BOOLEAN; 

myEditRec~~.clikLoop .- @AsmClikLoop 

BOOLEAN; 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.S 



30 TextEdit Programmer's Guide 

Assembly-Language Information 

Constants 

; Text justification 

teJustLeft 
teJustCenter 
teJustRight 

.EQU 

.EQU 

.EQU 

o 
1 
-1 

Edit Record Data Structure 

teDestRect 
teViewRect 
teSelRect 
teLineHite 
teAscent 
teSelPoint 
teSelStart 
teSelEnd 
teWordBreak 
teClikProc 
teJust 
teLength 
teTextH 
teCROnly 
teFont 
teFace 
teMode 
teSize 
teGrafPort 
teHiHook 
teCarHook 
teNLines 
teLines 
teRecSize 

Destination rectangle (8 bytes) 
View rectangle (8 bytes) 
Selection rectangle (8 bytes) 
For line spacing (word) 
Caret/highlighting position (word) 
Point selected with mous~ (long) 
Start of selection range (word) 
End of selection range (word) 
Address of word break routine (see below) 
Address of click loop routine (see below) 
Justification of text (word) 
Length of text (word) 
Handle to text 
If <0, new line at Return only (byte) 
Text font (word) 
Character style (word) 
Pen mode (word) 
Font size (word) 
Pointer to grafPort 
Address of text highlighting routine (see below) , 
Address of routine to draw caret (see below) 
Number of lines (word) 
Positions of line starts (teNLines*2 bytes) 
Size in bytes of above struc~ure except teLines 

Word break routine 

On entry 

On exit 

A0: pointer to'text 
D0: character position (word) 

Z condition code: 0 to break at specified character 
1 not to break there 

Click loop routine 

On exit D0: _ 1 
D2: must be preserved 

1/14/85 Hacker-Withey /TEXTEDIT/EDI' 



SUMMARY OF TEXTEDIT 31 

Text highlighting routine 

On entry A3': dereferenced handle to locked edit record 

Caret, drawing routine 

On entry 

Variables 

TEScrpHandle 
TEScrpLength, 
TEReCal 
TEDoText 

TEReCal routine 

On entry 

On exit 

TEDoText routine 

On entry 

On exit 

A3: dereferenced handle to locked edit record 

Handle to TextEdit scrap 
Size in bytes of TextEdit scrap (long) 
Address of routine to recalculate line starts (see below) 
Address of multi-purpose routine (see below) 

A3: dereferenced handle to locked edit record 
D7: change in length of edit record (word) 

D2: line start of line containing first character to 
be redrawn (word) 

D3: position of first character to be redrawn (word) 
D4: position of last character to be redrawn (word) 

A3: dereferenced handle to locked edit record 
D3: position of first character to be redrawn (word) 
D4: position of last character to be redrawn (word) 
D7: (word) ~ to hit-test a character 

1 to highlight selection range 
-1 to display text 
-2 to position pen to draw caret 

A0: pointer to current grafPort 
D0: if hit-testing, character position or -1 for none 

(word) 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.S 



32 TextEdit Programmer's Guide 

GLOSSARY 

ascent: The vertical distance from a font's base line to its ascent 
line. 

ascent line: A horizontal line that coincides with the tops of the 
tallest characters in a font. 

base line: A horizontal line that coincides with the bottom of each 
character in a font, excluding descenders (such as the tail of a "p"). 

caret: A generic term meaning a symbol that indicates where something 
should be inserted in text. The specific symbol used is a vertical 
bar. 

character position: An index into text, starting at 0 for the first 
character. 

destination rectangle: In TextEdit, the rectangle in which text is 
d'rawn. 

edit record:· A complete editing environment in TextEdit, which 
includes the text_to be edited, the grafPort and rectangle in which to 
display the text, the arrangement of the .text within the rectangle, and 
other editing and display information. 

insertion point: An empty selection range; the character position 
where text will be inserted (usually marked with a blinking caret). 

justification: The horizontal placement of lines of text relative to 
the edges of the rectangle in which the text is drawn. 

selection range: The series of characters (inversely highlighted), or 
the character position (marked with a blinking caret), at which the 
next editing operation will occur. 

TextEdit scrap: The place where certain TextEdit routines store the 
characters most recently cut or copied from text. 

view rectangle: In TextEdit, the rectangle in which text is visible. 

word: In TextEdit, any series of printing characters, excluding spaces 
(ASCII code $20) but including nonbreaking spaces (ASCII code $CA). 

word wraparound: Keeping words f rom being spli t be tween lines w.hen 
text is drawn. 

1/14/85 Hacker-Withey /TEXTEDIT/EDIT.G 



MACINTOSH USER EDUCATION 

The Dialog Manager: A Programmer's Guide /DMGR/DIALOG 

See Also: Macintosh User Interface Guidelines 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Control Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
TextEdit: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 

Modification History: Preliminary Draft Caroline Rose 12/8/82 
Preliminary Draft Caroline Rose 1/7/83 
First Draft (ROM 2.1) Caroline Rose 3/22/83 
Second Draft (ROM 4) Caroline Rose 6/13/83 
Third Draft (ROM 7) Caroline Rose 11/16/83 
Fourth 'Draft Caroline-Rose 7/6/84 

ABSTRACT 

The Dialog Manager is the part of the Macintosh User Interface Toolbox 
that supports dialog boxes and the alert mechanism. This manual tells 
you how to manipulate dialogs and alerts with Dialog Manager routines. 

Summary of significant changes and additions since last draft: 

- EditText and statText items can't be more than 241 characters 
long. 

- A new procedure, SetDAFont, enables Pascal programmers to change 
the font used in dialogs and alerts (page 19). 

- There are two new procedures, CouldDialog and FreeDialog, that are 
analogous to CouldAlert and FreeAlert (page 23). 

- The description of IsDialogEvent now deals with handling keyboard 
equivalents of commands when a modeless dialog box is up (page 
25). For Pascal programmers, there are also 'four new routines for 
handling standard editing commands in modeless dialogs (page 26). 

- For Pascal programmers, there are now routines for checking the 
stage of an alert and setting an alert back to its first stage 
(page 32). 



2 DIalog Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About ·This Manual 
4 About the Dialog Manager 
6 Dialog and Alert Windows 
7 Dialogs, Alerts, and Resources 
9 Item Lists in Memory 
9 Item Types 
11 Item Handle or Procedure Pointer 
11 Display Rectangle 
13 Item Numbers 
13 Dialog Records 
14 Dialog Pointers 
14 The DialogRecord Data Type 
15 Alerts 
17 Using ,the Dialog Manager 
18 Dialog Manager Routines 
18 Initialization 
20 Creating and Disposing of Dialogs' 
23 Handling Dialog Events 
'27 Invoking Alerts 
30 Manipulating Items in Dialogs ~nd Alerts 
32, Modify~ng Templates in Memory 
33 Dialog Templates in Memory 
33 Alert Templates in Memory 
35 Formats of Resources for Dialogs and Alerts 
35 Dialog Templates in a Resource File 
35 Alert Templates in 'a Resource File 
36 Items Lists in a Resource File 
38 Summary of the Dialog Manager 
43 Glossary 

Copyright (c) 1984 Apple 'Computer, Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Dialog Manager of the Macintosh User 
Interface Toolbox. ***. Eventually it will become part of the' 
comprehensive Inside Macintosh manual. *** The Dialog Manager provides 
Macintosh programmers with routines for implementing dialog boxes and 
the alert mechanism, two means of communication between the application 
and the end user. 

Like all documentation about Toolbox units, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

- resources, as discussed in the Resource Manager manual 

- the basic concepts and structures behind QuickDraw, particularly 
rectangles, grafPorts, and pictures 

- the Toolbox Event Manager, the Window Manager, and the Control 
Manager 

- TextEdit, to understand editing text in dialog boxes 

This manual is i~tended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins-with an introduction to' the Dialog Manager and what 
you can do with it~ It then discusses the basics of dialogs and 
alerts: their relationship to windows and resources, and the 
information stored in memory for the items in a dialog or alert. 
Following this is a discussion of dialog records, where the Dialog 
Manager keeps all/the information it needs about a dialog, and an ' 
overview of how alerts are handled. 

Next, a section on using the Dialog Manager introduces its routines and 
tells how they fit into the flow of your application program. This is 
followed by detailed descriptions of all Dialog Manager procedures and 
functions, their parameters, calling protocol, 'effects, side effects, 
and so on. . 

Following these descriptions are sections that will not interest all 
readers. There's a discussion of how to modify definitions of dialogs 
and alerts after they've been read from a resource file, and a section 
that gives the exact formats of resources related to dialogs and 
alerts. 

Finally, there's a summary of the Dialog Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

7/6/84 Rose /DMGR/DIALOG.2 

'i 



4 Dialog Manager Programmer's Guide 

ABOUT THE DIALOG MANAGER 

The Dialog Manager is a tool for handling dialogs and alerts in a way 
that's consistent with the Macintosh User Interface Guidelines. 

A dialog box appears. on the screen when a Macintosh application needs 
more information to carry out a command. As shown in Figure 1, it 
typically resembles a form on which the user checks boxes and fills in 
blanks. 

Print the document 
@) 8 1/Z- H 1111 paper 
o 8 1/ Z" H 1 4" paper 

( Cancel) 

( OK ) 

181 stop printing ufter euch page 

Title: I AnouG. Reportl 

Figure 1. A Typical Dialog Box 

By convention, a dialog box comes up slightly below the menu bar, is a 
bit narrower than the screen, and is centered between the left and 
right edges of the screen. It may contain any or all of the following: 

- informative or instructional text 

- rectangles in which text may be entered (initially blank or 
containing default text that can be edited) 

- controls of any kind 

- graphics (icons or QuickDraw pictures) 

- anything else, as defined by the application 

The user provides the necessary information in the dialog box, such as 
by entering text or clicking a check box. There's usually a button 
mar~ed "OK" to tell the application to accept the information provided 
and perform the command, and a button marked "Cancel" to cancel the 
command as though it had never been given (retracting all actions since 
its invocation). Some dialog boxes may use a more descriptive word 
than "OK"; for simplicity, this manual will still refer to the button 
as the "OK button". There may even be more than one button that will 
perform the command, each in a different way. 

I 
Most dialog boxes require the user-to respond before doing anything 
else. Clicking a button to perform or cancel the command makes the box 
go away; clicking outside the dialog box only causes a beep from the 
Macintosh's speaker. This type is called a modal dialog box because it 
puts the user in the state or "mode" of being able to work only inside 
the dialog box. It usually has the same general appearance as shown in 

7/6/84 Rose /DMGR/DIALOG.2 



ABOUT THE DIALOG MANAGER 5 

Figure 1. One of the.buttons in the dialog box may be outlined boldly. 
Pressing the Return key or the Enter key has the same effect as 

'clicking the outlined button or, if none, the OK button; the particular 
button whose effect occurs is called the dialog's default button and is 
the preferred ("safest") button to use in the current situation. If 
there's no boldly outlined or OK button, pressing Return or Enter will 
by convention have no effect. 

Other dialog boxes do not require the user to respond before doing 
anything else; these are called modeless dialog boxes' (Fig~re 2). The 
user can, for example, do work in document windows on the desktop 
before clicking a button in the dialog box, and modeless dialog boxes 
can be set up to respond to the standard editing commands in the Edit 
menu. Clicking a button in a modeless dialog box will not make the box 
go away: the box will stay around so that the user can perform the 
command again. A Cancel'button, if present, will simply stop the 
action currently being performed by the command; this would be useful 
for long printing or searching operations, for example. 

Find teHt: Guide Lines 

Change to: guidelinesl 

e 

( Change RII ) 

(Change NeHt) 

Figure 2. A Modeless Dialog Box 

As shown in Figure 2, a modeless dialog box looks like a document 
window. It can be moved, made inactive and active again, or closed 
like any document window. When you're done with the command and want 
the box to go away, you can click its close box or choose Close from 
the File menu when it's the active window. 

Dialog boxes may in fact require no response at' all. For example, 
while an application is performing a time-consuming process, it can 
display a dialog box that contains only a message telling what it's 
doing; then, when the process is complete, it can simply remove the 
dialog box. 

The alert mechanism provides applications with a means of reporting 
errors or giving warnings. An alert box is similar to a modal dialog 
box, but it appears only when something has gone wrong or must be 
brought to the user's attention. Its conventional placement is 
slightly far.ther below the menu bar than a dialog box. To assist the 
user who isn't s~re how to proceed when an alert box appears, the 
preferred button to use in the current situation is outlined boldly so 
it stands out from the other buttons 'in the alert box (see Figure 3). 
'The outlined button is also the alert's default button; if the user 
presses the Retu~ key or the Enter key, the effect is the same as 

7/6/84 Rose /DMGR/DIALOG.2 



6 Dialog Manager Programmer's Guide, 

clicking this button. 

CRUTION ( cancel) 
Are you sure ( 

~ou wont to erase 011 
changes to your document? 

Figure 3. A Typical Alert Box 

OK ) 

There are three standard kinds of alerts--Stop, Note, and Caution--each 
indicated by a particular icon in the top left corner of the alert box. 
Figure 3 illustrates a Caution alert. The icons identifying Stop and 
Note 'alerts are similar; instead of a question mark, they show an 
exclamation point and an asterisk, respectively. Other alerts can have 
anything in the the top left corner, including blank space if desired. 

The alert mechanism also provides another type of signal: sound from 
the Macintosh's speaker. The application can base its response on the 
number of consecutive times an alert occurs; the first time, it'might 
~imply beep, and thereafter it may present an alert box. The sound is 
not limited to a single beep but may be any sequence of tones, and may 
occur either alone or along with an alert box. As an error is 
repeated, there can also be a change in which button is the default 
button (perhaps from OK to Cancel). '-You can specify different 
responses for up to four occurrence"s of the same alert. 

With Dialog Manager routines, you can create dialog boxes or invoke 
alerts. The Dialog Manager gets most of the descriptive information 
about the dialogs and alerts from resources in a resource file. You 
use a program such as the Resource Editor to store the necessary 
information in the resource file *** (Resource Editor doesn't exist 
yet; for now, use the Resource Compiler) ***. The Dialog Manager calls 
the Resource Manager to read what it needs from the resource file into 
memory as necessary. In some cases you can modify the information 
after it's been read into memory. 

DIALOG AND ALERT WINDOWS 

A dialog box appears in a dialog window. When you call a Dialog 
Manager routine to create a dialog, you supply the same information as 
when you create a window with a Window Manager routine. For example, 
you supply the window definition ID, which determines how the window 
looks and behaves, and a rectangle that becomes the portRect of the 
window's grafPort. You specify the window's plane (which, by 
convention, should initially be the frontmost) and whether the window 
is visible or invisible. The dialog window is created as specified. 

7/6/84 Rose /DMGR/DIALOG.2 



DIALOG AND ALERT WINDOWS 7 

You can manipulate a dialog window just like any other window wi~h 
Window Manager or QuickDraw routines, showing it, hiding it, -moving it, 
changing its size or plane, or whatever--all, of course, in conformance 
with the Macintosh User Interface Guidelines. The Dialog Manager 
observes the clipping region of the ~ialog window's grafPort, so if you 
want clipping to occur, you can set this region with a QuickDraw 
routine. 

Similarly, an alert box appears in an alert window. You don't have the 
same flexibility in defining and manipulating an alert window, however. 
The Dialog Manager chooses the window definition ID, so that all alert 
windows will have the standard appearance and behavior. The size' and 
location of the box are supplied as part of the definition of the alert 
and are not easily changed. You don't specify the al~rt window's 
plane; it always comes up in front of all other windows. Since an 
alert box requires the user to respond before doing anything else, and 
the response makes the box go away, the application doesn't do any 
manipulation of the alert window. 

Figure 4 illustrates a document window, dialog window, and alert 
window, all overlapping on the desktop. 

Menu bar end desktop Document 'til indow on desktop 

Dialog window 
in front of docunent window 

A'Ier1 window 
in fralt of dialog window 

Figure 4. Dialog and Alert Windows 

DIALOGS, ALERTS, AND RESOURCES 

To create a dialog, the Dialog Manager needs the same information about 
the dialog window as the Window Manager needs when it creates a new 
window: the window definition ID along with other information specific 
to this window. The Dialog Manager also needs to know what items the 
dialog box contains. You can store the needed information as a 
resource in a resource file and pass the resource ID to a function that 

7/6/84 Rose /DMGR/DIALOG.2 



8 Dialog Manager Programmer's Guide 

will create the dialog. This type of resource, which is called a 
dialog template, is analogous to a window template, and the function, 
GetNewDialog, is similar to the Window Manager function GetNewWindow. 
The Dialog Manager calls the Resource Manager to read the dialog 
template from the resource file. It then incorporates the information 
in the template into a dialog data structure in memory, called a dialog 
record. 

Similarly, the data that the Dialog Manager needs to create an alert is 
stored in an alert template in a resource file. The various routines 
for invoking alerts require the resource ID of the alert template as a 
parameter. 

( , 

The information about all the items (text, controls, or graphics) in a 
dialog or alert box is stored in an item list in a resource file. The 
resource ID of'the item list is included in the dialog or alert 
template •. The item list in turn contains the resource IDs of any icons 
or QuickDraw pictures in the dialog or alert box, and possibly the 
resource IDs of control templates for controls in the box. After 
calling the Resource Manager to read a dialog or alert template into 
memory, the Dialog Manager calls it again to read in the item list. It 
then makes a ~opy of the item list and uses that copy; for this reason, 
item lists should always be purgeable resources. Finally, the Dialog 
Manager calls the Resource Manager to read in any individual items as 
necessary. 

(note) 
To create dialog or alert templates and item lists and 
store them in resource files, you can use the Resource 
Editor' *** (eventually; for now, the Resource Compiler) 
***. The Resource Editor relieves you of having to know 
the exact format of these resources, but for interested 
programmers this information is given in the section 
"Formats of Resources for Dialogs, and Alerts". 

If desired, the application can gain some additional flexibility by 
calling the Resource Manager directly to read templates, 'item lists, or 
items from a resource file. For ,example, you can read in a dialog or 
alert template directly and modify some of the information in it before 
calling the routine to create the dialog or alert. Or, as an 
alternative to using a dialog template, you can read in a dialog's item 
list directly and then pass a handle to it along with other information 
to a function that will create the dialog (NewDialog, analogous to the 
Window Manager function NewWiridow). ' 

(note) 
The use of dialog templates is recommended wherever 
possible; like window templates, they isolate descriptive 
information from your application code for ease of 
modification or translation to foreign languages. 

7/6/84 Rose /DMGR/DIALOG.2 



ITEM LISTS IN MEMORY 9 

ITEM LISTS IN MEMORY 

This section discusses the contents of an item list once it's been read 
into memory from a resource file and the Dialog Manager has set it up 
as necessary to be able to work with it. 

An item list in memory contains the following information for each 
item: 

- The type of item. This includes not only whether the item is a 
control, text, or whatever, but also whether the Dialog Manager 
should return to the application when the item is clicked. 

- A handle to the item or, for special application-defined items, a 
pointer to a procedure that draws the item. 

- A display rectangle, which determines the location of the item 
within the dialog or alert box. 

These are discussed below along with item numbers, which identify 
particular items in the item list. 

There's a Dialog Manager procedure that, given a pointer to a dialog 
record and an item nu~ber, sets or returns that item's type, handle (or 
procedure pointer), and display rectangle. 

Item Types 

The item type is specified by a predefined constant or combination of 
constants, as listed below. Figure 5 illustrates some of these item 
types. 

icon I tem 
+ itemDiseble 

stetText 
~ it~i~le 

ctrlltem 
~btnCtrl 

I.!?l. Print the document (Cancel) 

ctrlltem (18 1/Z" H 11" paper (OK) 
+redCtrl 08 1/, H 1~ paper 

ctrlltem --M--18I Stop printing after each page 
+chlcCtrl 

Title: I Hnnual Repor~ I 
user I tem 

+ i temDlsable Progress of printing 

editText 

Figure 5. Item Types 

7/6/84 Rose /DMGR/DIALOG.3 



10 Dialog Manager Programmer's Guide 

Item type 
ctrlItem+btnCtrl 

ctrlItem+chkCtrl 

ctrlItem+radCtrl 

ctrlItem+resCtrl 

statText 

editText 

iconItem 

picItem 

userItem 

itemDisable+<any 
of the above> 

(warning) 

Meaning 
A standard button control. 

A standard check box control. 

:A standard "radio button" control. 

A control defined in a control template in a 
resource file. 

Static text; text that cannot be edited. 

(Dialogs only) Text that can be edited; the 
Dialog Manager accepts text typed by the user 
and allows editing. 

An icon (a 32-by-32 bit image). 

A QuickDraw picture. 

(Dialogs only) An application-defined item t 

such as a picture whbse appearance changes. 

The item is disabled (the Dialog Manager 
doesn't report events involving this item). 

StatText and editText items must not be more than 241 
characters long. 

The, text of an 'edi tText item may ini tially be either default text or 
empty. Text entry and editing is handled in the conventional way, as 
in TextEdit--in fact t the Dialog Manager calls TextEdit to handle it: 

- Clicking in the item displays a blinking vertical bar, indicating 
an insertion point where text may be entered. 

- Dragging over text in the item selects that text, and double
clicking selects a word; the selection is inverted and is replaced 
by what the user then types. 

- Clicking or dragging while holding down the Shift (key .extends or 
shortens the current selection. 

- The Backspace key deletes the current selection or the character 
preceding the insertion point. 

The Tab key advances to the next editText item in the item list 
(wrapping around to the first if there aren't any more). In an alert 
box or a modal dialog box (regardless of whether it contains an 
editText item),. the Return key or Enter key has the same effect as 
clicking the default button; for alerts. the default button is 
identified in the alert template, whereas for modal dialogs it's always 

7/6/84 Rose /DMGR/DIALOG.3 



ITEM LISTS IN MEMORY 11 

the first item in the item list. 

If itemDisable is specified for an item, the Dialog Manager doesn't let 
the application know about events involving that item. For example, 
you may not have to be informed every time the user types a character 
or clicks in an editText item, but may only need to look at the text 
when the OK button is clicked. In this case, the editText item would 
be disabled. Standard buttons and check boxes should always be 
enabled, so your application will know when they've been clicked. 

(warning) 
Don't confuse disabling a control with making one 
"inactive" with the Control Manager procedure 
HiliteControl: When you want a control not to respond at 
all to being clicked, you make it inactive. 

Item Handle or Procedure Pointer 

The item list contains the following information for the var~ous types 
of items: 

Item type 
any ctrlItem 
st'atText 
editText 
iconItem 
picltem 
userItem 

Contents 
A control handle 
A handle to the text 
A handle to the current text 
A handle to the icon 
A picture handle 
A procedure pointer 

The procedure for a userItem draws the ~tem; for example, if the item 
is a clock, it will draw the clock with the current time displayed'. 
When this procedure is called, the current port will have been set by 
the Dialog Manager to the dialog window's grafPort. The procedure must 
have two parameters, a window pointer and an item number. For example, 
this is how it would be declared if it were named MyItem: 

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: INTEGER); 

TheWindow is a pointer to the dialog window; in case the procedure 
dr,aws in more than one dialog window, this parameter tells it which one 
to draw in. ItemNo is the item number; in case the procedure draws 
more than one item, this parameter tells it which one to draw. 

Display Rectangle 

Each item in the item list is displayed within its display rectangle: 

- For controls, the display rectangle becomes the control's 
enclosing rectangle. 

- For an editText item, it becomes TextEdit's destination rectangle 
and view rectangle. Word wrap occurs, and the text is clipped if 

7/6/84 Rose /DMGR/DIALOG.3 



12 Dialog Manager Programmer's Guide 

there's more than will fit in the rectangle. In addition, the 
Dialog Manager uses the QuickDraw procedure FrameRect to draw a, 
rectangle three pixels outside the display rectangle. 

- StatText items are displayed in exactly the same way as editText 
items, except that a rectangle isn't drawn outside the display 

\rectangle. 

- Icons and QuickDraw pictures are scaled to fit the display 
rectangle. For pictures, the Window Manager calls the QuickDraw 
procedure DrawPicture and passes it the display rectangle. 

-- If the procedure for a userltem draws outside the item's display 
rectangle, the drawing is clipped to the display rectangle. 

(note) 
Clicking anywhere within the display rectangle is 
considered a click of that item. 

By giving an item a display rectangle that's off the screen, you can 
make the item invisible. This might be useful, for example, if your 
application needs to display a number of dialog boxes that are similar 
except that one item is missing or diffe-rent in some of them. You can 
use a single dialog box in which the item or items that aren't 
currently relevant are invisible. To remove an item'or make one 
reappear, you just change its display rectangle (and call the Window 
Manager procedure InvalRect to accumulate the changed area into' the 
dialog window's update region). The QuickDraw procedure OffsetRect is 
convenient for moving an item off the screen and then on again later. 
Note the following~ however: 

- You shouldn't make an editText item invisible, because it may 
cause strange things to happen. If one of several editText items 
is invisible, for example, pressing the Tab key may make the 
insertion point disappear. However, if you do' make this type of 
item invisible,.remember that the changed area includes the 
rectangle that's three pixels outside the item's display 
rectangle. 

- The rectangle for a statText item must always be at least as wide 
as the first character of the text; a good rule of thumb is to 
make it at least 20 pixels wide. 

- To change text in a statText item, it's easier to use the Dialog 
Manager procedure ParamText (as described later in the "Dialog 
Manager Routines" section). 

7/6/84 Rose /DMGR/DIALOG.3 



ITEM LISTS It! MEMORY 13 

Item Numbers 

Each item in an item list is identified by an item number, which is 
simply the index of the item in the list (starting from 1). By 
convention, the first item in an alert's item list should be the OK 
button (or, if none, then one of the buttons that will perform the 
command) and the second item should be the Cancel button. The Dialog 
Manager provides predefined constants equal to the item numbers for OK 
and Cancel: 

CONST OK = 1; 
Cancel = 2; 

In a modal dialog's item list, the first item is assumed to be the 
dialog's default button; if the user presses the Return key or Enter 
key, the Dialog Manager normally returns item number 1, just as when 
that item is actually clicked. To conform to the Macintosh User 
Interface Guidelines, the application should boldly outline the 
dialog's default button if it isn't the OK button. The best way to do 
this is with a userItem. To allow for changes in the default button's 
size or location, the userltem shou,ld identify which button to outline 
by its item number and then use that number to get the button's display 
rectangle. The following QuickDraw calls will outline the rectangle in 
the standard way: 

PenSize(3,3); 
InsetRect(displayRect,-4,-4); 
FrameRoundRect(displayRect,16,16) 

(warning) 
If the first item in a modal dialog's item list isn't an 
OK button and you don't boldly outline it, you should set 
up the dialog to ignore Return and Enter. To learn how 
to do this, see ModalDialog under "Handling'Dialog 
,Events" in the "Dialog Manager Routines" section. 

DIALOG RECORDS 

To create a dialog, you pass information to the Dialog Manager in a 
dialog template and in individual parameters, or only in parameters; in 
either case, the Dialog Manager incorporates the information into a 
dialog record. The dialog record contains the window record for the , 
dialog window, a handle to the dialog's item list, and some additional 
fields. The Dialog Manager creates the dialog window by calling the 
Window Manager function NewWindow and then .setting the window class in 
the window record to indicate that it's a dialog window. The routine 
that creates the dialog returns a pointer to the dialog record, which 
you use thereafter to refer to the dialog in Dialog Manager routines or 
even in Window Manager or QuickDraw routines (see "Dialog Pointers" 
below). The Dialog Manager provides routines for handling events in 
the dialog window and disposing of the dialog when you're done. 

7/6/84 Rose /DMGR/DIALOG.3 



14 Dialog Manager Programmer's Guide 

The data type for a dialog record is called DialogRecord. You can do 
all the necessary operations on a dialog without accessing the fields 
of the dialog record directly; for advanced programmers, however, the 
exact structure of a dialog record is given under "The DialogRecord 
Data Type" below. 

Dialog Pointers 

There are two types of dialog pointer, DialogPtr and DialogPeek, 
analogous to the window pointer types WindowPtr and WindowPeek. Most 
programmers will only need .to use DialogPtr. 

, 
The Dialog Manager defines the following type of dialog pointer: 

TYPE DialogPtr = WindowPtr; 

It can do this because the first field of a dialog record contains the 
window record for the dialog window. This type of pointer can be used 
to access fields of the window record or can be passed to Window 
Manager routines that expect window pointers as par,ameters. Since the 
Wind.owPtr data t·ype is itself defined as GrafPtr, this type of dialog 
pointer can also be used to access fields of-the dialog window's 
grafPort or passed to QuickDraw routines that expect pointers to 
grafPorts as parameters. 

For programmers who want to access dialog record fields beyond the 
window record, the Dialog Manager also defines the following type of 
dialog pointer: 

TYPE DialogPeek = ADialogRecord; 

Assembly-language note: From assembly language, of course, 
'there's no type checking on pointers, and the two types of 
pointer are equal. 

The DialogRecord Data Type 

For those who want to know more about the data structure of a dialog 
record, the exact,structure is given here. 

TYPE DialogRecord 

7/6/84 Rose 

RECORD 
window: 
items: 
textH: 
editField: 
editOpen: 
aDefItem: 

END; 

WindowRecord; {dialog window} 
Handle; {item list} 
TEHandle; {current editText item} 
INTEGER; {ed,itText item number minus I} 
INTEGER; {used internally} 
INTEGER {default button item number} 

/DMGR/DIALOG.3 



DIALOG RECORDS 15 

The window field contains the window record for the dialog window. The 
items field contains a handle to the item list used for the dialog. 
(Remember that after reading an item list from a resource file, the 
Dialog Manager makes a copy of it and uses that copy.) 

(note) 
To get or change information about an item in a dialog, 
you pass the dialog pointer and the item number to a 
Dialog Manager procedure. You'll never access 
information directly through the handle to the item list. 

The Dialog Manager uses the next three fields when there are one or 
more editText items in the dialog. If there's more than one such item, 
these fields apply to the one that currently is selected or displays 
the insertion point. The textH field contains the handle to the edit 
record used by TextEdit. EditField is 1 less than the item number of 
the current editText item, or -1 if there's no editText item in the 
dialog. The editOpen field is used internally by the Dialog Manager. 

(note) 
Actually, a single edit record is shared by all editText 
items; any changes you make. to it will apply to all such 
items. See the TextEdit manual for details about what 
kinds of changes you can make. 

The aDefItem field is used for modal dialogs and alerts, which are 
treated internally as special mod~l dialogs. It contains the item 
number of the default button. The default button for a modal dialog is 
the first item in the item list, so this field contains 1 for modal 
dialogs. The default button for an alert is specified in the alert 
template; see the following section for more information. 

ALERTS 

Assembly-language~: The global constant dWindLen equals the 
length of a dialog record in bytes. 

When you call a Dialog Manager routine to invoke an alert, you pass it 
the resource ID of the alert template, which contains the following: 

- A rectangle, given in global coordinates, which determines the 
alert window's size and location. It becomes the portRect of the 
window's grafPort. To allow for the menu bar and the. border 
around the portRect, the top coordinate of the rectangle should be 
at least 25 points below the top of the screen. 

- The resource ID of the item list for the alert. 

7/6/84 Rose /DMGR/DIALOG.3 



16 Dialog Manager Programmer's Guide 

- Information about exactly what should ,happen at each stage of the 
alert. 

Every alert has four stages, corresponding to consecutive occurrences 
of the alert: the first three stages correspond to the first three 
occurrences, while the fourth s~age includes the fourth occurrence and 
any beyond the fourth. (The Dialog Manager compares the current 
alert's resource ID to the last alert's,resource ID to determine 
whether it's the same alert.) The actions for each stage are specified 
by the following three pieces of information: 

- which is the default button--the OK button (or, if·none, a button 
that will perform the command) or the Cancel button 

- whether the alert box is to be drawn 

- which of four sounds should be emitted at this stage of the alert 

The alert sounds are determined by a sound procedure that emits one of 
up to four tones or sequences of tones. The sound procedure has one 
parameter, an integer from 0 to 3; it can emit any sound for each of 
these numbers, which, identify the sounds in the alert template. For 
example, you might declare a sound procedure n~med MySound as follows: 

PROCEDURE MySound (soundNo: INTEGER); 

If you don~t write your own sound procedure, the Dialog Manager uses 
the standard one: sound number 0 represents no sound and sound numbers 
1 through 3 represent the corresponding number of short beeps, each of 
the same pitch and duration. The volume 'of each beep depends on the 
current speaker volume setting, which the user can adjust with the 
Control Panel desk accessory. If the user has set the speaker volume 
to 0, the menu bar will blink in place of each beep. 

For example, if the second stage of an alert is to cause a beep and no 
alert box, you can just specify the following for that stage in the 
alert template: don't draw the alert box, and use sound number 1. If 
instead you want, say, two successive beeps of different, pitch, you 
need to write a procedure that will emit that sound for a particular 
sound number, and specify that number in the alert template. The 
Macintosh Operating System includes routines for emitting sound; see 
the Sound Driver manual, and also the simple SysBeep procedure in the 
Operating System Utilities manual *** neither manual currently exists 
***. (The st~ndard sound procedure calls SysBeep.) 

(note) 
When the Dialog Manager detects a click outside an alert 
box or a modal dialog box, it emits sound number 1; thus, 
for consistency with the Macintosh User Interface 
Guidelines, sound number 1 should always be a single 
beep. 

Internally, alerts are treated as special modal dialogs. The alert 
routine creates the alert window by calling NewDialog. The Dialog 

7/6/84 Rose /DMGR/DIALOG.3 



ALERTS 17 

Manager works from the dialog record created by NewDialog, just as when 
it operates on a dialog window, b~t it disposes of the window before 
returning to the application. Normally your application will not 
access .the dialog record for an alert; however, there is a way that 
this can happen: for any alert, you can specify a procedure that will 
be executed repeatedly during the alert, and this procedure may access 
the dialog record. For details, see the alert routines under "Invoking 
Alerts" in the "Dialog Manager Routines" section. 

USING THE DIALOG MANAGER 

This section discusses how the Dialog Manager. routines fit into the 
general flow of an application program and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

Before using the Dialog Manager, you should initialize QuickDraw, the 
Font Manager, the Window Manager, the Menu Manager, and TextEdit, in 
that order. The first Dialog Manager routine to call is InitDialogs, 
which initializes the Dialog Manager. If you want the font in your 
dialog and alert windows to be other than the system font, call 
SetDAFont to change the font. 

Where appropriate in your program, call NewDialog or GetNewDialog to 
create any dialogs you need. Usually you'll call GetNewDialog, which 
takes descriptive information about the dialog from a dialog template 
in a resource file. You can instead pass the information in individual 
parameters to NewDialog. In either case, you can supply a pointer to 
the storage for the dialog record or let it be allocated by the Dialog 
Manager. When you no longer need a dialog, you'll usually call 
CloseDialog if you supplied the storage, or DisposDialog if not. 

In most cases, you probably won't have to make any changes to the 
dialogs from the way they're defined in the resource file. However, if 
you should want to modify an item in a dialog, you can call GetDItem to 
get the information about the item and SetDItem-to change it. In 
particular, SetDItem is the routine to use for installing a userItem. 
In some cases it may be appropriate to call some other Toolbox routine 
to change the item; for example, to change or move a control in a 
dialog, you would get its handle from GetDItem and then call the 
appropriate Control Manager routine. There are also two procedures 
specifically for accessing or setting the content of a text item in a 
dialog box: GetIText and SetIText. 

To handle events in a modal dialog, just call the ModalDialog procedure 
after putting up the dialog box. If your application includes any 
modeless dialog boxes, you'll pass events to IsDia10gEvent to learn 
whether they need to be handled as. part of a dialog, and then usually 
call DialogSe1ect if so •. Before calling Dia10gSelect, however, you 
should check whether the user has given the keyboard equivalent of a 
command, and you may want to check for other special cases, depending 
on your application. You can support the use of the standard editing 

7/6/84 Rose /DMGR/DIALOG.3 



18 Dialog Manager Programmer's Guide 

commands in a modeless dialog's editText items with DlgCut, DlgCopy, 
DlgPaste, and DlgDelete. 

A dialog box that contains editText items normally comes up with the 
insertion point in the first such item in its item list. You may 
inst~ad want to bring up a dialog box with text selected in an editText 
item, or to cause an insertion point or text selection to reappear 
after the user has made an error in entering text~ For example, the 
user who accidentally types nonnumeric input when a n~mber is required 
can be given the opportunity to type the entry again. The SeliText 
procedure makes this possible. 

For alerts, 'if you want other sounds besid~s the standard ones (up to 
three short beeps), write.your own sound procedure and call ErrorSound 
to make it the current sound procedure. To invoke a particular alert, 
call one of the alert routines: StopAlert, NoteAlert, or CautionAlert 
for one of the standard kinds of alert, or Alert for an alert defined 
to have something other than a standard icon (or nothing at all) in its 
top left corner. 

If you're going to ~nvoke a dialog or alert when the resource file 
might not be accessible, first call CouldDialog or CouldAlert, which 
will make the dialog or alert template and related resources unable to 
be purged from memory. You can later make them purgeable again by 
~alling FreeDialog or FreeAlert. 

Finally, you can substitute text in statText items with text that you 
specify in the ParamText procedure. This means, for example, that a 
document name supplied by the user can appear in an error message. 

DIALOG MANAGER ROUTINES 

This section describes all the Dialog Manager procedures and functions. 
They're presented in their Pascal form; for information on using them 
from assembly language, see the manual Programming Macintosh 
Applications in Assembly Language. 

Initialization 

PROCEDURE InitDialogs (restartProc: ProcPtr); 

Call InitDialogs once before all other Dialog Manager routines, to 
initialize the Dialog Manager. 

- It sets a pointer to a fail-safe procedure as specified by 
restartProc; this pointer will be accessed when a system error 
(such as running out of memory) occurs. RestartProc should point 
to a procedure that will restart the application after a system 
error. If no such procedure is desired, pass NIL as the 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 19 

parameter. 

Assembly-Ianguage~: The Dialog Manager stores the address 
of the fail-safe procedure in a global variable named RestProc. 

- It installs the standard sound procedure. 

- It passes empty strings to ParamText. 

PROCEDURE ErrorSound (soundProc: ProcPtr); 

ErrorSound sets the sound procedure for dialogs and alerts to the 
procedure pointed to by soundProc; if you don't call ErrorSound, the 
Dialog Manager uses the standard sound procedure. (For details, see 
the "Alerts" section above.) If you pass NIL for soundProc, there will 
be no sound (or menu bar blinking) at all. 

Assembly-language note: The address of the sound procedure 
being used is stored in the global variaple DABeeper. 

PROCEDURE SetDAFont (fontNum: INT~GER); [Pascal only] 

For subsequently created dialogs and alerts, SetDAFont sets the font of 
the dialog or alert window's grafPort to the font having the specified 
font number. If you don't call this procedure, 'the system font is 
used. SetDAFont affects statText and editText items but not titles of 
controls, which are always in the system font. 

Assembly-language~: Assembly-language programmers .can 
simply set the global variable DlgFont to the desired font 
number. 

7/6/84 Rose /DMGR/DIALOG.R 



20 Dialog Manager Programmer's Guide 

Creating and Disposing of Dialogs 

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEAN; procID: INTEGER; behind: WindowPtr; 
goAwayFlag': BOOLEAN; ref Con : LongInt; items: Handle) : 
DialogPtr; 

NewDialog creates a dialog as specified by its parameters and returns a 
pointer to the new dialog. The first eight parameters (dStorage 
through ref Con) are passed to the Window Manager function NewWindow, 
which creates the dialog window; the meanings of these parameters are 
summarized below. The items parameter is a handle to the dialog's item 
list. You can get the items handle by calling the Resource Manager to 
read the item list from the resource file into memory. 

(note) 
Advanced programmers can create their own item lists in 
memory rather than have them read from a resource file. 
The exact format is given later under 'tFormats of 
Resources for Dialogs and Alerts". 

DStorage is analogous to the wStorage parameter of NewWindow; it's a 
pointer to the storage ~o use for the dialog record. If you pass NIL 
for dStorage, the dialog record will be allocated on the heap (which, 
in the case of modeless dialogs, may cause the heap to become 
fragmented). 

BoundsRect, a rectangle given in global coordina~es, determines the 
dialog window's size and location. It becomes the portRect of the 
window's grafPort. Remember that the top coordinate of this rectangle 
should be at least 25 points below the top of the screen for a modal 
dialog, to allow for the menu bar and the border around the portRect, 
and at least 40 points below the top of the screen for a modeless 
dialog, to allow for the menu bar and the window's title bar. 

Title is the title of a modeless dialog box; pass the empty string for 
modal dialogs. 

If the visible parameter is TRUE, the, dialog window is drawn on the 
screen. If it's FALSE, the window is initially invisible and may later 
be shown with a call to the Window Manager procedure 'ShowWindow. 

(note) 
NewDialog generates an update event for the entire window 
contents, so the items aren't drawn immediately, with the 
exception of' controls. The Dialog Manager calls the 
Control Manager to draw controls, and the Control Manage~ 
draws them'immediately rather than via the standard 
update mechanism. Because of this, the Dialog Manager 
calls the Window Manager procedure ValidRect for the 
enclosing rectangle of each control, so the controls 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 

won't be drawn twice. If you find that the other items 
aren't being drawn soon enough after'the controls, try 
.making the window invisible initially and then calling 
ShowWindow to show it. 

21 

ProcIO is the window definition 10, which leads t6 the window 
definition function for this type of window. The window definition IDs 
for the standard types of dialog window are dBoxProc for the modal type 
and documentProc for the modeless type. 

The behirid parameter specifies the window behind which the dialog 
window is to be placed on the desktop. Pass POINTER(-l) to bring up 
the dialog window in front of all other windows • 

. GoAwayFlag applies to modeless dialog boxes; if it's TRUE, the dialog 
window has a close box in its title bar when the window is active. 

Ref Con is the dialog window's reference value, which the application 
may store into and access for any purpose. 

NewDialog sets the font of the dialog window's grafPort to the system 
font or, if you prevtously called SetDAFont, to the specified font. It 
'alsh sets the window c,lass in the window record to dialogKi'nd. 

FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr; behind: 
WindowPtr) : DialogPtr; 

Like NewDialog (above), GetNewDialog creates a dialog as specified by 
its parameters and returns a pointer to the new dialog. Instead of 
having the parameters boundsRect, title, visible, procID, goAwayFlag, 
and ref Con, GetNewDialog has a single dialogIO parameter, where 
dialogID is the resource ID of a dialog template that supplies the same 
information as those parameters. The dialog template also contains the 
resource ID o.f the dialog's item list. After calling the Resource 
Manager to read the item list into memory (if it's not already in 
memory), GetNewDialog makes a copy of the item list and uses that copy; 
thus you may have multiple independent dialogs whose items have the 
same types, locations, and initial contents. The dStorage and behind 
parameters of GetNewDialog have the same meaning as in NewDialog • 

. PROCEDURE CloseDialog (theOialog: DialogPtr); 

CloseDialog removes theDialog's window from the screen and deletes it 
from the window list, just as when the Window Manager procedure 
CloseWindow is called. It releases the memory occupied by the 
following: 

- The data structures associated with the dialog window (such as the 
window's structure, content, and update regions). 

All the items in the dialog· (except for pictures and icons, which 
might be shared resources), and any data structures associated 

7/6/84 Rose /DMGR/DIALOG.R 



22 Dialog Manager Programmer's Guide 

with them. For example, it would dispose of the region occupied 
by the thumb of a scroll bar, or a similar region for some other 
control in the dialog. 

CloseDialog does not dispose of the dialog record or the item list. 
Figure 6 illustrates the effect of CloseDialog (and DisposDialog, 
described below). 

CloseOialog rel~ only the areM marked mnmm 
.~. I I th --L-ed ........... end 
DI~ ........ la og re eases e areas lIIa.-~ ~imi~iii~ 

If you created the dialog with NewOlelog: 

dialog record 
item list 

;"j::i::::::::j::::::::::::m 

text 

If you created the dialog with GetNewDialog: 

D 
item I ist reed 

from resou-ce fi Ie 

copy of item list 
reed from resollCe fi Ie 

text 

Figure 6. CloseDialog and DisposDialog 

icon 

Call CloseDialog when you're done with a dialog if you supplied 
NewDialog or GetNewDialog with a pointer to the dialog storage (in the 
dStorage parameter) when you created the dialog. 

(note) 
Even if you didn't supply a pointer to the dialog 
storage, you may want to call CloseDialog if you created 
the dialog with NewDialog. You would call CloseDialog if, 
you wanted to keep the item list around (since, unlike 
GetNewDialog, NewDialog does not use a copy of the item 

7/6/84 Rose /DMGR/DIALOG.R 



1 

DIALOG 1·1ANAGER ROUTINES 23 

list). 

PROCEDURE DisposDialog (theDialog: DialogPtr); 

DisposDialog calls CloseDialog (above) and then releases the memory 
occupied by the dialog's item list and dialog record. Call 
DisposDialog when you're done with a dialog if you let the dialog 
record be allocated on the heap when you created the dialog (by passing 
NIL as the dStorage parameter to NewDialog or GetNewDialog). 

PROCEDURE CouldDialog (dialogID: INTEGER); 

CouldDialog ensures that the dialog template having the given resource 
10 is in memory and makes it unable to be purged. It does the same for 
the dialog window's definition function, the dialog's item list 
resource, and any items defined as resources. This is useful if the 
dialog box may come up when the resource file isn't access~ble, such as 
during a disk copy. 

PROCEDURE FreeDialog (dialogID: INTEGER); 

Given the resource ID of a dialog template previously specified in a 
call to CouldDialog (above), FreeDialog undoes the effect of 
CouldDialog. It should be called when there's no longer a need to keep 
the resources in memory. 

Handling Dialog Events 

PROCEDURE ModalDialog (filterProc: ProcPtr; VAR itemHit: INTEGER); 

Call ModalDialog after creating a modal dialog and bringing up its 
window in the frontmost plane. ModalDialog repeatedly gets and handles 
events in the dialog's window; after handling an event involving an 
enabled dialog item, it returns with the item number in itemHit. 
Normally you'll then do whatever is appropriate as a response to an 
event in that item. 

ModalDialog gets each event by calling the Toolbox Event Manager 
function GetNextEvent. If the event is a mouse-down event outside the 
content region of the dialog window, ModalDialog emits sound number 1 
(which should be a single beep) and gets ,the next event; otherwise, it 
filters and handles the event as described below. 

(note) 
Once before getting each event, ModalDialog calls 
SystemTask, a Desk Manager procedure that needs to be 
called regularly if the application is t_o support the use 
of desk accessories. 

7/6/84 Rose /DMGR/DIALOG.R 



24 Dialog Manager Programmer's Guide 

The filterProc parameter determines how events are filtered. ~ If it's 
NIL, the standar~ 'filterProc function is executed; this causes 
ModalDialog to return 1 in itemHit if the Return key or Enter key is 
pressed. If filterProc isn't NIL, ModalDialog filters events by 
executing the function it points to. Your filterProc function should 
have three parameters and return a Boolean value. For example, this is 
how it would be declared if it were named MyFilter: 

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: 
EventRecord; VAR itemHit: INTEGER) : BOOLEAN; 

A function result of FALSE tells ModalDialog to go ahead and handle the 
event, which either can be sent through unchanged or can be changed to 
simulate a different event. A function result of TRUE tells 
ModalDialog to return immediately rather than handle the event; in this 
case, the filterProc function sets itemHit to the ~tem number that 
ModalDialog should return. 

(note) 
If you want it to ~e consistent with the standard 
filterProc function, your function should at least check 
whether the Return key or Enter key was pressed and, if 

. so, return 1 in itemHit and a function result of TRUE. 

Xou can use the filterProc function, for example, to treat a typed 
character in a special way (such as ignore it, or make it have the same 
effect as another character or as clicking a button); in this case, the 
function would test for a.key-down event with that character. As 
another example, suppose the dialog box contains a userItem whose 
procedure draws a clock with the current time displayed. The 
filterProc function can call that procedure and return FALSE without 
altering the current event •. 

(note) 
ModalDialog calls GetNextEvent with a mask that excludes 
disk-inserted events. To receive disk-inserted events, 
your filterProc function can call GetNextEvent (or 
EventAvail) with a mask that accepts only that type of 
event. 

ModalDialog handles the events for which the filterProc function 
returns FALSE as follows: 

- In response to an activate or update event for the dialog window, 
ModalDialog activates or updates the window. 

- If the mouse button is pressed in an editText'item, ModalDialog 
responds to the mouse activity as appropriate (displaying an 
insertion point or selecting text). If a key-down event occurs 
and there's an editText item, text entry and editing are handled 
in the standard way for such items (except that if the Command key 
is down, ModalDialog responds as though it isn',t). In either 
case, ModalDialog returns if the editText item is enabled or does 
nothing if it's disabled. If a key-down event occurs when there's 

7/6/84 Rose /DMGR/DIALOG.R 



DIALQG ~JU~AGER ROUTINES 25 

no editText item, ModalDialog does nothing. 

- If the mouse button is pressed in a control, ModalDialog calls the 
Control Manager function TrackControl. If the mouse button is 
released inside the control and the control is enabled, 
ModalDialog returns; otherwise, it does nothing. 

- If the mouse button is pressed in any other enabled item in the 
dialog box, ModalDialog returns. If the mouse button is pressed 
in any other disabled item or in no item, or if any other event 
occurs, ModalDialog does nothing. 

FUNCTION IsDialogEvent (theEvent: EventRecord) : BOOLEAN; 

If your application includes any modeless dialogs, call IsDialogEvent 
after calling the Toolbox Event Manager function GetNextEvent. Pass 
the current event in theEvent. IsDialogEvent determines whether 
theEvent needs to be handled as part of a dialog. If theEvent is an 
activate or updaee event for a dialog window, a mouse-down event in the 
content region of an active dialog window, or any other type of event 
when a dialog window is active, IsDialogEvent returns TRUE; otherwise, 
it returns FALSE. 

When FALSE is returned, just handle the event yourself like any other 
event that's not dialog-related. When TRUE is returned, you'll 
generally end up passing the event to DialogSelect for it to handle (as 
described below), but first you should do some' additional checking: 

- DialogSelect doesn't handle keyboard equivalents for commands. 
Check whether the event is a key-down event with the Command key 
held down and, if so, carry out the command if it's one that 
applies when a dialog window is active. (If the command doesn't 
so apply, do nothing.) 

- In special cases, you may want to bypass DialogSelect or do some 
preprocessing before calling it. If so, check for those events 
and respond accordingly. You would need to do this, for example, 
if the dialog is to respond to disk-inserted events. 

For cases other than these, pass the event to DialogSelect for it to 
handle. 

FUNCTION DialogSelect (theEvent: EventRecord; VAR theDialog: DialogPtr; 
VAR itemHit: INTEGER) : BOOLEAN; 

You'll normally call DialogSelect after IsDialogEvent, passing in 
theEvent an event that needs to be handled as part of a modeless 
dialog. DialogSelect handles the event as described below. If the 
event involves an enabled dialog item, DialogSelect returns a function 
result of TRUE with the dialog pointer in theDialog and the item number 
in itemHit; otherwise, it returns FALSE with theDialog and itemHit 
undefined. Normally when Dial9gSelect returns TRUE, you'll do whatever 

7/6/84 Rose /DMGR/DIALOG.R 



26 Dialog Manager Programmer's Guide 

is appropriate as a response to the event t and when it returns FALSE 
you'll do nothing. 

If the event is an activate or update event for a dialog windowt 
DialogSelect activates or updates the window and returns FALSE. 

If the event is a mouse-down event in an editText item t DialogSelect 
responds as appropriate (displaying an insertion point or selecting 
text). If it's a key-down event and there's an editText item t text 
entry ~nd editing are handled in the standard way. In eithe~ case t 
DialogSelect returns TRUE if the editText item is enabled or FALSE if 
it's disabled. If a key-down event is passed when there's no editText 
item t DialogSelect returns FALSE. 

(note) 
For a key-down event t DialogSelect doesn't check to see 
whether the Command key is held down; to handle keyboard 
equivalents of commands t you have to check for them 
before calling DialogSelect. SimilarlYt to treat a typed 
character in a special way (such as ignore it, or make it 
have the same effect as another character or as clicking 
a button), yo~ need to check for a key-down event with 
that character before calling DialogSelect. 

If the event is a mouse-down event in a control, Dial,ogSelect calls the 
Control Manager function TrackControl. If t·he mouse button is released 
inside the control and the control is enabled t DialogSelect returns 
TRUE; otherwise t it returns FALSE. 

If the event is a mouse-down event in any other enabled item t 
--DialogSelect returns TRUE. If it's a mouse-down event in any other 
disabled item or in no item t or if it's any other event, DialogSelect 
returns FALSE. 

PROCEDURE DlgCut (theDialog: DialogPtr); [Pascal only] 

DlgCut checks whether theDialog has any editText items and, if so, 
applies the TextEdit procedure TECut to the currently selected editText 
item. (If the dialog record's editField is 0 or greater t DlgCut passes 
the contents of the textH field to TECut.) You can call DlgCut to 
handle the editing command Cut when a modeless dialog window is active. 

Assembly-language note: Assembly-language programmers can just 
read the dialog record's fields and call TextEdit directly. 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 27 

PROCEDURE DlgCopy (theDialog: DialogPtr); [Pascal only] 

DlgCopy is the same as DlgCut (above) except that it calls TECopy, for 
handling the Copy command. 

PROCEDURE'DlgPaste (theDialog: DialogPtr); [Pascal only] 

DlgPaste is the same as DlgCut (above) except that it calls TEPaste, 
for handling the Paste command. 

PROCEDURE DlgDelete (theDialog: DialogPtr); [Pascal only] 

DlgDelete is the same as DlgCut (above) except that it calls TEDelete, 
for handling the Clear command. 

PROCEDURE DrawDialog (theDialog: DialogPtr); 

~. 

DrawDialog draws the contents of the given dialog -box. Since 
DialogSelect and ModalDialog handle dialog window updat.ing, this 
procedure is useful only in unusual situations •. You would call it, for 
example, to display a dialog box that doesn't require any response but 
merely tells the user what's going on during a time-consuming process. 

Invoking Alerts 

FUNCTION Alert (alertID: INTEGER; filterProc: P~ocPtr) : INTEGER; 

This function invokes the alert defined by the alert template that has 
the given resource ID. It calls the current sound procedure, if any, 
passing it the sound number specified in the alert template for this 
stage of the alert. If no alert box is to be drawn at this stage, 
Alert returns a function result of -1; otherwise, it creates and 
displays the alert window for this alert and draws the alert box. 

(note) 
It creates the alert window by calling NewDialog, and 
does the rest of its processing by calling ModalDialog. 

Alert repeatedly gets and handles events in the alert window until an 
enabled item is clicked, at which time it returns the item number. 
Normally you'll then do whatever is appropriate in response to a click 
of that item. 

Alert gets each event by calling ~he Toolbox Event Manager function 
GetNextEvent. If the event is a mouse-down event outside the content 
region of the alert window, Alert emits sound number 1 (which should be 
a single beep) and gets the next event; otherwise, it filters and 
handles the event as described below. 

7/6/84 Rose /DMGR/DIALOG.R 



28 ,Dialog Manager Programmer's Guide 

The filterProc parameter has the same meaning as in ModalDialog (see 
above). If it's NIL, the standard filterProc function is executed, 
which makes the Return key or the Enter key have the same effect as 
clicking,' the default button. If you specify your own,filterProc 
function and want to retain this feature, you must include it in your 
function. You can find out what the current default button is by 
looking at the aDefItem field of the dialog record for the alert (via 
the dialog pointer passed to the function). 

Alert handles the events for which the filterProc function returns 
FALSE as follows: 

- If the mouse button is pressed in a control, Alert calls the 
Control Manager procedure TrackControl. If the mouse button is 
released inside the control and the control is enabled, Alert 
returns; otherwise, it does nothing. 

- If the mouse button is pressed in any other enabled item, Alert 
simply returns. If it's pressed in any other disabled item or in 
no item, or if any other event occurs, Alert does nothing. 

Before returning to the application with the item number, Alert removes 
the alert box from the screen. (It disposes of the alert window and 
iis associated data structures, the item list, and the items.) 

(note) 
The Alert function's removal of the alert box would not 
be the desired result if the user clicked ~ check box or 
radio button; however, normally alerts contain only 
static text, icons, pictures, and buttons tha,t are 
supposed to make the alert box go away. If your alert 
contains other items besides these, consider whe,ther it 
might be more appropriate as a dialog. 

FUNCTION StopAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER; 

StopAlert is the same as the Alert function (above) except that before 
drawing the items of the alert in the alert box, it draws the Stop icon 
in the top left corner of the box (within the rectangle (10,20,42,52». 
The Stop icon has the following resource ID: 

CONST stopIcon = 0; 

If the application's resource file doesn't include an icon with that ID 
number, the Dialog Manager uses the standard Stop icon in the system 
resource file (see Figure 7). 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 29 

Stop Note Caution 

Figure 7. Standard Alert Icons 

FUNCTION NoteAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER; 

NoteAlert is like StopAlert except that it draws the Note icon, which 
has the following resource ID: 

CONST notelcon = 1; 

FUNCTION CautionAlert (alertID: INTEGER; filterProc: ProcPtr) 
INTEGER; 

CautionAlert is like StopAlert except that it draws the Caution icon, 
which has the following resource ID: 

CONST ctnlcon = 2; 

PROCEDURE CouldAlert (alertID: INTEGER); 

CouldAlert ensures that the alert template having the given resource ID 
is in memory and makes it unable to be purged. It does the same for 
the alert window's definition function, the alert's item list resource, 
and any items defined as resources. This is useful if the alert may 
occur when the res.ource file isn't accessible, such as during a disk 
copy. 

PROCEDURE FreeAlert (alertID: INTEGER); 

Given the resource ID of an alert template previously specified in a 
call to CouldAlert (above), FreeAlert undoes the effect of CouldAlert. 
It should be called when there's no longer a need to keep the resources 
in memory. 

7/6/84 Rose /DMGR/DIALOG.R 



· 30 Dialog Manager Programmer's Guide 

Manipulating Items in Dialogs and Alerts 

PROCEDURE ParamText (param0,paraml,param2,param3: Str2SS); 

ParamText provides a means of substituting text in statText items: 
param0 through param3 will replace the special strings 'A0' through 
'A3' in all statText items in all subsequent dialog or alert boxes. 
Pass empty strings for parameters not used. 

Assembly-language note: Assembly-language programmers may pass 
NIL for parameters not used or for strings that are not to be 
changed. 

For example, if the text is defined as 'Cannot open document A0' and 
docName is a string variable containing a document name that the user 
typed, you can call ParamText(docName,",' ',"). 

(warning) 
All strings that will need to be translated to foreign 
languages should be stored in resource files. 

Assembly-language note: The Dialog Manager stores handles to 
the four ParamText parameters in a global array named DAStrings. 

PROCEDURE GetDItem (theDialog: DialogPtr; itemNo: INTEGER; VAR type: 
INTEGER; VAR item: Handle; VAR box: Rect); 

GetDItem returns in its VAR parameters the following information about 
the item numbered itemNo in the given dialog's item list: in the type 
parameter, the item type; in the item parameter, a handle to the item 
(or~ for item type userItem, the procedure pointer); and in the box 
parameter, the display rectangle for the item. 

Suppose, for example, that you want to change the title of a control in 
a dialog box. You can get the item handle with GetDItem, convert it to 
type ControlHandle, and call the Control Manager procedure SetCTitle to 
change the title. Similarly, to move the control or 'change its size, 
you would call MoveControl or SizeControl. 

(note) 
To access the text of a statText or editText item, pass 
.the handle returned by GetDItem to GetIText or SetIText 
(see below). 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 31 

PROCEDURE SetDItem (theDialog: DialogPtr; itemNo: INTEGER; type: 
INTEGER; item: Handle; box: Rect); 

SetDItem sets the item numbered itemNo in the given dialog's item list, 
as specified by the parameters (without drawing the item). The type 
parameter is the item type; the item parameter is a handle to the item 
(or~ for item type userItem, the procedure pointer); and the box 
parameter is ,the display rectangle for the item. 

Consider, for example, how to install an item of type userItem in a 
dialog: In the item list in the resource file, define an item in which 
the'type is set to userItem and the display rectangle to (0,0,0,0). 
Specify that the dialog window be invisible (in either the dialog 
template or the NewDialog call). After creating the dialog, convert 
the item's procedure pointer to type Handle; then call SetDItem, 
passing that handle and the display rectangle for the item. Finally,' 
call the Window Manager procedure ShowWindow to' display the dialog 
window. 

(note) 
Do not use SetDItem to change the text of a statText or 
editText item or to change or move a control. See the 
description of GetDItem above for more information. 

PROCEDURE GetIText (item: Handle; VAR text: Str255); 

Given a handle to a statText or editText item in a dialog box, as 
returned by GetDltem, GetIText returns the text of the item in the text 
parameter. 

PROCEDURE SetIText (item: Handle; text: Str255); 

Given a handle to a statText or editText item in a dialog box, as 
returned by GetDItem, SetIText sets the text of the item to the 
specified text and draws the item. For example, suppose the exact 
content of a dialog's text item cannot be determined until the 
~pplication is running, but the display rectangle is defined in the 
resource file: Call GetDItem to get a handle to the item, and call 
SetIText with the desired text. 

PROCEDURE SelIText (theDialog: DialogPtr; itemNo: INTEGER; 
strtSel,endSe~: INTEGER); . 

Given a pointer to a dialog and the ~tem number of an editText item in 
the dialog box, SelIText does the following: 

- If the item contains text, SelIText sets the selection range to 
extend from character position strtSel up to but not including 
character position endSel. The selection range is inverted unless 
strtSel equals endSel~ in which case a blinking vertical bar is 
displayed to indicate an insertion point at that position. 

7/6/84 Rose /DMGR/DIALOG.R 



32 Dialog Manager Programmer's Guide 

- If the item doesn't contain text, SelIText simply displays the 
.insertion point. 

For example, if the user makes an unacceptable entry in the editText 
item, the application can put up an alert box reporting the problem and 

'then select the entire text of the item so it can be replaced by a new 
entry. (Without this procedure, the user would have to select the item 
before making the new entry.) 

(note) 
You can select the entire text by specifying 0 for 
strtSel and a very large number for endSel. For details 
about selection range and character position, see the 
TextEdit manual. 

FUNCTION GetAlrtStage : INTEGER; [Pascal only] 

GetAlrtStage returns the stage of the last occurrence of an alert, as a 
number from 0 to 3. 

Assembly-Ianguage'~: Assembly-language programmers can get 
this number by accessing the global variable ACount. In 
addition, the global variable ANumber contains the resource ID 
of the alert template of the last ale~t that occurred. 

PROCEDURE ResetAlrtStage; [Pascal only] 

ResetAlrtStage resets the stage of the last occurrence of an alert so 
that the next occurrence of that same alert will be treated as its 
first stage. This is useful, for example, when you've used ParamText 
to change. the text of an alert such that from the user's point ,of view 

.it's a different alert. 

Assembly-language note: Assembly-language programmers can set 
the global variable ACount to -1 for the same effect. 

,MODIFYING TEMPLATES IN MEMORY 

When you call GetNewDialog or one of the routines that invokes an 
alert, the Dialog Manager calls the Resource Manager to read the dialog 
or alert template from the resource file and' return a handle to it. If 
the template is already in memory, the Resource Manager just returns a 

7/6/84 Rose /DMGR/DIALOG.F 



MODIFYING TEMPLATES IN MEMORY 33 

handle to it. If you want, you can call the Resource Manager yourself 
to read the template into memory (and make it unpurgeable), and then 
make changes to it before calling the dialog or alert routine. When 
called by the Dialog Manager, the Resource Manager will return a handle 
to the template as you modified it. 

To modify a template in memory, you need to know its exact structure 
and the data type of the handle through which it may be accessed. 
These are discussed below for dialogs and alerts. 

Dialog Templates in Memory 

The data structure of a dialog template.is as follows:' 

TYPE DialogTemplate = RECORD 
boundsRect: 
procID: 
visible: 
filler!: 
goAwayFlag: 
filler2: 
ref Con: 
itemsID: 
title: 

END; 

Rect; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
LongInt; 
INTEGER; 
Str255 

{becomes window's portRect} 
{window definition ID} 
{TRUE if visible} 
{not used} 
{TRUE if has go-away region} 
{not used} 
{window's reference value} 
{resource ID of item list} 
{window's title} 

The filler! and filler2 fields are there only to ensure that the 
goAwayFlag and ref Con fields begin on a word boundary. The itemsID 
field contains the resource ID of the dialog's item list. The other 
fields are the same as the parameters of the same name in the NewDialog 
function; they provide information about the dialog window. 

You access the dialog template by converting the handle returned by the 
Resource Manager to a template handle: 

TYPE DialogTHndl 
DialogTPtr 

= ADialogTPtr; 
= ADialogTemplate; 

Alert Templates in Memory 

The data structure of an alert template is as follows: 

TYPE AlertTemplate = RECORD 
boundsRect: Rect; {becomes window's portRect} 
itemsID: INTEGER; {resource ID of item list} 
stages: StageList {alert stage information} 

END; 

BoundsRect is the rectangle that becomes the portRect of the window's 
grafPort. The itemsID field contains the resource ID of the item list 
for the alert. '" 

7/6/84 Rose /DMGR/DIALOG.F 



34 Dialog Manager Programmer's Guide 

The information in the stages field determines exactly what should 
happen at each stage of the alert. It's packed into a word that has 
the following structure: 

TYPE StageList = PACKED ARRAY [1 •• 4) OF 
RECORD 

boldltem: 
boxDrawn: 
sound: 

0 •• 1; {default button item number minus I} 
BOOLEAN; {TRUE if alert box to be drawn} 
0 .• 3 {sound number} 

END; 

The elemenfs of the StageList array are stored in reverse order of the 
stages: element 1 is for the fourth stage, and element 4 is for the 
first stage. 

Boldltem indicates which button should be the default button (and 
therefore boldly outlined in the alert box). If the first two items in 

,the alert's item list are the OK button and the Cancel button, 
respectively, 0 will refer to the OK button and 1 to the Cancel button. 
The reason for this is that the value of boldltem plus 1 is interpreted 
as an item number t and norm~lly items 1 and 2 are the OK and Cancel 
buttons, respectively. Whatever the item having the corresponding item 
number happens to be, a bold rounded-corner rectangle will be drawn 
around its display rectangle. 

(warning) 
When deciding where to place items in an alert box, be 
sure to allow room for any bold outlines that may be 
drawn. 

BoxDrawn is TRUE if the alert box is to be drawn. 

The sound field specifies which sou~d should be emitted at this stage 
of the alert, with a number from 0 to 3 that's passed to the current 
sound procedure. You can call ErrorSound to specify your own sound 
procedure; if you don't, the standard sound procedure will be used (as 
described earlier in the "Alerts" section). 

You access the alert template by converting the handle returned by the 
Resource Manager to a template handle: 

TYPE AlertTHndl = AAlertTPtr; 
AlertTPtr = AAlertTemplate; 

Assembly-Ianguage~: Rather than offsets into the fields of 
the StageList data structure, there are masks for accessing the 
information stored for an alert stage in a stages word; they're 
listed in the summary at the end of this manual. 

7/6/84 Rose /DMGR/DIALOG.F 



FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 35 

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 

Every dialog template, alert template, and item list must be stored in 
a resource file, as must any icons or QuickDraw pictures in item lists 
and any control templates for items of type ctrlltem+resCtrl. The 
exact formats of a dialog template, alert template, and item list in a 
resource file are given below. For icons and pictures, the resource 
type is 'ICON' or 'PICT' and the resource data is simply the icon or 
the picture. The format of a control template is discussed in the 
Control Manager manual. 

Dialog Templates in a Resource File 

The resource type for a dialog template is 'DLOG', and the resource 
data has the same format as a dialog template in memory. 

Number of bytes 
8 bytes 
2 bytes 
1 byte 
1 byte 
1 byte 
1 byte 
4 bytes 
2 bytes 
n bytes 

Contents 
Same as boundsRect parameter to NewDialog 
Same as procID parameter to NewDialog 
Same as visible parameter to NewDialog 
Ignored 
Same as goAwayFlag parameter to NewDialog 
Ignored 
Same as ref Con parameter to NewDialog 
Resource ID of item list 
Same as title parameter to NewDialog 
(I-byte length in bytes, followed by 
the characters of the title) 

Alert Templates in a Resource File 

The resource type for an alert template is 'ALRT', and the resource 
data has the same format as an alert template in memory. 

Number of bytes 
8 bytes 
2 bytes 
2 bytes 

Contents 
Rectangle enclosing alert window 
Resource ID of item list 
Stages 

The resource data ends with a word of information a"bout stages. As 
shown in the example in Figure 8, there are four bits of stage 
information for each of the four stages, from the four low-order bits 
for the first stage to the four high-order bits for the fourth stage. 
Each set of four bits is as follows: 

Number of bits 
1 bit 

7/6/84 Rose 

1 bit 
2 bits 

Contents 
Item number minus 1 of default button; 
normally 0 is OK and 1 is Cancel 
1 if alert box is to be drawn, 0 if not 
Sound number (0 through 3) 

/DMGR/DIALOG.F 



36 Dialog Manager Programmer's Guide 

(note) 

fcuth stege third stage secoIwj stage first stage 

1111111110 1111111 a 10 11' 101 0 I 0 10111 

L' · l" · L' , L' , TTy • 

SCUld 3 SCUld 3 SCUld 2 SCUld 1 

drew craw. no no 
box box box box 

outline 
"-- Cancel 

outline 
OK 

(value: heX8decirnel F721) 

Figure 8. Sample Stages Word 

So that the disk won't be accessed just for an alert that 
beeps, you may want to set the I'esPreload attribute of 
the alert's template in the resource file. For more 
information, see the Resource Manager manual. 

Item Lists in a Resource File 

The resource type for an item list is 'DITL'. The resource data begins 
with a word containing the number of items in the list minus 1. This 
is what follows for each item: 

Number of bytes 
4 bytes 
8 bytes 
1 byte 
1 byte 
n bytes 

(n is even) 

Contents 
o (placeholder for handle or procedure 
Display rectangle (local coordinates) 

pointer) 

Item type 
Length of following 
If item type is: 

ctrlItem+resCtrl 
any other ctrlItem 
statText, editText 
iconItem, pic Item 
userItem 

data in bytes 
Content is:. 

Resource ID (length 2) 
Title of the control 
The text 
Resource ID (length 2) 
Empty (length 0) 

As shown here, the first four bytes serve as a placeholder for the 
item's handle or, for item type userItem, its procedure pointer; the 
handle or pointer is stored after the iteDllist is read into memory. 
The next eight bytes define the display rectangle for the item, and the 
next byte gives the length of the data that follows: for a text item, 
it's the text itself; for an icon, picture, or control of type 
ctrIItem+resCtrl, it's the two-byte resource ID for the item; and for 
any other type of control, it's the title of the control. For 
userltems, no data follows' the item type. When the data is text or a 
control title, the number of bytes it occupies must be even to ensure 
word alignment of the next item. 

7/6/84 Rose /DMGR/DIALOG.F 



FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 37 

Assembly-language note: Offsets into the fields of an item list 
are available as global constants; they're listed in the 
summary. 

7/6/84 Rose /DMGR/DIALOG.F 



38 Dialog Manager Programmer's Guide 

SUMMARY OF THE DIALOG MANAGER 

Constants 

CONST {Item types } 

ctrlItem 
btnCtrl 
chkCtrl 
radCtrl 
resCtrl 
statText 
editText· 
iconItem 
picItem 
userItem 
itemDisable 

4; 
= 0; 

1 ; 
2; 
3; 

{add to following four constants} 
{standard button control} 

= 8; 
16; 
32; 

= 64; 
= 0; 

{standard check box control} 
{standard "radio button" control} 
{control defined in control template} 
{static text} 
{editable text (dialog only)} 
{icon} 
{QuickDraw picture} 

= 128; 
{application-defined item (dialog only)} 
{add to any of above to disable} 

\ 

{ Item numbers of OK and Cancel ,buttons } 

OK 1; 
Cancel = 2; 

{ Resource IDs of alert icons } 

stopIcon 0; 
noteIcon = 1; 
ctnIcon 2; 

Data Types 

TYPE DialogPtr 
DialogPeek 

= WindowPtr; 
= ADialogRecord; 

DialogRecord = RECORD 
window: 
items: 
textH: 
editField: 
editOpen: 
aDefItem: 

WindowRecord; {dialog window} 

DialogTHndl 
DialogTPtr 

7/6/84 Rose 

END; 

Handle; 
TEHandle; 
INTEGER; 
INTEGER; 
INTEGER 

ADialogTPtr; 
= ADialogTemplate; 

{item list} 
{current editText item} 
{editText item number minus 1} 
{used internally} 
{default button item number} 

/DMGR/DIALOG.S 



Dialo~Template 

AlertTHndl 
AlertTPtr 

RECORD 
boundsRect: 
procID: 
visible: 
filler1: 
goAwayFlag: 
filler2: 
ref Con: 
itemsID: 
title: 

END; 

= "'AlertTPtrj 
= "'AlertTemplate; 

SUMMARY OF THE DIALOG MANAGER 39 

Rect; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
LongInt; 
INTEGER; 
Str255 

{becomes window's portRect} 
{window definition ID} 
{TRUE if visible} 
{not used} 
{TRUE if has go-away region} 
{not used} 
{window's reference value} 
{resource ID of item list} 
{window's title} 

AlertTemplate = RECORD 
boundsRect: Rect j {becomes window's ·portRect} 
itemsID: INTEGER; {resource ID of item list} 
stages: StageList {alert stage information} 

END: 

StageList = PACKED ARRAY [1 •• 41 OF 
RECORD 

boldItem: 
boxDrawn: 
sound: 

0 •• 1; {default button item number minus 1} 
BOOLEANj {TRUE if alert box to be drawn} 
0 .• 3 {sound number} 

END; 

Routines 

Initialization 

PROCEDURE InitDialogs (restartProc: ProcPtr)j 
PROCEDURE ErrorSound (soundProc: ProcPtr); 
PROCEDURE SetDAFont (fontNum: INTEGER); [Pascal only] 

Creating and Disposing of Dialogs 

FUNCTION NewDialog 

FUNCTION GetNewDialog 

PROCEDURE CloseDialog 
PROCEDURE DisposDialog 
PROCEDURE CouldDialog 
PROCEDURE FreeDialog 

7/6/84 Rose 

(dStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEANj procID: INTEGER; behind: 
WindowPtrj goAwayFlag: BOOLEANj ref Con: LongIntj 
items: Handle) : DialogPtr; 

(dialogID: INTEGERj dStorage: Ptr; behind: 
WindowPtr) : DialogPtr; 

(theDialog: DialogPtr); 
(theDialog: DialoiPtr)j 
(dialogID: INTEGER); 
(dialogID: INTEGER); 

/DMGR/DIALOG.S 



40 Dialog Manager Programmer's Guide 

Handling Dialog Events 

PROCEDURE ModalDialog 
FUNCTION IsDialogEvent 
FUNCTION DialogSelect 

PROCEDURE DlgCut 
PROCEDURE DlgCopy 
PROCEDURE DlgPaste 
PROCEDURE DlgDelete 
PROCEDURE DrawDialog 

Invoking Alerts 

FUNCTION Alert 
FUNCTION StopAlert 
FUNCTION NoteAlert 
FUNCTION CautionAlert 
PROCEDURE CouldAlert 
PROCEI)URE FreeAlert 

(filterProc: ProcPtrj VAR itemHit: INTEGER); 
(theEvent: EventRecord) : BOOLEAN; 
(theEvent: EventRecord; VAR theDialog: DialogPtr; 
VAR itemHit: INTEGER) : BOOLEAN; 

(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr);.' 

(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER) ; 
(alertID: INTEGER.) ; 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 

Manipulating Items in Dialogs and Alerts 

PROCEDURE ,ParamText 
PROCEDURE GetDItem 

PROCEDURE SetDItem 

PROCEDURE GetIText 
PROCEDURE SetIText 
PROCEDURE SelIText 

FUNCTION GetAlrtStage 
P;R,OCEDURE ResetAlrtStage; 

UserItem Procedure 

(param0,paraml,param2,param3: Str255); 
(theDialog: DialogPtr; itemNo: INTEGER; VAR type: 
INTEGER; VAR item: Handle; VAR box: Rect); 

(theDialog: DialogPtr; itemNo: INTEGER; type: 
INTEGER; item: Handle; box: Rect); 

(item: Handle; VAR text: Str255); 
(item: Handle; text: Str255); 
(theDialog: DialogPtr; itemNo: INTEGER; strtSel, 
endSel: INTEGER); 
INTEGER; [Pascal only] 

[Pascal only] 

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: INTEGER); 

Sound Procedure 

PROCEDURE MySound (soundNo: INTEGER); 

7/6/84 Rose /DMGR/DIALOG.S 



SUMMARY OF THE DIALOG MANAGER 41 

FilterProc Function for Modal Dialogs and Alerts 

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: EventRecord; 
VAR itemHit: INTEGER) : BOOLEAN; 

Assembly-Language Information 

Constants 

; Item types 

.EQU 

.EQU 
.EQU 

4 ;add to following four constants 
o ;standard button control 
1 ;standard check box contr~l 
2 ;standard "radio button" control 

ctrlItem 
btnCtrl 
chkCtrl 
radCtrl 
resCtrl 
statText 
editText 
icon Item 
picItem 
userItem 
itemDisabl 

-.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 

3 ;control defined in control template 
8 ;static text 
16 ;editable text (dialog only) 
32 ; Lcon 
64 ;QuickDraw picture 
o ;application-defined item (dialog only) 
128 ;add to any of above to disable} 

; Item numbers of OK and Cancel buttona 

okButton 
cancelButton 

.EQU 

.EQU 
1 
2 

; Resource IDs of alert icons 

st6pIcon 
noteIcon 
ctnIcon 

.EQU 

.EQU 

.EQU 

o 
1 
2 

; Masks for stages word in alert template 

;sound number 
;whether to draw box 

volBits 
alBit 
okDismissal 

.EQU 

.EQU 

.EQU 

3 
4 
8 jitem number of default button minus 1 

Dialog Record Data Structure 

dWindow 
items 
teHandle 
editField 
editOpen 
aDefItem 
dWindLen 

7/6/84 Rose 

Dialog window 
Handle to dialog's item list 
Handle to current editText item 
Item number of editText item minus 1 
Used internally 
Item number of default button 
Length of dialog record 

/DMGR/DIALOG.S 



42 Dialog Manager Programmer's Guide 

Dialog Template Data Structure 

dBounds 
dWindProc 
dVisible 
dGoAway 
dRefCon 
dItems 
dTitle 

Rectangle that becomes portRect of dialog window's grafPort 
Window definition ID 
Flag for whether dialog window is visibl~. 
Flag for whether dialog window has a go-away region 
Dialog window's reference value 
Resource ID of dialog's item list 
Dialog wind9w's title 

Alert Template Data Structure 

aBounds 
aItems 
aStages 

Rectangle that becomes portRect of alert window's grafPort 
Resource ID of alert's item -list 
Stages, word; information for alert stages 

Item List Data Structure 

dlgMaxIndex 
itmHndl 
itmRect 
4.tmType 
itmData 

Variables 

Name 
RestProc 
DAStrings 
DABeeper 
DlgFont 
ACount 
ANumber 

7/6/84 Rose 

Number of items minus 1 
Handle or procedure pointer for this item 
Display rectangle for this item 
Item type for this item 
Length byte followed by that many bytes of 
data for this item (must be even length) 

Size 
4 bytes 
16 bytes 
4 bytes 
2 bytes 
2 bytes 
2 bytes 

Contents 
Address of restart fail-safe procedure 
Handles to ParamText strings 
Address of current sound procedure 
Font number for dialogs and alerts 
Stage number of last alert (0 through 3) 
Reso,urce ID of last alert-

/DMGR/DIALOG.S 



GLOSSARY 43 

GLOSSARY 

alert: A warning or report of an error, in the form of an alert box, 
sound from the Macintosh's speaker, or both. 

alert box: A box that appears on the screen to give a warning or 
report an error during a Macintosh application. 

alert'template: A resource that contains information from which the 
Dialog Manager can create an alert. 

alert window: The window in which an alert box is displayed. 

default button: In an alert box or modal dialog, the button whose 
effect will occur if the user presses Return or Enter. In an alert 
box, it's boldly outlined; in a modal dialog, it's boldly outlined or 
the OK button. 

dialog: Same as dialog box. 

dIalog box: A box that a Macintosh application displays to reques~ 
information it needs to complete a command, or to report' that it's 
waiting for a process to complete. 

dialog record: The internal representation of a dialog, where the 
Dialog Manager stores all the information it needs for its operations 
on that dialog. 

dialog template: A resource that contains information from which the 
Dialog Manager can create a dialog. 

dialog window: The window in which a dialog box is displayed. 

disabled: A disabled item in a dialog or alert box has no effect when 
clicked. 

display rectangle: A rectangle that determines where an item is 
displayed within a dialog or alert box. 

icon: A 32-by-32 bit image that graphically represents an object, 
concept, or message. 

item: In dialog and alert boxes, a control, icon, picture, or piece of 
text, each displayed inside its own display rectangle. 

item list: A list of information about all the items in a dialog or 
alert box. 

item number: The index, starting from 1, of an item in an item list. 

modal dialog: A dialog that requires the user to respond before doing 
any other work on the desktop. 

7/6/84 Rose /DMGR/DIALOG.G 



44 Dialog Manager Programmer's Guide 

modeless dialog: A dialog that allows the user to work elsewhere on 
the desktop before responding., 

sound procedure: A procedure that will emit one of up to four sounds 
from the Macintosh's speaker. Its integer parameter ranges from 0 to 3 
and specifies which sound. 

stage: Every alert has four stages, corresponding to consecutive 
occurrences of the alert, and a different response may -be specified for 
each stage. 

7/6/84 Rose /DMGR/DIALOG.G 



MACINTOSH USER EDUCATION 

The Desk Manager: A Programmer's Guide /DSKMGR/DESK 

See Also: Inside Macintosh: A Road Map 
Macintosh User Interface Guidelines 
Macintosh Memory Management: An Introduction 
Programming Macintosh Applications in Assembly Language 
The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide . 
The Event Manager: A Programmer's Guide 
The Window Manager: . A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
The Menu Manager: A Programmer's Guide 
The Scrap Manager: A Programmer's Guide 
The Device Manager: A Programmer's Guide 

Modification History: First Draft (ROM 2.0) 
Erratum Added 

Caroline Rose 
Caroline Rose 
Caroline Rose 
Caroline ~Rose 

2/3/83 
2/28/83 
6/14/83 
9/26/83 

Second Draft (ROM 4) 
Third Draft (ROM 7) 
Fourth Draft Bradley Hacker & 

Caroline -Rose 8/22/84 

ABSTRACT 

This manual introduces you to the Desk Manager. the part of the 
Macintosh User Interface Toolbox that handles desk accessories such as 
the Calculator. It describes how your application can support existing 
desk accessories. and tells you how to write your own desk accessories. 

Summary of significant changes and additions since last draft: 

- Added new information on the OpenDeskAcc function (page 7). 

- Added a value for specifying the Clear command in a SystemEdit 
call. corrected other values. and removed the predefined constants 
(page 9). 

- Updated "Writing Your Own Desk Accessories" to match the 
terminology and content of the Device Manager manual (page 11). 

- Added an equate for specifying the Clear command to a desk 
accessory's control routine. and corrected other equates (page 
14). 



2 Desk Manager Progr~~er's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Desk Manager 
5 Using the Desk Manager 
7 Desk Manager Routines 
7 Opening and Closing Desk Accessories 
8 Handling Events in Desk Accessories 
10 Performing Periodic Actions 
10 Advanced Routines 
11 Writing Your Own ~sk Accessories 
13 The Driver Routines 
16 A Sample Desk Accessory 
17 Summary of the Desk Manager 
19 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved •. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Desk Manager, the part of the Macintosh User 
Interface Toolbox that supports the use of desk accessories from an 
application; the Calculator, for example, is a standard desk accessory 
available to any application. *** Eventually this will become part of 
the comprehensive Inside Macintosh manual. *** You'll learn how to use 
the Desk Manager routines and how to write your own accessories. 

Like all Toolbox documentation, this manual assumes you're familiar 
with Lisa Pascal and the information in the following manuals: 

- Inside Macintosh: A Road Map 

- Macintosh User Interface Guidelines 

- Macintosh Memory Management: An Introduction 

- Programming Macintosh Applications in Assembly Language, if you're 
using assembly language 

You should also be familiar with: 

- the basic concepts behind the Resource Manager and QuickDraw 

- the Toolbox Event Manager, the Window Manager, the Menu Manager, 
and the Dialog Manager 

- device drivers, as discussed in the Device MAnager manual, if you 
want to write your own desk accessories 

ABOUT THE DESK MANAGER 

The Desk Manager enables your application to support desk accessories, 
which are "mini-applications" that can be run at the same time as a 
Macintosh application. There are a number of standard desk 
accessories, such as the Calculator shown in Figure 1. You can also 
write your own desk accessories if you wish. 

8/22/84 Rose-Hacker /DSKMGR/DESK.2 



4 Deck Maneger Progra.mer's ~lide 

'IJ (al( ulator Calculator 

Active Inactive 

Figure 1. The Calculator Desk Accessorv 

The Macintosh useI opens desk, accessories by choosing them from the 
standard Apple menu (whose title is an apple symbol), which by 
convention is the first menu in .the menu bar. When a desk acc~88ory is 
chosen from this menu, it's usually displayed in a window on the 
desktop, and that window becomes the active window. (See Figure 2.) 

An accessory is cho,en 
from the Apple menu. 

The accessory s 'II indo'll 
appears as the act i ve 
window. 

Figure 2. Opening a Desk Accessory 

After being selected, the accessory may be used as long as it's active. 
The user can activate other windows and then reactivate the desk 
accessory by clicking inside it. Whenever a standard desk accessory is 
active, it has a close box in its title bar. Clicking the close box 
makes the accessory disappear, and the window that's then frontmost 
becomes active. 

8/22/84 Rose-Hacker /DSKMGR/DESK.2 



AB~UT THE DP,SK l~GER 5 

The window associated with a desk accessory is usually a rounded-corner 
window (as shown in Figure 1) or a standard document window, although 
it can be any type of window. It may even look and behave like a 
dialog window; the accessory can calIon the Dialog Manager to create 
the window and then use Dialog Manager routines to operate on it. In 
any caee t the window will be a system window, as indicated by the fact 
that its windowKind field contains a negative value. 

The Desk l1anager' provides a mechanism that lets standard commands 
chosen from the Edit menu be applied to a desk accessory when it's 
active. Even if the commands aren't particularly useful for editing 
within the accessory, they may be useful for cutting and pasting 
between the accessory and the application or even another accessory. 
For example, the result of a calculation made with the Calculator can 
be copied into a document prepared in MacWrite. 

A desk accessory may also have its own menu. vfuen the accessory 
becomes active, the title of its menu is added to the menu bar and menu 
items may be'chosen from it. Any of the application's menus or menu 
items that no longer apply are disabled. A desk accessory can even 
have an entire menu bar full of its own menus, which will completely 
replace the menus already in the menu bar. When an accessory that has 
its own menu or menus becomes inactive, the menu bar is restored to 
normal. 

Although desk accessories are usually displayed in windows (one per 
accessory), this is not necessarily so. It's possible for an accessory 
to have only a menu (or menus) and not a window. In this case, the 
menu includes a command to close the accessory. Also, a desk accessory 
that's displayed in a ,window may create any number of additional 
windows while it's open. 

A desk accessory is actually a special type of device driver--special 
in that it may have its own windows and menus for interacting with the 
user. The value in the windowKind field of a desk accessory's window 
is, a reference number that uniquely identifies the driver, returned by 
the Device Manager when the driver was opened. Desk accessories and 
other RAM drivers used by Macintosh applications are stored in resource 
files. 

USING THE DESK MANAGER 

This section introduces you to the Desk Manager routines and how they 
fit into the general flow of an application program. The routines 
themselves are described in detail in the next section. 

To allow access to desk accessories, your application must do the 
following: 

- Initialize TextEdit and the Dialog Manager, in case any desk 
accessories are displayed in windows created by the Dialog Manager 
(which uses TextEdit). 

8/22/84 Rose-Hacker /DSKMGR/DESK.2 



6 Desk Mauager Prcgrarnm~r's Guide 

- Set up the Apple menu as the first menu in the menu bar. You can 
put the names of all currently available desk accessories in a 
menu by. using the Menu Manager procedure AddResMenu (se~ the Menu 
Manager manual for details). 

- Set up an !ciit menu that' includes the standard commands Undo, Cut, 
Copy, Paste, and Clear (in that order, with a gray line separating 
Undo and Cut), even if your application itself, doesn't support any 
of these commands. 

(note) 
Applications sh,ould leave enough space in the menu bar 
for a desk accessory's menu to be added. 

When the user chooses a desk accessory from the Apple menu, call the 
Menu Manager procedure Getltem .to get the name of the desk access~ry, 
and then the Desk Manager function OpenDeskAcc to open and display the 
accessory. When a system window is active and the user chooses Close 
from the File menu, close the desk accessory with the CloseDeskAcc 
procedure. 

(warning) 
Most open desk accessories allocate nonrelocatable 
objects (such as windows) on the heap, resulting in 
fragmentation of heap space. Before beginning an 
operation that requires a large amount of memory, your 
application may want to close all open desk accessories. 

When the Toolbox Event Manager function GetNextEvent reports that a 
mouse-down event has occurred, your application should call the Window 
Manager function FindWindow to find out where the mouse button was 
pressed. If FindWindow returns the predefined constant inSysWindow, 
which means that the mouse button was pressed in a system window, call 
the Desk Manager procedure SystemClick. 'SystemClick handles mouse-down 
events in system windows, routing them to desk accessories where 
appropriate. 

(note) 
The application needn't be concerned with exactly which 
desk accessories are currently open. 

When the active window changes from an application window·to a system 
window, the application should disable any of its menus or menu items 
that don't apply while an accessory is active, and it should enable the 
standard editing commands Undo, Cut, Copy, Paste, and Clear, in the 
Edit menu. An application should disable any editing commands it 
doesn't support when one of its own windows becomes active. 

When a mouse-down event occurs in the menu bar, and the application 
determi~es that one 'of the five standard editing commands has been 
invoked, it should call SystemEdit. Only if SystemEdit returns FALSE 
should the application process the editing command itself; if the 
active window belongs to a desk accessory, SystemEdit passes the 
editing command on to that accessory and returns TRUE. 

8/22/84 Rose-Hacker /DSKMGR/DESK.2 



USINr. THE DESK MANAGER 7 

Keyboard equivalents of the standard editing commands are passed on to 
desk accessories by the Desk Manager, not by your application. 

(warning) 
The standard keyboard equivalents for the commands in the 
Edit menu must not be changed or assigned to other . 
commands; the Desk Manager automatically interprets 
Command-Z, X, C, and V as Undo, Cut, Copy, and Paste, 
respectively. 

Certain periodic actions may be defined for desk accessories. To see 
that they're performed, you need to call the SystemTask procedure at 
least once every time through your main event loop. 

The two remaining Desk Manager routines--SystemEvent and SystemMenu-
are never called by the application, but are described in this manual 
because they reveal inner mechanisms of the Toolbox that may be of 
interest to advanced Macintosh programmers. 

DESK MANAGER ROUTINES 

Opening and Closing Desk Accessories 

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER; 

OpenDeskAcc opens the desk accessory having the given name and .displays 
"its window (if any) as the active window. The name is the accessory's 
resource name, which you get from the Apple menu by calling the Menu 
Manager procedure GetItem.OpenDeskAcc calls the Resource Manager to 
read the desk accessory from the resource file. 

You should ignore the value returned by OpenDeskAcc. If the desk 
accessory is successfully opened, the function result is its driver 
reference number; as described under CloseDeskAcc below, you don't need 
this number to close the accessory. If the desk accessory can't be 
opened, the function result is undefined; the accessory will have taken 
care of informing the user of the problem (such as memory iull) and not 
displaying itself. 

(warning) 
It may occasionally happen that the.current grafPort will 
be the desk accessory's port upon return from 
OpenDeskAcc. To be safe, you should bracket your call to 
OpenDeskAcc with calls to the QuickDraw procedures 
GetPort and SetPort, to save and restore the current 
port. 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



8 Desk Manager Progra~cr~s Guide 

'Before you'open a desk accessory it's· a gcod idea to determine whether 
there's enough memory available. Here's an example of how to do that: 

SetResLoad(FALSE); 
myResHandle :~ GetNamedResource('DRVR', theAcc); 
size := SizeResource(myResHand.le); 
myHandle := NewHandle(size + 3072); 
IF myHandle = NIL 

THEN {put up an alert indicating there's not enough memory} 
ELSE OpenDeskAcc(theAcc)' 

The extra 3K bytes in the argument to the Memory Manager's NewHandle 
function is an average amount of heap space used by desk accessories 
while they're running. 

PROCEDURE CloseDeskAcc (refNum: INTEGER); 

When a system window is active and the user chooses Close from the File 
menu, call CloseDeskAcc to close the desk accessory. RefNum is the 
driver reference number for the desk accessory, which you get from the 
windowKind field of .its window. 

The Desk Manager automatically closes a desk accessory if the user 
clicks its close box. Also, since the application heap is released 
when the application terminates, every desk accessory goes away at that 
time. 

Handling Events in Desk Accessories 

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr); 

When a mouse-down event occurs and the Window Manager function 
FindWin~ow reports that the mouse button was pressed in a system 
window, the application should call SystemClick with the event record 
and the window pointer. If the given window belongs to a desk 
accessory, SystemClick sees .that the event gets handled properly. 

SystemClick determines which part of the desk accessory's window the 
mouse button was pressed in, and responds accordingly (similar to the 
way your application responds to mouse activities in its own windows). 

- If the mouse button was pressed in the content region of the 
window and the window was active, SystemClick sends the mouse-down 
event to the desk accessory, which processes it as appropriate. 

- If the mouse button was pressed in the' content region and the 
window was inactive, SystemClick makes it the active window. 

- If the mouse button was pressed in the drag region, SystemClick 
calls the Window Manager procedure DragWindow to pull an outline 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



DESK MANAGER ROUTINES 9 

of the window across the screen and move the window to a new 
location. If the window was inactive, DragWindow also makes it 
the active window· (unless the Command key was pressed along with 

. the mouse button). 

- If the mouse bu~ton was pressed in the go-away region, ·SystemClick 
calls the Window Manager function TrackGoAway to determine whether 
the mouse is still inside the go-away region when the click is 
completed: if so, it tells the desk accessory to close itself; 
otherwise, it does nothing. 

FUNCTION SystemEdit (editCmd: INTEGER) BOOLEAN; 

Call SystemEdit when there's a mouse-down event in ,the menu bar and the 
user chooses one of the five standard editing commands from the Edit 
menu. Pass one of the following as the value of the editCmd parameter: 

EditCmd 
o 
2 
3 
4 
5 

Editing command 
Undo 
Cut 
Copy 
Paste 
Clear 

If your Edit menu contains these five commands in the standard 
arrangement (the order listed above, with a gray line separating Undo 
and Cut), you can simply call 

SystemEdit(menultem - I), 

If the active window doesn't belong to a desk accessory, SyseemEdit 
returns FALSE; the application should then process the editing command 
as usual. If the active window does belong to a desk accessory, 
SystemEdit asks that accessory to process the command and returns TRUE; 
in this case, the application should ignore the command. 

(note) 
It's up to the application to make sure desk accessories 
get their editing commands that are chosen from the Edit 
menu. In particular, make sure your application hasn't 
disabled the Edit menu or any of the five standard 
commands when a' desk accessory is activated. 

Assembly-language note: The macro you invoke to call SystemEdit 
from assembly language is named _SysEdit. 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



10 Desk Manager Programmer's Guide 

Performing Periodic Actions 

PROCEDURE SystemTask; 

For each open desk accessory, SystemTask causes the accessory to 
perform the periodic action defined for it, if any such action has been 
defined and if the proper time period has passed since the action was 
last performed. For example, a clock accessory can be defined such 
that the second hand is to move once every second; the periodic action 
for the accessory will be to move the second hand to the next position. 
and SystemTask will alert the accessory every second to perform that 
action. 

You should call SystemTask as often as possible, usually once every 
time through your main event loop. Call it more than once if your 
application does an unusually large amount of processing each time 
through the loop. 

(note) 
SystemTask should be called at least every sixtieth of a 
second. 

Advanced Routines 

FUNCTION SystemEvent (the~vent: EventRecord) : BOOLEAN; 

SystemEvent is called only by the Toolbox Event Manager funct,ion 
GetNextEvent when it receives an event, to determine whether the event 
should be handled by the application or by the system. If the given 
event should be handled by t'he application, SystemEvent returns FALSE; 
otherwise, it calls the appropriate system code to handle the event and 
returns TRUE. 

In the case of a null, abort. or mouse-down event, SystemEvent does 
nothing but return FALSE. Notice that it responds this way to a mouse
down event even though the event may in fact have occurred in a system 
window (and therefore may have to be handled by the system). The 
reason for this is that the check for exactly where the event occurred 
(via the Window Manager function FindWindow) is made later by the 
application and so would be made twice if SystemEvent were also to do 
it. To avoid this duplication, SystemEvent passes the event on to the 
application and lets it make the sole call to FindWindow. Should 
FindWindow reveal that the mouse-down event did occur in a system 
window, the application can then call SystemClick, as described above, 
to get the system to handle it. 

If the given event is a mouse-up or keyboard event, SystemEvent checks 
whether the active window belongs to a desk accessory and whether that 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



DESK MANA~ER ROUTINES 11 

accessory can handle this type of event. If so, it sends the event to 
the desk accessory and returns TRUE; otherwise, it returns FALSE. 

If SystemEvent is passed an activate or update event, it checks whether 
the window the event occurred in is a system window belonging to a desk 
accessory and whether that accessory can handle this type of event. If 
so, it sends the event to the desk accessory'and returns TRUE; 
otherwise, it returns FALSE. 

(note) 
It's unlikely that a'desk accessory would not be set up 
to handle activate and update events. 

Finally, if the given event is a disk~inserted event, SystemEvent does 
some low-level processing (by calling the File Manager function 
MountVol) but passes the event on to the application by returning 
FALSE, in case the application wants to do further processing. 

PROCEDURE SystemMenu (menuResult: LONGINT); 

SystemMenu is called only by the Menu Manager functions MenuSelect. and 
MenuKey, when an item in a menu belonging to a desk accessory has been 
chosen. The menuResult parameter has the same format as the value 
returned by MenuSelect and MenuKey: the menu ID in the high-order word 
and the menu item number in the low-order word. (The menu ID will be 
negative.) SystemMenu directs the desk accessory to perform the 
appropriate action for the given menu item. 

WRITING YOUR OWN DESK ACCESSORIES 

To write your own desk accessory, you must create it as a device driver 
and include it in a resource file, as described in the Device Manager 
manual. Standard or shared desk accessories are stored in the system 
resource file. Accessories specific to an application are rare; if 
there are any, they're stored in the application's resource file. 

The resource type for a device driver is 'DRVR'. The resource 1D for a 
desk accessory is the drive~'s unit number and should be between 12 and 
31 inclusive. The resource name should be whatever you want to appear 
in the Apple menu, but should also include a nonprinting character; by 
convention, the name should begin with a NUL character (ASCII code 0). 
The nonprinting character is needed to avoid conflict with file names 
that are the same'as the names of desk accessories. 

The structure ofa device driver is described in the Device Manager 
manual. The rest of this section reviews some of that information and 
presents additional details pertaining specifically to device ~rivers 
that are desk accessories. 

A device driver begins with a few words of flags and other data, 
followed by offsets to the routines that do the work of the driver, an 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



12 Desk Manager Progr.-mer's Guide 
l 

optional titl~. aDd finally the routines themselves. 

drYrFlegs (word) byte a flags 

2 runber of ticks between paliodic 6~tions crnoeley (word) 

4 desk accessory event mss~ drYrE~ (word) 

6 menJ 10 of meoo associatod with wiver ~(word) 

chrOpen (word) 8 offset to open rout i ne 

10 offset to prime routine drvrPrime (word) 

12 offset to control routine drvrCt I (word) 

14 offset to stetus routine drvrStatus (word) 

16 offset to close routine drvrClose (word) 

18 length of O'iver name 0'vrNeme (byte) 

19 characters of dr iver naanJ drvrName +' (byt~) 
1 dr iver rout i nes 1 

Figure 3. Desk Accessory Device. Driver 

Two bits in the h1Ib-o~ byte of the drvrFlags word ar~ uo~d 
especially for desk acces8orie8:~ 

d Need Time • EQU 5 

dNeedLock .EQU 6 

;set if driver needs time for 
; performing a periodic action 
jset if driver will be locked in 
; memory as soon as it's opancd. 

Desk accessories may need to perform predefined actions periodically. 
Por example, a clock desk accessory may want to change the time it 
displays every second. If the dNeedTime ,flag is set, the desk 
accessory doe. need to perform a periodic action, and the.drvrDelay 
word contains a tick count indicating how often the periodic action 
should occur. A tick count of 0 means it should happen as often as 
possible, 1 means it should happen at most every sixtieth of a second, 
2 means at most every thirtieth of a second, and so on. Whether the 
action actually occurs this frequently depends on how often the 
application calls the Desk Manager procedure SystemTask. SystemTask 
calls the desk accessory's control routine (if the time indicated by 
drvrDelay has elapsed), and the control routine must perform whatever 
predefined action is desired. 

8/22184 Rose-Hacker /DSI01GR/DESK. R 



(note) 

WRITING YOUR OWN DESK ACCESSORIES 13 

A desk accessory cannot rely on SystemTask being called 
regularly or frequently by an application. If it needs 
precise timing it should refer to the global variable 
Ticks. . 

The drvrEMask word contains an event mask specifying which events the 
desk accessory can handle; If the desk accessory has a window, the 
event mask should include update, activate, mouse-down, and keyboard 
events, and must DOt include mouse-up events. When an event occurs, 
the Toolbox Event Manager calls SystemEvent. SystemEvent checks the 
drvrEMask word to determine whether the desk accessory can handle the 
type of event, and if so, calls the desk accessory's contr~l routine. 
The control routine must perform whatever action is desired. 

If the desk accessory has its own menu (or menus), the drvrMenu word 
contains the menu ID of the menu (or of anyone of the menus); 
otherwise, it contains 0. The menu ID for a desk accessory menu must 
be negative, and it must be different from the menu ID stored in other 
desk accessories •. 

Following these four words are the offsets to the driver routines and, 
optionally, a title f~r the desk accessory (preceded by its length in 
bytes). You can use the title in the driver as the title of the 
accessory's window, or just as a way of identifying the driver in 
memory. 

(note) 
A practical size limit for desk accessories is about 8K 
bytes. 

The Driver Routines 

Of the five possible driver routines, only three need to exist for desk 
accessories: the open, close, and control routines. The other 
routines (prime and status) may be used if desired for a particular 
accessory. 

The open routine opens the desk accessory: 

- It creates the window to be display~d when the accessory is 
opened, if any, specifying that it be invisible (since OpenDeskAcc 
will display it). The window can be created with the Dialog 
Manager function GetNewDialog (or NewDialog) if desired; the 
accessory will look and respond like a dialog box, and subsequent 
operations may be performed on it with Dialog Ma~ager routines. 
In any case, the· open routine sets the windowKind field of the 
window record to the driver reference number for the desk 
accessory, which it gets from the device control entry. (The 
reference number will be negative.) It also may store the window 
pointer in the device control entry if desired. 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



14 Desk Mana~er Programmer's Guide 

- If the driver has any private storage, it allocates the storage, 
stores a handle to it in the device control entry, and initializes 
any local variables. It might, for example, create a menu or 
menus for the accessory. 

If the open routine is unable to complete all of the above tasks (if it 
runs out of memory, for example), it must do the following: 

- Open only the minimum of data structures needed to run the desk 
accessory. 

- Modify the code of every routine (except the close routine) so 
that the routine just returns (or beeps) when called. 

- Modify the code of the close routine so that it disposes of only 
the minimum data structures that were opened. 

- Display an alert indicating failure, such as "'The Note Pad is not 
available". 

The close routine closes t~e desk accessory, disposing of its window 
(if any) and all the data structures associated with it and replacing 
the window pointer in the device control entry with NIL (if one was 
stored there by the open routine). If the driver has any private 
storage, the close routine also disposes of that storage. 

(warning) 
A driver's private storage shouldn't be in the system 
heap, because when an application terminates the 
application heap is reinitialized and the driver is lost 
before it can dispose of its storage. 

The action taken by the control routine depends on information passed 
in the parameter block pointed to by A0. A message is passed in the 
csCode field; this message is simply a number that tells the routine 
what action to take. There are nine such messages: 

accEvent .EQU 64 ;handle a given event 
accRun .EQU 65 ;take the periodic action, if any, for . this desk accessory , 
accCursor .EOU 66 ;change cursor shape if appropriate; 

; generate null event if window was 
; created by Dialog Manager 

accMenu .EOU 67 ;handle a given menu item 
accUndo .EQU 68 ; hand Ie the Undo command 
accCut .EOU 70 ;handle the Cut command 
accCopy .EOU 71· ;handle the Copy command 
accPaste .EQU 72 ;handle the Paste/command 
accClear .EQU 73 ;handle the Clear command 

Along with the accEvent message, the control routine receives in the 
csParam field a pointer to an event record. The control routine must 
respond by handling the given event in whatever way is appropriate for 
this desk accessory. SystemClick and SystemEvent call the control 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



WRITING·YOUR OWN DESK ACCESSORIES 15 

routine with this message to send the driver an event that it should 
handle--for example, an activate event that makes the desk accessory 
active or inactive. When a desk accessory becomes active, its control 
routine might install a menu in the menu bar. If the accessory 
becoming active has more than one menu, the control routine should 
respond as follows: 

- Store the accessory's unique menu In in the global variable 
MBarEnable. (This is the negative menu ID in the device driver 
and the device control entry.) 

- Call the Menu Manager routines GetMenuBar to save the current menu 
,list and ClearMenuBar t'o clear the menu bar. 

- Install the accessory's own menus in the menu bar. 

Then, when the desk accessory becomes inactive, the control routine 
should call 'SetMenuBar to restore the former menu list, call 
DrawMenuBar to draw. the ~enu bar, and set MBarEnable to 0. 

The accRun message tells the control routine to perform the periodic 
action for this desk accessory. For every open driver that has the 
dNeedTime flag set, the SystemTask procedure calls the control routine 
with this message if the proper time period has passed since the action 
was last performed. 

The accCursor message makes it possible for the cursor to have a 
special shape when it's inside an active desk accessory. The control 
routine is called by SystemTask with this message as long as the desk 
accessory is active. If desired, the control routine may respond by 
checking whether the mouse position is in the desk accessory's window 
and then changing the shape of the cursor if so. Furthermore, if the 
desk accessory is displayed in a window c~eated by the Dialog Manager, 
the control routine should respond to the accCursor message by 
generating a null event (storing the event code for a null event in an 
event record) and passing it to DialogSelect. This enables the Dialog 
Manager to blink the vertical bar in editText items. In assembly 
language, the code might look like this: 

CLR.L 
PEA 
CLR.L 
CLR.L 

-SP 
2(SP) 
-SP 
-SP 

DialogSelect 
ADDQ.L 114,SP 

;event code for null event is 0 
;pass null event 
;pass NIL dialog pointer 
;pass NIL pointer 
;invoke DialogSelect 
;pop off .result and null event 

When the accMenu message is sent to the control routine, the following 
information is passed in the parameter block: csParam contains the 
menu ID of the desk accessory's menu and csParam+2 contains the menu 
item number. The control routine should take the appropriate action 
for when the given menu item is chosen from the menu, and then make the 
Menu Manager call HiliteMenu(0) to remove the highlighting ft;om the 
menu bar. 

8/22/84, Rose-Hacker /DSKMGR/DESK.R 



16 Desk Manager Programmer's Guide 

Finally, the control routine should respond to one of the last five 
messages--accUndo through accClear--by processing the corresponding 
editing command in the desk accessory window if appropriate. 
SystemEdit calls the control routine with these messages. For 
information on cutting and pasting between a desk accessory and the 
application, or between two desk acc£ssories, see the Scrap Manager 
manual. 

(note) 

(note) 

The control routine doesn't have to worry about savin« 
and restoring the current grafPort; the Desk Manager will 
take care of it. 

You can't segment the code of a desk accessory, since the 
jump table 1s used for the application code. 

A Sample Desk Accessory . 

*** to be supplied; meanwhile, contact Macintosh Technical Support *** 

8/22/84 Rose-Hacker /DSKMGR/DESK.R 



SUMHARY OP THE DESK MANAGEIl 17 

SUMMARY OF THE DESK MANAGER 

Opening and Closing Desk Accessories 

FUNCTION OpenDeskAcc (theAcc: Str255) INTEGER; 
PROCEDURE CloseDeskAcc (refNum: INTEGER) j 

Handling Events in Desk' Accessories 

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr); 
FUNCTION SystemEdit (editCmd: INTEGER) BOOLEAN; 

Performing Periodic Actions 

PROCEDURE SystemTaskj 

Advanced Routines . 

FUNCTION SystemEvent (theEvent: EventRecord) 
PROCEDURE SystemMenu (menuResult: L~NGINT); 

BOOLEAN; 

\ 

l 

Assembly-Language Information 

Constants 

; Desk accessory flags 

dNeedTime .EQU 5 

dNeedLock .EQU 6 

; Control routine messages 

accEvent .EQU 64 
accRun .EQU 65 

accCursor .EQU 66 

accMenu .EQU 67 
accUndo .EQU . 68 
accCut .EQU 70 
accCopy .EQU 71 

8/22/84 Rose-Hacker 

;set if driver needs time for 
; performing a periodic action 
jset if driver will be 10cke4 in 
; memory as soon as it's opened 

;handle a given event 
;take the periodic action t if anYt for 
; this desk accessory 
;change cursor shape if appropriate; 
; generate null event if window was 
; created by Dialog Manager \ 
;handle a given menu' item 
;handle the Undo command 
jhandle the Cut command 
;handle the Copy command 

/DSICMGR/DESK.S 



18 Desk Manager ProgT.a~er's Guide 

ac,cPaste 
accClear 

Variable 

.EQU 

.EQU 

Size 

72 
73 

Contents 

;handle the Paste command 
;handle the Clear command 

Name 
.MBarEnable 2 bytes Menu ID of active desk accessory's menu 

Special Macro Name 

Routine name 
SystemEdit 

Macro name 
_SysEdit 

8/22/84 Rose-Hacker /DSKMGR/DESK.S 



GLOS~Y 19 

GLOSSARY 

desk accessory: A "mini-application". implemented as a device driver. 
that can be run at the same time as a.Macintosh application. 

tick: A sixtieth of a second. 

8/22/84 Rose-Hacker /DSKMGR/DESK.G 



MACINTOSH USER EDUCATION 

The Scrap Hanager: A Programmer's Guide 

See Also: Macintosh User Interface Guidelines 
Inside Macintosh: A Road Map 
Macintosh Memory Management: An Introduction 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Toolbox Event Manager: A Programmer's Guide 
The Segment Loader: A Programmer's Guide 
The Desk Man~ger: A Programmer's Guide 
TextEdit: A Programmer's Guide 
The Fif'e Manager: A Programmer's Guide 
The Hernory Manager: A Programmer's Guide 

/SMGR/SCRAP 

Programming Macintosh Applications in Assembly Language 

Modification History: First Draft (ROM 7) 
Erratum Added 
Second Draft 

Caroline Rose 
Caroline Rose 
Katie Withey 

10/21/83 
11/16/83 
1/31/85 

ABSTRACT 
,-

This manual describes the Scrap Manager, the part of the Macintosh User 
Interface Toolbox that supports cutting and pasting among applications 
and desk accessories. 

Summary of significant changes and additions since last draft: 

- Assembly-language information for the scrap is in global 
variables, not in offsets (page 17). 

Correct examples for using GetScrap are given (pages 12-13). 

- Many otner minor changes have been made throughout the manual. 



2 Scrap Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Scrap Manager 
4 Overview of the Desk Scrap 
7 Desk Scrap Data Types 
9 Using the Scrap Manager 
10 Scrap Manager Routines 
10 Getting Desk Scrap Information 
11 Keeping the Desk Scrap on the Disk 
12 Reading from the Desk Scrap 
14 Writing to the Desk Scrap 
15 Format of the Desk Scrap 
16 Summary of the Scrap Manager 
18 Glossary 

Copyright (c) 1985 Apple Computer, Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Scrap Manager, the part of the Macintosh User 
Interface Toolbox that supports cutting and pasting among applications 
and desk accessories. *** Eventually it will become part of the 
comprehensive Inside Macintosh manual. *** 

Like all Toolbox documentation, this manual assumes you're familiar 
with Lisa Pascal and the information in the following manuals: 

- Inside Macintosh: ~ Road Map 

- Macintosh User Interface Guidelines 

- Macintosh Memory Management: An Introduction 

- Programming Macintosh Applications in Assembly Language, if you're 
using assembly language 

You should also be familiar with: 

- resources, as discussed in the Resource Manager manual 

- QuickDraw pictures 

the Toolbox Event Manager 

ABOUT THE SCRAP MANAGER 

The Scrap Manager is a set of routines and data types that enable 
Macintosh applications to manipulate the desk· scrap, which is where 
data that's cut (or copied) and pasted between applications is stored. 
An application can also use the desk scrap for storing data that's cut 
and pasted within the application, or it can set up its own private 
scrap for this purpose. The format of the private scrap can be 
whatever the application likes, since no other application will use it. 
For example, an application can simply maintain a pointer to data 
that's been cut or copied. 

(note) 
The TextEdit scrap is a private scrap for applications 
that use TextEdit. TextEdit provides its own routines 
for dealing with its scrap. 

From the user's point of view, there's a single place where all cut or 
copied data resides; it's called the Clipboard. The Cut command 
deletes data from a document and places it in the Clipboard; the Copy 
command copies data into the Clipboard without deleting it from the 
document. The next Paste command--whether applied to the same document 
or another, in the same application or another--inserts the "contents. of 
the Clipboard at a specified pl~ce. An application that offers these 

1/31/85 Rose-Withey /SHGR/SCRAP.2 



4. Scrap Manager Programmer's Guide 

editing commands will usually also provide a special window for 
displaying the current Clipboard contents; it may show the Clipboard 
window at all times or only when requested (via the Show Clipboard and 
Hide Clipboard commands). 

The desk scrap is the vehicle for transferring data not only between 
two applications but also between an application and a desk accessory, 
or between two desk accessories. Desk accessories that display text 
will usually allow the text to be cut or copied. The user might, for 
example, use the Calculator accessory to do a calculation and then copy 
the result into a document. It's also possible for a desk accessory to 
allow something to be pasted into it. 

(note) 
The Scrap Manager was designed to transfer small amounts 
of data; attempts to transfer very large: amounts of data 
may fail due to lack of memory. 

The nature of the data to be transferred varies according to the 
application. For example, in a word processor or in the Calculator, 
the data is text; in a graphics application it's a picture. The amount 
of information retained about the data being transferred also varies. 
Between two text applications, text can be cut and pasted without any 
loss of information; however, if the user of a graphics application 
cuts a picture consisting of ~ext and then pastes it into a word 
processor document, the text in the picture may not be editable in the 
word processor, or it may be editable but not look exactly the same as 
in the graphics application. The Scrap Manager allows for a variety of 
data types and provides a ~echanism whereby applications have some 
control over how much information is retained when data is transferred. 

The desk scrap is usually stored in memory, but can be stored on the 
disk (in the scrap file) if there's not enough room for it in memory. 
~he scrap may remain on the disk throughout the use of the application, 
but must be read back into memory when the application terminates, 
since the user may then remove that disk and insert another. The Scrap 
Manager provides routines for writing the desk scrap to the disk and 
for reading it back into memory. The routines that access the scrap 
keep track of whether it's in memory or on the disk. 

OVERVIEW OF THE DESK SCRAP 

The desk scrap is initially located in the application heap; a handle 
to it is stored in low memory. When starting up a~ application, the 
Segment Loader temporarily moves the scrap out of the heap into the 
stack, reinitializes the heap, and puts the scrap back in the heap (see 
Figure 1). For a short time while it does this, two c'opies of the 
scrap exist in the memory allocated for the stack and the heap; for 
this reason, the desk scrap cannot be bigger than half that amount of 
memory. 

1/31/85 Rose-Withey' /SMGR/SCRAP.2 
"'"" 



/ 

Initiolly: 

! high memory 

:»~<3t~";ck>~<i: 

::::::::::::::::::::::::::::::::::::::::: 
low memory 

OVERVIEW OF THE DESK SCRAP 5 

Then: 

high memory 

de5k 5crep ~I .. 

::: re5t of 5teCK"": 
•••••••••••••••••• e •• 

.::::}:::::;::::;:::::::::::::::::::::, 
: low memory : 

finally: 

! hi gn memory 

::::::::::::::: S ecK :::::::~ 

:::::::;:::::::;:::::::::::::::::::::::: 
, ' 
: low memory : 

Figure 1. The Desk Scrap at Application Startup 

The application can get the size of the desk scrap by calling a Scrap 
Manager function named InfoScrap. An application concerned about 
whether there's room for the desk scrap in memory could be set up so 
that a small initial segment of the application is loaded in just to 
check the scrap size. After a decision is made about whether to keep 
the scrap in memory or on the disk, the remaining segments of the 
application can be loaded in as needed. 

There are certain disadvantages to keeping the desk scrap on the disk. 
The disk may be locked, it may not have enough room Eor the scrap, or 
it may be removed during use of the application. If the application 
can't write the scrap to the disk, it should put up an alert box 
informing the user, who may want to abort the operation at that point. 

, The application must ,use the desk scrap for any Paste command given 
before the first Cut or Copy command (that is, the first since the 
application started up or since a desk accessory 'was deactivated); if 
it has a private scrap, this requires copying the desk scrap to the 
private scrap. Clearly the application must keep the contents of the 
desk scrap intact until the first Cut or Copy command is given. 
Thereafter, if it has a private scrap, it can ignore the desk scrap 
until a desk accessory is activated ~r the application is terminated; 
in either of these cases, it must copy its private scrap to the desk 
scrap. Thus whatever was last cut or copied within the application 
will be pasted if a Paste command is given in a desk'accessory or in 
the next application. 

1/31/85 Rose-Withey /SMGR/SCRAP.2 



6 Scrap Manager Programmer's Guide 

1. User enters word processor after cutting a picture in the previous application. 

I picture I · B 
desk scrap private :scrap 

2. User gives Paste command in word processor (without a previou~ Cut or Copy). 

picture " convertedt--_~", pasted where specified 
t-----:1t, picture 

desk scrap private scrap 

3e. User cuts text in word processor. 

o 
private scrap 

3b. User leaves word processor. 

I co~~~~ted I~(--:_te_x_t __ 

desk scrap private scrap 

OR: 

3. User I eaves word processor 
(without a previous Cut or Copy). 

I picture I 
desk scrap 

converted 
p.icture 

private scrap 

Figure 2. Interaction between Scraps 

Figure 2 illustrates how the interaction between the desk scrap and an 
application's private scrap might occur when the user gives a Paste 
commanq in a word processor after cutting a picture from a graphics 
application. As the picture that was cut gets copied from the desk 
scrap to the private scrap, it's converted to the format of ·the private 
scrap. If the user cuts or copies text in the word processor, it goes 
into the private scrap; then when the user then leaves the word 
processor, the text is copied from the private scrap into the desk 
scrap- On the other hand, if the user never gives a Cut or Copy 
command, the application won't copy the private scrap to the desk 
scrap, so the original contents of the desk scrap will be retained. 

Suppose the word processor in Figure 2 displays the contents of the 
Clipboard. Normally it will display its private scrap; however, to 

\ show the Clipboard contents at any time before step 2, it will have to 
display the desk scrap instead, or first copy the desk scrap to its 
private scrap.. It can instead simply copy the desk scrap to its 
private scrap at startup (step 1), so that showing the Clipboard 
contents will always mean displaying the private scrap. 

A process similar to the one shown in Figure 2 must be followed when 
the user reenters an application after using a desk accessor~, since 
the user may have cut or copied something from the desk accessory. The 
application can check whether any such cutting or copying was done by 
looking at a count returned by InfoScrap- If this count changes during 

1/31/85 Rose-Withey /SMGR/SCRAP.2 



OVERVIEW OF THE DESK SCRAP 7 

the use of the desk accessory, it means the contents of the desk scrap 
have changed. In this case, the application must copy the desk scrap 
to the private scrap, if any, and update the contents of the Clipboard 
window (if there is one and if it's visible). If the count returned by 
InfoScrap hasn't changed, however, the application won't have to take 
either of these actions. 

If the application encounters problems in trying to copy one scrap to 
another, it should alert the user. The desk scrap may be too large to 
copy to the private scrap, in which case the user may want to leave the 
application or just proceed with an empty Clipboard. If the private 
scrap is too large to copy to the desk scrap, either because it's disk
based and too large to,coPY into memory or because it exceeds the 
maximum size allowed for the desk scrap, the user .may want to stay in 
the application and cut or copy something smaller. 

DESK SCRAP DATA TYPES 

From the user's point of view there can be only one thing in the 
Clipboard at a time, but the application may store more than one 
version of the information in the scrap, each representing the same 
Clipboard contents in a different form. For example, text cut with a 
word processor may be stored in the desk scrap both as text and as a 
QuickDraw picture. 

Desk scrap data types, like resource types, ~re a sequence of four 
characters. As defined in the Resource Manager, their Pascal type is 
as follows: 

TYPE ResType = PACKEDARRAY[1 •• 4] OF CHAR; 

The Scrap Manager recognizes two standard types of data in the desk 
scrap: 

'TEXT': a series of ASCII characters 

- 'PICT': a QuickDraw picture, which is a saved sequence of drawing 
commands that can be played back with the DrawPicture command and 
may include picture.comments (see the QuickDraw manual for 
details) 

Applications must write at least one of these standard types of data to 
the desk sc~ap and must be able to read both types.' Most applications 
will prefer one of these types over the other; for example, a word 
processor prefers text while a graphics application prefers pictures. 
An application should write at least its preferred standard type of 
data to the desk scrap, and may write both types (to pass ihe most 
information possible on to the receiving application, which may prefer 
the other type). 

An application reading the desk scrap will look for its preferred data 
type. If its preferred iype isn't there, or if it's there but was 

1/31/85 Rose-Withey /SMGR/SCRAP.2 



8 Scrap Manager Programner's Guide 

written by an application having a different preferred type, the 
receiving application mayor may not be able to convert the data to the 
type it needs. If not, some information may be lost in the transfer 
process. For example, a graphics application can easily convert text 
to a picture, but the reverse isn't true. Figure 3 illustrates the 
latter case: A picture consisting of text is cut from a graphics 
application, then pasted into a word processor document. 

- If the graphics application writes only its preferred data type· 
(picture) to the desk scrap--like application A in Figure 3--the 
text in the picture will not be editable in the word processor, 
because it will be seen as just a series of drawing commands and 
not as a sequence of characters. . 

- On the other hand, if the graphics application takes the trouble 
to recognize which characters have been drawn in the picture, and 
writes them out to the desk scrap both as a picture and as text-
like application B in Figure ~--the word processor will be able to 
treat them as editable text. In this case, however, any part of 
the picture that isn't text will be lost. 

Graphics Appl ication A 

0° .................. 

picture 
consisting 

01 text 
"0 ••••••••••• 0 ••• • 

Graphics Appl ication B 

0° ...... •• ••••••• _,,_. 

picture 
~ consisting ~ 

01 text 

Cut 
~J pic1ure I /1 I 
desk scrap 

picture 

1ext 

Po~te 

Peste 

Word Processor 

0" .0 ............... 

picture ,: 
consisting /: 

of text 
"0 ........ 0 •••••••• 

Word Processor 

editable 
text-

Figure 3. Inter-Application Cutting and Pasting 

In addition to the two standard data types, the desk scrap may also 
contain application-specific types of data. If several applications 
are to support the transfer of a private type of data, each one will 
write and read that type, but still must write at least one of the 
standard types and be able to read both standard types. 

The order in which data is written to the desk scrap is important: The 
application should write out the different types in order of 
preference •. For example, if it's a word processor that has a private 
type of data as its preferred type, but also can write text and 
pictures, it should write the data in that order. 

1/31/85 Rose-Withey /SMGR/SCRAP.2 



DESK SCRAP DATA TYPES 9 

Since the size of the desk scrap is limited, it may be too costly to 
write out both an application-specifi6 data type and one (or both) of 
the standard types. Instead of creating your own type, if your data is 
graphic, you may be able to use the standard picture type and encode 
additiona'i information in picture comments. (As described in the 
QuickDraw manual, picture comments may be stored in the definition of a 
picture with the QuickDraw procedure PicComment; they~re passed by the 
DrawPicture procedure to a special routine set up by the application 
for that purpose.) Applications that are to process that information 
can do so, while others can ignore it. 

USING THE SCRAP MANAGER 

Your application should call the InfoScrap function each time through 
its main event loop. You can use this function to find out whether 
there will be enough room in the heap for both the application itself 
and the desk scrap. If there won't be enough room for the scrap, call 
the UnloadScrap procedure to write the scrap from memory onto the disk. 
InfoScrap_ ~~so provides a handle to the desk scrap if it's in memory, 
its file name on the disk, and a count that's useful for testing 
whether the contents of the desk scrap have changed during the use of a 
desk accessory. 

If a Paste command is given before the first Cut or Copy command after 
the application start~ up, th~ application must copy the contents of 
the desk scrap to its private scrap, if any. It can do this either 
immediately when it starts up, or when the Paste command is given. 
Copying the desk scrap at startup is better if your application 
supports display of the Clipboard. The Scrap Manager routine that gets 
data from. the desk scrap is called GetScrap. 

When the user gives a command that terminates the application, call 
LoadScrap to read the desk scrap back into memory if it's on the disk 
(in case the user ej~cts the disk). If the application has a private 
scrap and any Cut or Copy commands were given within the application, 
the private scrap must be copied to the desk scrap. 

To write data to the desk scrap, first call ZeroScrap to initialize it 
or clear its previous contents, and then PutScrap to put the data into 
it. 

(note) 
GetScrap, PutScrap, and ZeroScrap all keep track of 
whether the scrap is in memory or on the disk, so you. 
don't have to worry about it. 

The same scrap' interaction that happens at application startup should 
happen when the user returns to the application from a desk accessory. 
Similarly, the same interaction that happens when the application 
terminates should happen when the user accesses a desk accessory from 
the application. 

1/31/85 Rose-Withey /SMGR/SCRAP.2 



10 Scrap Manager Programmer's Guide 

Cutting and pasting between two desk accessories follows an analogous 
scenario. As described in the Desk Manager manual, the way a desk 
accessory learns it must respond to an editing command is that its 
control routine receives a message telling it to perform the command; 
the application needs to call the Desk Manager function SystemEdit to 
make this happen. 

SCRAP MANAGER ROUTINES 

Most of these routines return a result code indicating whether an error 
occurred. If no error occurred, they return the·result code 

CONST noErr = 0; {no error} 

If' an error occurred at the Operating System level, an Operating System 
result code is returned; otherwise, a Scrap Manager result code is 
returned, as indicated in the routine descriptions. (See the Operating 
System Utilities manual for a list of all result codes.) 

Getting Desk Scrap Information 

FUNCTION InfoScrap : PScrapStuff; 

InfoScrap returns a pointer to information about the desk scrap. The 
PScrapStuff data type is defined as follows: 

TYPE PScrapStuff 
ScrapStuff 

AScrapStuff; 
RECORD 

scrapSize: 
scrapHandle: 
scrapCount: 
scrapState: 
scrapName: 

END; 

LONGINT; 
Handle; 
INTEGER; 
INTEGER; 
StringPtr 

{size of desk scrap} 
{handle to desk scrap} 
{count changed by ZeroScrap} 
{tells where desk scrap is} 
{scrap file name} 

ScrapSize is the size of the desk scrap in bytes.. ScrapHandle is a 
handle to the scrap if it's In memory, or NIL if not. 

ScrapCount is a count that changes every time ZeroScrap is called, and 
is useful for testing whether the contents of the desk scrap have 
changed during the use of a desk accessory. ScrapState is positive if 
the desk scrap is in memory, 0 if it!s on the disk, or negative if it 
hasn't been initialized by ZeroScrap. 

(note) 
ScrapState is actually 0 if the scrap should be on the 
disk; for instance, if the user deletes the Clipboard 
file and then cuts something, the scrap is really in 
memory, but 'ScrapState will be ~. 

1/31/85 Rose-Withey /SMGR/SCRAP.R 



SCRAP MANAGER ROUTINES 11 

ScrapName is a pointer to the name of the scrap file, usually 
"Clipboard File". 

(note) 
InfoScrap assumes that the scrap file has a v~rsion 
number of 0 and is on the default volume. (Version 
numbers and volumes are described in the File Manager 
manual.) 

Assembly-language note: The scrap information is available in 
global variables that have the same names as the Pascal fields. 

Keeping the Desk Scrap on the Disk 

FUNCTION UnloadScrap LONGINT; 

Assembly-language note: The macro you invoke to call 
UnloadScrap from assembly language is named _UnlodeScrap. 

UnloadScrap writes the desk scrap from memory to the scrap file, and 
releases the memory it occupied. If the desk scrap is already on the 
disk, UnloadScrap does nothing. If no error occurs, UnloadScrap 
returns the result code noErr; otherwise, it returns an Operating 
System result code indicating an error. 

FUNCTION LoadScrap LONGINT; . 

Assembly-language note: The macro you invoke to call LoadScrap 
from assembly language is named _LodeScrap. 

LoadScrap reads the desk scrap from the scrap file into memory. If the 
desk scrap is already in memory, it does nothing. If no error occurs, 
LoadScrap returns the result code noErr; otherwise, it returns an 
Operating System result code indicating an error. 

1/31/85 Rose-Withey /SHGR/SCRAP.R 



12 Scrap Manager Programmer's Guide 

Reading from the Desk Scrap 

FUNCTION GetScrap (hDest: Handle; theType: ResType; VAR offset: 
LONGINT) : LONGINT; 

Given an existing handle in hDest, GetScrap reads the data of type 
theType from the desk scrap (whether in memory or on the disk), makes a 
copy of it in memory, and sets hDest to be a handle to the copy. 
Usually you'll pass in hDest a handle to a minimum-size block; GetScrap 
will resize the block and copy the scrap into it. 'If you pass NIL in 
hDest, GetScrap will not read in the data. This is useful if you want 
to.be sure the data is there before allocating space for its handle, or 
if you just want to know the size of the data. 

In, the offset ,parameter, GetScrap returns the location of the data as 
an offset (in bytes) from the beginning of the desk scrap. If no error 
occurs, the function result is the length of the data in bytes; 
otherwise, it's either an appropriate Operating System result code 
(which will be negative) or the following Scrap Manager result code: 

CONST noTypeErr -1~2; {no data of the requested type} 

For example, given the declarations 

VAR pHndl: Handle; 
tHndl: Handle; 
length: LONGINT; 
offset: LONGINT; 

-{handle for 'PICT' type} 
{handle for 'TEXT' type} 

you can make the following calls: 

pHndl ':= NewHandle(0); 
length := GetScrap(pHndl,'PICT' ,offset); 
IF length < 0 

THEN 
{error-handling} 

ELSE DrawPicture(PicHandle(pHndl)) 

If your application wants data in the form of a picture, and the scrap 
contains only text, you can convert the text into a picture by doing 
the following: 

1/31/85 Rose-Withey /SHGR/SCRAP.R 



SCRAP MANAGER ROUTINES 13 

tHndl := NewHandle(0); 
length := GetScrap(tHndl,'TEXT',offset); 
IF length < 0 

THEN 
{error-handling} 

ELSE 
BEGIN 
HLock(tHndl); 
pHndl := OpenPicture(thePortA.portRect); 
TextBox(tHndlA,length,thePortA.portRect,teJustLeft); 
ClosePicture; 
HUnlock(tHndl); 
END 

The Memory Manager procedures HLock and HUnlock are used to lock and 
unlock blocks when handles are dereferenced (see the Memory Manager 
Manual). 

(note) 
To 'copy the desk scrap to the TextEdit scrap, use the 
TextEdit function TEFromScrap. 

Your application should pass its preferred ~ata type to GetScrap. If 
it doesn't prefer one data type over any other, it, should try getting 
each of the types it can read, and use the type that returns the lowest 
offset. (A lower offset means that this data type was written before 
the others, and therefore was preferred by the application that wrote 
it.) 

(note) 

(note) 

If you're trying to read in a complicated picture, and 
there isn't enough room in memory for a copy of it, you 
can customize QuickDraw's picture retrieval so that 
DrawPicture will read the picture directly from the scrap 
file. (QuickDraw also lets you customize how pictures 
are saved so you can save them in a file; see the 
QuickDraw manual for details about customizing.) 

When reading in a picture from the scrap, allow a buffer 
of about 3.5K bytes. (There's a convention that the 
application defining the picture won't call the QuickDraw 
proc~d~re CopyBits for more than 3K, so a 3.5K buffer 
should be large enough for any picture.) 

1/31/85 Rose-Withey /SMGR/SCRAP.R 



14 Scrap Manager Programmer's Guide 

Writing to the Desk Scrap 

FUNCTION ZeroScrap : LONGINT; 

If the scrap already exists (in memory. or on the disk), ZeroScrap 
clears its contents; if not, the scrap is initialized in memory. You 
must call ZeroScrap before the first time you call PutScrap. If no 
error occurs, ZeroScrap returns the result code noErr; otherwise, it 
returns an Operating System result code indicating an error. 

ZeroScrap also changes the scrapCount field of the record of 
inEormation provided by InfoScrap. This is useful for testing whether 
the contents oE the desk scrap have changed during the use of a desk 
accessory. The application can save the value of the scrapCount field 
when one of its windows is deactivated and a system window is 
activated. Then, each time through its event loop, it can check to see 
whether the value of the field has changed. If so, it means the desk 
accessory called ZeroScrap (and, presumably, PutScrap) and thus changed 
the contents of the desk scrap. 

(warning) 
Just check to see whether the scrapCount field has 
changed; don't rely on exactly how it has changed. 

FUNCTION PutScrap (length: LONGINT; theType: ResType; source: Ptr) 
LONGINT; 

PutScrap writes the data pointed to by the source parameter to the desk 
scrap (in memory or on the disk). The length parameter indicates the 
numb~r of bytes to write, and theType is the data type. 

(warning) 
The specified type must be different from the type of any 
data already in the desk scrap. If you write data of a 
type already in the scrap, the new data will be appended 
to the s~rap, and subsequent GetScrap calls will still 
return the old data. 

If no error occurs, PutScrap returns the result code noErr; otherwise, 
it returns an Operating System result code indicating an error, or the 
following Scrap Manager result code: 

(note) 

CONST noScrapErr = -1~~; {desk scrap isn't initialized} 

To copy the TextEdit scrap to the desk scrap, use the 
TextEdit function TEToScrap. 

1/31/85 Rose-Withey /SMGR/SCRAP.R 



SCRAP MANAGER ROUTINES 15 

(warning) 
Don't forget to call ZeroScrap to initialize the scrap or 
clear its previous contents. 

FORMAT OF THE DESK SCRAP 

.In general, the desk scrap consists of a series of data items that have 
the following format: 

Number of bytes 
4 bytes 
4 bytes 
n bytes 

Contents 
Type (a sequence of four characters) 
Length of following data in bytes 
Data; n must be even (if the above length 
is odd, add an extra byte) 

The standard types are 'TEXT' and 'PICT'. You may us~ any other four
character sequence for types specific to your application. 

The format of the data for the 'TEXT' type is as follows: 

Number of bytes 
4 bytes 
n bytes 

Contents 
Number of characters in the ~ext 
The characters in the text 

The data for the 'PICT' type is a QuickDraw picture, which consists of 
the size of the picture in bytes, the picture frame, and the picture 
definition data (which may include picture comments). See the 
QuickDraw manual for details. 

1/31/85 Rose-Withey /SMGR/SCRAP.R 



16 Scrap Manager Programmer's Guide 

SU~lliARY OF THE SCRAP MANAGER 

Constants 

CONST { Scrap Manager result codes } 

noScrapErr 
noTypeErr 

-100; 
-102; 

{desk scra~ isn't initialized} 
{no data of the requested type} 

Data Types 

TYPE PScrapStuff 
ScrapStuff 

Routines 

.... ScrapStuff; 
RECORD 

S · ( scrap 1ze: 
scrapHandle: 
scrapCount: 
scrapState: 
scrapName: 

END; 

Getting Desk Scrap Information 

FUNCTION InfoScrap : PScrapStuff; 

LONGINT; 
Handle; 
INTEGER; 
INTEGER; 
StringPtr 

Keeping the Desk Scrap on the Disk 

FUNCTION UnloadScrap 
FUNCTION LoadScrap : 

LONGINT; 
LONGINT; 

Reading from the Desk Scrap 

{size of desk scrap}· 
{handle to desk scrap} 
{count changed by ZeroScrap} 
{tells where desk scrap is} 
{scrap file name} 

FUNCTION GetScrap (hDest: Handle; theType: ResType; VAR offset: LONGINT) 
: LONGINT; 

Writing to the Desk Scrap 

FUNCTION ZeroScrap : LONGINT; 
FUNCTION PutScrap (length: LONGINT; theType: ResType; source: .Ptr) 

LONGINT; 

1/31/85 Rose-Withey /SMGR/SCRAP.S 



SUMMARY OF THE SCRAP MANAGER 17 

Assembly-Language Information 

Constants 

; Scrap Manager result codes 

noScrapErr 
noTypeErr 

.EQU 

.EQU 
-1~~ 
-1~2 

~desk scrap isn't initialized 
;no data of the requested type 

Special Macro Names 

Pascal name 
LoadScrap 
UnloadScrap 

Variables 

ScrapSize 
ScrapHandle 
ScrapCount 
ScrapState 
ScrapName 

Hacro name 
_LodeScrap 
_UnlodeScrap 

Size in bytes of desk scrap (long) 
Handle to desk scrap in memory 
Count changed by ZeroScrap (word) 
Tells where desk scrap is (word) 
Pointer to scrap file name (preceded by length byte) 

1/31/85 Rose-Withey /SMGR/SCRAP.S 



18 Scrap Manager Programmer's Guide 

GLOSSARY 

desk scrap: The place where data is stored when it's cut (or copied) 
and pasted among applications and desk accessories. 

scrap: A place where cut or copied data is stored. 

scrap file: The file containing the desk scrap (usually named 
"Clipboard File"). 

1/31/85 Rose-Withey /SMGR/SCRAP.G 



MACINTOSH USER EDUCATION 

The Toolbox Utilities: A Programmer's Guide /TOOLUTIL/UTIL 

See Also: Macintosh User Interface Guidelines 
Inside Macintosh: A Road Map 
Macintosh Memory Management: An Introduction 
QuickDraw: A Programmer's 'Guide 
The Resource Manager: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 

Modification History: First Draft 
Second Draft (ROM 7) 
Erratum Added 
Third Draft 

Caroline Rose 
Caroline Rose 
Caroline Rose 
Caroline Rose & 

5/16/83 
1/4/8/• 
2/3/8/• 

Katie Withey 11/13/84 

ABSTRACT 

This manual describes the Toolbox Utilities, a set of routines and data 
types in the User Interface Toolbox that perform generally useful 
operations such as fixed-point arithmetic, string manipulation, and 
logical operations on bits. 

Summary of significant changes and additions since last draft: 

- Routines added: Ge.t IndString (page 4); PackBi ts and UnpackBi ts 
(pages 6-7); GetIndPattern (pages 1~-11); DeltaPoint, 
SlopeFromAngle, and AngleFromSlope ,(pages 12-13). 

- The section on fixed-point numbers and the StringPtr and 
StringHandle data types have been moved to Macintosh Memory 
Management: An .Introduction. 

- The Munger function returns the offset of the first byte past 
where a replacement or insertion occurred (pages 5-6). 

- The resource 'IDs for the standard Macintosh pattern list (page 10) 
and cursors (page 11) are included. The formats of these and 
other miscellaneous resources are given (page 14). 

- The description of the ShieldCursor procedure has been changed 
(pages 11-12). 



2 Toolbox Utilities Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 Toolbox Utility Routines 
3 Fixed-Point Arithmetic 
4 String Manipulation 
5 Byte Manipulation 
7 Bit Manipulation 
8 Logical Operations 
9 Other Operations on Long Integers 
10 Graphics Utilities 
12 Miscellaneous Utilities 
14 Formats of Miscellaneous Resources 
15 Summary of the Toolbox Utilities 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Toolbox Utilities, a set of routines and data 
types in the User Interface Toolbox that perform generally useful 
operations such as fixed-point arithmetic, string manipulation, and 
logical operations on bits. *** Eventually it will become part of the 
comprehensive Inside Macintosh manual. *** 

Like all Toolbox documentation, this manual assumes you're familiar 
with Lisa Pascal and the information in the following manuals: 

- Inside Macintosh: A Ro~d Map 

- Macintosh User Interface Guidelines 

- Macintosh Memory Management: An Introduction 

- Programming Macintosh Applications in Assembly Language, if you're 
using assembly language 

Depending on ~hich Toolbox Utilities you're interested in using, you 
may also need to be familiar with: 

- resources, as described in the Resource Manager manual 

- the basic concepts and structures behind QuickDraw 

TOOLBOX UTILITY ROUTINES 

Fixed-Point Arithmetic 

Fixed-point numbers are described in Macintosh Memory Management: An 
Introduction. *** The next draft of that manual will be corrected to 
show that bit 15 of the high-order word is the sign bit. *** Note that 
fixed-point values can be added and subtracted as long integers. 

In addition to the following routines, the HiWord and LoWord functions 
(described under "Other Operations on Long Integers" below) are useful 
when you're working 'with fixed-point numbers. 

FUNCTION FixRatio (numer,denom: INTEGER) : Fixed; 

FixRatio returns the fixed-point quotient of numer and denom. Numer or 
denom may be any signed integer. The result is truncated. If denom is 
0, FixRatio returns $7FFFFFFF with the sign of numer. 

11/13/84 Rose-Withey /TOOLUTIL/UTIL.R 



4 Toolbox Utilities Programmer's Guide 

FUNCTION Fixl1ul (a,b: Fixed) : Fixed; 

Fi)~M~l returns the fixed-point product of a and b. The result is 
computed HOD 65536, and truncated. 

FUNCTION FixRound (x: Fixed) : INTEGER; 

Given a positive fixed-point number, FixRound rounds it to the nearest 
integer and returns the result. If the value is halfway between two 
integers (.5), it's rounded up. To round a negative fixed-point' 
number, multiply by -1, round, then multiply by -1 again. 

Strin~ Manipulation 

FUNCTION NewString (theString: Str255) StringHandle; 

NcwString allocates the specified string as a relocatable object on the 
heap and returns a handle to it. 

PROCEDURE SetString (h: StringHandle; theString: Str255); 

SetString sets the string whose handle is passed in h to the string 
specified by theString. 

FUNCTION Ge~String (stringID: INTEGER) : StringHandle; 

GetString returns a handle to the string having the given resource ID, 
reading it from the resource file if necessary. It calls the Resource 
Manager function GetResource('STR ';stririgID). If the resource can't 
be read, GetString returns NIL. 

(note) 
If your application uses a large number of strings, • 
storing them in a string list in the resource file will 
be more efficient. You can access strings in a string 
list with GetIndString, as described below. 

PROCEDURE GetIndString (VAR theString: Str255; strListID: INTEGER; 
index: INTEGER); [NO trap macro] 

GetIndString returns in theString a string in the string list that has 
the resource ID strListID. It reads the string list from the resource 
file if necessary, by calling the Resource Manager function 
GetResource('STR#' ,strListID). It returns the string specified by the 
index parameter, which can range from 1 to the number of strings in the 
list. If the resource can't be read or the index is out of range, the 
empty string is returned. 

11/13/84 Rose-Withey /TOOLUTIL/UT 



TOOLBOX UTILITY ROUTINES 5 

Byte Manipulation 

FUNCTION Munger (h: Handle; offset: LONGINT; ptr1: Ptr; len1: LONGINT; 
ptr2: Ptr; len2: LONGINT) ': LONGINT; 

Munger (which rhymes with "plunger") lets you manipulate bytes in the 
string of bytes' (the "destination string") to which h is a handle. The 
operation starts at the specified byte offset in the destination 
string. 

(note) 
Although the term "string" is used here, Munger does not 

'assume it's manipulating a Pascal string; if you pass it 
a handle to a Pascal string, you must take into account 
the length byte. 

The exact nature of the operation done by Munger depends on the values 
you pass it in two pointer/length parameter pairs. In general, 
(ptr1,len1) defines a target string to be replaced by the second string 
(ptr2 ,len2). If these, four parameters are' all positive and nonzero, 
Munger looks for the target string in the destination string, starting 
from the given offset and ending at the end of the string; it replaces 
the first occurrence it finds with the replacement string and returns 
the off~et of the first byte past where the replacement occurred. 
Figure 1 illustrates this; the bytes represent ASCII characters as 
shown. 

Given: offset = 4 
.J, 

~_h_--,H master pointer H t thlel riel J I sl It 'hlel lalplpillel 

the destination string 

ptr1 H t (hlel' the target string (ptr1 ,Ien1 ) 

len1 =-3 

ptr2 ~ the replacement string (ptr2,len2) 
'--v-J 

len2=2 

Munger(h,offset,ptr1 .. len1,ptr2 .. len2) yields: returned value = 10 
+ 

h H master pointer H t thlel rIel' t sl lalnl lalplpillel 

Figure 1. Munger Function 

• 

11/13/84 Rose-Withey /TOOLUTIL/UTIL.R 



6 Toolbox Utilities Programmer's Guide 

Different operations occur if either pointer is NJL or either length is 
0: 

- If ptrl is NIL, the substring of length lenl starting at the given 
offset is replaced by the replacement string. If lenl is 
negative, the substring 'from the given offset to the end of the 
destination string is replaced by the replacement string. In 
either case, Munger returns the offset of the first byte past 
where the replacement occurred. 

- If lenl is 0, (ptr2,len2) is simply inserted at the given offset; 
no text is replaced. Munger returns the offset of the first byte 
past where the insertion occurred. 

- If ptr2 is NIL, Munger returns the offset at which the target 
string was found. The destination string isn't changed. 

- If len2 is 0 (and ptr2 is not NIL), the target string is deleted 
rather than replaced (since the replacement string is empty). 
Munger returns the offset at which the deletion occurred. 

If it can't find the target string in the destination string, Munger 
returns a negative value. 

There's one case in which Munger performs a replacement even if it 
doesn't find all of the target string. If the substring from the 
offset to 'the end of the destination string matches the beginning of 
the target string, the portion found is replaced with the replacement 
string. 

(warning) 

(note) 

Be careful not to specify an offset that's greater than 
the length of the destination string, or unpredictable 
results may occur. 

The destination string must be in a relocatable block 
that was allocated by the Memory Manager. Munger 
accesses the string's length by calling the Memory 
Manager routines GetHandleSize and SetHandleSize. 

PROCEDURE PackBits (VAR srcPtr,dstPtr: Ptr; srcBytes: INTEGER); 

PackBits compresses srcBytes bytes of data starting at srcPtr and 
stores the compressed data at dstPtr. The value of srcBytes should not 
be greater than 127. Bytes are compressed when there are three or more 
consecutive equal bytes. After the data is compressed, srcPtr is 
incremented by srcBytes and dstPtr is incremented by the number of 
bytes that the data was compressed to. In the worst case, the 
compressed data can be one byte longer than the or,iginal data. 

PackBits is usually used to compress QuickDraw bit images; in this 
case, you should call it for one row at a time. (Because of the 

11/13/84-Rose-Withey /TOOLUTIL/UTIL.R 



TOOLBOX UTILITY ROUTINES 7 

repeating patterns in QuickDraw images, there are more likely to be 
consecutive equal bytes there than in other data.) Use UnpackBits 
(below) to expand data compressed by PackBits. 

PROCEDURE UnpackBits (VAR srcPtr,dstPtr: Ptr; dstBytes: INTEGER); 

Given in srcPtr a pointer to data that was compressed by PackBits, 
UnpackBits expands the data and stores the result at dstPtr. DstBytes 
is the length that the expanded data will be; it should be the value 
that was passed to PackBits in the srcBytes parameter. After the data 
is expanded, srcPtr is incremented by the number of bytes that were 
expanded and dstPtr is incremented by dstBytes. 

Bit Manipulation 

Given a pointer and an offset, these routines can manipulate any 
specific bit. The pointer can point to an even or odd byte; the offset 
can be any positive long integer, starting at 0 for the high-order bit 
of the specified byte (see Figure 2). 

(note) 

1hi sP1r pO ints 
here 

J, 

BitTst(thisPtr .. 7) 
tests this bit 

J, 
11 12 ~3 14 ~S 16 j7 Ie ~9 po 111 j12 11 3 ~14 ~15 J 

I 

"6 P 7 118 P 9 !20 f21 122 123124 125 126 127 128129130 131 I 
r 

BitSet(thisPtr .. 25) sets this bit, 

Figure 2. Bit Numbering for Utility Routines 

This bit numbering is the opposite of the MC68000 bit 
numbering to allow for greater generality. For example, 
you can directly access bit 1000 of a bit image given a 
pointer to the beginning of the bit image. 

FUNCTION BitTst (bytePtr: Ptr; bitNum: LONGINT) : BOOLEAN; 

BitTst tests whether a given bit is set and returns TRUE if so or FALSE 
if not. The bit is specified by bitNum, an offset from the high-order 
bit of the byte pointed to by bytePtr. 

11/13/84 'Rose-Withey /TOOLUTIL/UTIL.R 



8 Toolbox Utilities Pr.ogrammer's Guide 

PROCEDURE BitSet (bytePtr: Ptr; bitNum: LONGINT); 

BitSet sets the bit specified by bitNum, an offset from the high-order 
bit of the byte pointed to by bytePtr. 

,PROCEDURE BitClr (bytePtr: Ptr; bitNum: LONGINT); 

BitSet clears the bit specified by bitNum, an offset from the high
order bit of the byte .pointed to by bytePtr. 

Logical Operations 

FUNCTION BitAnd (value1,value2: LONGINT) : LONGINT; 

BitAnd returns the result of the AND logical operation on the bits 
comprising the given long integers (value1 AND value2). 

FUNCTION BitOr (value1,value2: LONGINT) : LONGINT; 

BitOr returns the result of the OR logical operation on the bits 
comprising given long integers (value1 OR value2). 

FUNCTION BitXor (value1,value2: LONGINT) : LONGINT; 

BitXor returns the result of the XOR logical operation on the bits 
comprising the given long integers (value1 XOR value2). 

FUNCTION BitNot (value: LONGINT) : LONGINT; 

BitNot returns the result of the NOT logical operation on the bits 
comprising the given long integer (NOT value). 

FUNCTION BitShift (value: LONGINT; count: INTEGER) : LONGINT; 

BitShift logically shifts the bits of the given long integer. Count 
specifies the direction and extent of the shift, and is taken MOD 32. 
If count is positive, BitShift shifts that many positions to the left; 
if count is negative, it shifts to the right. Zeros are shifted into 
empty ,positions at either end. 

11/13/84 Rose-Withey /TOOLUTIL/UTIL.R 



TOOLBOX UTILITY RO~TINES 9 

Other Operations on Long Integers 

FUNCTION HiWord (x: LONGINT) : INTEGER; 

HiWord returns the high-order word of the given long integer. One use 
of this function is to extract the integer part of a fixed-point 
number. 

FUNCTION LoWord (x: LONGINT) : INTEGER; 

LoWord returns the low-order word of the given long integer. One use 
of this function is to extract the fractional part of a fixed-point 
number. 

(note) 
If you're dealing with fixed-point numbers, you can 
define a variant record instead of using HiWord and 
LoWord. For example: 

TYPE FixedAndInt = 
RECORD CASE INTEGER OF 

1: (fixedView: Fixed); 
2: (intView: RECORD 

END; 

whole: INTEGER; 
,part: INTEGER 

END; 

If you declare x to be of type Fixed~dInt, you can 
a'ccess' it as a fixed-point value with x.fixedView, or 
access, the integer part with x.intView.whole and the 
fractional part with x.intView.part. 

PROCEDURE LongMul (a,b: LONGINT; VAR dest: Int64Bit)j 

LongMul multiplies the gi.ven long integers and returns the result in 
dest, which has the following data type: 

TYPE Int64Bit = RECORD 

11/13/84 Rose-Withey 

hiLong: LONGINTj 
loLong: LONGINT 

ENDj 

/TOOLUTIL/UTIL.R 



10 Toolbox Utilities Programmer.'s Guide 

Graphics Utilities 

FUNCTION Ge t Icon (iconID: INTEGER) I: Handle; 

Get Icon returns a handle to the icon having the given resource ID, 
reading it from the resource file if necessary. It calls the Resource 
Manager function GetResource('ICON',iconID). If the resource can't be 
read, Getlcon returns NIL. 

-PROCEDURE Plotlcon (theRect: Rect; thelcon: Handle); 

Plotlcon draws the icon whose handle is the Icon in the rectangle 
theRect, which is in the local coordinates of the current grafPort. It 
calls the QuickDraw procedure CopyBits and uses the srcCopy transfer 
mode. (Yo~ must have initialized QuickDraw before calling Plotlco~.) 

FUNCTION GetPatt'ern (pat ID·: INTEGER) : PatHandle; 

GetPattern returns a handle to the pattern having the given resource 
10, reading it from the resource file if necessary. It calls the 
Resource Manager function GetResource('PAT ',patID). If the resource 
can't be read, GetPattern returns NIL. The PatHandle data type is 
defined in the Toolbox Utilities as follows: 

TYPE PatPtr = APattern; 
PatHandle = APatPtr; 

PROCEDURE GetlndPattern (VAR thePattern: Pattern; patListID: INTEGER; 
index: INTEGER); [No trap macro] 

GetlndPattern returns in ~hePattern a pattern in the pattern list that 
has the resource ID patListID. I~ reads the pattern list from the 
resource file if necessary, by calling the Resource Manager function 
GetResource('PAT#',patListID). It returns the pattern specified by the 
index paramet~r, which can range from 1 to the number of patterns in 
the pattern list. 

There's a pattern list in the system resource file that contains the 
standard Macintosh patterns used by.MacPaint (see Figure 3). Its 
resource ID is: 

CONST sysPatListID = 0; 

11/13/84 Rose-Withey /TOOLUTIL/UTIL.R 



TOOLBOX'UTILITY ROUTINES 11 

1 2 3," 5 6 7 6 9 10 11 12 13 14 15 16 17 16 19 

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Figure 3. Standard Patterns 

FUNCTION GetCursor (cursorID: INTEGER) CursHandle; 

GetCursor returns a handle to the cursor having 
reading it'from the resource file if necessary. 
Manager function GetResource('CURS',cursorID). 
be read, GetCursor returns NIL. The CursHandle 
the Toolbox Utilities as follows: 

the given resource ID, 
It calls the Resource 

If the resource can't 
data type is defined in 

TYPE CursPtr = ~Cursor; 
CursHandle = ~CursPtr; 

The standard cursors shown in Figure 4 are defined in the system 
resource file. Their resource' IDs are as follows: 

(note) 

CONST iBeamCursor = 1; 
crossCursor = 2; 
plusCursor = 3; 
watchCursor = 4; 

I + 

{to select text} 
{to draw graphics} 
{to select cells in structured documents} 
{to indicate a long wait} 

c8a o 
iBeemCursor crossCursor plusCursor wetchCurs'or 

, Figure 4. Standard Cursors 

You can set the cursor with the QuickDraw procedure 
SetCursor. The arrow cursor is defined in QuickDraw as a 
global variable named arrow. 

PROCEDURE ShieldCursor (shieldRect: Rect; offsetPt: Point); 

ShieldCursor removes the cursor from the screen if the cursor and a 
given rectangle intersect. Like the QuickDraw procedure HideCursor, it 
decrements the cursor level and must be balanced by a call to 
ShowCursor. The rectangle may be given in global or local coordinates: 

- If they're global coordinates, pass (0,O) in offsetPt. 

11/13/84 Rose-Withey /TOOLUTIL/UTIL.R 



12 Toolbox Utilities Programmer's Guide 

- If they're a grafPort's local coordinates, pass the top left 
corner of the grafPort's boundary rectangle in offsetPt. (L~ke 
LocalToGlobal in QuickOraw, ShieldCursor will offset the 
coordinates of the rectangle by the coordinates of this point.) 

FUNCTION GetPicture (picIO: INTEGER) : PicHandle; 

GetPicture returns a handle to the picture having the given resource 
10, reading it from the resource file if necessary. It calls the 
Resource Manager function GetResource('PICT',picIO). If the resource 
can't be read, GetPicture returns NIL. The PicHandle data type is 
defined in QuickDraw. 

Miscellaneous Utilities 

FUNCTION DeltaPoint (ptA,ptB: Point) : LONGINT; 

OeltaPoint subtracts the coordinates of ptA from the coordinates of ptB 
and returns .the result as a long integet;: the high-ord"er word of the" 
result is the vertical coordinate and the low-order word is the 
horizontal coordinate. 

(note) 
The QuickDraw procedure SubPt does the same calculation 
but returns the result in a VAR parameter of type Point. 

FUNCTION SlopeFromAngle (angle: INTEGER) : Fixed; 

Given an angle, SlopeFromAngle return"s the slope dh/dv of the line 
forming that angle with the y-axis (dh/dv is the hprizontal change 
divided by the vertical change between any two points on the line). 
Figure 5 illustrates SlopeFromAngle (and AngleFromSlope, described 
below, which does the reverse). The angle is treated MOD 180, and is 
in degrees measured from 12 o'clock; positive degrees are measured 
clockwise, negative degrees 'are measured counterclockwise (for example, 
90 degrees is at 3 o'clock and -90 degrees is at 9 o'clock). Positive 
y is down; positive x is to the right. 

11/13/84 Rose-Withey /TOOLUTIL/UTIL.R 



TOOLBOX UTILITY ROUTINES 13 

-'I 
engle = 4S 

SlopeFromAngle(4S) :a $FFFFOOOO 
AnglefromSlope($FFFFOOOO) = 4S 

($FFFFOOOO i, -1.0) 

-x ---~-.---+-..... -.--... +x 

+"1 

~Figure 5. SlopeFromAngle and AngleFromSlope' 

FUNCTION AngleFromSlope (slope: Fixed) : INTEGER; 

Given the slope dh/dv of a line (see SlopeFromAngle above). 
AngleFromSlo~e returns the angle formed by that line and the y-axis. 
The angle is treated MOD 180, and is measured in degrees the same way 
as for SlopeFromAngle. 

AngleFromSlope is meant for use when speed is much more important than 
accuracy--its integer result is guaranteed to be within one degree of 
the correct answer, but not necessarily within half a degree. However, 
the equation 

AngleFromSlope (SlopeFromAngle (x» = x 

is always true (although the reverse is not). 

11/13/84 Rose-Withey /tOOLUTIL/UTIL.R 



14 Toolbox Utilities Programmer's Guide 

FORMATS OF MISCELLANEOUS RESOURCES 

The following table shows the exact format of various resources. The 
lengths in .the last column are given in bytes. For more information 
about the contents of the graphics-related resources, see the QuickDraw 
manual. 

Resource 
Icon 

Icon list 

'Pattern 

Pattern list 

Cursor 

Picture 

String 

String list 

(note) 

Resource type 
'ICON' 

, ICNII ' 

'PAT ' 

'PATII' 

'CURS' 

'PICT' 

'STR ' 

'STRII' 

Number of bytes 
128 bytes 

n * 128 bytes 

n 

8 bytes 

2 bytes 
* 8 bytes 

32 bytes 
32 bytes 
4 bytes 

2 bytes 
8 bytes 
m bytes 

m bytes 

2 bytes 
m bytes 

Contents 
The icon 

n icons 

The pattern 

Number of patterns 
n patterns 

The data 
The mask 
The hotSpot 

Picture length (m+10) 
Picture frame 
Picture definition data 

The string (I-byte 
length followed by 
the characters) 

Number of strings 
The strings 

Unlike a pattern list or a string list, an icon list 
doesn't start with the number of items in the list. 

11/13/84 Rose-Withey /TOOLUTIL/UTIL~R 



SUMMARY OF THE TOOLBOX UTILITIES 15 

SUMMARY OF THE" TOOLBOX UTILITIES 

Constants 

CONST { Resource ID of standard pattern list } 

sysPatListID = 0; 

{. Resource IDs of standard cursors } 

{to select text} 
{to draw graphics} 

iBeamCursor = 1; 
crossCursor = 2; 
plusCursor = 3; 
watchCursor :I 4; 

{to select cells in structured documentsl 
{to indicate a long wait} 

Data Types 

TYPE Int64Bit = RECORD 

CursPtr 
CursHandle 

hiLong: LONGINT; 
loLong: LONGINT 

END; 

= "'Cursor; 
= "'CursPtr; 

PatPtr = "'Pattern; 
PatHandle :I ""PatPtr; 

Routines 

Fixed-Point Arithmetic 

FUNCTION FixRatio (numer,denom: INTEGER) 
FUNCTION FixMuI (a,h: Fixed) : Fixed; 
FUNCTION FixRound (x: Fixed) : INTEGER; 

String Manipulation 

Fixed; 

FUNCTION NewString 
PROCEDURE SetString 
FUNCTION Get~tring 

PROCEDURE GetIndString 

(theString: Str255) : StringHandle; 
(h: StringHandle; theString: Str255); 
(stringID: INTEGER) : StringHandle; 

\ 

11/13/84 Rose-Withey 

(VAR theString: Str255; strListID: INTEGER; 
index: INTEGER); [No trap macro] 

/TOOLUTIL/UTIL.S 



16 Toolbox Utilities Programmer's Guide 

Byte Manipulation 

FUNCTION Munger (h: Handle; offset: LONGINT; ptr1: Ptr; len1: 
LONGINT; ptr2: Ptr; len2: LONGINT) : LONGINT; 

PROCEDURE PackBits (VAR srcPtr ,dstPtr: Ptr'; srcBytes: INTEGER); 
PROCEDURE UnpackBits (VAR srcPtr,dstPtr: Ptr; dstBytes: INTEGER); 

Bit Manipulation 

FUNCTION BitTst (bytePtr: Ptr; bitNum: LONGINT) : BOOLEAN; 
PROCEDURE BitSet (bytePtr: Ptr; bitNum: LONGINT); 
PROCEDURE BitClr (bytePtr: Ptr; bitNum: LONGINT); 

Logical Operations 

FUNCTION BitAnd 
FUNCTION BitOr 
FUNCTION BitXor 
FUNCTION BitNot 
FUijCTION BitShift 

(valuel,value2: LONGINT) LONGINT; 
(value1,value2: LONGINT) LONGINT; 
(valuel,value2: LONGINT) LONGINT; 
(value: LONGINT) : LONGINT; 
(value: LONGINT; count: INTEGER) : LONGINT; 

Other Operations on Long Integers 

FUNCTION HiWord (x: LONGINT) : INTEGER; 
FUNCT~ON LoWord (x: LONGINT) : INTEGER; 
PROCEDURE LongMul (a,b: LONGINT; VAR dest: Int64Bit); 

Graphics Utilities 

FUNCTION Getlcon 
PROCEDURE Plot Icon 
FUNCTION. GetPattern 
PROCEDURE GetlndPattern 

FUNOTION GetCursor 
PROCEDURE ShieldCursor 
FUNCTION GetPicture 

Miscellaneous Utilities 

(iconID: INTEGER) : Handle; 
(theRect: Rect; thelcon: Handle); 
(patID: INTEGER) : PatHandle; 
(VAR thePattern: Pattern; patListID: 
index: INTEGER); [No trap macro] 

(cursorID: INTEGER) : CursHandle; 
(shieldRect: Reet; offsetPt: Point); 
(picID: INTEGER) : PicHandle; 

FUNCTION DeltaPoint (ptA,ptB: Point) : LONGINT; 
FUNCTION SlopeFromAngle (angle: INTEGER) : Fixed; 
FUNCTION AngleFromSlope (slope: Fixed) : ,INTEGER; 

INTEGER; 

11/13/84 Rose-Withey /TOOLUTIL/UTIL.S 

I 



SUMMARY OF THE TOOLBOX UTILITIES 17 

Assembly-Language Information 

Constants 

; Resource ID of standard pattern list 

sysPatListID .EOU 

; Resource IDs of standard cursors 

iBeamCursor 
cross Cursor 
plusCursor 
watchCursor 

.EOU 
.EOU 
.EOU 
.EOU 

11/13/84 Rose-Withey 

1 
2 
3 
4 

;to select text 
;to draw graphics 
;to select calls in structured documents 
;to indicate a long wait 

/TOOLUTIL/UTIL.S 



MACINTOSH USER EDUCATION 

Macintosh Packages: A Programmer's Guide 

See Also: The Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
Macintosh Control Manager Programmer's Guide 
The Event Manager: A.Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
TextEdit: A Programmer's Guide 

/PACKAGES/PACK 

Programming Macintosh Applications in Assembly Language 
The Structure of a Macintosh Application 

Modification History: First Draft (ROM 7) B. Hacker & C. Rose 2/29/84 
. Second Draft Caroline Rose 5/7/84 

I 

ABSTRACT 

Packages are sets of data structures and routines that are stored as 
resources and brought into memory only when needed. There's a package 

. for presenting the standard user interface when a file is to be saved or 
opened, and others for doing more specialized operations such as 
floating-point arithmetic. This manual describes packages and the 
Package Manager, the part of the Macintosh User Interface Toolbox that 
provides access to packages. 

Summary of significant changes and additions since last draft: 

- The documentation of the International Utilities Package and the 
Binary-Decimal Conversion Package has been added. 

- There's a new feature in the Standard File Package routine 
SFGetFile, whereby the user can select a file name by pressing a 
key. 

{ 



2 Macintosh Packages Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 The Package Manager 
6 The International Utilities Package 
6 International Resources 
8 International Resource 0 
10 International Resource 1 
12 International String Comparison 
15 Using the International Utilities Package 
16 International Utilities Package Routines 
20 The Binary-Decimal Conversion Package 
23 The Standard File Package 
23 About the Standar.d File Package 
24 Using the Standard File Package 
25 Standard File Package Routines 
35 The Disk Initialization Package 
35 Using the Disk Initialization Package 
36 Disk Initialization Package Routines 
41 Summary of the Package Manager 
42 Summary of the International Utilities Package 
47 Summary of the Binary-Decimal Conversion Package 
48 Summary of the Standard File Package 
51 Summary of the Disk Initialization Package 
52 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes packages and the Package Manager. The Macintosh 
packages include one for presenting the standard user interface when a 
file is to be saved or opened, and others for doing more specialzed 
operations such as floating-point arithmetic. The Package Manager is 
the part of the Macintosh User Interface Toolbox that provides access 
to packages. *** Eventually, this will become part of the 
comprehensive Inside Macintosh manual. ***. 
You should already be familiar with the Macintosh User Interface 
Guidelines, Lisa Pascal, the Macintosh Operating System's Memory 
Manager, and the Resource Manager. Using the various packages may 
require that you be familiar with other parts of the Toolbox and 
Operating System as well. 

This manual is intended to. serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is i$olated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with a discussion of the Package Manager and packages 
in general. This is followed by a series of sections on the individual 
packages. You'll onl~ need to read the sections about the packages 
that interest you. Each section describes the package briefly, tells 
how its routines fit into the flow of your application program, and 
then gives detailed descriptions of the package's routines. 

Finally, there are summaries of the Package Manager and the individual 
packages, for quick reference, followed by a glossary of terms used in 
this manual. 

517/84 Hacker-Rose /PACKAGES/PACK.2 



4 Macintosh Packages Programmer's Guide 

THE PACKAGE MANAGER 

The Package Manager is the part of the Macintosh User Interface Toolbox 
that enables you to access packages. Packages are sets of data 
structures and routines that are stored as resources and brought into 
memory only when needed. They serve as extensions to the Macintosh 
Operat~ng System and User Interface Toolbox, for the most part 
performing less common operations. 

The Macintosh packages, which are stored in the system resource file, 
, include the following: 

- The Standard File Package, for presenting the standard user 
interface when a file is to be saved or opened. 

- The Disk Initialization Package, for initializing and naming new 
disks. This package is called by the Standard File Package; 
you'll only need to call it in nonstandard situations. 

- The International Utilities Package, for accessing country
dependent information such as the form~ts for numbers, currency, 
dates, and times. 

I 
- The Binary-Decimal Conversion Package, for converting integers to 

decimal strings and vice versa. 

- The Floating-Point Arithmetic and Transcendental Functions 
Packages. *** These packages, which occupy a total of about 8.5K 
bytes, will be documented in a future draft of this manual. *** 

Packages have the resource type 'PACK' and the following resource IDs: 

CaNST dskInit 2; {Disk Initialization} 
stdFile 3; {Standard File} 
flPoint 4; {Floating-Point Arithmetic} 
trFunc 5; {Transcendental Functions} 
intUtil 6; {International Utilities} 
bdConv 7 ; {Binary-Decimal Conversion} 

Assembly-language note: All macros for calling the routines in 
a particular package expand to invoke one macro, PackN, where N 
is the resource ID of the package. The package determines which 
routine to execute from the routine selector, an integer that's 
passed to it on the stack. For example, the routine selector 
for the Standard File Package procedure SFPutFile is 1, so 
invoking the macro _SFPutFile pushes 1 onto the stack and 
invokes Pack3. 

There are two Package Manager routines that you can call directly from 
Pascal: one that lets you access a specified package and one that lets 

5/7/84 Hacker-Rose /PACKAGES/PACK.2 



THE PACKAGE MANAGER 5 

you access all packages. The latter will already have been called when 
your application starts up, so normally you won't ever have to call the 
Package Manager yourself. Its procedures are described below for 
advanced programmers who may want to use them in unusual situations. 

PROCEDURE InitPack (packID: INTEGER); 

InitPack enables you to use the package specified by packID, which is 
the package's resource ID. (It gets a handle that will be used later 
to read the package into memory.) 

PROCEDURE InitAllPacks; 

InitAllPacks enables you to use all Macintosh packages (as though 
InitPack were called for each one). It will already have been called 
when your applica~ion starts up. 

5/7/84 Hacker-Rdse /PACKAGES/PACK.2 



6 Macintosh Packages Programmer's Guide 

THE INTERNATIONAL UTILITIES PACKAGE 

The International Utilities Package contains routines and data types 
that enable you to make your Macintosh application country-independent. 
Routines are provided for, formatting dates and times and comparing 
strings in a way that's appropriate to the country where your 
application is being used. There's also a routine for testing whether 
to use the metric system of measurement. These routines access 
country-dependent information (stored in a resource file) that also 
'tells how to format numbers and currency; you can access this 
information yourself for your own routines that may require it. 

*** in the Inside Macintosh manual, the documentation of this package 
will be at the end of the volume that describes the User Interface 
Toolbox. *** 
You should already be familiar with the Resource Manager, the Package 
Manager, and packages i~ general. 

International Resources 

Country-dependent information is kept in the system resource file in 
two resources of type 'INTL', with the resource IDs 0 and 1: 

- International resource 0 contains the format for numbers, 
currency, and time, a short date format, and an indication of 
whether to us~ the metric system. 

- International resource 1 contains a longer forma~ for dates 
(spelling out the month and possibly the day of the week, with or 
without abbreviation) and a routine for localizing string 
comparison. 

The system resource file released in each country contains the standard 
international resources for that country. Figure 1-1 illustrates the 
standard formats for the United States, Great Britain, Italy, Germany, 
and France. 

\ 

5/7 184 Rose IPACKAGES/pACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 7 

~ited Great 
Stetes Britain Itely Gem8l)' Frence 

tbnbers 1,234.56 1, ?34. 56 1.234,56 1.234,56 1 234.56 
L 1st separator . . . . I I , , , 
Currency $0.23 £0.23 L.0,23 0,23 OM (1,23 F 

($0.45) (£0.45) L -~4S -0,45 OM -(1,45 F 
$315.00 £345 L 345' 325,00 OM 325F 

Time 9:05 AM 09:05 9:05 9.05l1lr 9:05 
11:30 AM 11:30 11:30 11.30 lIlr 11:30 
11:20 PM 23:20 23:20 23.20 lRlr 23:20 
11:20:09 PM 23:20:00 23:20:09 23.20.09 Lhr 23:20:09 

Short date 

Long date 

12/22/81 
21 1/84 

t..nlted States 
Greet Britain 
Italy 
Germany 
France 

2211211984 22-12-1984 22.12.1984 22.12.84 
01/02/1984 1-02-1984 1.02.1984 1.02.B4 

Unebbrevieted 

WedI.esday, February " 1984 
Wedrle8dey, Febru8ry 1, 1984 
mercoledi 1 Febbre io 1984 
MI tt\llOCl\ ,. Februar 1984 
Mercredl 1 fevrler 1984 

Abbreviated 

W~ Feb " 1984 
Wed, Feb 1, 1984 
mer 1 Feb 1984 
Mit .. ,. Feb 1984 
Mer 1 fev 1984 

Figure I-I. Standard International Formats 

The routines in the International Utilities Package use the information 
in these resources; for example, the routines for formatting dates and 
times yield strings that look like those shown in Figure I-I. Routines 
in other packages, in desk accessori,es, and in ROM also access the 
international resources when necessary, as should your own routines if 
they need such information. 

In some cases it may be appropriate to store either or both of the 
international resources in the application's or document's resource 
file, to override those in the system resource file. For example, 
suppose an application creates documents containing currency amounts 
and gets the currency format from international resource~. Documents 
created by such an application should have their own copy of the 
international resource ~ that was used to create them, so that the unit 
of currency will be the same if the document is displayed on a 
Macintosh configured for another country. ' 

Information about the exact components and structure of each 
international resource follows here; you can skip this if you intend 
only to call the formatting routines in the International Utilities 
Package and won't access the resources directly yourself. 

5/7/84 Rose /PACKAGES/PACKIU 



8 Macintosh Packages Programmer's Guide 

International Resource 0 

The International Utilities Package contains the following ,data types 
for accessing international resource 0: 

TYPE Intl0Hndl 
Intl0Ptr 
Intl0Rec 

.... Int10Ptr; *** Following "Int" is the letter "1" *** 
~Int10Rec; 
PACKED RECORD 

decimalPt: 
thousSep: 
listSep: 
currSyml: 
currSym2: 
currSym3: 
currFmt: 
dateOrder: 
shortDateFmt: 
dateSep: 
timeCycle: 
timeFmt: 
mornStr: 

(note) 

eveStr: 

timeSep: 
timelSuff: 
time2Suff: 
time3Suff: 
time4Suff: 
time5Suff: 
time6Suff: 

·time7 Suff: 
time8Suff: 
metricSys: 
intl0Vers: 

END; 

CHAR; {decimal point character} 
CHAR; {thousands separator} 
CHAR; {list separator} 
CHAR; {currency symbol} 
CHAR; 
CHAR; 
Byte; {currency format} 
Byte; {order of short date elements} 
Byte; {short date format} 
CHAR; {date separator} 
Byte; {0 if 24-hour cycle, 255 if 12-hour} 
Byte; {time format} 
PACKED ARRAY[1 •• 4] OF CHAR; 
{trafling string for first 12-hour cycle} 

PACKED ARRAY[1 •• 4] OF CHAR; 
{trailing string for last 12-hour cycle} 

C~AR; {time separator} 
CHAR; {trailing string for 24-hour cycle} 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
Byte; {255 if metric, 0 if not} 
INTEGER {version information}' 

A NUL character (ASCII code 0) in a field of type CHAR 
means there's no such character. The currency symbol and 
the trailing string for the 24-hour cycle are separated 
into individual CHAR fields because of Pascal packing 
conventions. All strings include any required spaces. 

The decimalPt, thousSep, and listSep fields define the number format. 
The thousands separator is the character that separates every three 
digits to the left of the decimal point. The list separator is the 
character that separates numbers, as when a list of nu~bers is entered 
by the user; it must be different from the decimal point character. If 
it's the same as the thousands separator, the user must not include the 
latter in entered numbers. 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 9 

CurrSyml through currSymJ define the currency symbol (only one 
character for the United States and Gre~t Britain, but two for France 
and three for Italy and Germany). CurrFmt determines the rest of the 
currency format, as shown in Figure 1-2. The decimal point character 
and thousands separator for currency are the same as in the number 
format~ 

7 85430 

I I I I I notused I Example of effect 

If 1: If (t 

$3.00 3 F 
1 If mif'lU3 3ign for negetive" 0 if perenthe3e3 -0,45 F ($0.45) 

II L 1 If curency symbol leeds, 0 if it trlIillI 

1 if hi I ing decimal zeroes, 0 If not 
----- 1 If leading integer zero" 0 if not 

$325.00 325 F 
$0.23 $.23 

Figure 1-2. CurrFmt Field 

The following predefineq constants are masks that can be used to set or 
test the bits in the currFmt field: 

CONST currSymLead = 16; {set if currency symbol leads} 
currNegSym = 32; {set if minus sign for negative} 
currTrai1ingZ = 64; {set if trailing decimal zeroes} 
currLeadingZ = 128; {set if leading integer zero} 

(note) 
You can also apply. the currency format's 1eading- and 
trailing-zero indicators to the number format if desired. 

The dateOrder, shortDateFmt, and dateSep fields define the short date 
format. DateOrder indicates the order of the day, month, and year, 
with one of the following values: 

'CONST mdy = 0; 
dmy = 1; 
ymd = 2; 

{month day year} 
{day month year} 
{year month day} 

ShortDateFmt determines whether to show leading zeroes in day and month 
numbers and whether to show the century, as illustrated in Figure 1-3. 
DateSep is the character that separates the different parts of the 
date. 

7 654 0 

I I I ·1 not used I Example of effect 

If 1: .If 0: 
12102/84 121 2184 

01/31/84 1/31/84 

I I 1 If leadlng,zero for dey, 0 if not 
. 1 If leading zero for month, 0 If not 

----- 1 If century Included, 0 If not 22.12.1984 22.12.84 

Figure 1-3. ShortDateFmt Field 

5/7/84 Rose /PACKAGES/PACKIU 



10 Macintosh Packages Programmer's Guide 

To set or test the bits in the shortDateFmt field, you can use the 
following predefined constants as masks: 

CONST dayLeadingZ = 32; {set if leading zero for day} 
mntLeadingZ = 64; {set if leading zero for month} 
century = 128; {set if century included} 

The next several fields define the time format: the cycle (12 or 24 
hours); whether to show leading zeroes (timeFmt, as' shown in Figure 
1-4); a string to follow the time (two for 12-hour cycle, one for 
24-hour); and the time separator character. 

7 6 5 4 0 

I I I not used I E xemple of effect 

I I 1 If leading zero for secollcla, 0 if no1 

If 1: If 0: 

11:16:05 11:16: 5 

1 if leeding zero for minutes .. 0 i.f not 10:05 10: 5 
1 if leeding zero for hours .. 0 if not 09:15 9:15 

Figure 1-4. TimeFmt Field 

The following masks are available for setting or testing bits in the 
timeFmt field: 

CONST secLeadingZ = 32; {set if leading zero for seconds} 
minLeadingZ = 64; {set if leading zero for minutes} 
hrLeadingZ = 128; {set if leading zero for hours} 

MetricSys indicates whether to use the metric sys~em. The last field, 
int10Vers, contains a version number in its low-order byte and one of 

. the following constants in its high-order byte: 

CONST verUS = 0; 
verFrance = 1; 
verBritain = 2; 
verGermany = 3; 
verItaly = 4; 

International Resource 1 

The International Utilities Package contains the following data types 
for accessing international resource 1: 

5/7/84 Rose /PAC~9ES/PACKIU 



TYPE IntllHndl 
IntllPtr 
IntllRec 

THE INTERNATIONAL UTILITIES PACKAGE 11 

= "'IntllPtr; *** Following "Int" is the letter "1" *** 
= "'IntllRec; *** Following "IntI" is the number "I" *** 
= PACKED RECORD 

days: 
months: 
suppressDay: 
longDateFmt: 
dayleading0: 
abbrLen: 
st0: ' 
stl: 
st2: 
st3: 
st4: 
intllVers: 
localRtn: 

END; 

ARRAY[I •• 7] OF STRING[15]; {day names} 
ARRAY[I •• 12] OF STRING[15]; {month names} 
Byte; {0 for day name, 255 for none} 
Byte; {order of long date elements} 
Byte; {255 for leading 0 in day number} 
Byte; {length for abbreviating names} 
PACKED ARRAY[I •• 4] OF CHAR; {strings} 
PACKED ARRAY[I •• 4] OF CHAR; { for} 
PACKED ARRAY[I •• 4] OF CHAR; { long} 
PACKED ARRAY[1 •• 4] OF CHAR; { date} 
PACKED ARRAY[I •• 4] OF CHAR; { format} 
INTEGER; {version information} 
INTEGER {routine for localizing string } 

{ comparison; actually may be } 
{ longer than one integer} 

All fields except the last two determine the long date format. The day 
names in the days array are ordered from Sunday to Saturday. (The 
month names are of course ordered from January to December.) As shown 
bel~w, the longDateF~t field determines the order of the various parts 
of the date. St0 through st4 are strings (usually punctuation) that 
appear in the date. 

longDateFmt 
o 

255 

Long date format 
st0 day name stl 
st0 day name stl 

day 
month 

st2' month 
st2 day 

st3 year 
st3' year 

st4 
st4 

See Figure 1-5 for examples of how the International Util~ties Package 
formats dates based on these fields. The examples assume that the 
suppressDay and dayLeading0 fields contain 0. A suppressDay value of 
255 causes the day name and stl to be omitted, and a dayLeading value 
of 255 causes a 0 to appear before day numbers less than 10. 

longDeteFmt stO st1 st2 at3 st4 Sample result 

0 .. I I I I I I .. t.citt'llOCh, 2. Februar 1984 , . 
2S5 .. I I I I I I .. Wednesday, February 1, 1984 , , 

Figure 1-5. Long Date Formats 

AbbrLen is the number of characters to which month and day names should 
be abbreviated when abbreviation is desired. 

The intllVers field contains version information with the same format 
as the intl0Vers field of international resource 0. 

LocalRtn contains a routine that localizes the built-in character 
ordering (as described below under "International String Comparison"). 

5/7/84 Rose /PACKAGES/PACKIU 



12 Macintosh Packages Programmer's Guide 

International String Comparison 

The International Utilities Package lets you compare strings in a way 
that accounts for diacritical marks and other special characters. The 
sort order built into the package may be localized through a routine 
stored in internatiomal ·resource 1. 

The sort order is determined by a ranking of the entire Macintosh 
character set. The ranking can be thought of as a two-dimensional 
table. Each row cif the table is a class ~f characters such as all A's 
(uppercase and lowercase, with and without diacritical marks). The 
characters are ordered within each row, but this ordering is secondary 
to the order of the rows themselves. For 'example , given that the rows 
for letters are ordered alphabetically, the following are all true 
under this scheme: 

'A' < 'a' 
and 'Ab' < 'ab' 
but ',Ac' > 'ab' 

Even though 'A' < 'a' within the A row, 'Ac' > 'ab' because the order 
'c' > 'b' takes precedence over the secondary ordering of the 'a' and 
the 'A'. In effect, the secondary ordering is ignored unless the 
comparison based on the primary ordering yields equality. 

(note) 
The Pascal relational operators are used here for 
convenience only. String comparison in Pascal yields 
very different results, since it simply follows the 
ordering of the characters' ASCII codes. 

When the strings being compared are of different lengths, each 
charqcter in the longer string that doesn't correspond to a character 
in the shorter o~e compares "greater"; thus 'a' < ,'ab'. This takes 
precedence ovet secondary ordering, so 'a' < 'Ab' even though 
'A' < 'a'. 

Besides letting you compare strings as described above, the 
International Utilities Package includes a routine that compares 
strings for equality without regard for secondary ordering. The effect 
on comparing letters, for example, is that diacritical marks are 
ignored and uppercase and lowercase are not distinguished. 

Figure 1-6 on the following page shows the two-dimensional ordering of 
the character set (from least to greatest as you read from top to 
bottom or'left to right). The numbers on the left are ASCII codes 
corresponding to each row; ellipses ( ••• ) designate sequences of rows 
of just one character. Some codes do not correspond to rows (such as 
$61 through $7A, because lowercase letters are included in with their 
uppercase equivalents). See the Toolbox Event Manager manual for a 
table showing all the characters' and their ASCII codes. 

5/7/84 Rose /PACKAGES/~ACKIU 



$00 · .. 
$lF 
$20 
$21 
$22 
$23 
$24 
$25 
$26 
$27 
$26 · . . 
$40 
$41 
$42 
$43 
$45 
$49 
$4E 
$4F 
$55 
$59 
$5B 
S5C 
$50 

_ S5E 
$5F 
$60 
$7B 
$7C 
$70 
$7E 
$7F 
$AO 
• • • 
$AD 
$AE 
$80 
• • • 
SBD 
SCO 
• • • 
$C9 
$00 
$02 
$06 
$07 

THE INTERNATIONAL UTILITIES PACKAGE 13 

A5CII NUL 

ASCII US 
space nonbreaking space 
I 
.. « » " " 
# 
$ 
% 
& . . , 
( 
@ , 

A A A 
B b 
C ~ c 

, 
E E e , 

-A 

~ 
, , 
e e , A 

A tJ 

A e e 

a - 0 a a a a a 

I 1 1 1 1 1 letters not shown 
N N n n are like -8 b-

0 0 o " 6 
, ;... - s 0 0 0 0 0 

U 0 , , a u u u· u 
V 
[ 

y Y 

\ 
] 
A 

-" 
{ 
I 
} -
ASCII DEL 
t 

:I: 
If. te (E IE (see remarks about ligatures) 
00 

Q 
l 

+ 
¢ 

Figure 1-6. International Character Orde~ing 

5/7/84 Rose /PACKAGES/PACKIU 



14 Macintosh Packages Programmer's Guide 

Characters combining two letters, as in the $AE row, are called 
ligatures. As shown in Figure 1-7, they're actually expanded-to the 
corresponding two letters, in the following sense: 

- Primary ordering: The ligature is equal to the two-character 
sequence. 

- Secondary ordering: The ligature is greater than the 
two-character sequence. 

Standard: 

AE If. ae fe 

OE CE oe ce 

Germany: 

AE A' I£. ~e a le 

OE 0 CE oe 0 ce 
ss J3 

UE 0 ue ii 
Figure 1-7. Ordering for Special Characters 

Ligatures are ordered somewhat differently in Germany to accommodate 
umlauted characters (see Figure 1-7). This is accomplished by means of 
the routine in internati~nal resource 1 for localizing the built-in 
character ordering. In the system resource file for Germany, this 
routine expands umlauted characters to the corresponding two letters 
(for example, "AE" for A-umlaut). The secondary ordering places the 
umlauted character between the two-character sequence and the ligature, 
if any. Likewise, the German double-s character expands to "ss". 

In the system resource file for Great Britain, the localization routine 
in international resource 1 orders the pound currency sign between 
double quote and the pound weight sign (see Figure 1-8). For the 
United States, France, and Italy, the localization routine does 
nothing. 

$22 
$A3 
$23 

II 

£ 
# 

« » " " 

Figure 1-8. Special Ordering for Great Britain 

Assembly-language note: The null localization routine consists 
of an RTS instruction. 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 15 

*** Information on how to write your own localization routine is 
forthcoming. *** 

Using the International Utilities Package 

This section discusses how the routines in the International Utilities 
package fit into the general flow of an application program, and gives 
you an idea of which routines you'll need to use. The routines 
themselves are described in detail in the next section. 

The International Utilities Package is automatically read into memory 
from the system resource file when one of its routines is called. When 
a routine needs to access an international resource, it asks the 
Resource Manager to read the resource into memory. Together, the 
package and its resources occupy about 2K bytes. 

As described in the *** not yet existing *** Operating System Utilities 
manual, you can get the date and time as a long integer from the 
utility routine ReadDateTime. If you need a string corresponding to 
the date or time, you can pass this long integer to the IUDateString or 
IUTimeString procedure in the International Utilities Package. These 
procedures determine the local format from the international resources 
read into memory by the Resource Manager (that is, resource type 'INTL" 
and resource ID 0 or 1). In some situations, you may need the format 
information to come instead from an international resource that you 
specify by its handle; if so, you can use IUDatePString or 
IUTimePString. This is useful, for example, if you want to use an 
international resource in a document's resource file after you've 
closed that file. 

Applications that use measurements~ such as on a ruler for setting 
margins and tabs, can call IUMetric to find out whether to use the 
metric system. This function simply returns the value of the 
corr~sponding field in international resource 0. To access any other 
fields in an international resource--say, the currency format in 
international resource 0--call IUGetlntl to get a handle to the 
resource. If you change any of the fields and want to write the 
changed resourc'e to a resource file, the IUSetIntl procedure lets you 
do this. 

To sort strings, you can use IUCompString or, if you're not dealing 
with Pascal strings, the more general IUMagString. These routines 
compare two strings and give their exact relationship, whether equal, 
less than, or greater than. Subtleties like diacritical marks and case 
d~fferences are taken into consideration, as described above under 
"International String Comparison". If you need to know only' whether 
two strings are equal, and want to ignore the subtleties, use 
IUEqualString (or the more general IUMagIDString) instead. 

(note) 
The Operating System utility routine EqualString also 
compares two Pascal strings for equality. It's less 
sophisticated than IUEqualString in that it follows ASCII 

5/7/84 Rose /PACKAGES/PACKIU 



16 Macintosh Packages Programmer's Guide 

order more strictly; for details, see the Operating 
System Utilities manual *** eventually ***. 

International Utilities Package Routines 

Assembly-language note: The macros for calling the 
International Utilities Package routines push one of the 
following routine selectors onto the stack and then invoke 

Pack6: 

Routine 
IUDatePString 
IUDateString 
IUGetInt1 
IUMagIDString 
IUMagString 
IUMetric 
IUTimePString 
IUTimeString 
IUSetIntl 

Selector 
14 
o 
6 

12 
10 

4 
16 

2 
8 

PROCEDURE IUDateString (dateTime: LongInt; form: DateForm; VAR result: 
Str255); 

Given a date and time as returned by the Operating System Utility 
routine ReadDateTime, IUDateString returns in the result parameter a 
string that represents the corresponding date. The form parameter has 
the following data type: 

TrPE DateForm = (shortDate, 10ngDate, abbrevDate); 

ShortDate requests the short date format, 10ngDate the long date, and 
abbrevDate the abbreviated long ~ate. IUDateString determines the 
exact format from international resource 0 for the short date or 1 for 
the long date. See Figure I-I above for examples of the standard 
formats. Notice that the short date contains a space in place of a 
leading zero when the format specifies "no leading zero", so the length 
of the result is always the same for short dates. 

If the abbreviated long date is requested and the abbreviation length 
in inteinational resource 1 is greater than the actual length of the 
name being abbreviated, IUDateString fills the abbreviation with NUL 
characters; the abbreviation length should not be greater than 15, the 
maximum name length. 

5/7/84 Rose /PACKAGES/PACKIU 



THE INTERNATIONAL UTILITIES PACKAGE 17 

PROCEDURE IUDatePString (dateTime: LongInt; form: DateForm; VAR result: 
Str255; intlParam: Handle); 

IUDatePString is the same as IUDateString except that it determines the 
exact format of the date from the resource whose handle is passed in 
intlParam, overriding the resource that would otherwise be used. 

PROCEDURE IUTimeString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR 
result: Str255); 

Given a date and time as returned by the Operating System Utility 
routine R~adDateTime, IUTimeString returns in the result parameter a 
string that represents the corresponding time of day. If wantSeconds 
is TRUE, second~ are included in the time; otherwise, only the hour and 
minute are included. IUTimeString determines the time form~t from 
international resource 0. See Figure I-I above for examples of the 
standard formats. Notice that the time contains a space in place of a 
leading zero when the format specifies "no leading zero", so the l'ength 
of the result· is always the same. . 

PROCEDURE IUTimePString (dateTime: LongInt; wantSeconds: BOOLEAN; VAR 
result: Str255; intlParam: Handle); 

IUTimePString is the s~me as IUTimeString except that it determines the 
time format from the resource whose handle is passed .in intIParam,' 
over~iding the resource that would otherwise be used. 

FUNCTION IUMetric : BOOLEAN; 

If international resource 0 specifies that the metric system is to be 
used, IUMetric returns TRUE; otherwise, it returns FALSE. 

FUNCTION IUGetIntl (theID: INTEGER) : Handle; 

IUGetIntl returns a handle to the international resource numbered theID 
(0 or 1). It calls the Resource Manager function 
GetResource('INTL',theID). For example, if you want to access 
individual fields of international resource 0, you can do the 
following: 

VAR myHndl: Handle; 
int0: Int10Hndl; 

myHndl := IUGetIntl(0); 
int0 := POINTER(ORD(myHndl»; 

5/7/84 Rose /PACKAGES/PACKIU 



18 Macintosh Packages Programmer's Guide 

PROCEDURE IUSetIntl (refNum: INTEGER; theID: INTEGER; intlParam: 
Handle) ; 

In the resource file having the reference number refNum, IUSetIntl sets 
the international resource numbered theID (0 or 1) to the data pointed 
to by intlParam. The data may be either an existing resource or data 
that hasn't yet been written to a resource file. IUSetIntl adds the 
resource to the specified file or replaces the resource if it's already 
there. 

FUNCTION IUCompString (aStr,bStr: Str255) : INTEGER; [Pascal only] 

IUCompString compares aStr and bStr as described above under 
"International String Comparison", taking both primary and secondary 
ordering into consideration. It returns one of the values listed 
below. 

. Result 

-1 
o 
1 

Meaning 

'aStr is less than bStr 
aStr equals bStr 
aStr is greater than bStr 

Example 
aStr bStr 
'Ab' 'ab ' 
'Ab' 'Ab' 
'Ac' 'ab' 

Assembly-language note: IUCompString was created for the 
cqnvenience of Pascal programmers; there's no trap for it. It 
eventually calls IUMagString, which is what you should use from 
assembly language. 

FUNCTION IUMagString (aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER; 

IUMagString is the same as IUCompString (above) ,except that instead of 
comparing two Pascal strings, it compares the string defined by aPtr 
and aLeri to the string defined by bPtr and bLen. The pointer points to 
the first character of the string (any byte in memory, not necessarily 

'word-aligned), and the length specifies the number of characters in the 
string. 

FUNCTION IUEqua1String (aStr,bStr: Str255) : INTEGER; [Pascal only] 

IUEqualString compares aStr and bStr for equality without regard for 
secondary ordering, as described above under "International String 
Comparison". If the strings are equal, it returns 0; otherwise, it 
returns 1. For example, if the strings are 'Rose' and 'rose', 
IUEqua1String considers them equal and returns 0. 

5/7/84 Rose /PACKAGES/PACKIU 



(note) 

THE INTERNATIONAL UTILITIES PACKAGE 19 

See also EqualString in the Operating System Utilities 
manual *** doesn't yet exist *** . 

. Assembly-language note: IUEqualString was created for the 
convenience of Pascal programmers; there's no trap for it. It 
eventually calls IUMagIDString, which is what you should use 
from assembly language. 

FUNCTION IUMagIDString (aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER; 

IUMagIDString is the same as IUEqualString (above) except that instead 
of comparing two Pascal strings, it compares the string defined by aPtr 
and aLen to the string defined by bPtr and bLen. The point~r points to 
the first character of the string (any byte in memory, not necessarily 
word-aligned), and the length specifies the number of characters in the' 
string. 

I . 

5/7/84 Rose /PACKAGES/PACKIU 



20 Macintosh Packages Programmer's Guide 

THE BINARY-DECIMAL CONVERSION PACKAGE 

The Binary-Decimal Conversion Package contains only two routines: one 
converts an integer from its internal (binary) form to a string that 
represents its decimal (base 10) value; the other converts a decimal 
string to the corresponding integer. 

*** In the Inside Macintosh manual, the documentation of this package 
will be at the end of the volume that describes the User Interface 
Toolbox. *** 
You should already be familiar with the Package Manager, and packages 
in general. 

The Binary-Decimal Conversion Package is automatically read into memory 
when one of its routines is called; it occupies a total of about 200 
bytes. The routines are described below. They're register-based, so 
the Pascal form of each is followed by a box containing information 
needed t~ use the routine from assembly language. (For general 

'information on using assembly language, see Programming Macintosh 
Applications in Assembly Language.) 

Assembly-language note: The macros for calling the 
Binary-Decimal Conversion Package routines push one of the 
following routine selectors onto the stack and then invoke 

Pack7 : 

Routine 
NumToString 
String'ToNum 

Selector 
o 
1 

PROCEDURE NumToString (theNum: Longlnt; VAR theString: Str255); 

Trap macro 

On entry 

On exit 

_NumToString 

A0: pointer to theString (length byte followed 
by characters) 

D0: the'Num (long integer) 

A0: pointer to theString 

NumToString converts theNum to a string that represents its decimal 
value, and returns the result in theString. If the value is negative, 
the string begins with a minus sign; otherwise, the sign is omitted. 
Leading zeroes are suppressed, except that the value 0 produces '0'. 

5/7/84 Rose /PACKAGES/PACKBD 



THE BINARY-DECIMAL CONVERSION PACKAGE 21 

For example: 

theNum 
12 

-23 

theString 
'12 ' 

'-23' 
o '0' 

PROCEDURE StringToNum (theString: Str255; VAR theNum: LongInt); 

Trap macro 

On entry 

On exit ---

_StringToNum 

A0: pointer to theString (length byte followed 
by characters) 

D0: theNum (long integer) 

Given a string representing a decimal integer, StringToNum converts it 
to the corresponding integer and returns the result in theNum. The 
string may begin with a plus or minus sign. For example: 

theString 
'12' 

'-23' 
'-0' 

'055' 

theNum 
12 

-23 
o 

55 

The magnitude of the integer is converted modulo 2 .... 32, and the 32-bit 
result is negated if the string begins with a minus sign; integer 
overflow occurs if the magnitude is greater than 2 .... 31-1. '(Negation is 
done by taking the two's complement--reversing the state of each bit 
and then adding 1.) For example: 

theString theNum 
'2147483648' (magnitude is 2 .... 31) -2~47 483648 

'-2147483648 ' -2147483648 
'4294967295 ' (magnitude is 2 .... 32-1) -1 

'-4294967295 ' 1 

StringToNum doesn't actually check whether the characters in the string 
are between '0' and '9'; instead, since the ASCII codes for '0' through 
'9' are $30 through $39, it just masks off the last four bits and uses 
them as a digit. For example~ '2:' is converted to the number 30 
because the ASCII code for ':' is $3A. Leading spaces before the first 
digit are treated as zeroes, since the ASCII code for a space is $20. 
Given that the ASCII codes for 'C', 'A', and 'T' are $43, $41, and $54, 
respectively, consider the.following examples: 

5/7/84 Rose /PACKAGES/PACKBD 



22· Macintosh Packages Programmer's Guide 

the String 
'CAT' 

'+CAT' 
'-CAT' 

5/7/84 Rose 

theNum 
314 
314 

-314 

\ 

'. 

/PACKAGES/PACKBD 



THE STANDARD FILE PACKAGE 23 

THE STANDARD FILE PACKAGE 

The Standard File Package provides the standard user interface for 
specifying a file to be saved or opened. It allows the file to be on a 
disk in any drive connected to the Macintosh, and lets a currently 
inserted disk be eje~ted so that another one can be inserted. 

*** In the Inside Macintosh manual, the documentation of this package 
will ~e at the end of the volume that describes the Toolbox. *** 
You should already be familiar with the following: 

- the basic concepts and structures behind QUickDraw, particularly 
points and rectangles 

- the Toolbox Event Manager 

- the Dialog Manager, especially the ModalDialog procedure 

- the Package Manager and packages in general 

About the Standard File Package 

Standard Macintosh applications should have a File menu from which the 
user can save and open documents, via the Save, Save As, and Open 
commands. In response to these commands, the application can call the 
Standard File Package to find out the document name and- let the user 
switch disks if desired. As described below, a dialog box is presented 
for this purpose. (More details and ~llustrations are given later in 
the descriptions of the individual routines.) 

When the user chooses Save As, or Save when the document is untitled, 
the application needs a name for the document. The corresponding 
dialog box lets the user enter the document name and click a button 
labeled "Save" (or just click "Cancel" to abort the command). By 
convention, the dialog box comes up displaying the current document 
name, if any, so the user can edit it. 

In respo~se to an Open command, the application needs to know which 
document to open. The corresponding dialog box displays the names of 
all documents that might be opened, and the-user chooses one by 
clicking it and then clicking a button labeled "Open". A vertical 
scroll bar allows scrolling through the names if there are more than 
can ,be shown at once. 

Both of these dialog boxes let the user: 

- insert a disk in an external drive connected to the, Macintosh 

- eject a disk from either drive and insert' another 

517 184 Hacker-Rose' IPACKAGES/PACKSF 



24 Macintosh Packages Programmer's Guide 

- initialize and name an inserted disk that's uninitialized 

- switch from one drive to another 

On the right in the dialog box, separated from the rest of the box by a 
gray line, there's a disk name with one or two buttons below it; Figure 
S-l shows what this looks like when an external drive is connected to . 
the Macintosh but currently has no disk in it. Notice that the Drive 
button is inactive (dimmed). After the user inserts a disk in the 
external drive (and, if necessary, initializes and names it), the Drive 
button becomes active. If there's no external drive, the Drive button 
isn't displayed at all. 

disk n8me 

( Eject ) 

( Or • .,~ ) 

Figure S-l. Partial Dialog Box 

The disk name displayed in the dialog box is the name of the current 
disk, initially the disk you used to start up the Macintosh. The user 
can click Eject to eject the current disk and insert another, which 
then becomes the current disk. If there's an external drive, clicking 
the Drive button changes the current disk from the one in the external 
drive to the one in the internal drive or vice versa. The Drive button 
is inactive whenever there's only one disk inserted. 

If an uninitialized or otherwise unreadable disk is inserted, the 
Standard File Package calls the Disk Initialization Package to provide 
the standard user interface for initializing and naming a disk. 

Using the Standard File Package 

This section discusses how the routines in the Standard File Package 
fit into the general flow of an application program, and gives you an 
idea of which routines you'll need to use. The routines themselves are 
described in detail in the next section. \ 

The Standard File Package and the resources it uses are automatically 
read into memory when one of its routines is called. It in turn reads 
the Disk Initialization Package into memory if a disk is ejected; 
together they occupy about 6.SK bytes. 

Call SFPutFile when your application is to save to a file and needs to 
get the name of,the file from the user. Standard applications should 
do this when the user chooses Save As from the File menu, or Save when 
the document is untitled. SFPutFile displays a dialog box allowing the 

I 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 25 

user to enter a file name. 

Similarly, SFGetFile is us~ful whenever your application is to open a 
file and needs to know which one, such as when the user chooses the 
Open command from a standard application's File menu. SFGetFile 
displays a dialog box with a list of file names to choose from. 

You pass these routines a reply record, as shown below, and they fill 
it with information about the,user's reply. 

TYPE SFReply = RECORD 
good: 
copy: 
fType: 
vRefNum: 
version: 
fName: 

END; 

BOOLEAN; 
.BOOLEAN; 
OSType; 
INTEGE'R; 
INTEGER; 
STRING[63] 

{FALSE if ignore command} 
{not used} 
{file type or not used} 
{volume reference number} 
{file's version number} 
{file name} 

The first field of this record determines whether the file operation 
should take place or the command should be ignored (because the user 
clicked the Cancel button in the dialog box). The fType field is used 
,by SFGetFile to store the file's type. The vRefNum, version, and fName 
fields identify the file chosen by the user; the application passes 
their values on to the File Manager routine that does the actual file 
operation. VRefNum contains the volume reference number of the volume 
containing the file. Currently the version field always contains ~; 
the use of nonzero version numbers is not supported by this package. 
For more information on files, volumes, and file operations, see the 
File Manager manual *** doesn't yet exist ***. 

Both SFPutFile and SFGetFile allow you to use a nonstandard dialog box; 
two additional routines, SFPPutFile and SFPGetFile, 'pr9vide an even 
more convenient and powerful way of doing this. 

Standard File Package Routines 

Assembly-language note: The macros for calling the Standard 
File Package routines push one of the following routine 
selectors onto the stack and then invoke Pack3: 

Routine 
SFGetFile 
SFPGetFile 
SFPPutFile 
SFPutFile 

5/7/84 Hacker-Rose 

Selector 
2 
4 
3 
1 

/PACKAGES/PACKSF 



26 Macintosh Packages ,Programmer's Guide 

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply); 

SFPutFile displays a dialog box allowing the user to specify a file to 
which data will be written (as during a Save or Save As command). It 
then repeatedly gets and handles events until the user either confirms 
the command 'after entering an appropriate file name or aborts the 
command by clicking Cancel in the dialog. It reports the user's reply' 
by filling the fields of the reply record specified by the reply 
parameter, as described above; the fType field of this record isn't 
used. 

The general appearance of the standard SFPutFile dialog box is shown in 
Figure S-2. The where parameter specifies the location of the top left 
corner of the dialog box in global coordinates. The prompt parameter 
is a line of text to be displayed as a statText item in the dialog box, 
where shown in Figure S-2. The origName parameter contains text that 
appears as an enabled, selected editText item; for the standard 
document-saving commands, it should be the current name of the 
document, or the empty string (to display an insertion point) if the 
document hasn't been named yet. 

where 

~~===-=-=====---=-=========-~ 
prompt --~ Saue current document as: 

or igNeme --+fo~ l!~!!!!!~!!!!!I!!!!!!!!!!!!!!!!!!!!!!!!!!J 

( Saue ) [ Cancel) 

I 
£ 
i 
: : 
i J 

t 
I 
i 
i 

dlsle name 

( Eject ) 

( Driue ) 

Figure S-2. Standard SFPutFile Dialog 

If you want to use the standard SFPutFile dialog box, pass NIL for 
dlgHook; otherwise, see the information for advanced programmers below. 

SFPutFile repeatedly calls the Dialog Manager procedure ModalDialog. 
When an event involving an enabled dialog item occurs, ModalDialog 
handles the event and returns the item number, and SFPutFile responds 
as follows: 

- If the Eject or Drive button is clicked, or a disk is inserted, 
SFPutFile responds as described above under "About the Standard 
File Package". 

- Text entered into the editText item is stored in the fName field 
of the reply record. (SFPutFile keeps track of whether there's 
currently any text in the item, and makes the Save button inactive 
if not.) 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 27 

- If the Save button is clicked, SFPutFile determines whether the. 
file name in the fName field of the reply record is appropriate. 
If so, it returns control to the application with the first field 
of the reply record set to TRUE; otherwise, it responds 
accordingly, as described below. 

- If the Cancel button in the dialog is clicked, SFPutFile returns 
control to the application with the first field of the reply 
record set to FALSE. 

(note) 
Notice that disk insertion is one of the user actions 
listed above, even though ModalDialog normally ignores 
disk-inserted- events. The reason this works is that 
SFPutFile calls ModalDialog with a filterProc function 
that checks for a disk-inserted event and returns a 
"fake", very large item number if one occurs; SFPutFile 
recognizes this item number as an indication that a disk 
was inserted. 

The situations that may cause an entered name to be inappropriate, and 
SFPutFile's response to each, are as follows: 

- If a file with the specified name already exists on the disk and 
is different from what was passed in the origName parameter, the 
alert in Figure S-3 is displayed. If the user clicks Yes, the 
file name is appropriate. 

Replace eHisting 
• file Dame·? 

( Yes )« No I 

Figure S-3. Alert for Existing File 

- If the disk to which the file s~ould be written is locked, the 
alert in Figure S-4 is·displayed. If a system error occurs, a 
similar alert is displayed, with a corresponding message I 

explaining the problem. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



28 Macintosh Packages Programmer's Guide 

(note) 

Disk is locked. 

t Cancel I 

Figure S-4. Alert for Locked Disk 

The user may specify a disk name (preceding the file name 
and separated from it by a colon). If the disk isn't 
currently i~ a drive, an alert similar to the one in 
Figure S-4 is displayed. The ability to specify a disk 
name is supported· for historical reasons only; users ' 
should not be encouraged to do it. 

After the user clicks No or Cancel in response to one of these alerts, 
SFPutFile dismisses the alert box and continues handling events (so a 
different name may be entered). 

Advanced programmers: You can create your own dialog box rather than 
use the standard SFPutFile dialog. To do this, you must provide your 
own dialog template and store it in your application's resourc~ file 
with the same resource ID that the standard template has in the system 
resource file: 

(note) 

CONST putDlgID -3999; {SFPutFile dialog template ID} 

The SFPPut~ile procedure, described below, lets you use 
any resource ID for your nonstandard dialog box. 

Your dialog template must specify that the dialog window be invisible, 
and your dialog must contain all the standard items, as listed below. 
The appearance and location of these items in your dialog may be 
different. You can make an item "invisible" by giving it a display 
rectangle that's off the screen. The display rectangle for-each item 
in the standard dialog box is given below. The rectangle for the 
standard dialog box itself is (0, 0, 304, 104). 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 29 

Item number 
1 

Item 
Save button 
Cancel button 

Standard display rectangle 
(12, 74, 82, 92) 

2 
3 
4 
5 
6 
7 
8 

(note) 

Prompt string (statText) 
Userltem for-disk name 
Eject button 
Drive button 
EditText item for file name -
User Item for gray line 

(114, 74, 184, 92) 
(12, 12, 184, 28) 
(2~9, 16, 295, 34) 
(217, 43, 287, 61) 
(217, 74, 287, 92) 
(14,34, 182, 5~) 
(2~~, 16, 2~1, 88) 

Remember that the display rectangle for any "invisible" 
item must be at least about 2~ pixels wide. *** This 
will be discussed in a future draft of the'Dialog Manager 
manual. *** 

If your,dialog has additional items beyond the the standard ones, or if 
you want to handle any of the standard items in a nonstandard manner, 
you must write your own dlgHook function and point to it with dlgHook. 
Your dlgHook function should have two parameters and return an integer 
value. For example, this is how it would-be declared if'it were named 
MyDlg: 

FUNCTION MyDIg (item: INTEGER; theDialog: DialogPtr) : INTEGER; 

Immediately after calling ModalDialog, SFPutFile calls your dlgHook 
function, passing it the item number returned by ModalDialog and a 
pointer to the dialog record describing your dialog box. Using these 
two parameters, your dlgHook function should determine how to handle 
the event. There are predefined constants for the item numbers of 
standard enabled items, as follows: 

CONST putSave = 1 ; {Save button} 
putCancel 2; , {Cancel button} 
putEject 5; {Ej ect but,ton} 
putDrive = 6; {Drive button} 
putName 7 • , {editText item for file name} 

ModalDialog also returns the "f'ake" item number 1~~ when a disk
inserted event occurs, as detected by its filterProc function. 

After handling the event (or, perhaps, after ignoring it) the dlgHook 
function must return an item number to SFPutFile'. If the item number 
is one of those listed above, SFPutFile responds in the standard way; 
otherwise, it does nothing. 

(note) 
For advanced programmers who want to change the 
appearance of the alerts displayed when an inappropriate 
file name is entered, the resource IDs of those alerts in 
the system resource file are listed below. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



30 Macintosh Packages Programmer's Guide 

Alert 
Existing file 
Locked disk 
System error 
Disk not found 

Resource ID 
-3996 
-3997 
-3995 
-3994 

PROCEDURE SFPPutFile (where: Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply; dlgID: INTEGER; 
filterProc: ProcPtr); 

SFPPutFile is an alternative to SFPutFile for advanced programmers who 
want to use- a nonstandard dialog box. It's the same as SFPutFile 
except for the two additional parameters digID and filterProc. 

DlgID is the resource ID of the dialog template to be used instead of 
the standard one (so you can use whatever ID you wish rather than the 
same one as the st~ndard). 

The filterProc parameter determines how ModalDialog will filter events 
when called by SFPPutFile. If filterProc is NIL, ModalDialog does the 
standard filtering that it does when called by SFPutFile; otherwise, 
filterProc should point to a function for ModalDialog to execute after 
doing the standard filtering. The function must be the same as one 
you'd-pass directly to ModalDialog in its filterProc parameter. (See 
the Dialog Manager manual for more information.) 

PROCEDURE SFGetFile (where: Point; prompt: Str255; fileFilter: ProcPtr; 
numTypes: INTEGER; typeList: SFTypeList; dlgHook: ProcPtr; 
VAR reply: SFReply); 

SFGetFile displays a dialog box listing the names of a specific group 
of files from which the user can select one to be opened (as during an 
Open command). It then repeatedly gets and handles events until the 
user either confirms the command after choosing a file name or aborts 
the command by clicking Cancel in the dialog. It reports the user's 
reply by filling the fields. of the reply record specified by the reply 
parameter, as described above under "Using the Standard File Package". 

The general appearance of the standard SFGetFile dialog box is shown in 
Figure S-5. File names are sorted in order of the ASCII codes of their 
characters, ignoring diacritical marks and mapping lowercase characters 
to their uppercase equivalents. If there are more file names than can 
be displayed at one time, the scroll bar is active; otherwise, the 
scroll bar is inactive. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 31 

file I name i 

( ) 
, 

file2name Open : 
disk name ! 

file3name I 
i ( EJect ) 
: 

( ) f 
[ance' I ( Drille ) 

i 
file7name ! 

Figure S-5. Standard SFGetFile Dialog 

The where parameter specifies the location of the top left corner of 
the dialog box in global coordinates. The prompt parameter is ignored; 
it's there for historical purposes only. 

The fileFilter, numTypes, and typeList parameters determine which files 
appear in the dialog box. SFGetFile first looks at numTypes and 
typeList to determine what types of files to display, then it executes 
the function pointed to by fileFilter (if any) to do additional 
filtering on whi~h files to 'display. File types are discussed in the 
~anual The Structure of ~ Macintosh Application. For example, if the 
application is concerned only with pictures, you won't want, to display 
the names of any text files. 

Pass -1 for numTypes to display all types of files; otherwise, pass the 
number of file types you want to display, and pass the typ~s themselves 
in typeList. The SFTypeList data type is defined as follows: 

(note) 

TYPE SFTypeList = ARRAY (~ •• 3] OF OSType; 

This array is declared for a reasonable maximum number of 
types (four). If you need to specify more than four 
types, decla're your own array type with the desired 
number of entries (and use the @ operator to pass a 
pointer to it). ' 

If fileFilter isn't NIL, SFGetFile executes the funct~on it points to 
for each file, to determine whether the file should be displayed. The 
fileFilter function has one parameter and returns a Boolean value. For 
example: 

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr) : BOOLEAN; 

SFGetFile passes this function the file information it gets by calling 
the File Manager procedure PBGetFInfo (see the *** forthcoming *** File 
Manager m,anual for details). The function selects which files should 
appear in the dialog by return~ng FALSE for every file that should be 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



32 Macintosh Packages Programmer's Guide 

shown and TRUE for every file that shouldn't be shown. 

(note) 
As described in the File Manager manual, a flag can be 
set that tells the Finder not to display a particular 
file's icon on the desktop; this has no effect on whether 
SFGetFile will li~t the file name. 

If you want to use the standard SFGetFile dialog box, pass NIL for 
dlgHook; otherwise, see the information for advanced programmers below. 

Like SFPutFile, SFGetFile repeatedly calls the Dialog Manager procedure 
ModalDialog. When an event involving an enabled dialog item occurs, 
ModalDialog handles the event and returns the item number, and 
SFGetFile responds as follows: 

If the Eject or Drive button is clicked, or a disk is inserted, 
SFGetFile responds as described above under "About the Standard \ 
File Package". 

f> - If clicking or dragging occurs in the scroll bar, the contents of 
the dialog box are redrawn accordingly. 

- If a file name is clicked, it's selected and stored in the fName 
field of the reply record. (SFGetFile keeps track of whether a 
file name is currently selected, and makes the Open button 
inactive if not.) 

If the Open button is clicked, SFGetFile returns control to the 
application with the first field of the reply record set to TRUE. 

- If a file name is double-clicked, SFGetFile responds as if the 
user clicked the file name and then the Open button. 

- If the Cancel button in the dialog is clicked, SFGetFile returns 
control to the application with the first field of the ,reply 
record set to FALSE. 

If a key (other than a modifier key) is pressed, SFGetFile selects the 
first file name starting with the character typed. If no file name 
starts with that character, it selects the first file name starting 
with a character whose ASCII code is greater than the character typed. 

Advanced programmers: You can create your own dialog box rather than 
use the standard SFGetFile dialog. To ~o this, you must provide your 
own dialog template and store it in your application's resource file 
with the ~ame resource ID that the standard template has in·the system 
resource file: 

(note) 

CONST getDlgID = -4000; {SFGetFile dialog template ID} 

The SFPGetFile 'procedure, described below, lets you use 
any resource ID for your nonstandard dialog box. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE STANDARD FILE PACKAGE 33 

Your dialog template must specify that the dialog window be invisible, 
and your dialog must contain all the standard items, as listed below. 
The appearance and location of these items in your dialog may be 
different. You can make an item "invisible" by giving it a display 
rectangle that's off the screen. The display rectangle for each in the 
standard dialog box is given below. The rectangle for the standard 
dialog box itself is (0, 0, 348, 136). 

Item number 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Item 
Open button 
Invisible button 
Cancel button 
UserItem for disk name 
Eject button 
Drive button 
UserItem for file name list 
Userltem for scroll bar 
UserItem for gray line 
Invisible text (statText) 

Standard display rectangle 
(152, 28, 232, 46) 
(1152,59, 1232,77) 
(152, 90, 232, 108) 
(248, 28, 344, 46) 
(256,59,336,77) 
(256, 90, 336, 108) 
(12, 11, 125, 125) 
(124, 11, 140, 125) 
(244, 20, 245, 116) 
(1044, 20, 1145, 116) 

If your dialog has additional items beyond the the standard ones, or if 
you want to handle any of the standard items in a nonstandard manner, 
you must write your own dlgHook function and point to it with dlgHook. 
Your dlgHook function should have two parameters and return an integer 
value. For example, this is how it would be declared if it were named 
MyDlg: 

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) : INTEGER; 

Immediately after calling ModalDialog, SFGetFile calls your dlgHook 
function, passing it the item number returned by ModalDialog and a 
pointer to the dialog record describing your dialog box. Using these 
two parameters, your dlgHook function should determine how to handle 
the event. There are predefined constants for the item numbers of 
standard enabled items, as follows: 

CONST getOpen = 1 ; {Open button} 
getCancel = 3; {Cancel button} 
getEject = 5j {Eject button} 
getDrive = 6; {Drive button} 
getNmList = 7 ; {userltem for file name list} 
getScroll = 8j {userltem for scroll bar} 

ModalDialog also returns "fake" item numbers in the following 
situations, which are detected by its filterProc function: 

- When a disk-inserted event occurs, it returns 1~0. 

- When a key-down event occurs, it 'returns 1000 plus the ASCII code 
of the character. 

After handling the event (or, perhaps, after ignoring it) your dlgHook 
function must return an item number to SFGetFile. If the item number 
is one of those listed above, SFGetFile responds in the standard way; 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



34 Macintosh Packages Programmer's Guide 

otherwise, it does nothing. 

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter: 
ProcPtr; numTypes: INTEGER; typeList: SFTypeList; dlgHook: 
ProcPtr; VAR reply: SFReply; dlgID: INTEGER; filterProc: 
ProcPtr); 

SFPGetFile is an alternative-to SFGetFile for advanced programmers who 
want to use a nonstandard dialog box. It's the same as SFGetFile 
except for the two additional parameters dlgID and fi1terProc. 

DlgID is the resource ID of the dialog template to be used instead of 
the standard one (so you can use whatever ID you wish rather than the 
same one as the standard). . 

The fi1terProc parameter determines how Moda1Dia10g will filter events 
when called by SFPGetFile. If fi1terProc is NIL, Moda1Dia10g does the 
standard filtering that it does when called by SFGetFi1e; otherwise, 
fi1terProc ,should point to a function for ModalDia10g to execute after 
doing the standard filtering. Note, however, that the standard 
filtering will detect key-down events only if the dialog template ID is 
the standard one. 

5/7/84 Hacker-Rose /PACKAGES/PACKSF 



THE DISK INITIALIZATION PACKAGE 35 

THE DISK INITIALIZATION PACKAGE 

The Disk Initialization Package provides routines for initializing 
disks to be accessed with the Macintosh Operating System's File Manager 
and Disk Driver. A single routine lets you easily present the standard 
user interface for initializing and naming a disk; the Standard File 
Package calls this routine when the user inserts an uninitialized disk. 
You can also use the Disk Initialization Package to perform each of the 
three steps of initializing a disk separately if desired. 

*** In the Inside Macintosh manual, the documentation of this package 
will be at the end of the volume that describes the Operating System. 
*** 

You should already be familiar with the following: 

- the basic concepts and structures behind QuickDraw, particularly 
points 

- the Toolbox Event Manager 

- the File Manager *** the File Manager manual doesn't yet exist *** 

- the Package Manager and packages in general 

Using the Disk Initialization Package 

This section discusses how the routines in the Disk Initialization 
package fit into the general flow of an application program, and gives 
you an idea of which routines you'll need to use. The routines 
themselves are described in detail in the next section. 

The Disk Initialization Package and the resources it uses are 
automatically read into memory from the system, resource file when one 
of the routines in the package is called. Together, the package and 
its resources occupy about 2.5K bytes. If the disk containing the 
system resource file isn't currently in a Macintosh disk drive, the 
user will be asked to switch disks and so may have to remove the one to 
be initialized. To avoid this, you can use the DILoad procedure, which 
explicitly reads the necessary resources into memory and makes them 
unpurgeable. You would need to call DILoad before explicitly ejecting 
the system disk or before any situations where it may be switched with 
another disk (except for situations handled by the Stand'ard File 
Package, which calls DILoad itself). 

(note) 
The resources used by the Disk Initialization Package 
consist of a single dialog and its associated items, even 
though the package may present what seem to be a number 
of different dialogs. A special technique was used to 
allow the single dialog to contain all possible dialog 
items with only some of them visible at one time. *** 

5/7/84 Hacker-Rose /PACKAGES/PACKDI 



36 Macintosh Packages Programmer's Guide 

This technique will be documented in the next draft of 
the Dialog Manager manual. *** 

When you no longer need to have the Disk Initialization Package in
memory, call DIUnload. The Standard File Package calls DIUnload before 
returning. 

When a disk-inserted event occurs, the system' attempts to mount the 
volume (by calling the File Manager function PBMountVol) and returns 
PBMountVol's result code in the high-order word of the event message. 
In response t~ such an event, your application can examine the result 
code in the event message and call DIBadMount if an error occurred 
(that is, if the volume could not be, mounted). If the error is one 
that can be corrected by initializing the disk, DIBadMount presents the 
standard user interface for initializing and naming the disk, and then 
mounts the volume itself. For other errors, it justs ejects the disk; 
these errors are rare, and may reflect a proble~ in your program. 

(note) 
Disk-inserted events d~ring standard file saving and 
opening are handled by the Standard File Package. Yeu'll 
call DIBadMount only in other, less common situations 
(for example, if your program explicitly ejects disks, or 
if you want to respond to the user's inserting an 
uninitialized disk when not expected). 

Disk initialization consists of three steps, each of which can be 
performed separately by the functions DIFormat, DIVerify, and DIZero. 
Normally you won't call these ~n a standard application, but they may 
be ·useful in special utility programs that have a nonstandard 
interface. 

Disk Initialization Package Routines 

Assembly-language note: The macros for calling the Disk 
Initialization Package routines push one of the following 
routine selectors onto the stack and then invoke Pack2: 

Routine 
DIBadMount 
DIFormat 

-DILoad 
DIUnload 
DIVerify 
DIZero 

5/7/84 Hacker-Rose 

Selector 
o 
6, 
2 
4 
8 

10 

/PACKAGES/PACKDI 



THE DISK INITIALIZATION PACKAGE 37 

,PROCEDURE DILoad; 

DILoad reads the Disk Initialization Package, and its associated dialog 
and dialog items, from the system resource file into memory and makes 
them unpurgeable. 

(note) 
DIFormat, DIVerify, and DIZero don't need the dialog, so 
if you use only these routines you can call the Resource 
Manager function GetResource to read just the package 
resource into memory (and the Memory Manager procedure 
HNoPurge to make it unpurgeable). 

PROCEDURE DIUnload; 

DIUnload makes the Disk Initialization Package (and its associated 
dialog and dialog items) purgeable. 

FUNCTION DIBadMount (where: Point; evtMessage: LongInt) :--INTEGER; 

Call DIBadMount when a disk-inserted event occurs if the result code in 
the high-order word of the associated event message indicates an error 
(that is, the result code is other than noErr). Given the event 
message in evtMessage, DIBadMount evaluates the result code and either 
ejects the disk or lets the user initialize and name it. The low-order 
word of the event message contains the drive number. The where 
parameter specifies the location (in global coordinates) of the top 
left corner of the dialog box displayed by DI~adMount. 

If the result code passed is extFSErr, mFulErr, nsDrvErr, paramErr, or 
volOnLinErr, DIBadMount simply ejects the disk from the drive and 
returns the result code. If ~he result code ioErr, badMDBErr, or 
noMacDskErr is passed, the error can be corrected by initializing the 
disk; DIBadMount displays a dialog box that describes the problem and 
asks whether the user wants to initialize the disk. For the result 
code ioErr, the dialog box shown in Figure D-1 is displayed. (This 
happens if the disk is brand new.) For badMDBErr and noMacDskErr, 
DIBadMount displays a similar dialog box in which the description of 
the problem is "This disk is damaged" and "This is not a Macintosh 
disk", respectively. 

! {II 
,--, 
, i 
! : 

This disk Is unreadable: 

Do you want to initialize it? 

[ Eject .) [ I niti8lize ] 

Figure D-1. Disk Initialization Dialog for IOErr 

, 5/7/84 Hacker-Rose /PACKAGES/PACKDI 



38 .Macintosh Packages Programmer's Guide 

(note) 
Before presenting the, disk initialization dialog, 
DIBadMount checks whether the drive contains an already 
mounted volume; if so, it ejects the disk and returns 2 
as its result. This will happen rarely and may reflect 
an error in your program (for example, you forgot to call 
DILoad and the user had to switch to the disk containing 
the system resource file). 

If the user responds to the disk initialization dialog by clicking the 
Eject button, DIBadMount ejects the disk and returns 1 as its result. 
If the Initialize button is' clicked, a box displaying the message 
"Initializing disk ••• " appears, and DIBadMount attempts to, initialize 
the disk. If initialization fails, the disk is ejected and the user is 
informed as shown in Figure D-2; after the user clicks OK, DIBadMount 
returns a negative result code ranging from firstDskErr to lastDskErr, 
indicating that a low-level disk error occurred. 

lEJ::: 0-c.0 

r-i 
: l 

I nltl811zatlon failed! 

( OK ) 

Figure D-2. Initialization Failure Dialog 

If the disk is successfully initialized, the dialog box in Figure D-3 
appears. After the user names the disk and clicks OK, DIBadMount 
mounts the volume by calling the File- Manager function PBMountVol and 
returns PBMountVo1's result code (noErr if no error occurs). 

t~: J Pleose nome this disk: 
! ·'::·1 . liifiiHltlZi_l. 

( OK ] 

Figure D-3. Dialog for Naming a Disk 

5/7/84 Hacker-Rose /PACKAGES/PACKDI 



THE DISK INITIALIZATION PACKAGE 39 

Result codes 

Other results 

noErr 
extFSErr 
mFulErr 
nsDrvErr 
paramErr 
volOnLinErr 
firstDskErr 
through lastDskErr 

1 
2 

FUNCTION DIFormat (drvNum: INTEGER) : OSErr; 

No error 
External file system 
Memory full 
No such drive 
Bad drive number 
Volume already on-line 
Low-level disk error 

User clicked Eject 
Mounted volume in drive 

DIFormat formats the disk in the drive specified by the given drive 
number and returns a result code indicating whether the formatting was 
completed successfully or failed. Formatting a disk consists of 
writing special information onto it so that the Disk Driver can read 
from and write to the disk. 

Result codes noErr 
firstDskErr 
through lastDskErr 

FUNCTION DIVerify (drvNum: INTEGER) : OSErr; 

No error 
Low-level disk error 

DIVerify verifies the format of the disk in the drive specified by the 
given drive number; it reads each bit from the disk and returns a 
result code indicating whether all bits were read ,successfully or not. 

Result codes noErr 
firstDskErr 
through lastDskErr 

No error 
Low-level disk error 

FUNCTION DIZero (drvNum: INTEGER; volName: Str255) : OSErr; 

On the unmounted volume in the drive specified by the given drive 
number, DIZero writes the volume information, a block map, and a file 
directory as for a volume with no files; the volName parameter 
specifies the volume name to be included in the volume information. 
This is the last step in initialization (after formatting and 
verifying) and makes any files that are already on the volume 
permanently inaccessible. If the operation fails, DIZero returns a 
result code indicating that a low-level disk error occurred; otherwise, 
it mounts the volume by calling the File Manager function PBMountVol 
and returns PBMountVol's result code (noErr if no error occurs). 

5/7/84 Hacker-Rose /PACKAGES/PACKDI 



40 Macintosh Packages Programmer's Guide 

Result codes 

5/7/84 Hacker-Rose 

noErr 
badMDBErr 
extFSErr 
ioErr 
mFulErr 
noMacDskErr 
nsDrvErr 
paramErr 
volOnLinErr 
firstDskErr 
through lastDskErr 

No error 
Bad master directory block 
External file system 
Disk I/O error 
Memory full 
Not a Macintosh volume 
No ·such drive 
Bad drive number 
Volume already on-line 
Low-level disk error 

/PACKAGES/PACKDI 



SUMMARY OF THE PACKAGE MANAGER 41 

SUMMARY OF THE PACKAGE MANAGER 

Constants \ 

CONST { Resource IDs for packages } 

dsklnit 2; {Disk Initialization} 
stdFile 3; {Standard File} 
flPoint = 4; {Floating-Point Arithmetic} 
trFunc 5; {Transcendental Functions} 
intUtil = 6; {International Utilities} 
bdConv 7 ; {Binary-Decimal Conversion} 

Routines 

PROCEDURE InitPack (packID: INTEGER); 
PROCEDURE InitAllPacks; 

Assembly-Language Information 

Constants 

; Resource IDs for packages 

dsklnit 
stdFile 
flPoint 
trFunc 
intUtil 
bdConv 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

5/7/84 Hacker-Rose 

2 ;Disk Initialization 
3 ;Standard File 
4 ;Floating-Point Arithmetic 
5 ;Transcendental Functions 
6 ;International Utilities 
7 ;Binary-Decimal Conversion 

/PACKAGES/PACK.S 



42 Macintosh Packages Programmer's Guide 

SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE 

Constants 

CONST { Masks for currency format } 

currSymLead 
currNegSym 
currTrailingZ 
currLeadingZ 

16; {set if currency symbol leads} 
= 32; {set if minus sign for negative} 

64; {set if trailing decimal zeroes} 
= 128; {set if leading integer zero} 

{ Order of short date elements } 

mdy - 0; 
dmy 1; 
ymd 2; 

{month day year} 
{day month year} 
{year month day} 

{ Masks for short date format } 

dayLeadingZ = 32; {set if leading 
mntLeadingZ = 64; {set if leading 
century 128 ; {set if century 

{ Masks for time format } 

zero for day} 
zero for month} 
included} 

secLeadingZ 
minLeadingZ 
hrLeadingZ 

32; {set if leading zero for se~onds} 
64; {set if leading zero for minutes} 
128; {set if leading zero for hours} 

{ High-order byte of version information } 

verUS = 0; 
verFrance 1 ; 
verBritain = 2' , 
verGermany = 3; 
verItaly = 4' , 

Data Types 

TYPE Intl0Hndl = AIntl0Ptr; 
Intl0Ptr = AIntl0Rec; 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE 43 

Intl0Rec = PACKED RECORD 
decimalPt: 
thousSep: 
listSep: 
currSyml: 
currSym2: 
currSym3: 
currFmt: 
dateOrder: 
shortDateFmt: 
dateSep: 
timeCycle: 
timeFmt: 
mornStr: 

eveStr: 

timeSep: 
timelSuff: 
time2Suff: 
time3Suff: 
time4Suff: 
time5Suff: 
time6Suff: 
time7Suff: 
time8Suff: 
metricSys: 
intl0Vers: 

END; 

IntllHndl = AIntllPtr; 
IntllPtr = AIntllRec; 
IntllRec PACKED RECORD 

_days: 
months: 
suppressDay: 
longDateFmt: 
dayleading0: 
abbrLen: 
st0 : 
stl: 
st2: 
st3: 
st4: 
intllVers: 
localRtn: 

END; 

CHAR; {decimal point character} 
CHAR; {thousands separator} 
CHAR; {list separator} 
CHAR; {currency symbol} 
CJiAR; 
CHAR; 
Byte; {currency format} 
Byte; {order of short date elements} 
Byte; {short date format} 
CHAR; {date separator} 
Byte; {0 if 24-hour cycle,.255 if 12-hour} 
Byte; {time format} 
PACKED ARRAY[1 •• 4] OF CHAR; 
{trailing string for first l2-hour cycle} 

PACKED ARRAY[1~.4] OF CHAR; 
{trailing string for last l2-hour cycle} 

CHAR; {time separator} 
CHAR; {trailing string for 24-hour cycle} 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
CHAR; 
Byte; {255 if metric, 0 if not} 
INTEGER {version information} 

ARRAY[l •• 7] OF STRING[15]; {day names} 
ARRAY[l •• l2] OF STRING[l5]; {month names} 
Byte; {0 for day name, 255 for none} 
Byte; {order of long date elements} 
Byte; {255 for leading 0'in day number} 
Byte; {length for abbreviating names} 
PACKED ARRAY[l •• 4] OF CHAR; {strings} 
PACKED ARRAY[l •• 4] OF CHAR; { for} 
PACKED ARRAY[1 •• 4] OF CHAR; { long} 
PACKED ARRAY[l •• 4] OF CHAR; { date} 
PACKED ARRAY[1 •• 4] OF CHAR; { format} 
INTEGER; {version information} 
INTEGER {routine for localizing string } 

{ comparison; actually may be } 
{ longer than one integer} 

DateForm'= (shortDate, longDate, abbrevDate); 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



44 Macintosh Packages Programmer's Guide 

Routines 

PROCEDURE IUDateString 

PROCEDURE IUDatePString 

PROCEDURE IUTimeString 

PROCEDURE IUTimePString 

FUNCTION 
FUNCTION 

IUMetric : 
IUGetIntl 

PROCEDURE IUSetIntl 

FUNCTION 
FUNCTION 
FUNCTION 
FUNCTION 

IUCompString 
IUMagString 
IUEqualString 
IUMagIDString 

(dateTime: LongInt; form: DateForm; VAR result: 
Str255); 

(dateTimei LongInt; form: DateForm; VAR result: 
Str25S; intlParam: Handle); 

(dateTime: LongInt; wantSeconds: BOOLEAN; VAR 
result: Str2SS); 

(dateTime: LongInt; wantSeconds:BOOLEAN; VAR 
result: Str2SS; intlParam: Handle); 
BOOLEAN; 

(theID: INTEGER) : Handle; 
{refNum: INTEGER; theID: INTEGER; intlParam: 

Handle} ; 
(aStr,bStr: Str255) : INTEGER; [Pascal only] 
(aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER; 
(aStr,bStr: Str255) : INTEGER; [Pascal only] 
(aPtr,bPtr: Ptr; aLen,bLen: INTEGER) : INTEGER; 

Assembly-Language Information 

Constants 

; Currency format 

currSymLead .EQU 4 ;set if currency symbol leads 
currNegSym .EQU 5 ;set if minus sign for negative 
currTrailingZ .EQU 6 ;set if trailing decimal zeroes 
currLeadingZ .EQU 7 ;set if leading integer zero 

; Order of short date elements 

mdy .EQU 0 ;month day year 
dmy , .EQU 1 ;day month year 
ymd .EQU 2 ;year month day 

; Short date format 

dayLeadingZ .EQU 5 ;set if leading zero for day 
mntLeadingZ .EQU 6 ;set if leading zero for month 
century .EQU 7 ;set if century included 

; Time format 

secLeadingZ .EQU 5 ;set if leading zero for seconds 
minLeadingZ .EQU 6 ;set if leading zero for minutes 
hrLeadingZ .EQU 7 ;set if 'leading zero for hours 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



SUMMARY OF THE INTERNATIONAL UTILITIES PACKAGE 45 

; High-order byte of version information 

verUS .EQU ~ 
verFrance .EQU 1 
verBritain .EQU 2 
verGermany .EQU 3 
verItaly .EQU 4 

. Date form for IUDateString and IUDatePString , 

shortDate .EQU ~ ;short form of date 
longDate .EQU 1 ;long form of date 
abbrevDate .EQU 2 ;abbreviated long form 

International Resource' ~ Data Structure 

decimalPt 
thousSep 
listSep 
currSym 
currFmt 
date Order 
shortDateFmt 
dateSep 
timeCycle 
timeFmt 
mornStr 
eveStr 
timeSep 
timeSuff 
metricSys 
intl~Vers 

Decimal point character 
Thousands separator 
List separator 
Currency symbol 
Currency format 
Order of short date elements 
Short date format 
Date separator 
~ if 24-hour cycle, 255 if 12-hour 
Time format 
Trailing string for first 12-hour cycle 
Trailing string for last l2-hour cycle 
Time separator 
Trailing string for 24-hour cycle 
255 if metric, ~ if not 
Version information 

International Resource 1 Data Structure 

days 
months 
suppressDay 
longDateFmt 
dayleading~ 
abbrLen 
st~ 
stl 
st2 
st3 
st4 
intllVers 
localRtn 

5/7/84 Hacker-Rose 

Day names 
Month names 
~ for day name, 255 for none 
Order of long date elements 
255 for leading ~ in day number 
Length for abbreviating names 
Strings for long date format 

Version information 
Comparison localization routine 

/PACKAGES/PACK.S 



46 Macintosh Packages Programmer's Guide 

Routine Selectors 

Routine 
IUDatePString 
IUDateString 
IUGetlntl 
IUMagIDString 
IUMagString 
IUMetric 
IUSetlntl 
IUTimePString 
IUTiineString 

5/7/84 Hacker-Rose 

Selector 
14 
~ 
6 

12 
1~ 
,4 
8 

16 
2 

/PACKAGES/PACK.S 



SUMMARY OF THE BINARY-DECIMAL CONVERSION PACKAGE 47 

SUMMARY OF THE BINARY-DECIMAL CONVERSION PACKAGE 

Routines 

PROCEDURE NumToString (theNum: LongInt; VAR theString: Str255); 
PROCEDURE StringToNum (theString: Str255; VAR theNum: LongInt); 

Assembly-Language Information 

Routine Selectors 

Routine 
NumToString 
StringToNum 

Selector 

5/7/84 Hacker-Rose 

o 
1 

- / 

/PACKAGES/PACK.S 



48 Macintosh Packages Programmer's Guide 

SUMMARY OF THE STANDARD FILE PACKAGE 

Constants 

CONST = putDlgID = -3999; {SFPutFile dialog template ID} 

{ Item numbers of enabled items in SFPutFile dialog } 

putSave = 1; {Save button} 
putCancel ='2; {Cancel button} 
putEject = 5; {Eject button} 
putDrive = 6'; {Drive button} 
putName = 7; {editText item for file name} 

getDlgID = -4000; {SFGetFile dialog template ID} 

{ Item numbers of enabled items in SFGetFile dialog } 

getOpen 
.getCancel 
getEject 
getDrive 
getNmList 
getScrol1 

Data Types 

= 1; 
= 3; 
= 5; 

6; 
= 7; 
= 8; 

{Open button} 
{Cancel button} 
{Eject button} 
{Drive button} 
{userItem for file name list} 
{userItem for scroll bar} 

TYPE SFReply = RECORD 
good: 
copy: 
fType: 
vRefNum: 
version: 
fName: 

BOOLEAN; 
BOOLEAN; 
OSType; 
INTEGER; 
INTEGER; 
STRING[63] 

{FALSE if ignore command} 
{not used} 
{file type or not used} 
{volume reference number} 
{file's version number} 
{file name} 

END; 

SFTypeList = ARRAY [0 •• 3] OF OSType; 

Routines 

PROCEDURE SFPutFile (where: Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply); 

PROCEDURE SFPPutFile (where:, Point; prompt: Str255; origName: Str255; 
dlgHook: ProcPtr; VAR reply: SFReply; dlgID:, 
INTEGER; filterProc: ProcPtr); 

PROCEDURE SFGetFile (where: Point; prompt: Str255; fileFilter: 
ProcPtr; numTypes: INTEGER; typeList: SFTypeList; 
dlgHook: ProcPtr; VAR reply: SFReply); 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



SUMMARY OF THE STANDARD FILE PACKAGE 49 

PROCEDURE SFPGetFile (where: Point; prompt: Str255; fileFilter: 
ProcPtr; numTypes: INTEGER; typeList: SFTypeList; 
dlgHook: ProcPtr; VAR reply: SFReply; dlgID: 
INTEGER; filterProc: ProcPtr); 

DlgHook Function 

FUNCTION MyDlg (item: INTEGER; theDialog: DialogPtr) INTEGER; 

FileFilter Function 

FUNCTION MyFileFilter (paramBlock: ParmBlkPtr) BOOLEAN; 

Standard SFPutFile Items 

Item number 
1 
2 
3 
4 
5 
6 
7 
8 

Item 
Save button 
Cancel button 
Prompt string (statText) 
UserItem for disk name 
Eject button 
Drive button 
EditText item for file name 
User Item for gray line 

Resource IDs of SFPutFile Alerts 

Alert 
Existing file 
Locked disk 
System error 
Disk not found 

Resource ID 
-3996 
-3997 

. -3995 
-3994 

Standard SFGetFile Items 

Item number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1~ 

Item 
Open button 
Invisible button 
Cancel button 
User Item for disk name 
Eject button 
Drive button 
UserItem for file name list 
UserItem for scroll bar 
Userltem for gray line 
Invisible text (statText) 

5/7/84 Hacker-Rose 

Standard display rectangle 
(12, 74, 82, 92) 
(114, 74, 184, 92) 
(12, 12,184, 28) 
(209, 16, 295, 34) 
(217, 43, 287, 61) 
(217, 74, 287, 92) 
(14,.34, 182, 50) 
(200,' 16, 2~1, 88) 

Standard display rectangle 
(152, 28, 232, 46) 
(1152, 59, 1232, 77) 
(152, 90, 232, 108) 
(248, 28, 344, 46) 
(256, 59, 336, 77) 
(256, 90, 336, 108) 
(12, 11, 125, 125) 
(124, 11, 140, 125) 
(244, 20, 245, 116) 
(1044, 20, 1145, 116) 

/PACKAGES/PACK.S 



50 Macintosh Packages Programmer's Guide 

Assembly~Language Information 

Constants 

putDlgID .EQU -3999 ;SFPutFile dialog template ID 

; Item numbers of enabled items in SFPutFile dialog 

putSave .EQU 1 ;Save button 
putCancel .EQU 2 ;Cancel button 
putEject .EQU 5 ;Eject button 
putDrive .EQU 6 ;Drive button 
putName .EQU 7 ;editText item for file name 

getDlgID .EQU -4000 ;SFGetFile di?log template ID 

; Item numbers of enabled items in SFGetFile dialog 

getOpen .EQU 1 ;Open button 
getCancel .EQU 3 ;Cancel button 
getEject .EQU 5 ;Eject button 
getDrive .EQU 6 ;Drive button 
getNmList .EQU 7 ;userItem for file name list 
getScroll .EQU 8 ;userltem for scroll bar 

ReEll Record Data Structure 

rGood 
rType 
rVolume 
rVersion 
rName 

FALSE if ignore command 
File type 
Volume reference number 
File's version number 
File name 

Routine Selectors 

Routine 
SFGetFile 
SFPGetFile 
SFPPutFile 
SFPutFile 

Selector 
2 
4 
3 
1 

5/7/84 Hacker-Rose /PACKAGES/PACK.S 



SUMMARY OF THE DISK INITIALIZATION PACKAGE 51 

SUMMARY OF THE DISK INITIALIZATION PACKAGE 

Routines & 

DILoad; 
DIUnload; 

PROCEDURE 
PROCEDURE 
FUNCTION 
FUNCTION 
FUNCTION 
FUNCTION 

DIBadMount (where: Point; evtMessage: LongInt) INTEGER; 
DIFormat (drvNum: INTEGER) : OsErr; 
DIVerify (drvNum: INTEGER) : OsErr; 
DIZero (drvNum: INTEGER; volName: Str255) OSErr; 

Assembly-Language Information 

Routine Selectors 

Routine 
DIBadMount 
DIFormat 
DILoad 
DIUnload 
DIVerify 
DIZero 

Result Codes 

Name 
badMDBErr 
extFSErr 
firstDskErr 
ioErr 
lastDskErr 
mFulErr 
noErr l 

noMacDskErr 
nsDrvErr 
paramErr 
volOnLinErr 

Selector 
o 
6 
2 
4 
8 

10 

Yalue 
-60 
-58 
-84 
-36 
-64 
-41 

0 
-57 
-56 
-50 
-55 

5/7/84' Hacker-Rose 

Meaning 
Bad master directory block 
External file system 
First of the range of low-level disk errors 
Disk I/O error 
Last of the range of low-level disk errors 
Memory full 
No error 
Not a Macintosh disk 
No such drive 
Bad drive number 
Volume already on-line 

/PACKAGES/PACK.S 



52 Macintosh Packages Programmer's Guide· 

GLOSSARY 

ligature: A character that combines two letters. 

list separator: The character that separates numbers, as when a list 
of numbers is entered by the user. 

package: A set of data structures and routines that's stored as a 
resource and brought into memory only when needed. 

routine selector: An integer that's pushed onto the stack before the 
PackN macro is invoked, to identify which routine to execute. (N is 

the resource ID of a package; all macros for calling routines in the 
package expand to invoke _PackN.) 

thousands separator: The character that separates every three digits 
to the left of the decimal point. 

5/7/84 Hacker-Rose /PACKAGES/PACK.G 



MACINTOSH USER EDUCATION 

The Memory Manager: A Programmer ',s Guide /MEM.MGR/MEM 

See Also: Inside 'Macintosh: A Road Map 
Macintosh Memory Management: An Introduction 
Programming Macintosh Applications in Assembly Language 
The Resource Manager: A Programmer's Guide 
The Segment Loader: A Programmer's Guide 
Putting Together a Macintosh Application 

Modification History: Ftrst Draft (ROM 7) 
Second Draft 

Steve Chernicoff 
Bradley Hacker 

10'/10/83 
10/9/84 

ABSTRACT 

This manual describes the Memory Manager, the part of the Macintosh 
Operating System that controls the dynamic allocation of memory on the 
heap. 

Summary of significant changes and additions since first draft: 

- Important information about handle usage has been added (page 10). 

- The discussion of ~emory. organization has been moved here-(page 
15) from the manual Programming Macintosh Applications in Assembly 
Language. It now includes a Lisa running MacWorks. All memory 
maps, or portions of them shown separately, place high memory at 
the top; other manuals will be changed to match this. 

- The procedures ~~xAppIZone and MoreMasters have been added (page 
30) • 

- The descriptions of the routines InitZone, CompactMem, ResrvMem, 
and PurgeMem have been changed (pages 28 and 40). 

- Notes for assembly-language programmers are now brought up where 
appropriate rather than in a separate section at the end. 



2 Memorx Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Memory Manager 
5 Pointers and Handles 
6 How Heap Space Is Allocated 

10 Dereferencing a Handle 
12 The Stack and the Heap 
14 General-Purpose Data Types 
15 Memory Organization 
17 Memory Manager Data Structures 
17 Structure of Heap Zones 
20 Structure of Blocks 
22 Structure of Master Pointers 
23 Using the Memory Manager 
25 Memory Manager Routines 
27 Initialization and Allocation 
30 Heap Zone Access 
32 Allocating and Releasing Relocatable Blocks 
36 Allocating and Releasing Nonrelocatable Blocks 
39 Freeing Space in the Heap 
42 Properties of RelocatableBlocks 
44 Grow Zone Functions 
47 Miscellaneous Routines 
49 Special Techniques 
49 Subdividing the Application Heap Zone 
51 Creating a Heap Zone on the Stack 
52 Pointer and Handle' Conversion 
53 Summary of the Memory Manager 
60 Gl~ssary 

Copyright (c),1984 Apple Computer, Inc. All rights reserved. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Memory Manager, the part of the Macintosh 
Operating System that controls the dynamic allocation of memory space 
on the heap. *** Eventually it will become part of the comprehensive 
Inside Macintosh manual. *** 
Like all Operating System documentation, this manual assumes you're 
familiar with Lisa Pascal and the information in the following manuals: 

- Inside Macintosh: ! Road Map 

- Macintosh Memory Management: An Introduction 

- Programming Macintosh Applications in Assembly Language, if you're 
using assembly language 

ABOUT THE MEMORY MANAGER 

Using the Memory Manager, your' prog·ram 'can maintain one or mote 
independent areas of heap memory (called heap zones) and use them ~o 
allocate blocks of memory of any desired size. Unlike stack space, 
which is always allocated and released in strict LIFO (last-in-first
out) order, blocks on the heap can ·be allocated and released in any 
order, according to your program's needs. So instead of growing and 
shrinking in an orderly way like the stack, the heap tends to become 
fragmented into a patchwork of allocated and free blocks, as shown in 
Figure 1. The Memory Manager does all the neces,sary "housekeeping" to 
keep track of the' blocks as it allocates and releases them. 

high memory 

E1 reloceteble blocks 

• nonre I oceteb Ie blocks 

D free blocks 

low memory 

Figure 1. A Fragmented Heap 

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.l 



4 Memory Manager Programmer's Guide' 

The Memory Manager always maintains at least two heap zones: a system 
heap ~, reserved for the system's own use, and an application heap 
zone for use by your program. The system heap zone is initialized to a 
fixed size when the system is started up (16.SK on a 128K Macintosh and 
46K on a SI2K Macintosh or a Lisa). Objects in this zone remain 
allocated even when one application terminates and another is started 
up. In contrast, the application heap zone is automatically 
reinitialized at the start of each new application program, and the 
contents of any previous application zone are lost. 

Assembly-language note: If desired, you can prevent the 
application beap zone from being reinitialized when an 
application starts up; see the discussion of the Chain procedure 
in the Segment Loader manual for details. 

The initial size of the application zone is 6K bytes, but it can grow 
as needed. Your program can create additional heap zones if it 
chooses, either by subdividing this original application zone o.r by 
allocating space on tRe stack for more heap zones. 

(note) 
In this manual, unless otherwise stated, the term 
"application heap zone" (or just "application zone") 
always refers to the original application' heap zone 
provided by the system, before any subdivision. 

Various parts of the Macintosh Operating System and Toolbox also use 
space in the application heap zone.. For ins tance, your program's code 
typically resides in the application zone, in space reserved for it at 
the request of the Segment Loader. Similarly, the Resource Manager 
requests space in the application zone to hold resources it has read 
into memory from a resource file. Toolbox routines that create new 
entities of various kinds, such as NewWindow, NewControl, and NewMenu, 
also call the Memory Manager to allocate the space they need. 

At any given time, there's one current heap ~, to which most Memory 
Manager operations implicitly apply. You can control which heap zone 
is current by calling a Memory Manager procedure. Whenever the system 
needs to access its' own (system) heap zone, it saves the ~etting of the 
current heap zone and restores it later. 

Space within a heap zone is divided up into contiguous pieces called 
blocks. The blocks in a zone fill it completely: every byte in the 
zone is part of exactly.one block, which may be either allocated 
(reserved for use) or free (available for allocation). Each block has 
a block header for the Memory Manager's own use, followed by the 
block's contents, the area available for use by your application or the 
system (see Figure 2). There may also be some unused bytes at the end 
of the block, beyond the end of the contents. A block can be of any 
size, limited only by the size of the heap zone itself. 

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.l 



ABOUT THE MEMORY MANAGER 5 

Assembly-language~: Blocks are always aligned on even word 
boundaries, so you can "access them with word (.W) and long-word 
(.L) instructions. 

content~ -

Figure 2. A Block 

An allocated block may be relocatable or nonrelocatable. Relocatable 
blocks can be moved around within the heap zone to create space for 
other blocks; nonreloc"atable blocks can never be moved. These ~are 
permanent properties of a block. If relocatable, a block may be locked 
or unlocked; if unlocked, it may be purge able or unpurgeable. These 
attributes can be set and changed as necessary. Locking a relocatable 
block prevents it from being moved. Making a block purgeable allows 
the Memory Nanager to remove it from the heap zone, if necessary, to 
make room for another block. (Purging of blocks is discussed further 
below" under "How Heap Space Is Allocated".) A newly allocated 
relocatable block is initially unlocked and unpurgeable. 

POINTERS AND HANDLES 

Relocatable and nonrelocatable blocks are referred to in different 
ways: nonrelocatable blocks by pointers, relocatable blocks by 
handles. When the Memory Manager allocates a new block, it returns a 
pointer or handle to the content~ of the block (not to the block's 
header) depending on whether the block is nonrelocatable (Figure 3) or 
relocatable (Figure 4). 

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.1 



I 

6 Memory Manager Programmer's Guide 

heap 

pointer ,..----

....................... ......... ............. . ....................... ..... .. ...... ...... . 
nonre I ocatab I e 
bloCK 

Figure 3. A Pointer to a Nonrelocatable Block 

A pointer to a nonrelocatable block never changes, since the block 
itself can't move. A pointer to a relocatab1e block can change value, 
however, since the block can move. For this reason, the Memory Manager 
maintains a single nonre10catab1e master pointer to each relocatab1e 
block. The master pointer is created at the same time as the block and 
set to point to it. When you allocate a relocatable block, the Memory 
Manager returns a pointer to the master pointer, called a handle to the 
block (see Figure 4). If the Memory Manager later has to move the 
block, it has only to update the master pointer to point to the block's 
new location. 

heap 

handle 

) me~ter 

pointer 

reloceteble 
blOCK 

Figure 4. A Handle to a Re10catab1e Block 

HOW HEAP SPACE IS ALLOCATED 

The Memory Manager allocates space for re10catab1e blocks according to 
a "first fit" strategy. It looks for a free block of at least the 
requested Size, scanning forward from the end of the last block 
allocated and "wrapping around" from the end of the zone to the 
beginning if necessary. As soon as it finds a free block big enough, 

-10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.l 



HOW HEAP SPACE IS ALLOCATED 7 

it allocates the requested number of bytes from that block. 

If a single free block can't be found that's big enough, the Memory. 
Manager compacts the heap zone: moves allocated blocks together in 
order to collect the free space into a single larger free block. Only 
relocatable, unlocked blocks are moved" The compaction continues until 
either a free block of at least the requested size has been created or 
the entire heap zone has been compacted. Figure 5 illustrates what 
happens when the entire heap must ~e compacted to create a large enough 
free block. 

hi gh memory high memory 

[ill relocateble blocks 

• nonrelocateble blocks 

D free blocks 

low memory low memory 

Before co~p8ction After compaction 

Figure 5. Heap Compaction 

Notice that nonrelocatable blocks (and relocatable ones that are 
temporarily locked) interfere with the compaction process by forming 
immovable "islands" in the heap. This can prevent free blocks from 
being collected together and lead to fragmentation of the available 
free space, as shown in Figure 6. To minimize this problem, the Memory 
Manager tries to keep all the nonrelocatable blocks together at the 
bottom of the heap zone. When you allocate a nonrelocatable block, the 
Memory Manager will try to make room for the new block near- the bo·ttom 
of the zone, by moving other blocks upward, expanding the zone, or 
purging blocks from it (see below). 

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.l 



8 Memory Manager Programmer's Guide 

high memory 

.:.:.:.:.:.:.:.:.:.:.:.:.'.:.:.:.:.:.:.:.:.'.:.:.:.'.; 
: ~: ~: ~::: ~: ~: ~: ~: ~: ~::::::::::: ~::: ~::: ~:::::::::::::~ 

~/: '( ...... '.:' :> ••••.• : ~.:~ ... :~·:~~~s: ":: ,:.':' :.j.:-.</~'~:<: 
.... ",:: ... ::: .... :·.·<~:i::;:/~:):.: ~ .. :<~~-:~~~ " ;.. ;.~I 

............... :.:.: .. .; ......... :.: ................. . 

:: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~:~: ~: ~:~ 
:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.'.:.:.:.: 

:.;'. : ~ ':; ~ ·;~~i:~::::·~. ::~~;?~~~~!.;~~$5~~~~;: : ~)~::.~ .:, \ 
~~~\ ~:.: :.?~~~~;~~:5~~;~~>~HUHHH(~;~~~:·; ·U:~n~~ 
~~ $;~(\~~~.::}:.~~~.;~~~~~~~:.:: \:~: .:$.. ~(~ ~ :~~~ i \ {~\~i~\ .. '

reloceteble bloCks

• norYeloceteble blocks

D free blocks

high memory

" . ,' ... ·'<h:(:;~~:'. '::" ... ;5~~f;5~){/~" ~::."~;~
~.: ~ ~/-..<"\:. '.:~ :<:~ .. ::' ... ,,' .. ~ .~~(~~~~~e~; I .i~{,<

":"':':':':"':':':':':':':':~':"':':':':':':':':':

:: ~: ~: ~: ~: ~: ~: ~: ~:~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~:~
...
.,; .. : ... :;.~t~~~~~: ... ::·:<·:·(·::. ~~ ~~~«~:!{ .. ~ .. ~~~~<~\

.. : .: .. \' .:,~~~ .. ~~~: (~~;'.(~:';/ .. :. '::: ;S~~~~~/I
~I 't~ ';~' , '~ .. :... .: •• ;~ ,->,'i {;-:~ .. ~,.. '.~. ',. .~ ..)

low memory low memory

Before compaction After compaction

Figure 6. Fragmentation of Free Space

(warning)
Whenever possible, use relocatable instead of
nonrelocatable blocks. If you must use nonrelocatable
bl~cks, allocate them early in the program so they will
be placed near the bottom of the heap.

If the Memory Manager can't satisfy the allocation request after
compacting the entire heap zone, it next trt'es expanding the zone by
the requested number of bytes (rounded up to the nearest 1K bytes).
Only the original application zone can be expanded, and only up to a
certain limit (discussed more fully under "The Stack and the Heap'·,
below). If any other zone is current, or if the application zrine has
already reached or exceeded its'limit, this step is skipped.

Next the Memory Manager tries to free space by purging blocks from the
zone. Only relocatable blocks can be purged, and then only if they're
explicitly marked as unlocked and purgeable. Purging a block removes
it from its heap zone and frees the space it occupies. The space
occupied by the block's master pointer itself remains allocated, but
the master pointer is set to NIL. Any handles to the block now point
to a NIL master pointer, and are said to be empty. If your program
later needs to refer to the purged block, it must detect that the
handle has become empty and ask the M~mory Manager to reallocate the
block. This ope~ation updates the master pointer (see Figure 7)~

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.l

handle

handle (empty)

I
I

handle

HOW HEAP SPACE IS ALLOCATED 9

heap

) master
,..--"1---------J - pointer

)

)

Before purg i ng

heap

NIL

After purging

heap

master
- pointer

After reallocating

relocatable
bloCK (contents
undefined)

master
pointer

Figure 7. Purging and Reallocating a Block

10/9/84 Chernicoff-Hacker !MEM.MGR/MEM.I.1

10 Memory Manager Progra~er's Guide

(warning)
Reallocating a block recovers only its space, not its
contents (which were lost when the block was purged).
It's up to your program to reconstitute the block's
contents.

Flnally, if all else fails, the Memory Manager calls the grow ~
function, if any, for the cu~rent heap zone. This is an optional
routine that an application can provide to take any last-ditch measures
to try to "grow" the zone by freeing some space'in it. The grow zone
function can try to create additional free space by purging blocks that
were previously marked unpurgeable, unlocking previously locked blocks,
and so on. The Memory Manager will call the grow zone function
repeatedly, compacting the heap again after each call, until either it
finds the space it's looking for or the grow zone function has
exhausted all possibilities. In the latter case, the Memory Manager
will finally give up and report that it's unable to satisfy the
allocation request.

Dereferencing a Handle

Accessing a ~lock by double indirection, through its handle instead of
through its master pointer, requires an extra memory reference. For
efficiency, you may sometimes want to dereference the handle--that is,
make a copy of the block's master pointer, and then use that pointer to
access the block by single indirection. But be carefull Any operation
that allocates space from the heap may cause the underlying block to be
moved or purged. In that event, the master pointer itself will be
correctly updated, but your copy of it will be left dangling.

One way to avoid this,'common type of program bug is to lock the- block
before dereferencing its handle. For example:

VAR aPointer: Ptr;
aHandle: Handle;

BEGIN

aHandle := NewHandle(•••); . . . ,
HLock(aHandle);
aPointer := aHandle A

;

WHILE ••• DO
BEGIN
••• aPointer A

•••

END;
HUnlock(aHandle);

END

10/9/84 Chernicoff-Hacker

{create a relocatable block}

{lock before dereferencing}
{dereference handle}

{use simple pointer}

{unlock block when finished}

/MEM.MGR/MEM.I.l

HOW HEAP SPACE IS ALLOCATED 11

Assembly-language~: To dereference a handle in assembly
language, just copy the master pointer into an address register
and use it to access the block by single indirection.

Remember, however, that when you lock a block it becomes an "island" in
the heap that may interfere with compaction and cause free space to
become fragmented. It's recommended that you use this technique only
in parts of your program where efficiency is critical, such as inside

. tight inner loops that are executed many times (and that don't allocate
other blocks).

(warning)
Don't forget to unlock the block again when you're
through with the dereferenced handle.

Instead of locking the block, you can update your copy of the master
pointer after any "dangerous" operation (one that can invalidate the
pointer by moving or purging the block it points to). Memory Manager
routines that can move or purge blocks in the heap are NewHandle,
NewPtr, SetHandleSize, SetPtrSize, ReallocHandle, ResrvMem, CompactMem,
PurgeMem, and MaxMem. Since these routines can be called indirectly
from other Operating System or Toolbox routines, you should assume that
any call to the Operating System or Toolbox can potentially leave your
dereferenced pointer dangling.

The Pascal compiler frequently dereferences handles during its normal
operation. You should take care to write code that will not require
the compiler to deference handles in the following cases:

- Use of the WITH statement with a handle, such as

WITH aHandle AA DO • • •

- Assigning' t~e result of a function that can move or purge blocks
to a field 'in a record referred to by a handle, such as

aHandleAA.field :=. NewHandle(•••)

A problem may arise because the compiler generates code that
dereferences the handle before calling NewHandle--and NewHandle
may move the block containing the field.

- Passing an argument of more than four bytes referred to by a
handle, to a routine that can move or purge a block or to any
routine in a package or anothe~ segment. For example:

TEUpdate(aHandleAA.box)

or

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.l

12 Memory Manager Programmer'e Guide

DrawString(aHandle~A.msg)

You can avoid having the compiler generate and use dangling pointers by
locking a block before you use its handle in the above situations. Or,

. you can use temporary variables, as in the following:

temp := NewHandle(•••);
aHandleAA.field := temp

THE STACK AND THE HEAP

The LIFO (last-in-first-out) nature. of the stack makes it particularly
convenient for memory allocation connected with the activation and
deactivation of routines (procedures and functions). Each time a
routine is called, space is allocated for a stack frame. The stack
frame holds the routine's parameters, local variables, and return
address. Upon exit ~rom the routine, the stack frame is released,
restoring the stack to the same state it was in when the routine was
called.

In Pascal, all stack management is done by the compiler. When you call
a routine, the compiler generates code to reserve space if necessary
for a function result, place the parameter values and return link on
the stack, and jump to the routine. The routine can then allocate
space on the stack for its own local variables.

Before returning, the routine releases the stack space occupied by its
local variables, return link, and parameters. If the routine is a
function, it leaves its result on the stack for the calling program.

Assembly-Ianguage~: In assemb1y language, you control the
allocation and release of stack space explicitly by manipulating
the stack pointer (register A7, also referred to by the standard
symbol SP). Decreasing the stack pointer allocates stack space;
increasing it releases stack space. Certain machine instructions
--notably JSR (Jump to Subroutine), BSR (Branch to Subroutine),
and RTS (Return from Subroutine)--also implicitly manipulate the
stack pointer.

The application heap zone and the application stack share the same area
in memory, growing toward each other from opposite ends (see Figure 8).
Naturally it would be disastrous for either to grow so far that it
collides with the other. To help prevent such collisions, the Memory
Manager enforces a limit on how far the application heap zone can grow
toward the stack. ~our program can set this application heap limit to
control the allotment of available space between the stack and the
heap.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.1

)

high memory

unused

space

appl ication
heap

........................
··1··
::.::::.:=:::::::=:::::::::::::::::::::::::=::

:i I: l.l: l~!:!i: i::: i ~:::: i 11 ~~ li::~ i ~ll: llli l:.
low memory

THE STAC~ AND THE HEAP 13

initial application
heap limit (8K bytes)

I

Figure B. The Stack and the Heap

The application heap limit marks the boundary between the space
available for the application heap zone and the space reserved
exclusively for the stack. At the start of each application program,
the limit is initialized to allow BK -bytes for the stack. Depending on
your program's needs, you can adjust the limit to allow more heap.sp~ce
at the expense of the stack or vice versa.

Notice that the limit applies only-to expansion of the heap; it has no
effect on how far-the stack can expand. Although the heap can never
expand beyond the limit into space reserved for the stack, there's
nothing to prevent the stack from crossing the limit. It's up to you
to set the limit low enough to allow for the maximum stack depth your
program will ever need.

(note)
Regardless of the limit setting, the application zone is
never allowed to grow to within lK of the current end of
the stack. This gives a little extra protection in case
the stack is approaching the boundary or has crossed over
onto the heap's side, and allows some safety margin for
the stack to expand even further.

To help detect collisions between the stack and the heap, a "stack
sniffer" routine is run sixty times a second, during the Macintosh's
vertical retrate interrupt. This routine compares the current e~ds of
the stack and the heap and invokes the System Error Handler in case of
a collision.

Assembly-language note: The System Error Handler moves the top
long word off the stack, sets the top of the stack to the bottom
of the stack, and then restores the top long word.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.l

14 Memory Manager Programmer's Guide

The stack sniffer can't prevent collisions, only detect them after the
fact: a lot of computation can take place in a sixtieth of a second.
In fact, the stack can easily expand into the heap, overwrite it~ and
then shrink back again before the next activation of the stack sniffer,
escaping detec~ion completely. The stack sniffer is useful mainly
during software,development; the alert box the System Error Handler
displays ca~ be confusing to your program's ,end user. Its purpose is
to warn you, the programmer, that your program's stack and heap are

'colliding, so that you can adjust the heap limit to correct the problem
before the user ever encounters it.

Assembly-language note: A number of global variables and
constants control ~size of the heap and stack. The initial
and minimum sizes of the application heap are given by the
global constants appZoneSize and minZone, respectively. The
default size of the stack is given by the global constant
dfltStackSize; it's moved into the global variable DefltStack
when the system starts up. The minimum size of the stack is
specified by the global constant mnStackSize; it's moved into
the global variable MinStack when the eystem starts up.

GENERAL-PURPOSE DATA TYPES

The Memory Manager includes a number ~f type definitions for general
purpose use. The types listed below are explained in Macintosh Memory
Management: An Introduction.

" TYPE Signed Byte = -128 •• 127;
Byte = 0 •• 255;
Ptr = ASignedByte;
Handle APtr;

Str255
StringPtr
StringHandle

= STRING[255];
= AStr255;
= AStringPtr;

ProcPtr = Ptr;

Fixed = LONGINT;

*'** (Correction to be made to the Memory Management Introduction
manual: Bit 15 of the high-order word of a fixed-point number is the
sign bit.) ***
For specifying the sizes of blocks on the heap, the Memory Manager
defines a special type called Size:

'10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.1

GENERAL-PURPOSE DATA TY~ES 15

TYPE Size - LONGINT;

All Memory Manager routines that deal with block sizes expect
parameters of type Size or return them as results. To specify a size
bigger than any existing block, you can use the following constant:

CONST maxSize = $800000;

MEMORY ORGANIZATION

This section discusses the organization of the Macintosh memory and
Lisa memory when running MacWorks. You'll need this information if you
want to use the available memory efficiently.

The organization of the Macintosh RAM is shown in Figure 9 on the
following page. The variable names listed on the right in the figure
refer to global variables for use by assembly-language programmers.

Assembly-language~: The global variables not shown in
parentheses are constants that are equated directly to a memory
address; those in parentheses are variables containing long-word
pointers that in turn point to an address. Names identified as
marking the end of an area actually refer to the address '
following the last byte in that area.

The lowest 2816'bytes are used for system globals and the trap dispatch
table. Immediately following this are the system heap and the .
application space. The application space is the memory available for
dynamic allocation by applications. Most of the application space is
shared between the stack and the heap, with the heap growing forward
from the beginning of the space and the stack growing backward from the
end. The remainder of the application space is occupied by global
variables belonging to QuickDraw, the application's global variables,
parameters passed to the application by the Finder, and the jump table.

, All of these are explained in the Segment Loader manual.

Assembly-Ianguage~: The star~ing address and default size
of. the system heap are given by the global constants heapStart
and sysZoneSize, respectively.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM~I~2

16 Memory Manager Programmer's Guide

size (bytes)

28 -C ;.;.;.:.;.:.;.:.;.;.;.;.:.;.;.:.:.:.;.:.;.:.;.;.;.;.;.:.;.:.;.:.;.;.;.:
740 { main sound buffer

128 { System Error Hendler use

21888 { mein screen buffer

796 -C :.:.:.: .:. :.:

740 { alternate sound buffer
9344 -(;.:.:.;.:-:.:.;.;.;.:.;.;.:.;.;.:.:.;.;.:.;.;.:.:.;.:-:.;.:.;.:.:.;.:.:

. 21888 { alternate screen buffer

{~ _____ j_um __ p_t_eb_l_e ______ ~

variable

~ (MemTop)

~ SoundLow

address

128K: $1 FFFF
512K: $7FFFF
128K: $1FDOO
S12K: $7FDOO

~ (ScrnBas'e) 128K: $1 A 700
. 512K: $7A700

~ (BufPtr)

32 { eppl ication parameters

{
t------------I ~ AS = (CurrentAS)

eppl ication globels

f-- (SysZone) $800

Figure 9. Macintosh RAM Organization

At (almost) the very end of memory are the main sound buffer t used by
the Sound Driver to control the sounds emitted by the bu~lt-in speaker
and the Disk Driver to control disk motor speed t and the main screen
buffer, which holds the bit image to be displayed on the Macintosh
screen. The area between the main screen and sound buffers is used by
the System Error Handler. Note that the addresses of these buffers are
different for different-sized computers.

There are alternate screen and sound buffers for special applications.
If you use either or both of these, the space available for use by your
application is reduced accordingly. The Segment Loader provides a
routine for specifying that an alternate screen or sound buffer will be
used.

The memory organization of a Lisa running MacWorks is shown in Figure
10.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

MEMORY ORGANIZATION 17

size (bytes) variable address

32768 {~ __ m_a_in_s_c_r_ee_n_b_u_ff_e_r_-t 1M: $F8000
~ (ScrnBese) 512K: $78000

hardware interface

740 { msin sound buffer

{
~-----t

jump table

~ (MemTop)
~ (BufPtr)

1M: $CEF86
S12K: $4E F86

1M: $CEC86
S12K: $1E C86

32 {{--_S_P_PI_i c_a_t_i o_n_p_s_r_am_e_t_e_rs--t ~ AS = (CurrentAS)
appl ication globals

{
~ (AS)

40 QuickDraw globals
f ~ .(CurStackBase)
~ steck
~.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::.:::. ~ SP = A7

system. globals

Mml:Mml!M@@@ ~ (HeapEnd) l' eppl icetion heap
~ '(AppIZone)

16K { system heap
. fo-.----------t ~ (SysZone)

2816 {
~--------------------

.Figure H~. Lisa RAM Organization

MEMORY MANAGER DATA STRUCTURES

$COOO

$800

This section discusses the internal data structures of the Memory
Manager. You don't need to know this information if you're just using
the Memory Manager routinely to allocate and release blocks of memory
from the application heap zone.

Structure of Heap Zones

Each heap zone begins with a 52-byte zone header and ends with a 12-
byte zone trailer (see Figure 11). The header contains all the
information the Memory Manager needs about that heap zone; the trailer
is just a minimum-size free block (described in the next section)
placed at the end of the zone as a marker. All the remaining space
between the header and trailer is available for allocation.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

18 Memory Manager Programmer's Guide

zone
header

available
space

:.:-:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:-:.:.:.: ...
~::: :
:::

20ne trai ler :.:-:.:-:-:-:-:-:-:-:-:.:.:-:-:-:-:-:-:.:-:-:.:-:-:-:-: f-- I imit pointer

Figure 11. Structure of a Heap Zone

In .Pascal, a he.ap zone' is defined as a ~ record of type Zone. . It.' s
always referred to with a ~ pointer C?f type THz ("the heap zone"): .

TYPE THz = Zone;

Zone = RECORD
bkLim: Ptr; {limit pointer}
purgePtr: Ptr; {used internally}
hFstFree: Ptr; {first free master pointer}
zcbFree: LONGINT; {numb~r of free bytes}
gzProc: ProcPtr; {grow zone function}
moreMast: INTEGER; {master pointers to allocate}
flags: INTEGER; {used internally}
cntRel: INTEGER; {relocatable blocks}
maxRel: INTEGER; {maximum cntRel value}
cntNRel: INTEGER; {nonrelocatable blocks}
maxNRel: INTEGER; {maximum maxRel value}
cntEmpty: INTEGER; {empty master pointers}
cntHandles: INTEGER; {total master pointers}
minCBFree: LONGINT; {minimum zcbFree value}
purgeProc: ProcPtr; {purge warning procedure}
sparePtr: Ptr; {used internally}
allocPtr: Ptr; {used internally}
heapData: INTEGER {first usable byte in zone}

END;

(warning)
The fields of the zone header are for the Memory
Manager's own internal use. You can examine the contents
of~ the zone's fields, but in general it doesn't make
sense for your program to try to change them. The few
exceptions are noted below in the discussions of the
specific fields.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

MEMORY MANAGER DATA. STRUCTURES 19

BkLim is a pointer to the zone's trailer block. Since the trailer is
the last block in the zone, this constitutes a limit pointer to the
byte follo~ng the last byte of usable space in the zone.

PurgePtr and allocPtr are "roving pointers" that the Memory Manager
maintains for its own internal use. When scanning the zone for a free
block to satisfy an allocation request for a relocatable block, the
Memory Manager begins at the block pointed to by allocPtr. When
purging blocks from the zone, it starts ~rom the block pointed to by
purgePtr. Both pointers are advanced with each operation.

HFstFree is a pointer to the first free master pointer in the zone.
Instead of just allocating space for one master pointer each time a
relocatable block is created, the Memory Manager "preallocates" several
master pointers at a time, themselves forming a nonrelocatable block.
The moreMast'field of the zone record tells the Memory Manager how many
master pointers at a time to preallocate for. this zone. Master
pointers for the system heap zone are allocated 32 at-a time; for the
application zone, 64 at a time. For other heap zones, you specify the
value of moreMast when you create the zone.

AssemblY-language.note: The default number of master pointers
in the system and application heap zones is determined by the
global constant dfltMasters. The number in the .system heap zone
is equal to dfltMasters, and the number in the application heap
zone' is equal to twice dfltMasters. The global constant
maxMasters specifies the maximum number of master pointers in a
h_eap zone.

All master pointers that are allocated but not currently in use are
linked together into a list beginning in the hFstFree field. When you
allocate a new relocatable block, the Memory Manager removes the first
available master pointer from this list, sets it to point to the new
block, and returns its address to you as a handle to the block. (If
the list is empty, it allocates a fresh block of moreMast master
pointers.) When you release a relocatable block, its master pointer
isn't released, but is linked onto the beginning of the list to be
reused. Thus the amount of space devoted to master pointers can
increase, but can never decrease until the zone is reinitialized.

The zcbFree field always contains the num~er of fre.e bytes remaining in
the zone. As blocks are allocated and released, the Memory Manager
adjusts zcbFree accordingly. This number represents an upper limit on
the size of block you can allocate from this heap zone.

(warning)
It may not actually be possible to allocate a block as
big as zcbFree bytes. Because nonrelocatable and locked
blocks can't be moved, it isn't always possible to

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

20 Memory Manager Programmer's Guide

collect all the free space into a single block by
compaction.

The gzProc field is a pointer to the zone's grow zone function, or NIL
if there is none. You supply this pointer when you create a new heap
zone and can change it at any time later. The system and application
heap zones initially have no grow zone function.

CntRel, maxRel, cntNRel, maxNRel, cntEmpty, cntHandles, and minCBFree
are not used by the ROM-based version of the Memory Manager. *** These
fields are reserved for eventual use by a special RAM-based version
that will gather statistics on a program's memory usage within each"
heap zone. CntRel and cntNRel will count the number of relocatable and
nonreloca~able blocks currently allocated within the zone. Max~l and
maxNRel will record the "historical maximum" values attained by cntRel
and cntNRel since the program was started. CntEmpty will count the
current number of empty master pointers, and cntHandles the total
number of master pointers currently allocated. MinCBFree will record
the historical minimum number of free bytes in the zone. ***
PurgeProc is a pointer to the zone~s purge warning procedure, or NIL if
there is none. The" Memory Manager will call this procedure before it
purges a block from the zone. If you want to install your own purge
warning procedure, you have to be very careful not to interfere with
the one the Resource Manager may have installed; for further details,
see the Resource Manager manual and "Grow Zone Operations" in the
"Memory Manager Routines" section below.

The last field of a zone record, heapData, is a dummy field marking the
beginning of the zone's usable memory space. HeapData nominally
contains an integer, but this integer has no significance in itself-
it's just the first two bytes in the block header of the first block in
the zone. The purpose of the heapData field is to give you a way of
locating the effective beginning of the zone. For example, if myZone
is a zone pointer, then

@(myZone~.heapData)

is a pointer to the first usable byte in the zone, just as

myZone~.bkLim

is a limit pointer to the byte following the last usable byte in the
zone.

Structure of Blocks

Every block in a heap zone, whether allocated or free, has a block
header that the Memory Manager uses to find its way around in the zone.
Block headers are completely transparent to your program. All pointers
and handles to allocated blocks point to the beginning of the block's
contents, following the end of the header. Similarly, all block sizes
seen .by your program refer to the block's logical size (the number of

10/9/84 Chernicoff-Hacker /MEM. MGR/MEM~" I.'2

MEMORY MANAGER DATA STRUCTURES 21

bytes in its contents) rather than its physical size (the number of
bytes it actually occupies in memory, including the header and any
unused bytes at the end of the block).

Since your program shouldn't normally have to deal with block headers
directly, there's no Pascal record type defining their structure. A
block header' consists of eight bytes, as shown in Figure 12.

31 24 23
tag byte I

a
physical block size

~ relocatable block: relative handle
~ nonrelocatable block: pointer to heap zone

free b loek: not used
Figure 12. Block Header

The first byte of the block header is the tag byte, discussed below.
The next three bytes contain the block's physical size in bytes.
Adding this number to the block's address gives the address of the next
block in the zone.

Assembly-language note: You can use the global constants
tagMask and bcMask to determine the value of the tag byte and
the block's physical size, respectively.

The contents of the second long word (four bytes) in the block header
depend on the type of block. For relocatable blocks, it contains the
block's relative hardle: a pointer to the block's master pointer,
expressed as an offset relative to the start of the heap zone rather
than as an absolute memory address. Adding the relative handle to the
zone pointer produces a true handle for this block. For nonrelocatable
blocks, the second long word of the header is just a pointer to ~he
block's zone. For free blocks, these four bytes are unused.

The structure of a tag byte is shown in Figure 13.

76543

·L

a

size correction

not used

00: free b' ock
01: nonrelocatable block
1 0: ~elocatable block

Figure 13. Tag Byte

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

22 Me~ory Manager Programmer's Guide

Assembly-language~: You can use the global constants
tyBkFree, ty BkNRe 1 , and tyBkRel to test· whether the value of the
tag byte indicates a free, nonrelocatable, or relocatable block,
respectively. Alternatively, you can use the global constants
freeTag, nRelTag, and relTag as masks to determine the value of
the tag byte.

The "size correction" in the tag byte of a block header is the number
, of unused bytes at the end of the block, beyond the end of the block's
contents. It's equal to the difference between the block's logical and
physical size~, excluding ,the eight bytes of overhead for the block
header:

10gicalSize = physical Size ~ sizeCorrection - 8

Assembly-Iao@uage note: You can use the global constant
bcOffMask to determine the size correction of a block.

There are two 'reasons why a ,block may contain such unused bytes:

- The Memory Manager allocates space only in even numbers of bytes.
If the block's logical size is odd, an extra, unused byte is added
at the end to'keep the physical size even.

- The minimum number of bytes in a block is 12. This minimum
applies to all blocks, free as well as allocated. If allocating
the required number of bytes from a free block would leave a
fragment of fewer than 12 free bytes, the leftover bytes are
included unused at the end of the newly allocated block instead of
being returned to free storage.

Structure of Master Pointers

The master pointer to a relocatable block has the structure shown in
Figure 14. The low-order three bytes of the long word contain the
address of ·the block~s contents. The high-order byte contains some
flag bits ,that specify the block's current status. Bit 7 of this byte
is the lock bit (1 if the block is locked,. 0 if it'~ unlocked); bit 6
is the ~e bit (1 if the block is purgeable, 0 if it's unpurgeable).
Bit 5 is used by the Resource Manager to identify blocks containing
resource information; such blocks are marked by a 1 in this bit.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

7 6 5 4 0
I I I I not used I

resource bit
purge bit
lock bit

MEMORY MANAGER DATA STRUCTURES 23

address of block" s contents

Figure 14. Structure of a Master Pointer

(warning)
Note that the flag bits in the high-order byte have
numerical significance in any operation performed on a
master pointer. For example, the lock bit is also the
sign bit.

AssemblY-language~: Yo~ can use the mask in the global
variable Lo3Bytes to determine the value of the low-order three
bytes of a master pointer. To determine the value of bits 5, 6,
and 7, you can use the global constants resource, purge, and
lock, respectively.

USING THE MEMORY MANAGER

This section discusses how the Memory Manager routines fit into the
general flow of your program and gives you an idea of which routines
you'll need to use. The routines themselves are described in detail in
the next section.

There's ordinarily no need to initialize the Memory Manager before
using it. The system heap zone is automatically initialized each time
the system is ·started up; and the application heap zone each time an
application program is started up. In the unlikely event that you need
to reinitialize the application zone while your program is running, you
can use InitApplZone.

When your application starts up it should allocate the memory it
requires in the most space-efficient manner possibl~. The main segment
of your program should call ·the MaxApplZone procedure, which expands
the application heap zone to its limit. Then call the procedure
MoreMasters to allocate as many blocks of master pointers as your
application and any desk accessories will need. Next initialize
QuickDraw and the Window Manager (if you're going to use it). These
last two steps ensure that most of the nonrelocatable blocks you'll·

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

24 Memory Manager Programmer's Guide

need are packed together at the bottom of the heap.

To allocate a new re10catab1e block, use NewHand1e; for a
nonre1ocatab1e block, use NewPtr. These functions return a handle or a
pointer,' as the case may be, to the newly allocated block. To release
a block when you're finished with it, use DisposHand1e or DisposPtr.

(warning)
Don't use the Pascal standard procedures NEW and DISPOSE,
because they don't use the Memory Manager.
*** Eventually these routines will be changed to work
through the Memory Manager. ***

You can also change the size of an already allocated block with
SetHand1eSize or SetPtrSize, and find out its current size with
GetHand1eSize or GetPtrSize. Use HLock and HUnlock to lock and unlock
re1ocatab1e blocks.

(note)

(note)

In general, you should use relocatab1e blocks whenever
possible, to avoid unnecessary fragmentation of free
space. Use nonrelocatable blocks only for thi~gs like
,I/O buffers, queues, and other objects that must have a
fixed location in memory.

If you must lock a re10catab1e block, unlock it at' the
earliest possible opportunity. Before allocating a block
that you know will be locked for long periods of time,
call ResrvMem to make room for the block as near as
possible to the beginning of the zone.

In some situations it may be desirable to determine the handle that
points to a given master pointer. To do this you can call the
RecoverHandle function. For example, a relocatable block of code might
want to find out the handle that refers to it, so it can lock itself
down in the heap.

Ordinarily, you shouldn't have to worry about compacting the heap or
purging blocks from it; the Memory Manager automatically takes care of
these chores for you. You can control which blocks are purgeable with
HPurge'and HNoPurge. If for some reason you want to compact or purge
the heap explicitly, you can do so with CompactMem or PurgeMem. To
explicitly purge a specific block, use EmptyHandle.

(warning)
Before attempting 'to access any purge able block, you must
check its handle to make sure the block is still
allocated. If the handle is empty (that is, if h A

~ NIL,
where h is the handle), then the block has been purged;
before accessing it, you have to ~eallocate it by calling
Rea110cHandle, and then recreate its contents. (If it's
a resource block, just call the Resource Manager
procedure LoadResource; it checks the handle and reads

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.I.2

US ING THE MEMORY MANAGER· 25

the resource into memory if it's not already in memory.)

You can find out how much free space is left in a heap zone by calling
FreeMem (to get the total number of free bytes) or MaxMem (to get the
size of the largest single free block and the maximum amount by which
the zone can grow). Beware: MaxMem compacts the entire zone and
purges all purgeable blocks. To limit the growth of the application
zone, use SetApplLimit; to install a grow zone function to help the
Memory Manager allocate space in a zone, use SetGrowZone.

You can create additional heap zones for your program's own use, either
within the original application zone or in the stack, with InitZone.
If. you do maintain more than one heap 'zone, you can find out which zone
is current at any 3iven time with GetZone and switch from one to
another with SetZone. Almost all Memory Manager operations implicitly
apply to the current heap zone. To refer to the system heap zone or
the (original) application heap zone, use the Memory Manager function
SystemZone or ApplicZone. To find out which zone a particular block
resides in, use HandleZone (if the block is relocatable) or PtrZone (if

,it's nonrelocatable).

(n,ote)
Most applications will just use the original application
heap zone and never have to worry about which zone is
current.

After calling any Memory Manager routine, you can determine whether it
was successfully completed or failed, by calling MemError.

Assembly-language note: Code that will be executed via an
interrupt can't use the Memory Manager, because an interrupt can
occur unpredictably at any time; in particular, it can occur
while the Memory Manager is in the middle of an operation, when
the heap is inconsistent.

MEMORY MANAGER ROUTINES

This section describes all the Memory Manager procedures and functions.
Each routine is presented first in its Pascal form. For most routines,
this is followed by a box containing information needed to use the
routine from assembly language; Pascal programmers can just skip this
box.

In addition to their normal results, many Memory Manager routines yield
a result code that you can examine by calling the MemError function.
The description of each routine includes a list of all result codes it
can yield.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.l

26 Memory Manager Programmer's Guide

Assemb1y-1anguage~: When called from assembly language, not
all Memory Manager routines return a result code. Those that do
always leave it as a word-length quantity in the low-order word
of register D0 on return from the trap. However, some routines
leave something else there instead: see the descriptions of
individual routines for details. Just before returning, the
trap dispatcher tests the lower word of n0 with a TST.W
instruction, so that on return from the trap the condition codes
reflect the s·tatus of the result code, if any.

The stack-based interface routines called from Pascal always
produce a result code. If the underlying trap doesn't return
one, the interface routine "manufactures" a result code of noErr
and stores it where it can later be accessed with MemError.

Assembly-1anguage~: You can specify that some Memory
Manager routines apply to the system heap zone instead of the
current zone by setting bit 10 of the routine trap word. You do
this by supplying the. word SYS (uppercase) as the .second
argument to the routine macro:

Free!'em ,SYS

If you want a block of memo~y to be cleared to zeros when it's
allocated by a N~wPtr or NewHandle call, set bit 9 of the
routine trap word. You can do this by supplying the word CLEAR
(uppercase) as the second argument to the routine macro:

_N~wHandle ,CLEAR

You can combine SYS and CLEAR in the same macro call, but SYS
must come first:

NewHandle ,SYS,CLEAR

The description of each routine lists whether SYS or CLEAR are
applicable.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.l

MEMORY MANAGER ROUTINES 27

Initialization and Allocation

PROPEDURE InitApplZone;

Trap macro _InitApplZone

D0: result code (integer) On exit ---

InitApplZone initializes the application heap zone and makes it the
current zone. The contents of any previous application zone are lost;
all previously existing blocks in that zone are discarded.
InitApplZone is called by the Segment Loader when starting up an
application; you shouldn't normally need to call it.

(warning)
Reinitializing the application zone from within a running
program is tricky, since'the program's code itself
resides in the application zone. To do it safely, the
code containing the InitApplZone call cannot be in the
application zone.

The ap'plication zone has an initiai size of 6K bytes, and can be
expanded as needed in 1K increments.. Space is initially allocated for
64 master pointers; shou;t.d more be needed later, they will be added 64
at a time. The zone's grow,zone function is set to NIL.

Result codes noErr No error

PROCEDURE SetApplBase (startPtr: Ptr);

Trap macro _SetApplBase

On entry A0: startPtr (pointer)

On exit --- D0: result code (integer)
. '

SetApplBase changes the starting address of the application heap zone
to the address designated by startPtr, and then calls InitApplZone.
SetApplBase is normally called only by the system itself; you should
never need to call this procedure.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.1

28 Memory Manager ~rogrammer's Guide

Since the application heap zone begins immediately following the end of
the system zone, changing its starting address has the effect of
changing the size of the system zone. The system zone can be made
larger, but never smaller; if startPtr points to an address lower than
the current end of the system zone, it's ignored and the application
zone's starting address is left unchanged.

(warning)
Like InitApplZone, SetApplBase is a tricky operation,
because the code of the program itself resides in the
application heap zone. To do it safely, the code
containing the SetApplBase call cannot be in the
application zone.

Result codes noErr No error

PROCEDURE InitZone (pGrowZone: ProcPtr; cMoreMasters: INTEGER;
limitPtr, startPtr: Ptr);

Trap macro InitZone

On entry A0: pointer to parameter block

Parameter block
0 startPtr pointer
4 limitPtr pointer
8 cMoreMasters integer

10 pGrowZone pointer

On exit D0: result code (integer) ---

InitZone creates a new heap zone, initializes its header and trailer,
and makes it the current zone. The startPtr parameter is a pointer to
the first byte of the new zone; limitPtr points to the first byte of
the zone trailer. The new zone will occupy memory addresses from
ORD(startPtr) to ORD(limitPtr)+11.

CMoreMasters tells how many master pointers should be allocated at a
time for the new zone. This number of master pointers are created
initially; should more be needed later, they will be added in
increments of this same number. For the system heap zone, this number
is initially 32; for the application heap zone, it's 64.

The pGrowZone parameter is a pointer to the grow zone function for the
new zone, if any. If you're not defining a grow zone function for this
zone, pass NIL.

The new zone includes a 52-byte header, so its actual usable space runs
from ORD(startPtr)+52 through ORD(limitPtr)-l. In addition, each

"

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.1

MEMORY MANAGER ROUTINES 29

master pointer occupies four bytes within this usable area. Thus the
total available space in the zone, in bytes, is initially

ORD(limitPtr) - ORD(startPtr) - 52 - 4*cMoreMasters

This number must not be less than 0. Note that the amount of ~vailable
space in the zone will decrease as more master pointers are allocated.

Result codes noErr No error

PROCEDURE SetApplLimit (zoneLimit: Ptr);

Trap macro _ Se tAppl Li mi t

On entry A0: zoneLimit (pointer)

On exit --- D0: result code (integer)

SetApplLimit sets the application heap limit, beyond which the
application heap zone can't be expanded. The actual expansion isn't
under your program's control, but is done automatically by the Memory
Manager when necessary to satisfy allocation requests. Only the
original application zone can be expanded.

ZoneLimit is a limit pointer to a byte in memory beyond which the zone
will not be allowed to grow. The zone can grow to include the byte
preceding zoneLimit in memory, but no farther. If the zone already
extends beyond the specified limit it won't be cut back, but it will be
prevented from growing any more.

(warning)
Notice that zoneLimit is not a byte count.
application zone to a particular size (say
have to write something like

SetApplLimit(Ptr(ApplicZone) + 8192)

To limit the
8K bytes), you

The Memory Manager function ApplicZone is explained
below.

Assembly-language note: The global variable ApplLimit contains
the application heap limit.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM. R.l

30 Memory Manager Programmer's Guide

Result codes noErr No error

PROCEDURE MaxApplZone; [No trap macro]

MaxApplZone expands the application heap zone to the application heap
limit without purging any blocks currently in the zone. If the zone
already extends to the limit, it won't be changed.

Result codes noErr No error

PROCEDURE MoreMasters;

Trap macro MoreMasters

MoreMasters allocates another block of master pointers in the current
heap zone. This pro·cedure is usually called very early in an
application.

Result codes No error no Err
memFullErr Not enough room in zone

Heap Zone Access

FUNCTION GetZone THz;

Trap macro GetZone

On exit A0: function result (pointer)
00: result code (integer)

GetZone returns a pointer to the current 'heap zone.

Assembly-language note: The global variable TheZone contains a
pointer to the current heap zone.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.l

MEMORY MANAGER ROUTINES 31

Result codes noErr No error

PROCEDURE SetZone (hz: THz)j

Trap macro SetZone

On entry A~: hz (pointer)

D0: result code (integer)

SetZone sets the current heap zone to the zone pointed to by hz.

Assembly-language~: You can set the current heap zone by
storing a pointer to it, in the global variable TheZone.

Result codes noErr No error

FUNCTION SystemZone : THzj [No trap macro]

SystemZone returns a pointer to the system heap zone.

Assembly-language~: The global variable SysZone contains a
pointer to the system heap zone.

Result codes noErr No error

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.l

32 Memory MZnager Programmer's Guide

FUNCTION ApplicZone : THz; [No trap macro]

ApplicZone returns a pointer to the original application heap zone.

Assembly-language note: The global variable ApplZone contains a
pointer to the original application,heap zone.

Result codes noErr No error

Allocating and Releasing Relocatable Blocks

FUNCTION NewHandle (logicalSize: Size) Handle;

Trap macro

On entry

On exit ---

NewHandle
NewHandle ,SYS
NewHandle ,CLEAR
NewHandle ,SYS,CLEAR

(applies to system heap)
(clears allocated block)
(applies to system heap and
clears 'allocated block)

00: logicalSize (long integer)

A0: function result (bandle)
00: result code (integer)

NewHandle attempts to allocate a new relocatable block of logical Size
bytes from the current heap ,zone and then return a handle to it. The
new block will be unlocked and unpurgeable. Th~ new block will be
unlocked and unpurgeable. If logical Size bytes can't be allocated,
NewHandle returns NIL.

NewHandle will pursue all available avenues to create a free block of
the requested size, inc.1uding comp~cting the heap zone, increasing its
size, purging blocks from it, and calling its grow zone function, if
any.

Result codes noErr
memFullErr

10/9/84 Chernicoff-Hacker

No error
Not enough room in zone

/MEM.MGR/MEM~R.1

MEMORY MANAGER ROUTINES 33

PROCEDURE DisposHandle (h: Handle);

Trap macro

~ entry

On exit ---

_DisposHandle

A0: h (handle)

A0: 0
D0: resulf code (integer)

DisposHandle releases the memory occupied by the relocatable block
whose handle is h.

(warning)
After a call to DisposHandle, all handles to the released
block become invalid and should not be used again.

Result codes noErr
meinWZErr

No error
Attempt to operate on a free block

FUNCTION GetHandleSize (h: Handle) Size;

Trap macro

On entry

On exit ---

. GetHandleSize

A0: h (handle)·

~:' if)- 0, function result (long integer)
if < 0, result code (integer)

GetHandleSize returns the logical size, in bytes, of the relocatable
block whose handle is h. In case of an error, GetHandleSize returns 0.

Assembly-language~: Recall that the trap dispatcher sets
the condition codes before returning from a trap by testing the
low-order word of register D0 with a TST.W instruction. Since
the block size returned in D0 by GetHandleSize is a full 32-bit
long word, the word-length test sets the condition codes
incorrectly in this case. To branch on the contents of D0, use
your own TST.L instruction on return from the trap to test the
full 32 bits of the register.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.1

34 Memory Manager Programmer's Guide

Result codes noErr
nilHand1eErr
memWZErr

No error [Pascal only)
NIL master pointer
Attempt to operate on a free block

PROCEDURE SetHand1eSize (h: Handle; newSize: Size);

Trap macro SetHand1eSize

On entry A0: h (handle)
D0: newSize (long integer)

On exit --- D0: result code (integer)

SetHand1eSize changes the logical size of the relocatab1e block whose
handle is h to newSize bytes.

(n<?te)
Don't ~ttempt to increas~ the size of a locked block,
because its unlikely the Memory Manager will be able to
do so.

Result codes noErr No error
memFullErr Not enough room to grow
nilHand1eErr . NIL master pointer
memWZErr Attempt to operate on a free block

'F'UNCTION HandleZone (h: Handle) THz;

Trap macro

On entry

On exit, ---

Handle Zone

MA: h. (handle)

A0: function result (pointer)
D0: result code (integer)

HandleZone returns a pointer to the heap zone containing the
relocatab1e block whose handle is h.

(warning)
If handle h is empty (points to a NIL master pointer),
HandleZone returns a pointer to the current heap zone.
In case of an error, the result returned by Hand1eZone is
meaningless and should be ignored.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.1

Result codes noErr
memWZErr

MEMORY MANAGER ROUTINES 35

No error
Attempt to operate on a free block

FUNCTION RecoverHandle (p: Ptr) Handle;

Trap macro

On entry

On exit ---

RecoverHandle
-RecoverHandle ,SYS

A0: p (pointer)

(applies to system heap)

A0: function result (handle)
D0: unchanged

RecoverHandle returns a'handle to the relocatable block pointed to by
p.

Assembly-language note: The trap _RecoverHandle doesn't return
a.result code in register 00; the previous contents of D0 are
preserved unchanged.

Result codes noErr No error [Pascal only]

PROCEDURE ReallocHandle (h: Handle; logicalSize: Size);

Trap macro ReallocHandle

On entry A0: h (handle)
00: logical Size (long integer)

On exit --- A0: original h or 0
D0: result code (integer)

ReallocHandle allocates a new relocatable block with a logical size of
logical Size .bytes. It then updates handle h by setting its master
pointer to point to the new block. The main use of this procedure is
to reallocate space for a block that has been purged. Normally h is an
empty handle, but'it need not be: if it points to an existing block,
that block is released before the new block is created.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.l

36 Memory Manager Programmer's Guide

In case of an error, no new block is allocated and handle h is left
unchanged.

AssemblY-language~: On return from ReallocHandle, register
A0 contains the original handle h, or 0 if no room could be
found for the requested block.

Result codes noErr
memFullErr
memWZErr
memPurErr

No error
Not enough room in zone
Attempt to operate on a free block
Block is locked

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) Ptr;

Trap macro

On entry

On exit

NewPtr
NewPtr ,SYS
NewPtr ,CLEAR
NewPtr ,SYS,CLEAR

(applies to system heap)
(clears allocated block)
(applies to system heap and
clears allocated block)

D0: 10gicalSize (long integer)

A0: .function result (pointer)
D0: result code (integer)

NewPtr attempts to allocate a new nonrelocatable block of logical Size
bytes from the current heap zone and then return a pointer to it. If
10gicalSize bytes can't be allocated, NewPtr returns NIL.

NewPtr will pursue ell available avenues to create a free block of the
requested size, including compacting the heap zone, increasing its
size, purging blocks from it, and calling its grow zone function, if
any.

Result codes noErr
memFullErr

10/9/84 Chernicoff-Hacker

No error
Not enough room in zone

/MEM.MGR/MEM.R.2

MEMORY MANAGER ROUTINES 37

PROCEDURE DisposPtr (p: Ptr);

, Trap macro _DisposPtr

On entry A0: p (pointer)

On exit A0: 0 --- 00: result code (integer)

DisposPtr releases the memory occupied by 'the nonrelocatable block
pointed to by p.

(warning)
After a call to DisposPtr, all pointers to the released
block become invalid and should not be used again.

Result codes No error noErr
memWZErr. .A~tempt to operate on a free "block

FUNCTION GetPtrSize (p: Ptr) Size;

Trap macro

On entry

On exit ---

GetPtrSize

A0: p (pointer)

D0: if)= 0, function result (long integer)
if < 0, result code (integer)

GetPtrSize returns the logical size, in bytes~ of the nonrelocatable
block pointed to by p. In case of an error, GetPtrSize returns 0.

Assembly-language note: Recall that the trap dispatcher sets
the condition codes before returning from a trap by testing the -
low-order half of register D0 with a TST.W instruction. Since
the block size returned in D0 by _GetPtrSize is a full 32-bit
long word, the word-length test sets the condition codes
incorrectly in this case. To branch on the contents of D0, use
your own TST.L instruction on return from the trap to test the
full 32 bits of the register.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.2

38 Memory Manager Programmer's Guide

Result codes No error [Pascal only] noErr
memWZErr Attempt to operate on a free block

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);

Trap macro SetPtrSize

On entry A0: p (pointer)
D0: newSize (long integer)

On exit --- D0: result code (integer)

SetPtrSize changes the logical size of the,nonrelocatable block pointed
to by p to newSize bytes.

(note)
(Don't attempt to increase the size of a locked ~lock,

because it's unlikely the Memory Manager will be able to
do so.

Result codes noErr
memFullErr
memWZErr

No error
Not enough room to grow
Attempt to operate on a free block

FUNCTION PtrZone (p: Ptr) THz;

Trap macro

On entry

On exit ---

PtrZone

A0: p (pointer)

A0: function result (pointer)
D0: result code (integer)

PtrZone returns a pointer to the heap zone containing the I

nonrelocatable block pointed to by p. In case of an error, the result
returned by PtrZone is meaningless and should be ignored.

Result codes noErr
memWZErr

10/9/84 Chernicoff-Hacker

No error
Attempt to operate on a free block

/MEM.MGR/MEM.R.2

MEMORY MANAGER ROUTINES 39

Freeing Space in the Heap

FUNCTION FreeMem

Trap macro

On exit ---

LONGINT;

FreeMem
FreeMem ,SYS (applies to system heap)

00: function result (long integer)

FreeMem returns the total amount of free space in the current heap
zone, in bytes. Notice that it usually isn't possible to allocate a
block of this size, because of fragmentation due to nonrelocatable or
locked blocks.

Result codes noErr No error

FUNCTION MaxMem (VAR grow: Size) Size;

Trap macro MaxMem
MaxMem ,SYS (applies to system heap)

On exit --- 00: function result (long integer)
A0: grow (long integer)

MaxMem compacts the current h~ap zone and purges all purgeable blocks
from the zone. It returns as its result the size in bytes of the
largest contiguous free block in the zone after the compaction. If the
current zone is the original application heap zone, the variable,
parameter 'grow is set to the maximum number of bytes by which the zone
can grow. For any other heap zone, grow is set to 0. MaxMem doesn't
actually expand the zone or call its grow zone function.

Result codes noErr No error

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.2

40 Memory Manager Programmer's Guide

FUNCTION CompactMem (cbNeeded: Size) Size;

Trap macro

On entry

On exit ---

CompactMem
CompactMem tSYS (applies to, system heap)

D0: cbNeeded (long integer)

00: function result (long integer)

CompactMem compacts the current heap zone by moving relocatable blocks
forward and collecting free space together until a contiguous block of
at least cbNeeded free bytes is found or the entire zone is compacted;
it doesn't purge any purge able blocks. \ CompactMem ret,urns the size in
bytes of the largest contiguous free block remaining. Note that it

,doesn't actually allocate the block.

(note)
To force a compaction of the entire heap zone t pass
maxSize for cbNeeded.

Result codes noErr No error

FUNCTION ResrvMem (cbNeeded: Size);

Trap mac,ro

On entry

On exit

ResrvMem
ResrvMem t SYS (applies to system heap)

D0: cbNeeded (long integer)

D0: result code (integer)

ResrvMem creates free space for a blocK of cbNeeded contiguous bytes at
the lowest possible position in t~e current heap zone. It will try
every available means to place the block as close as possible to the
beginning of the zone t including moving other blocks upward t expanding
the zone, or purging blocks from it. Notice that ResrvMem doesn't
actually allocate the block. '

(note)
When you allocate a relocatable block that you know will
be locked for long periods of timet call ResrvMem first.
This reserves space for the block near the beginning of
the heap zone t where it will interfere with compaction as
little as possible. It isn't necessary to call ResrvMem

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.2

MEMORY MANAGER ROUTINES 41

for a nonrelocatable block; NewPtr calls it
automatically.

Result codes noErr
memFullErr

PROCEDURE PurgeMem (cbNeeded: Size);

Trap macro

No error
Not enough room in zone

_PurgeMem
_PurgeMem ,SYS (applies to system heap)

On entry D0: cbNeeded (long integer)

D0: result code (integer)

PurgeMem sequentially purges blocks from the current heap zone until a
contiguous block .of at least· cbNeeded· free bytes is created o~ the
entire zone is purged~ it doesn't compact the heap zone. Only
relocatable, unlocked, purgeable blocks can be purged. Notice that
PurgeMem doesn't actually allocate the block.

(note)
To force a purge of the entire heap zone, pass maxSize
for cbNeeded.

Result codes noErr
memFullErr

No error
Not enough room in zone

PROCEDURE EmptyHandle (h: Handle);

Trap macro _EmptyHandle

On entry A0: h (handle)

On exit A0: h (handle) --- D0: result code (integer)

EmptyHandle purges the relocatab1e block whose handle is h from its
heap zone and sets its master pointer to NIL (making it an empty
handle). If h is already empty, EmptyHandle does nothing.

(note)
Since the space occupied by the block's master pointer
itself remains allocated, all handles pointing to it

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.2

42 ~emory Manager Programmer's Guide

remain valid but empty. When you later reallocate space
for the block with ReallocHandle, the master pointer will
be updated, causing all existing handles to point
correctly to the new block.

The block whose handle is h must be unlocked, but need not be
purgeable.

Result codes noErr
memWZErr
memPurErr

Properties of Relocatable Blocks

PROCEDURE HLock (h: Handle);

Trap macro HLock

On entry A0: h (handle)

No error
Attempt to operate on a free block
Block is locked

On exit --- D~: result code (integer)

HLock locks a relocatable block, preventing it from being moved within
its heap zone. If the·block is already locked, HLock does nothing.

Assembly-language~: Changing the value of the block's
master pointer's lock bit with a BSET instruction is faster than
HLock. However, HLock may eventually perform additional tasks.

Result codes noErr
nilHandleErr
memWZErr

10/9/84 Chernicoff-Hacker

No error
NIL master pointer
Attempt to operate on a free block

/MEM.MGR/MEM.R.2

MEMORY MANAGER ROUTINES 43

PROCEDURE HUnlock (h: Handle);

Trap macro HUnlock

On entry A0: h (handle)

On exit --- D0: result code (integer)

HUnlock unlocks a relocatable block. allowing it to be moved within its
heap zone. If the block is already unlocked. HUnlock does nothing.

Assembly-language note: Changing the value of the block's
master pointer's lock bit with a BCLR instruction is faster than
HUnlock. However, HUnlock may eventually perform additional
tasks.

Result codes noErr
nilHandleErr
memWZErr

PROCEDURE HPurge (h: Handle)~

Trap macro _HPurge

On entry A0: h (handle)

No error
NIL master pointer
Attempt to operate on a free block

On exit --- ~: result code (integer)

HPurge marks a relocatable block as purgeable. If the block is already
purgeable, HPurge does nothing.

Result codes noErr
nilHandleErr
memWZErr

10/9/84 Chernicoff-Hacker

No error
NIL master pointer
Attempt to operate on a free block

/MEM.MGR/MEM.R.2

44 Memory Manager Programmer's Guide

PROCEDURE HNoPurge (h: Handle);

Trap macro _HNoPurge

On entry A0: h (handle)

D0: result code (integer)

HNoPurge marks a relocatable block as unpurgeable. If the block is
already unpurgeable, HNoPurge does nothing.

Result codes noErr
nilHandleErr
memWZErr

No error
NIL master pointer
Attempt to operate on a free block

Grow Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr); ,
\

Trap macro SetGrowZone

On entry A0: growZone (pointer)

On exit D0: result code (integer)

SetGrowZone sets the current heap zone's grow zone function as
designated by the growZone parameter. A NIL parameter value removes
any grow zone function the zone may pr~vious~y have had.

(note)
If your program presses the limits of the available heap
space, it's a good idea to have a grow zone function of
some sort. At the very least, the grow zone function
should detect when the Memory Manager is about to run out
of space at a critical time (see GZCritical, below) and
take some graceful action--such as displaying an alert
box with the message "Out of memory"--instead of just
failing unpredictably.

The Memory Manager calls the grow zone function as a last resort when
trying to allocate space, if it has failed to create a block of the
needed size after compacting the zone, increasing its size (in the case
of the original application zon~), or purging blocks from it. Memory

10/9/84· Chernicoff-Hacker /MEM.MGR/MEM.R.2

MEMORY MANAGER ROUTINES 45

Manager routines that may cause the grow zone function to be called are
NewHandle, NewPtr, SetHandleSize, SetPtrSize, ReallocHandle, and
ResrvMem.

The grow zone function should be of the form

FUNCTION MyGrowZone (cbNeeded: Size) : Size;

The cbNeeded parameter gives the physical size of the needed block in
bytes, including the block header. The grow zone function should
attempt to create a free block of at least this size. It should return
a nonzero number if it's able to allocate some memory, or 0 if it's not
able to allocate any.

If the grow zone function returns 0, the Memory Manager will give up
trying to allocate the needed block and will signal failure with the
result code memFullFrr. Otherwise it will compact the heap zone and
try again to allocate the block. If still unsuccessful, it will
continue to call the grow zone function repeatedly, compacting the zone
again after each call, until it either succe~ds in allocating the
needed block or receives a zero result and gives up.

The usual way for the grow zone function to free more space is to call
EmptyHandle to purg~ blocks that ,were previously marked unpurgeable.
Another possibility is to unlock blocks that were previously locked.

(note)
Although just unlocking blocks doesn't actually free any
additional spac~ in the zone, the grow zone function
should still return a nonzero result in this case. This
signals the Memory Manager t.o compact the heap and try
again to allocate the needed block.

(warning)
Dep~nding' on the circumstances in which the grow zone
function is called, there may be particular blocks within
the heap zone that must not be purged or released. For
instance, if your program is attempting to increase the
size of a relocatab1e block with SetHand1eSize, it would
be disastrous to ~~lease the block being expanded. To
deal with such cases safely, it's essential to understand
the use of the functions GZCritical and GZSaveHnd (see
below) •

(warning)
Whenever you call the Resource Manager with
SetResPurge(TRUE), it installs its own grow zone function
into the application heap zone. The Resource Manager's
grow zone function automatically writes to the disk all
changed resources before they're purged. If you install
your own grow zone function into the application heap
zone, you shouldn't call SetResPurge(TRUE).

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.2

46 Memory Manager Programmer's Guide

Result codes noErr No error

FUNCTION GZCritical : BOOLEAN; [No trap macro]

GZCritical returns TRUE if the Memory Manager critically needs space-
for example, to ·create a new relocatable or nonrelocatable block or to
reallocate a handle. It returns FALSE in less critical cases, such as
ResrvMem trying to reserve space as low as· possible in the heap zone or
SetHandleSize trying to increase the size of a relocatable block.
GZCritical doesn't affect the value ~eturned by MemError.

(warning)
If you're writing a grow zone function in Pascal, you
should always call GZCritical and proceed only if the
result is TRUE. All the information you need to handle
the critical cases safely is the value of GZSaveHnd (see
below). The noncritical cases require additional
information that isn't available from Pascal, so your
grow zone function should just return 0 and not attempt
to free any space.

Assembly-language note: To find out whether a given grow zone
call is critical, you can use the following:

Critical

MOVE.L
BEQ.S
CMP.L
BEQ.S

CLR.L
~S

GZMoveHnd,D0
Critical
GZRootHnd,~
Critical

4(SP) ;if noncritical, just return 0

;handle critical case

To handle the critical cases safely (and the noncritical ones if
you choose to do more than just return 0), see the note below
under GZSaveHnd.

FUNCTION GZSaveHnd : Handle; [No trap macro]

GZSaveHnd returns a handle to a relocatable block that mustn't be
,purged or released by the grow zone function, or NIL if there is no

such block. For example, during a SetHandleSize call, the handle being
changed mustn't be purged. The grow zone function will be safe if it
avoids purging or releasing this block, provided that the grow zone
call was critical. To handle noncritical cases safely, further
information is needed that isn't available from Pascal. GZSaveHnd

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.2

MEMORY MANAGER ROUTINES 47

doesn't affect the value returned by MemError.

Assembly-language note: You can find the same handle in the
global variable GZRootHnd. The "further 'information" that isn't
available from Pascal is the contents of two other global
variables, GZRootPtr and GZMoveHnd, which may be nonzero in
noncritical cases. If GZRootPtr is nonzero, it's a pointer to a
nonrelocatable block that must not be released; GZMoveHnd is a
handle to a relocatable block that must not be released but may
be purged.

Miscellaneous Routines

PROCEDURE BlockMove (sourcePtr ,.dest~tr:. Ptr; by~eCount: Size);·

Trap macro

On entry

On exit ---

BlockMove

A0: sourcePtr (pointer)
AI: destPtr (pointer)
D0: byteCount (long integer)

D0: result code (integer)

BlockMove moves a block of byt~Count consecutive bytes from. the address
designated by sourcePtr to that designated by destPtr. No pointers are
updated.

Result codes noErr No error

FUNCTION TopMem Ptr; [No trap macro]

TopMem returns a pointer to the address following the last byte of RAM.

Assembly-language note: To get a pointer to the end of RAM from
assembly language, use the global variable MemTop.

10/9/84 ·Chernicoff-Hacker /MEM.MGR/MEM.R.2

48 Memory Manager Programmer's Guide

Result codes noErr No error

\
\

FUNCTION MemError : OSErrj [No trap macro]

MemError returns the result code produced by the last Memory Manager
routine called. (OSErr is an Operating System Utility data type
declared as INTEGER.)

Assembly-language note: To get a routine's result code from
assembly language, look in -register D0 on return from the
routine (except for certain routines as noted).

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.R.2

SPECIAL TECHNIQUES 49

SPECIAL TECHNIQUES

This section describes some special or unusual techniques that you may
,find useful.

Subdividing the Application Heap Zone

In some applications t you may want to subdivide the original
app~ication heap zone into two or more independent zones to be used for
different purposes. In doing this t it's important not to destroy any
existing blocks in the original zone (such as those containing the code
of your program). The recommended procedure is to allocate space for
the subzones as nonrelocatable blocks within the original zone t then
use I~itZone to initialize them as independent zones. For example t to
divide the available space in the application zone in half t you might _
write something like the following:

CONST minSize = 576; {52 + 12 + 32*{12 + 4): zone header t }
{ zone trailer t and 32 minimum-size }
{ blocks with master pointers}

VAR myZone1 t myZone2: THz;
start t limit: Ptr;
availSpace t zoneSize: Size; . ;

BEGIN

-availSpace := CompactMem{maxSize);
zoneSize := 2 * (availSpace DIV 4) - 8);

IF zoneSiz'e < minSize

THEN •••
ELSE

BEGIN

{size of largest free block}
{force new zone size to }
{ an even number of bytes}
{need 8 bytes for block }
{ header}
{error--not enough room}

start := NewPtr(zoneSize); {allocate nonrelocatable block}
limit := POINTER{ORD(start) + zoneSize);
InitZone(NIL t 32 t limitt start);
myZone1 := THz(start); {convert Ptr to THz}

start := NewPtr(zoneSize);_ {allocate nonrelocatable block}
limit :- POINTER(ORD(start) + zoneSize);
InitZone(NIL t 32t~limitt start);
my~one2 := THz(start) {convert Ptr to THz}
END; . . .

END

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.D

50 Memory Manager Programmer's Guide

Assembly-language~: The equivalent assembly code might be
as follows:

minSize .EQU 52+12+(32*(12+4» ;zone header. zone trailer.
; and 32 minimum-size blocks
; with master pointers . . .

MOVE.L #maxSize.D0
_CompactMem

ASR.L
ASL.L
SUBQ.L
CMP.L
BLO

MOVE.L
NewPtr

MOVE.L

CLR.L
MOVE.W
MOVE.L
ADD.L
MOVE.L

MOVE.L

112.D0
111. D(I
118. D0
IlminSize. D(I
NoRoom

D0.Dl

A0.myZonel

-(SP)
#32.-(SP)
A0.-(SP)
D1.(SP)
A0.-(SP)

SP.A0
InitZone

MOVE.L D1.D0
NewPtr

MOVE.L· A0.myZone2

MOVE.L A0.4(SP)
ADD.L D1.4(SP)
MOVE.L A0.(SP)

MOVE.L SP.AfJ
InitZone

ADD. W 1114. SP . . .

;compact entire zone
;D0 has size of largest free block

;force new zone size to an
; even number of bytes
;adjust for block header'
jneed 8 bytes for block hea4er
jerror if (minimum size

;save zone size
jallocate nonrelocatable block
;store zone pointer

;NIL grow zone function
;allocate 32 master pointers
jA0 has'zone pointer
jconvert to limit pointer
;push as start pointer

jpoint to argument block
;create zone 1

;get,back zone size
;allocate nonrelocatable block
;store zone pointer

;move zone pointer to stack
jconvert to limit pointer
;move to stack as start pointer

;point to argument block
jcreate zone 2
jpOp arguments off stack

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.D

SPECIAL TECHNIQUES 51

Creating a Heap Zone on the Stack

Another place you can get the space for a new heap zone is from the
stack •. For example:

CONST zoneSize - 2048;
VAR zoneArea: PACKED ARRAY [1 •• zoneSize] OF SignedByte;

stackZone: THZj
limit: Ptrj

· . . . ,
BEGIN
• • • j

stackZone :- @zoneArea;
limit :- POINTER(ORD(stackZone) + zoneSize);
InitZone(NIL, 16, limit, @zoneArea)j

END

The heap zone created by this method will be usable up until the time
that this ro~tine is completed (because its variables will be
released).

)

Assembly-language~: Here's how you might do the same thing
!n assembly language:

zoneSize .EQU 2048 · . .
MOVE.L
SUB.W
MOVE.L
MOVE.L

SP,A2,
I1zoneSize,SP
SP,AI'
A1,stackZone

CLR.L -(SP)
MOVE.W 1116,-(SP)
MOVE.L A2,-(SP)
MOVE.L A1,-(SP)

MOVE.L SP,A0
InitZone

ADD. W 1114,.SP · . .

10/9/84 Chernicoff-Hacker

jsave. stack pointer·for li~it
; make' room on stack
;save stack pointer for start
;store as zone pointer

;NIL grow zone function
;allocate 16 master pointers
jpush limit pointer
;push start pointer

jpoint to argument block
jcreate new zone
jpOp arguments off stack

/MEM.MGR/MEM.D

52 Memory Manager Programmer's Guide

Pointer and Handle Conversion

To save time in critical situations in assembly language, here's a
quick way to convert a dereferenced pointer· to a relocatable block back
into a handle without paying the overhead of a RecoverHandle trap.
Recall that the relative handle stored in the block's header is the
offset of the block's master pointer r~lative to .the start of its heap
zone. 50 to convert a copy of the master pointer back into the
original handle, find the relative handle and add it to the address of
the zone. For example, if register A2 contains the master pointer of a
block in the current heap zone, the following code will reconstruct the
block's handle in AJ:

(note)

MOVE.L -4(A2),AJ

ADD.L TheZone,AJ

;relative handle is 4 bytes back
; from start of contents
juse as offset from start of zone

This example works only when the handle belongs to the
zone pointed ~o by TheZone.

Conversely, given a true (absolute) handle to a relocatable block, you.
can find the zone the block belongs to by subtracting the relative
handle from the absolute handle. If ·the absolute handle is ~n register
A2, the following instructions will convert it into a pointer to the
block's heap zone:

MOVE.L
5UB.L

(A2),A3
-4(AJ) ,A2

;get pointer to block
;subtract relative handle
; to get zone pointer

For nonrelocatable blocks, the header contains a pointer directly back
to the zone:

MOVE.L -4(A2),A2 jget zone pointer directlr

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.D

SUMMARY OF THE MEMORY MANAGER 53

SUMMARY OF THE MEMORY MANAGER

Constants

CONST maxSize m $800000; {maximum block size}

{ Result codes }

memFullErr = -108;
memPurErr = -112;
memWZErr = -111;
nilHandleErr = -109;
noErr = 0;

Data Types

TYPE Signed Byte
Byte
Ptr
Handle

= -128 •• 127;
= 0 •• 255;
= ASignedByte;
='APtr;

{not enough room in zone}
{attempt to purge a locked block}
{attempt to operate on a free block}
{NIL master po~nter}
{no error}

Str255
StringPtr
StringHandle

= String [2,55] ;
= AStr255;
= StringPtr;

ProcPtr :I Ptr;

Fixed = LONGINTj

Size = LONGINT;

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.S

(

54 Memory Manager Programmer's Guide

THz • "'Zone;
Zone - RECORD

Routines

bkLim:
purgePtr:
hFstFree:
zcbFree:
gzProc:
moreMast:
flags:
cntReI:
maxReI:
cntNRel:
maxNReI:
cntEmpty:
cntHandles:
minCBFree:
purgeProc:
sparePtr:
allocPtr:
heapData:

END;

Ptr;
Ptr;
Ptr;
LONGINT;
ProcPtr;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
LONGINT;
ProcPtr;
Ptr;
Ptr;
INTEGER

Initialization and Allocation

{limit pointer}
{used internally}
{first free master pointer}
{number of free bytes}
{grow zone function} ,
{master pointers to allocate}
{used internally}
{relocatable blocks} \
{maximum cntRel value}
{nonrelocatable blocks}
{maximum maxRel value}
{empty master pointers}
{total master pointers}
{minimum zcbFree value}
{purge warning procedure}
{used internally}
{used internally}
{first usable byte in zone}

PROCEDURE InitApplZone;
PROCEDURE SetApplBase
PROCEDURE InitZobe

(startPtr: Ptr);

PROCEDURE SetApplLimit
PROCEDURE MaxApplZone;
PROCEDURE MoreMasters;

Heap Zone Access

(pGrowZon~: ProcPtr; cMoreMasters:
limitPtr,startPtr: Ptr);

(zoneLimit: Ptr);
[No trap macro]

THz; FUNCTION GetZone
PROCEDURE SetZone
FUNCTION SystemZone
FUNCTION ApplicZone

(hz: THz);
THz; [No trap macro]

: THz; [No trap macro]

Allocating and Releasing Relocatable Blocks

FUNCTION NewHandle
PROCEDURE DisposHandle
FUNCTION GetHandleSize
PROCEDURE SetHandleSize
FUNCTION HandleZone

(logicalSize: Size) Handle;
(h: Handle);
(h: Handle) Size;
(h: Handle; newSize: Size);
(h: Handle) : THz;

INTEGER;

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.S

SUMMARY OF THE MEMORY MANAGER 55

FUNCTION RecoverHandle (p: Ptr) : Handle;
PROCEDURE ReallocHandle (h: Handle; logicalSize: Size)j

Allocating and Releasing Nonrelocatable Blocks

FUNCTION NewPtr (logicalSize: Size) : Ptr;
PROCEDURE DisposPtr (p: Ptr) ;
FUNCTION GetPtrSize (p: Ptr) : Size;
PROCEDURE SetPtrSize (p: Ptrj newSize: Size) ;
FUNCTION PtrZone (p: Ptr) : THz;

Freeing Space in the Heap

FUNCTION FreeMem: LONGINT;
FUNCTION MaxMem
FUNCTION CompactMem
PROCEDURE ResrvMem
PROCEDURE PurgeMem
PROCEDURE EmptyHandle

(VAR grow: Size) : Size;
(cbNeeded: Size) : Size;
(cbNeeded: Size);
(cbNeeded: Size);
(h: Handle);

Properties of Relocatable Blocks

PROCEDURE HLock (h: Handle);
PROCEDURE HUnlock (h: Handle);
PROCEDURE HPurge (h: Handle);
PROCEDURE HNoPurge (h: Handle); .

Grow Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);
FUNCTION GZCritical : BOOLEAN; [No trap macro]
FUNCTION GZSaveHnd : Handle; [No trap macro]

Miscellaneous Routines

PROCEDURE BlockMove (sourcePtr,destPtr: Ptr; byteCount: Size)j
FUNCTION TopMem: Ptr; [No trap macro]
FUNCTION MemError : OSErr; [No trap macro]

Grow Zone Function

FUNCTION MyGrowZone (cbNeeded: Size) Size;

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.S

56 Memory Manager Programmer's Guide.

Assembly-Language Information

Constants

; Master pointer counts

dfltMasters .EQU 32 ;default master-pointer count
maxMasters .EQU $1000 ;maximum master-pointer count (4K)

; Heap zone parameters

sysZoneSize .EQU $4000 ;default size of system heap zone (16K)
heapStart .EQU $0~00 ;start address of system heap zone
appZoneSize .EQU $1800 ;initial size'of application zone (6K)
minZone .EQU 52+12+(32*(12+4»

;minimum size of application zone

; Stack parameters

,dfltStackSize .EQU
mnStackSize .EQU

$2000
$400

;initial space allotment for stack (8K)
;minimum space allotment for stack (lK)

; Values for tag byte of a block header

tybkFree
tybkNRel
tybkRel

.EQU

.EQU

.EQU

o
1
2

;free block
;nonrelocatable block
;relocatable block

; Masks for the fields of a block header

tagMask • EQU. $C0000000 ;tag field of block header
bcOffMask ,. EQU $0F000000 ;size correction
bcMask .EQU $00FFFFFF ;physical block size
freeTag .EQU 0 ;tag for free block
nRelTag .EQU $40000000 ;tag for nonrelocatable block
relTag .EQU $80000000 ;tag for relocatable block

; Masks for th~ fields of a master pointer

ptrMask
handleMask

.EQU

.EQU
$00FFFFFF ;address part of master pointer
$00FFFFFF ;address part of master pointer

; Flags for the high-order byte' of a master pointer

lock
purge
resource

.EQU

.EQU

.EQU

7
6
5

10/9/84 Chernicoff-Hacker

;lock bit
;purge bit
;resource bit

/MEM.MGR/MEM.S

"-

SUMMARY OF THE MEMORY MANAGER 57

i Result codes

memFullErr .EQU -108 inot enough room in zone
memPurErr .EQU -112 iattempt to purge a locked block
memWZErr .EQU -Ill jattempt to operate on a free block

t nilHandleErr .EQU -109 jNIL master pointer
noErr .EQU 0 ino error

Zone Record Data Structure

bkLim
hFstFree
zcbFree
gZProc
mAllocCnt
cntRel
maxRel
cntNRel
maxNRel
cntEmpty
cntHandles
minCBFree
purgeProc
heapData

Limit pointer
First free master pointer
Number of free bytes
Grow zone function
Master pointers to allocate
Relocatable blocks
Maximum cntRel value
Nonrelocatable blocks
Maximum maxRel value
Empty master pointers
Total master. pointers
Minimum zcbFree value
Purge warning procedure
First usable byte in zone

Block Header Data Structure

tagBC
handle

blkData

Tag, size correction, and physical byte count
Relocatable block: relative handle
Nonrelocatable block: zone pointer
First byte of block contents

Parameter Block Structure for InitZone

startPtr
limitPtr
cMoreMasters
pGrowZone

Routines

Name
InitApplZone
SetApplBase
InitZone

SetApplLimit

Pointer to first byte in zone
Pointer to first byte in zone trailer
Number of master pointers for zone
Pointer to grow zone function

On entry

A0: startPtr (ptr)
A0: ptr to parameter block

o startPtr (ptr)
4 limitPtr (ptr)
8 cMoreMasters (int)

10 pGrowZone (ptr)
A0: zoneLimit (ptr)

On exit
D0: result code (int)
D0: result code (int)
D0: result code (int)

D0: result code (int)

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.S

58 Memory Manager Programmer's 'Guide

MoreMasters

GetZone
SetZone

A0: function result (ptr)
A0: hz (ptr)

NewHandle 00: logicalSize (longint)

DisposHandle A0: h (handle)

GetHandleSize A~: h (handle)

SetHandleSize 'A0: h (handle)
00: newSize (longint)

HandleZone A~: h (handle)

RecoverHandle A0: p (ptr)

ReallocHandle A0: h (handle)

NewPtr

DisposPtr

GetPtrSize

SetPtrSize

PtrZone

Free~fem

MaxMem

CompactMem
ResrvMem
PurgeMem
EmptyHandle

HLock
HUnlock
HPurge
HNoPurge

SetGrowZone

BlockMove

00: logicalSize (longint)

00: logicalSize (longint)

A0: p (ptr)

A0: p (ptr)

A0: p (ptr)
00: newSize (longint)
A0: p (ptr)

00: cbNeeded (longint)
00: cbNeeded (longint)
00: cbNeeded (longint)
A0: h (handle)

A0: h (handle)
A0: h (handle)
A0: h (handle)

, A0: h (handle)

A0: growZone (ptr)

A0: sourcePtr (ptr)
AI: destPtr (ptr)
D0: byteCount (longint)

10/9/84 Chernicoff-Hacker

D0: result code (int)
D0: result code (int)

A0: function result (handle)~
D0: result code (int)
A0: 0
D0: result code (int)
D0: if >-0, function result

(longint)
if <0, result code (int)

D0: result code (int)

A0: function result (ptr)
00: result code (int)
A0: function result (handle)
D0: unchanged
A0: original h or 0
D0: result code (int)

A0': functio.n result (ptr)
'D0: result code (int)
A0: 0
00: result code (int)
00: if >=0, function result

(longint)
if <0, result code (int)

D0: result code (int)

A0: function result (ptr)
00: result code (int.)

00: function result, (longint)
D0: function result (longint)
A0: grow (longint)
D0: function result (longint)
D0! result code (int)
D0: result code (int)
A0: h (handle)
D0: result code (int)

D0: result code (int)
D0: result code (int)

'D0: result code (int)
D0: result code (int)

D0: result code (int)

D0: result code (int)

/MEM.MGR/MEM.S

Variables

Name
BufPtr
MinStack
DefltStack
HeapEnd

ApplLimit
SysZone
ApplZone
The Zone
SysZone
ApplZone
HeapEnd
CurStackBase

ScrnBase
Sound Low
CurrentAS
MemTop
GZ'Handle
GZRootPtr
GZMoveHnd

Size
4 bytes
4 bytes
4 bytes
4 bytes

4 bytes
4 bytes
41 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes

4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes

10/9/84 Chernicoff-Hacker

SUMMARY OF THE MEMORY MANAGER 59

Contents
Pointer to end of application parameters
Minimum space allotment for stack
Default space allotment for stack
Current limit address of application heap
zone
Application heap limit
Pointer to system heap zone
Pointer to application heap zone
Pointer to current heap zone
Pointer to start of system heap
Pointer to start of application heap
Pointer to end of application heap
Pointer to base (end) of stack;
start of application globals
Pointer to start of main screen buffer
Start of main sound buffer
Current value of AS
Pointer to end of RAM
Used by GZSaveHnd and GZCritical
Used by GZSaveHnd and GZCritical
Used by GZSaveHnd and GZCritical

/MEM.MGR/MEM.S

60 Memory Manager Programmer's Guide

GLOSSARY

allocate: To reserve an area of memory for use.

application heap zone: The heap zone initially provided by the Memory
Manager for use by the application program; initially equivalent to the
application heapt but may be subdivided into two or more independent
heap zones.

application heap limit: The boundary between the space available for
the application heap and the space available for the stack.

application space: Memory between the system heap and screen and sound
buffers, available for dynamic allocation by applications.

block: An area of contiguous memory within a heap zone.

block contents: The area of a block available for use.

block header: The internal "housekeeping" information maintained by
the Memory Manager at the beginning of each block in a heap zone.

compaction: The process of moving allocated blocks within a heap zone
in order to collect the free space into a single block.

current heap zone: The heap zone currently under attention, to which
most Memory Manager operations implicitly apply.

dereference: To refer to a block by its master pointer instead of its
handle.

empty handle: A handle that points to .a NIL master pointer t signifying
that the underlying relocatable block has been purged.

" free block: A block containing space available for allocation.

grow zone function: A function supplied by the application program to
help the Memory Manager create free space within a heap zone.

handle: A pointer to a master pointer, which designates a relocatable
block by double indirection.

heap: The area of memory in which space can be allocated and released
on demand, using the Memory Manager.

heap zone: An area of memory initialized by the Memory Manager for
heap allocation.

limit pointer: A pointer to the first byte of a zone trailer (that is,
to the byte following the last byte of usable space in a heap zone).

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.G

GLOSSARY 61

lock: To temporarily prevent a relocatable block from being moved
during heap compaction.

lock bit: A bit in the master pointer to a relocatable block that
indicates whether the block is currently locked.

logical size: The number of byt~s in a block's contents.

master pointer: A single pointer to a relocatable block, maintained by
the Memory Manager and updated whenever the block is moved, purged, or
reallocated. All handles to a relocatable block refer to it by double
indirection through the master pointer.

nonrelocatable block: A block whose location in its heap zone is fixed
and can't be moved during heap compaction.

physical size: The actual number of bytes a block occupies within its
heap zone.

purge: To remove a relocatable block from ~ts heap zone, leaving its
master pointer allocated but set to NIL.

purge bit: A bit in the master pointer to a relocatable block that
indica~es whether the block is currently purgeable.

purge warning procedure: A procedure associated with a particular heap
zone that is called whenever a block is purged from that zone.

purgeable block: A relocatable block that can be purged ,from its heap
zone.

reallocate: To allocate new space in a heap zone for a purged block,
updating its master pointer to point to its new location.

relative handle: A handle to a relocatable block expressed as the
offset of its master pointer within the heap zone, rather than as the
absolute memory address of the master pointer.

release: To free an allocated block of memory.

relocatable b~ock: A block that can be moved within its heap zone
during compaction.

stack frame: The area of the stack used by a routine for its
parameters, return address, local variables, and temporary storage.

system heap zone: The heap zone provided by the Memory Manager for use
by, the Hacintosh system software; equivalent to the system heap.

unlock: To allow a relocatable block to be moved during heap
compaction.

unpurgeable block: A relocatable block that can't be purged from its
heap zone.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.G

62 Memory Manager Programmer's Guide

zone header: The internal "housekeeping" information maintained by the
Memory Manager at the beginning of each heap zone.

zone pointer: A pointer to a zone record.

zone record: A data structure representing a heap zone.

zone trailer: A minimum-size free block marking the end of a heap
zone.

10/9/84 Chernicoff-Hacker /MEM.MGR/MEM.G

MACINTOSH USER EDUCATION

The Segment Loader: A Programmer's Guide /SEGLOAD/SEG

See Also: Inside Macintosh: A Road Map
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Resource Manager: A Programmer's Guide
The 'Memory Manager: A Programmer's Guide
The Scrap Manager: A Programmer's Guide
The File Manager: A Programmer's Guide

Modification History: First Draft (ROM 4)
Second Draft (ROM 7)

Caroline Rose 6/24/83
Caroline Rose &

Bradley Hacker 8/24/84

ABSTRACT

The Segment Loader is the part of the Macintosh Operating System that
lets you divide your application into several parts and have only some
of them iIi memory at a time. When an application starts up, 'the Segment
Loader also provides it with ~ list of which files to open or print.
,This manual describes the Segment Loader.

Summary of significant changes and additions since the first draft:

- The discussion of application parameters has been revised (page
4). Details about the Finder information passed at startup have
been moved here from the manual The Structure of a Macintosh
Application.

There's a new way for Pascal programmers to access the Finder
information: it involves using the new routines CountAppFiles,
GetAppFiles, and C1rAppFiles (page 8).

2 Segment Loader Programmer's Guide

_TABLE OF CONTENTS

3 About This Manual
3 About the Segment Loader
4 Application Parameters
6 Using the Segment Loader
7 Segment Loader Routines
8 Pascal Routines
9 Assembly-Language Routines
11 The Jump Table
14 Summary of the Segment Loader
16 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

The Segment Loader is the part of the Macintosh Operating System that
lets you divide your application into seve~al parts and have only some
of them in memory at a time. When an application starts up, the
Segment Loader also provides it with a list of which files to open or
print. This manual descrihes the Segment Loader. *** Eventually it
will become part of the comprehensive Inside Macintosh manual. ***

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal and the information in the following manuals:

- Inside Macintosh: A Road Map

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications in Assembly Language, if you're
using assembly language

You should also be familiar with:

- the basic concepts behind the Resource Manager

the Memory Manager

ABOUT THE SEGMENT LOADER

The Segment Loader allows you to divide the code of your application
into several parts or segments. The Finder starts up an application by
calling a Segment Loader routine that loads in the.main segment (the
one containing the main program). Other segments are loaded in
automatically when they're needed. Your application c~n call the
Segment Loader to have these other segments removed from memory when
they're no longer needed.

The Segment Loader enables you to have programs larger than 32K bytes,
the maximum size of a single segment. Also, any code that isn't
executed often (such as code for printing) needn't occupy memory when
it isn't being used, but can instead be in a separate segment that's
"swapped in" when needed.

This mechanism may remind you of the resources of'an application, which
the Resource Manager of the User Interface Toolbox reads into memory
when necessary. An application's segments are in fact themselves
stored as resources; their resource type is 'CODE'. A "loaded" segment
has been read into memory by the Resource Manager and locked (so that
it's neither relocatable nor purgeable). When a segment is unloaded,
it's made relocatable and purgeable. You can create these resources
from your application code and store them in resource files with the
aid of the Resource Editor *** (eventually; for now, the Resource
Compiler) ***.

. ---._---

8/24/84 Rose-Hacker /SEGLOAD/SEG.2

4 Segment Loader Programmer's Guide

Every segment has a name. If you do nothing about dividing your
program into segments, it will consist of a single segment whose name
is blank (eight spaces). Dividing your program into segments means
specifying in your source file the beginning of each segment by name.
The names are for your use only; they're not kept around after linking.

(warning)
If you do specify segment names, note that normally the
main segment should have a blank name. The reason fOr
this is that the intrinsic Pascal routines must be in the
same segment as your main program, and the Linker puts
those routines in the blank-named segment (so that the
right thing will happen if you don't specify any segment
names at all).

APPLICATION PARAMETERS

When an application is started up, certain parameters are stored ·in 32
bytes of memory just above the application's globals, as shown in
Figure 1; these are called the application parameters. The Segment
Loader adjusts the size of the application globals according to
application's needs and sets register AS to point to the first of the
application parameters.

AS .---4 0-

el

16

20

I
32 :

appl ication glOtl81s

reserved for QuickDraw

reserved for future use

handle to Finder information

re3erved for future use

appl ication
parameters

Figure 1. Application Parameters.

The majority of the application parameters are reserved for future use
or for use. by QuickDraw, but there's a handle to the Finder information
that all applications will need to access. When the Finder starts up
your application it passes along a list of documents selected by the
user to be printed or opened, if any. This information is' called the
Finder information; its structure is shown in Figure 2.

8/24/84 Rose-Hacker /SEGLOAD/SEG.2

APPLICATION PARAMETERS 5

message (word)

count (word)

volume reference number (word)

fi Ie type (long word)

version number (byte)
fir3t fi Ie

not used (byte)

file name length (byte)

fi Ie name (characters)

.i. ..!

volume reference number (word)
-- .

fi Ie type (long word)

version number (byte)
last file

not used (byte)

1 i Ie name length (byte)

fi Ie name (characters)
I

Figure 2. Finder Information

It's up to your application to access the Finder information and open
or print the files selec~ed by the user.

The message in the first word of the Finder information indicates
whether the documents are to be opened (0) or printed (1), and the
count following it indicates the number, of documents (0 if none). The
rest of the Finder information specifies each of the selected documents
by volume reference number, file type, version number, and file name;
these terms are explained in the File Manager manual. File names are
padded to an even number of bytes if necessary.

Your application should start up with an empty untitled document on the
desktop if there are no documents listed in the Finder information. If
one or more do~uments are to be opened, your application should go
through each document one at a time, and determine whether it can be
opened. If it can be opened, you should do so, and then check the next
document in the list (unless you've opened your maximum number of
documents, in which case you should ignore the rest). If your
application doesn't 'recognize a document's file type (which can happen
if the user selected your application along with another application's

8/24/84 Rose-Hacker /SEGLOAD/SEG.2

6 Segment Loader Programmer's Guide

document), you may want to open the document anyway and check its
. internal structure to see if it's a compatible type. Display an alert

box including the name of each document that can't be opened.

If one or more documents are to be printed, your application should go
through each document in the list and determine whether it can be
printed. If the document can be printed, your application should do

'so--preferably without doing its entire startup sequence. For example,
it may not be necessary to show the menu bar or a document window, and
reading the desk scrap into memory is definitely not required. If the
document can't be printed, ignore it.

*** The above information will be moved out of the next draft of The
Structure of a Macintosh Application. ***

USING THE SEGMENT LOADER

This section introduces you to the Segment Loader routines and how they
fit into the flow of an application program. The routines themselves
are described in detail in the next section.

When your application is first started up, you should determine whether
any documents were selected to be printed or opened by it. First call
CountAppFiles, which returns the number of selected documents and
indicates whether they are to be printed or opened. If the number of
selected documents is 0, open an ,untitled document in the normal
manner. Otherwise, call GetAppFiles once for each selected document.
GetAppFiles returns information about each document, including its file
type. Based on the file type, your application can decide how to treat
the document, as described in the preceding section. For each document
that your application opens or prints, call ClrAppFiles, which
indicates to the Finder that you've processed it.

Assembly-language note: Instead of using CountAppFiles,
GetAppFiles, and ClrAppFiles, assembly-language programmers can
access the Finder information via the global variable
AppParmHandle, which contains a handle to the Finder
information. Parse the Finder information as shown in Figure 2
above. Fo'r each document that your application opens or prints,
set the file type in the Finer information to 0.-

To unload a segment when it's 'no longer needed, call UnloadSeg. If you
don't want to keep track of when each particular segment should be
unloaded, you can call UnloadSeg for every segment in your application
at the end of your main event loop. This isn't harmful, since ,the
segments aren't purged unless necessary.

8/24/84 Rose-Hacker /SEGLOAD/SEG.2

USING THE SEGMENT LOADER 7

(warning)
A segment should never unload the segment that called it,
because the return addresse"s on the stack would refer to
code no longer in memory.

Another procedure, GetAppParms, lets you get information about your
application such as its name and" the reference number for its resource
file.

Assembly-language note: Assembly-language programmers can get
the application name and reference number from the global
variables CurApName and CurApRefNum.

M

The Segment Loader also provides the ExitToShell procedure--a way for
an application to quit and return the user to the Finder.

Finally, there are three routines that can only be called from assembly
language: Chain, Launch, and LoadSeg. Chain starts up another
application without disturbing the application heap. Thus the current
application can let another application take over while still keeping
its data around in the heap. Launch is called by the Finder to start
up an application; it's like Chain but doesn't retain the application
heap. LoadSeg is called indirectly (via the jump table, as described
later) to load segments when necessary--that is, whenever a routine in
an unloaded segment' is invoked. Most applications will never- use
Launch or LoadSeg.

SEGMENT LOADER ROUTINES

This section is split into two parts: the first describes the Segment
Loader routines available to Pascal programmers and the second
describes th~_routines available to assembly-language programmers.

Assembly-language note: All the routines that have·trap macros
are described in detail in the second part of this section.
There are no trap macros for the routines CountAppFiles,
GetAppFiles, and ClearAppFiles.

8/24/84 Rose-Hacker /SEGLOAD/SEG.R

8 Segment Loader Programmer's Guide

Pascal Routines

PROCEDURE UnloadSeg (routineAddr: Ptr);

UnloadSeg unloads a segment, making it relocatable and purgeable;
routineAddr is the address of any externally referenced routine in the
segment. The segment won't actually be purged until the memory it
occupies is needed. If the segment is purge~, the Segment Loader will
reload it the next time one of the routines in it is called.

PROCEDURE CountAppFiles (VAR message: INTEGER; VAR·count: INTEGER);

CountAppFiles deciphers the Finder information passed to your
application, and returns. information about the documents that were
selected when your application was started up. It returns the number
of selected documents in the count parameter, and a number in the
message parameter that indicates whether the documents are to opened or
printed: .

CONST appOpen
appPrint

0; {open the document(s)}
1; {print the document(s)}

PROCEDURE GetAppFiles (index: INTEGER; VAR theFile: 'AppFile);

GetAppFiles returns information about a document that was selected when
your application was started up (as listed in the Finder information).
The index parameter indicates the file for which' information should be
returned; it must be between 1 and the. number returned by
CountAppFiles, inclusive. The information is returned in the following
data structure:

TYPE AppFile RECORD
vRefNum: INTEGER; {volume reference number}
fType: OSType; {file type}
versNum: INTEGER; {version number}
fName: Str255 {file name}

END;

Volume reference number, file type, version number, and file name are
discussed in the File Manager manual.

PROCEDURE ClrAppFiles (index: INTEGER);

ClrAppFiles changes the Finder information passed to your application
about the specified file such that the Finder knows you"'e processe~
the file. The index parameter must be between 1 and the number
returned by CountAppFiles, inclusive. You should call ClrAppFiles for

8/24/84 Rose-Hacker /SEGLOAD/SEG.R

SEGMENT LOADER ROUTINES 9

every document your application opens or prints, so that the
information returned by CountAppFiles and GetAppFiles is always
correct. (ClrAppFiles ~ets the file type in the Finder information to
0.)

PROCEDURE GetAppParms (VAR apName: STRING[31]; VAR apRefNum: INTEGER;
VAR apParam: Handle);

GetAppParms returns information about the current application. It
returns the application name in apName and the reference number for the
application's resource file in apRefNum. A handle to the Finder
information is returned in apParam, but the Finder information is more
easily accessed with the GetAppFiles call.

PROCEDURE ExitToShell;

ExitToShell provides an exit from an application by starting up the
Finder (after releasing the entire application heap).

Assembly-Language Routines

Notice that unlike most Operating System routines, a few of the Segment
Loader routines are stack-based rather than register-based.

UnloadSeg procedure

Trap macro _UnloadSeg

On entry 4(SP): routine address

UnloadSeg unloads the segment containing the externally referenced
routine at the specified address, making it relocatable and purgeable.
The segment won't actually be purged until the memory it occupies is
needed. If the segment is purged, the Segment Loader will reload it
the next time one of the routines in it is called.

Chain procedure'

Trap macro

On entry

Chain

(A0):
4(A0):

pointer to the application's file name
integer specifying the configuration
of the sound and screen buffers

Chain starts up an application without doing a~ything to the
application heap, so the current application can let another
application take over while still keeping its data around in the heap.

8/24/84 Rose-Hacker /SEGLOAD/SEG.R

10 Segment Loader Programmer's Guide

Chain also configures memory for the sound and screen buffers. The
value you pass in 4(A0) determines which sound and screen buffers are
allocated:

If you pass 0 in 4(A0), you get the main sound and screen buffers;
in this case, you have the largest amount of memory available to
your application.

Any positive value in 4(A0) causes the alternate sound buffer and
main screen buffer to be allocated.

Any negative value in 4(A0) causes the alternate sound buffer and
alternate screen buffer to be allocated.

The memory map in the Memory Manager manual shows the locations of the
screen and sound buffers. *** (The memory map will be in the next
draft of the Memory Manager manual.) ***
(note)

You can get the most recent value passed in 4(A0) to the
Chain procedure from the global variable CurPageOption.

Chain closes the resource file for any previous application and opens
the resource file for the application being,started.

Launch procedure

Trap macro

On entry

Launch

(A0) :
4(A0) :

pointer to the application's file name
integer specifying the configuration
of the sound and screen buffers

Launch ,is called by the Finder to start up an application \and will
rarely need to be called by an application itself. It's the same as
the Chain routine (described above) except that it frees the storage
occupied by the application heap and restores the heap to its original
size.

(note)
Launch preserves a special handle in the application heap
which is used for preserving the desk scrap between
applications; see the Scrap Manager manual for further
information.

8/24/84 Rose-Hacker /SEGLOAD/SEG.R

SEGMENT LOADER ROUTINES 11

LoadSeg procedure

Trap macro _LoadSeg

On entry 24(SP): segment number (integer)

LoadSeg is called indirectly via the jump table (as described in the
following section) when the application calls a routine in an unloaded
segment. It loads the segment having the given segment number, which
was assigned 'by the Linker. If the segment isn't in memory, LoadSeg
calls the Resource Manager to read it in. It changes the jump table
entries for all the routines in the segment from the uunloaded" to the
"loaded" state and then invokes the routine that was called. Normally
you'll never need to call LoadSeg.

ExitToShel1 procedure

Trap macro ExitToShel1

ExitToShell provides an exit from an application by starting up the
Finder with the Launch procedure.

THE JUMP TABLE

This sect'ion describes how the Segment Loader works internally, and is
included here for advanced programmers; you don't have to know about
this to be able to use- the common Segment Loader routines.

The loading and unloading of segments is implemented through the
application's jump table. The jump table contains one eight-byte entry
for every externally referenced routine in every segment; all the
entries for a particular segment are stored contiguously. The location
of the jump table is shown in the Memory Manager manual *** (in the
next draft of it, not the current draft) ***.

When the Linker encounters a call to a routine in another segment, it
creates a jump table entry for the routine (see- Figure 3). - The jump
table refers to segments by segment numbers assigned by the Linker. If
the segment is loaded, the jump table entry contains code that jumps to
the routine. If the segment isn't,loaded, the entry contains code that
loads the segment.

8/24/84 Rose-Hacker /SEGLOAD/SEG.J ,

12 Segment Loader Programmer's Guide

" un I oeded stete" II loeded stete II

offset of this routine from
beginning of segment (2 bytes)

segment number
(2 bytes)

instruct i on that rTlO'v'eS the
segment number onto the

steck for LoedSeg
(4 bytes)

LoedSeg trep
(2 bytes)

instruct i on that jumps to the
address of this routine

(6 bytes)

Figure 3. Format of a Jump Table Entry

When a segment is unloaded, all its jump table entries are in the
"unloaded" state. When a call to a routine in an unloaded segment is
made, the code in the last six bytes of its jump table entry is
executed. This code calls LoadSeg, which loads the segment into
memory, transforms all of its jump table entries to the "loaded" state,
and invokes the routine by executing the instruction in the last six
bytes of the jump table entry. Subsequent calls to the routine also
execute this instruction. If UnloadSeg is called to unload the
segment, it restores the jump table entries to their "unloaded" state.
Notice that whether the segment is loaded or unloaded, the last six
bytes of the jump table entry are executed; the effect depends on the
state of the entry at the time.

To be able to set all the jump table entries for'a segment to a
particular state, LoadSeg and UnloadSeg need to know exactly where in
the jump table all the entries are located. They get this 'information
from the segment header, four bytes at the "beginning of the segment
which contain the following:

Number of bytes
2 bytes

2 bytes

Contents
Offset of the first routine's entry from
the beginning of the jump table
Number of entries for this segment

When an application is started up, its jump table is read in from
segment 0, a special segment created by the Lin~er for every executable
file. Segment 0 contains the following:

8/24/84 Rose-Hacker /SEGLOAD/SEG.J

Number of bytes
4 bytes

4 bytes

4 bytes
4 bytes

n bytes

THE JUMP TABLE 13

Contents
"Above AS" size; size in bytes from
location pointed to by AS to upper end of
application space
"Below AS" size; size in bytes of
application globals
Length of jump table in bytes
Offset to jump table fr~m location pointed
to by AS
Jump table

For most applications. the offset to the jump table from the location
pointed to by AS is 32. and the "above AS" size is 32 plus the length
of the jump table.

Assembly-language note: The offset to the jump table from the
location pointed to by AS is stored in the global variable
CurJTOffset.

8/24/84 Rose-Hacker /SEGLOAD/SEG.J

14 Segment Loader Programmer's Guide

SUMMARY OF THE SEGME~T LOADER

Constants

CONST { Message returned by CountAppFiles }

appOpen
appPrint

Data Types

0; {open the document(s)}
1; {print the document(s)}

TYPE AppFile RECORD
vRefNum: INTEGER; {volume reference number}
fType: OSType; {file type}
versNum: INTEGER; {version number}
fName: Str255 {file name}

END;

Routines

PROCEDURE UnloadSeg
PROCEDURE CountAppFiles
PROCEDURE GetAppFiles
PROCEDURE ClrAppFiles
PROCEDURE GetAppParms

PROCEDURE ExitToShell;

(routineAddr: Ptr);
(VAR message: INTEGER; VAR count: INTEGER);
(index: INTEGER; VAR theFile: AppFile);
(index: INTEGER);
(VAR apName: STRING[31]; VAR apRefNum: INTEGER;

VAR apParam: Handle);

Assembly-Language Information

Routines

Chain procedure

On entry

Launch procedure

On entry

8/24/84 Rose-Hacker

(Arb) :
4(A0) :

(A0) :
4(A0) :

pointer to the application's file name
integer specifying the configuration
of the sound and screen buffers

pointer to the application's file name
in'teger specifying the configuration
of the sound and screen buffers

/ SEGLOAD / SEG • S

SUMMARY OF THE SEGMENT LOADER 15

LoadSeg procedure

On entry 24(SP): segment number (integer)

UnloadSeg procedure

On entry 4(SP): routine address

ExitToShel1 procedure

Variables

Name
AppParmHandle
CurApName
CurApRefNum

Cur Page Option

CurJTOffset

8/24/84 Rose-Hacker

Size
4 bytes
32 bytes
2 bytes

2 bytes

2 bytes

Contents
Handle to Finder information
Name of current application
Reference number of current
application's resource file
Most recent value passed in 4(A0) to
Chain procedure
Offset to jump table from location
pointed to by AS

/SEGLOAD/SEG.S

16 Segment Loader Programmer's Guide

GLOSSARY

application parameters: Parameters passed to an application when it's
started up, in 32 bytes of memory just above the application globals;
primarily, a handle to the Finder information.

Finder information: Information that the Finder provides to an
application upon starting it up, telling it ,which files to open or
print.

jump table: A table that contains one entry for every routine in an
application and is the means by which the loading and unloading of
segments is implemented.

main segment: The segment containing the main program.

segment: One of several parts into which the code of an application
may be divided. Not all'segments need to be in memory at the same
time.

8/24/84 Rose-Hacker /SEGMENT/SEG.G

MACINTOSH USER EDUCATION

The Operating System Event Manager: A Programmer's Guide

See Also: Inside Macintosh: A Road Map
Macintosh User Interface Guidelines

/OSEMGR/EVENTS

Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Toolbox Event Manager: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide

Modification History: First Draft Caroline Rose & Brent Davis 11/19/84

ABSTRACT

This manual describes the Operating System Event Manager, the part 'of
the Macintosh Operating System that reports low-level user actions such
as mouse-button presses and keystrokes. Usually your application will
find out about events by calling the Toolbox Event Manager, which calls
the Operating System Event Manager for you, but in some situations
you'll need to call the Operating System Everit Manager directly.

2 Operating System Event Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the Operating System Event Manager
4 Using the Operating System Event Manager
4 Operating System Event Manager Routines
4 Posting and Removing Events
6 Accessing Events
7 Setting the System Event Mask
7 Structure of the Event Queue
8 Defining a Nonstandard Keyboard Configuration
9 Summary of the Operating System Event Manager

13 Glossary

Copyright (c) 1984 Apple Computer Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Operating System Event Manager, the part of
the Macintosh Operating System that reports low-level user actions such
as mouse-button press~s and keystrokes. *** Eventually it will become
part of the comprehensive Inside Macintosh manual. *** Usually your
application will find out about events by calling the Toolbox Event
Manager, which calls the Operating System Event Manager for you, but in
some situations you'll need to call the Operating System Event Manager
directly.

(note)
All references to "the Event Manager" in this manual
refer to the Operating System Event Manager.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal and the information in the following manuals:

- Inside Macintosh: ! Road Map

- Macintosh Memory Management: An lntroduction

- Programming Macintosh Applications in Assembly Language, if you're
using assembly language

You should also be familiar with the Toolbox Event Manager.

(note)
Constants and data types defined in the Operating System
Event Manager are presented in detail in the Toolbox
Event Manager manual, since they're necessary for using
that part of the Toolbox. They're also listed in the
summary of this manual.

ABOUT-THE OPERATING SYSTEM EVENT MANAGER

The Event Manager is the part of the Operating System that detects low
level, hardware-related events: mouse, keyboard, disk-inserted, device
driver, and network events. It stores information about these events
in the event queue arid provides routines that access the queue
(analogous to GetNextEvent and EventAvail in the Toolbox Event
Manager). It also allows your application to post its own events into
the event queue. Like the Toolbox Event Manager, the Operating System
Event Manager returns a null event if it has no other events to report.

The Toolbox Event Manager calls the Operating System Event Manager to
retrieve events from the event queue; in addition, it reports activate
and update events, which aren't kept in the queue. It's extremely
unusual for an application not to have to know about activate and
update events, so usually you'll call the Toolbox Event ~anager ~o get
events.

11/19/84 Rose-Davis /OSEMGR/EVENTS.2,

4 Operating System Event~Manager Programmer's Guide

The Operating System Event Manager also lets you:

- remove events from the event queue

- set the system event mask, to control which types of events get
posted into the queue

USING THE OPERATING SYSTEM EVENT MANAGER

If you're usin~ application-defined events in your program, you'll need
to call the Operating System Event Manager function PostEve~t to post
them into the event queue. This function is sometimes also useful for
reposting events that you've removed from the event queue with
GetNextEvent.

In some situations you may want to remove from the event queue some or
all events of a certain type or types. You can do this with the
procedure FlushEvents. A common use of FlushEvents is to get "rid of
any stray events left over from before your application was started up.

You'll probably never call 'the other 'Operating System Event Manager
routines: GetOSEvent, which gets an event from the event queue,'
removing it from the qu~ue in the process; OSEventAvail, for looking at
an event without dequeueing it; and SetEventMask, which changes the
~etting of the system event mask.

OPERATING SYSTEM EVENT MANAGER ROUTINES

Posting and Removing Events

FUNCTION PostEvent (eventCode: INTEGER; eventMsg: LONGINT): OSErr;

Trap macro PostEvent

On entry A0: eventCode (word)
D0: eventMsg (long word)

On exit D0: result code (word)

PostEvent places in the event queue an event of the type designated by
eventCode, with the event message specified by eventMsg and with the
current time, mouse location, and state of the modifier keys and mouse

.11/19/84 Rose-Davis /OSEMGR/EVENTS.R

OPERATING SYSTEM EVENT MANAGER ROUTINES 5

button. It returns a result code (of type OSErr, defined as INTEGER in
the Operating System Utilities) equal to one of the following
predefined constants:

CONST noErr = 0; {no error (event posted)}
evtNotEnb = 1; {event type not designated in system }

{ event mask}

(warning)
Be very careful when posting any events other than your
own application-defined events into the queue; attempting
to post an activate br ~pdate event, for example, will
interfere with the internal operation of the Toolbox
Event Manager, since such events aren't normally placed
inl the queue at all.

If you use PostEvent to repost an event, remember that
the event time, location, and state of the modifier keys
and mouse button will all be changed from their values
when the event was originally posted, possibly altering
the meaning of the event.

PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

Trap macro

On entry

On exit ---

FlushEvents

D0: low-order word:
high-order word:

eventMask
stopMask

D0: ° or event code (word)

FlushEvents removes events from the event queue as specified by the
given event masks. It removes all events of the type or types
specified by eventMask, up to but not including the first event of any
type specified by stopMask; if the event queue doesn't contain any
events of the types specified by eventMask, it,does nothing. To remove
all events specified by eventMask, use a stopMask value of O.

At the beginning of your application, it's usually a good'idea to call
FlushEvents(everyEvent,0) to empty the event queue of any stray events
that may have been left lying around, such as unprocessed keystrokes
typed to the Finder.

11/19/84 Rose-Davis /OSEMGR/EVENTS.R

6. Operating System Event Manager Programmer's Guide

Assembly-language~: On exit from this routine. D0 contains'
~ if all events'were removed from the queue or. if not. an event
code specifying the type of event that caused the removal
process to stop.

Accessing Events

FUNCTION Get'OSEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

Trap macro

On entry

On exit ---

GetOSEvent

- A0:
D0:

D0:

pointer to event record theEvent
eventMask (word)

o if non-null event returned, or
-1 if null event returned (byte)

GetOSEvent returns the next available event of a specified type or
types and removes it from the event queue. The event is returned as
the value of the parameter theEvent. The eventMask parameter specifies
which event types are of interest. GetOSEvent will return the next
available event of ~ny type designated by the mask. If no event of any
of the designated types is available. GetOSEvent returns a null event
and a function result of FALSE; otherwise it returns TRUE.

FUNCTION OSEventAvail (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

Trap macro

On entry

On exit ---

11/19/84 Rose-Davis

OSEventAvail

A0: pointer to event record theEvent
D0: eventMask (word)

D0: 0 if non-null event returned, or
-1 if null event returned (byte)

/OSEMGR/EVENTS.R

OPERATING SYSTEM EVENT MANAGER ROUTINES 7

OSEventAvail works exactly the same as GetOSEvent (above) except that
it doesn't remove the event from the event queue.

(note)
An event returned by OSEventAvail will not be accessible
later if in the meantime the queue becomes full and the
event is discarded from it; since the events discarded
are always the oldest ones in the queue, however, this
will happen only in an unusually busy environment.

Setting the System Event Mask

PROCEDURE SetEventMask (theMask: INTEGER); [No trap macro]

SetEventMask sets the system event mask to the specified event mask.
The Operating System Event Manager will post only those event types
that correspond to bits set in the mask. (As usual, it will not PO$t
activate and update events, which are generated by the Window Manager
and not stored in the event queue.) The system event mask is initially
set to post all except key-up events.

(warning)
Because desk accessories may rely on receiving certain
types of events, your application shouldn't set the
system event mask to prevent any additional types
(besides key-up) from being posted. You should use
SetEventMask only to enable key-up events in the unusual
case that your application needs to respond to them.

Assembly-language~: The system event mask is available to
assembly-language programmers in the global variable SysEvtMask.

STRUCTURE OF THE EVENT QUEUE

The event queue is a standard Macintosh Operating System queue, as
described in the Operating System Utilities manual~ Most programmers
will never need to access the event queue directly; some advanced
programmers, though, may need to do so for special purposes.

11/19/84 Rose-Davis /OSEMGR/EVENTS.Q

8 Operatirig System Event Manager Programmer's Guide

Each entry in the event queue contains information about an event:

TYPE EvQEl = RECORD
qLink:
qType:
evQWhat:
evQMessage:
evQWhen:
evQWhere:
evQModifie:rs:

END; -

QElemPtr;
INTEGER;
INTEGER;
LONGINT;
LONGINT;
Point;
INTEGER

{next queue entry}
{queue type}
{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

QLink points to the next entry in the queue, and qType indicates the
queue type, which must be ORD(evType). The remaining 'five fields of
the event queue element 'contain exactly the same information about the
event as do the field,s of the event record for that event; see the
Toolbox Event Manager manual for a detailed description of the specific.
contents of these fields.

You can get a pointer to the event queue by calling the Operating
System Event M~nager function GetEvQHdr.

FUNCTION GetEvQHdr : QHdrPtr; [No trap macro]

GetEvQHdr returns a pointer to the event queue.

Assembly-language~: To access the contents of the event
queue from assembly language, you can use offsets from the
address of the global variable EventQueue.

DEFINING A NONSTANDARD KEYBOARD CONFIGURATION

*** This information is forthcoming ***

11/19/84 Rose-Davis /OSEMGR/EVENTS.Q

SUMMARY 0, THE OPERATING SYSTEM EVENT MANAGER 9

SUMMARY OF THE OPERATING SYSTEM EVENT MANAGER

Constants

CONST { Event codes }

mouse Down
mouseUp
key Down
keyUp
autoKey
updateEvt
diskEvt
activateEvt
networkEvt
driverEvt
app1Evt
app2Evt
app3Evt
app4Evt

= 1;
:I 2;
= 3;
= 4;
:I 5;
= 6;
= 7;
= 8;
= 10;
= 11;
= 12;
= 13;
= 14;
= .15;

{mouse-down}
{mouse-up}
{key-down}
{key-up}
{auto-key}
{update; Toolbox only}
{disk-inserted}
{activate; Toolbox only}
{network}
{device driver}
{application-defined}
{application-defined}
{application-defined}
{applicatiori-defined}

{ Masks for accessing keyboard event message }

charCodeMask = $000000FF;
keyCodeMask = $0000FF00;

{character code}
{key code}

{ Masks for forming event mask }

mDownMask = 2- {mouse-down} t

mUpMask = 4; {mouse-up}
keyDownMask = 8; {key-down}
keyUpMask = 16; {key-up}
autoKeyMask = 32; {auto-key}
updateMask = 64; {update}
diskMask :I 128; {disk-inserted}
activMask = 256; {activate}
networkMask = 1024; {network}
driverMask = 2048; {device driver}
app1Mask = 4096; {application-defined}
app2Mask = 8192; {application-defined}
app3Mask = 16384; {applicati~n-defined}
app4Mask = -32768; {application-defined}
everyEvent = -1; {all event types}

11/19/84 Rose-Davis

-

/

/OSEMGR/EVENTS.S

10 Operating System Event Manager Programmer's Guide

{ Modifier flags in event record }

activeFlag ::I 1; {set if window being activated}
btnState :II 128; {set if mouse button up}
cmdKey ::I 256; {set if Command key down}
shiftKey ::I 512; {set ·if Shift key down}
alphaLock = 1024; {set if Caps Lock key down}
optionKey ::I 2048; {set if Option key down}

{ Result codes returned by PostEvent }

noErr
evtNotEnb

::I 0;
::I 1;

{no error (event posted)}
{event type not designated in sy~tem event }
{ mask}

Data Types

TYPE EventRecord = RECORD
what:
message:
when:
where:
modifiers:

END;

INTEGER;
LONGINT;
LONGINT;
Point;
INTEGER

EvQEl = RECORD

Routines

qLink:
qType:
evQWhat:
evQMessage:
evQWhen:
evQWhere:
evQModifiers:

END;

Posting and Removing Events

QElemPtr;
INTEGER;
INTEGER;
LONGINT;
LONGINT;
Point;
INTEGER

{even t code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

{next queue entry}
{queue type}
{event code}
{event message}
{ticks since startup}
{mouse location}
{modifier flags}

FUNCTION .PostEvent (eventCode: INTEGER; eventMsg: LONGINT) 'OSErr;
PROCEDURE FlushEvents (eventMask,stopMask: INTEGER);

Accessing Events

FUNCTION GetOSEvent (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

FUNCTION OSEventAvail (eventMask: INTEGER; VAR theEvent: EventRecord)
BOOLEAN;

11/19/84 Rose-Davis /OSEMGR/EVENTS.S

SUMMARY OF THE OPERATING SYSTEM EVENT MANAGER 11

Setting the System Event Mask

. PROCEDURE SetEventMask (theMask: INTEGER)j [No trap macro]

Directly Accessing the Event Oueue

FUNCTION GetEvOHdr : OHdrPtr; [No trap macro]

Assembly-Language Information

Constants

; Event codes

nu1lEvt .EOU 0 ;nul1
mButDwnEvt .EOU 1 jmouse-down
mButUpEvt .EOU 2 ;mouse-up
keyDwnEvt .EOU 3 ; key-down
keyUpEvt .EOU 4 jkey-up
autoKeyEvt .EOU 5 jauto-key
updatEvt .EOU 6 jupdate; Toolbox only
disklnsertEvt .EOU 7 jdisk-inserted
activateEvt .EOU 8 ;activate; Toolbox only
networkEvt .EOU 10 ;network
ioDrvrEvt .EOU 11 ;device driver
applEvt .EOU 12 ; application-defined
app2Evt .EOU 13 japp1ication-defined-
app3Evt , .EOU 14 japp1ication-defined
app4Evt .EOU 15 ; application-defined

; Modifier flags in event record

activeFlag .EOU 0 ;set if window being activated
btnState .EOU 2 ;set if mouse butt.on up
cmdKey .EOU 3 ;set if Command key down
shiftKey .EOU 4 jset if Shift key down
alphaLock .EOU 5 ;set if Caps Lock key down
optionKey .EOU 6 ;set if Option key down

; Result codes returned by PostEvent

o ;no error (event posted) noErr
evtNotEnb

.EOU

.EOU 1 ;event type not designated in system event
; mask

11/19/84 Rose-Davis /OSEMGR/EVENTS.S

12 Operating System Event Manager Programmer's Guide

Event Record Data Structure

evtNum
evtMessage
evtTicks
evtMouse
evtMeta
evtMBut
evtBlkSize

Event code
Event message
Ticks since startup
Mouse location
State of modifier keys
State of mouse button
Length of above structure

Event Queue Element Data Structure

qLink
qType
evtQWbat
evtQMessage
evtQWben
evtQWhere
evtQMeta
evtQMBut
evtQBlkSize

Routines

Name
PostEvent

FlushEvents

GetOSEvent
and

OSEventAvail

Variables

Pointer to next queue entry
Queue type
Event code
Event message
Ticks since startup
Mouse location
State of modifier keys
State of mouse button
Length of above structure

On entry
A0: eventCode (word)
D0: eventMsg (long)

D0: low-order word:
eventMask

high-order word:
stopMask

A0: ptr to event record
theEvent

D0: eventMask (word)

Size Contents

On exit
D0: result code (word) -

o if no error, 1 if
event type not designated
in system event mask

D0: 0 or event code (word)

D0: 0 if non-null event,
-1 if null event (byte)

Name
SysEvtMask
EventQueue

2 bytes
10 bytes

System event mask
Event queue

11/19/84 Rose-Davis /OSEMGR/EVENTS.S

GLOSSARY 13

GLOSSARY

activate event: An event generated by the Window Manager when a window
changes from active to inactive or vice versa.

auto-key event: An event generated repeatedly when the user presses
and holds down a character key on the keyboard or keypad.

device driver event: An event generated by one of the Macintosh's
device drivers.

disk-inserted event: An event generated when the user ~~serts a disk
in a disk drive or takes any other action that requires a volume to be
mounted.

event: A notification to an application of some occurrence that the
application may want to respond to.

event code: An integer representing a particular type of event.

event mask: A parameter passed to a Toolbox or Operating System Event
Manager routine to specify whidh types of event the routine should
apply to.

event message: A field of an event record containing information
specific to the particular type of event.

event queue: The Operating System Event Manag~r's list of pending
events.

event record: The internal representation of an event, through which
your program learns all pertinent information about that event.

key-down event: An event generated when the user presses a character
key on the keyboard or keypad.

key-up event: An event generated when the user releases a character
key on the keyboa~d or keypad.

keyboard event: An event generated when the user presses, releases, or
holds down a character key on the keyboard or keypad; any key-down, key
up, or auto-key event.

modifier key: A key (Shift, Caps Lock, Option, or Command) that
generates no keyboard events of its own, but changes the meaning of
other keys or mouse actions.

mouse-down event: An event generated when the user presses the mouse
button.

mouse-up event.: An event gener~ted when the user releases the mouse
button.

11/19/84 Rose-Davis /OSEMGR/EVENTS.G

14 Operating System Event Manager Programmer's Guide

network event: An event generated by the AppleBus Manager.

null event: An event reported when there are no other events to
report.

post: To place an event in the event queue for later processing.

system event mas.k: A global event mask that controls which types of
event get posted into the event queue.

update event: An event generated by the Window Manager when a window's
contents need to be redrawn.

11/19/84 Rose-Davis /OSEMGR/EVENTS.G

MACINTOSH USER EDUCATION

The File Manager: A Programmer's Guide

See Also: The Macintosh User Interface Guidelines
The }Iemory Manager: A Programmer's Guide
Inside Macintosh: A Road Map
Macintosh Packages: A Programmer's Guide
The Structure of a Macintosh Application

/OS/FS

Programming Macintosh Applications in Assembly Language

Modification History: First Draft (ROM 7) Bradley Hacker 5/21/84

ABSTRACT

This manual describes the File Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files.

2 File Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the File Manager
4 Volumes
5 Accessing Volumes
6 Files
9 Accessing Files
10 File Information Used by the Finder
11 Using the File Manager
15 . High-Level File Manager Routines
16 Accessing, Volumes
18 Changing File Contents
22 Changing Information About ,Files
24 Low-Level File Manager Routines
25 Routine Parameters
27 I/O Parameters
29 File Information Parameters
29. Volume Information Parameters
30 Routine Descriptions
31 Initializing the File I/O Queue
31 Accessing Volumes
37 Changing File Contents
46 Changing Information About Files
52 Data Organization on Volumes
53 Volume Information
55 Volume Allocation Block Map
55 File Directory
56 File Tags on Volumes
57 Data Structures in Memory
58 The File I/O Queue
58 Volume Control Blocks
60 File Control Blocks
62 File Tags in M~mory
62 The Drive Queue
63 Using an External File System
65 Appendix
67 Summary of the File Manager
78 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the File Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and files. *** Eventually it will become part of
the comprehensive Inside Macintosh manual. *** The File Manager allows
you to create and access any number of fil~s containing whatever
information you choose.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

- the basic concepts behind the Macintosh Operating System's Memory
Manager

devices and device drivers, as described in the Inside Macintosh
Road Map

This manual is intended to serve the needs of both Pascal and assembly-.
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an introduction to the File Manager and what you
can do with it. It then discusses some basic concepts behind the File
Manager: what files and volumes are and how they're accessed.

A section on using· the File Manager introduces its routines and tells
how they fit into the flow of your application. This is followed by
sections explaining the File Manager's simplest, "high-level" Pascal
routines and then its more complex, "low-level" Pascal and assembly
language routines. Both sections give detailed descriptions of all the
procedures and functions, their parameters, calling protocol, effects,
side effects, and so on.

Following these,descriptions are section~/ that won't interest all
readers. The data structures that the File Manager uses to store
information in memory and on disks are described, and special
information is provided .for programmers who want to write their own
file system.

Finally, there's a summary of the File Manager, for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE FILE MANAGER

\

The File Manager is the part of the Operating System that handles
communication between an application and files on block devices such as
disk drives. Files are a principal means by which data is stored and
transmitted on the Macintosh. A file is a named, ordered sequence of

5/21/84 Hacker /OS/FS.I

4 File Manager Programmer's Guide

bytes. The File Manager contains routines used to read and write to
files.

Volumes

A volume is a piece of storage medium, such as a disk, formatted to
contain files. A volume can be an entire disk or only part of a disk.
Currently, the 3 1/2-inch Macintosh disks are one volume.

(note)
Specialized memory devices other than disks can also
contain volumes, but the information in this manual
applies only to volumes on di'sks.

You identify a volume by its volume name, which consists of any
sequence of 1 to 27 printing characters. Volume names must always be
followed by a colon (:) to distinguish them from other names. You can
use uppercase and lowercase letters when naming volumes, but the File
Manager ignores case when comparing names (it doesn't ignore
diacritical marks). '

(note)
The colon (:) after a volume name should only be used
when calling File Manager routines; it should never be
seen by the user.

A volume contains descriptive information about itself, including its
name and a file directoryjlisting information about files contained on
the volume; it also contains files. The·files are contained in
allocation blocks, which are areas of volume space occupying mUltiples
of,512 bytes.

A volume can be mounted or unmounted. A volume becomes mounted when
it's in a disk drive and the File Manager reads descriptive information
about the volume into memory. Once mounted, a volume may remain in a
drive or be ejected. Only mounted volumes are known to the File
Manager, and an application can access information on mounted volumes
only. A volume becomes unmounted when the File Manager releases the
memory used to store the descriptive information. Your application
should unmount a volume when it's finished with the volume, or when it
needs the memory occupied by the volume.

The File Manager assigns each mounted volume a volume reference number
that you can use instead of its volume name to refer to it. Every
mounted volume is also assigned a volume buffer, which is temporary
storage space on the heap used when reading and writing information on
the volume. The number of volumes that may be mounted at any time is
limited only by the number of drive~ attached and available memory.

A mounted volume can be on-line or off-line. A mounted volume is
'on-line as long as the volume buffer and all the descriptive
information read trom the volume when it was mounted remain in memory
(about 1K to 1".5K bytes);i it becomes off-line when all but 94 bytes of

5/21/84 Hacker /OS/FS.I

ABOUT THE FILE MANAGER 5

descriptive information are released. You can access information on
on-line volumes immediately, but off-line volumes must be placed
on-line before their information can be accessed. An application
should place a volume off-line whenever it needs most of the memory the
volume occupies. When an application ejects a volume from a drive, the
File Manager automatically places the volume off-line.

To prevent unauthorized writing to a volume, volumes can be locked.
Locking a volume involves either setting a software flag on the volume
or changing some part of the volume physically (for example, sliding a
tab from one position to another on a disk). Locking a volume ensures
that none of the data on the volume can be changed.

Accessing Volumes

Yo'u can access a mounted volume via its volume name or volume reference
number. On-line volumes in disk drives can also be accessed via the
drive number of the drive on which the volume is mounted (the internal
drive is number 1, the external drive is number 2, and any additional
dri ves conne'c ted via a serial port wi,ll have larger numbers). When
accessing a mounted volume, you should always use the volume name or
volume reference number, rather than a drive number, because the volume
may have been ejected or placed off-line. Whenever possible, use the'
volume reference number (to avoid confusion between volumes with the
same name).

One volume is always the default volume. Whenever ,you call a routine
to access' a volume but don't specify which volume, the default volume
is accessed. Initially, the volume used to start up the system is the
default volume, but an application can designate any mounted volume as
the default volume. .

Whenever the File Manager needs to access a mounted volume that's been
ejected from its drive, the dialog box shown in Figure 1 is displayed,
and the File Manager waits until the user inserts the volume named
volName into a drive.

Please insert the disk:

uolNome

Figure 1. Disk-Switch Dialog

5/21/84 Hacker /OS/FS.I

6 File Manager Programmer's Guide

Files

A file is a finite sequence of numbered bytes. Any byte or group of
bytes in the sequence can be accessed individually. A file is
identified by its file,name and version number. A file name consists
of any sequence of-r-to 255, printing characters, excluding colons (:).

,You can use uppercase and lowercase letters when naming volumes, but
the File Manager ignores case when comparing names (it doesn't ignore
diacritical marks). The version number is any number from 0 to 255,
and is used by the File Manager to distinguish between different files
with the same name. A byte within a file is identified by its position
within the ordered sequence.

(warning)
Your application should constrain file names to fewer
than 64 characters, because the Finder will generate an
error if given a longer name. You should always assign
files a version number of 0, because the Resource Manager
and Segment Loader won't operate on files with nonzero
file numbers, the Finder ignores version numbers, and the
Standard File Package clears version numbers.

There are two parts or forks to a file: the data fork and the resource
fork. Normally the resource fork of an application file contains the
resources used by the application such as menus, fonts, and icons, and
alsp the application code itself. The data fork can contain anything
an application wants to store there. Information stored iri resource
forks should always be accessed via the Resource Manager. Information
in data forks can only be accessed via the File Manager. For
simplicity, "file" will be used instead of "data fork" in this manual.

A file can contain anywhere from 0 to 16,777 ,216 bytes (16 megabytes).
Each byte is numbered: the first byte is byte 0. You can read bytes
from and write bytes to a file either singly or in sequences of
unlimited length. Each read or write operation can start anywhere in
the file, regardless of where the last operation began or ended.
Figure 2 shows the structure of a file.

current byte

first ~
byte ~'.r'----~r-'-"""""r-'-----,-, ... "D

prev i ous byte next byte

Figure 2. A File

18st
byte

A file's maximum size is defined by its physical end-of-file, which is
1 greater than the number of the last byte in its last allocation block
(Figure 3). The physical end-of-file is equivalent to the maximum

I "

5/21/84 Hacker /OS/FS.I

ABOUT THE FILE MANAGER 7

number of bytes the file can contain. A file's actual size is~defined
by its logical end-of-file, which is 1 greater than ,the number of the
last byte in the f~le. The logical end-of-file is equivalent to the
actual number of bytes in the file, since the first byte is byte number
~. The physical end-of-file is always greater than the logical
end-of-file~ For example, an empty file (one with ~ bytes) in a
lK-byte allocation block has a logical end-of-file of ~ and a physical
end-of-file of 1~24. A file with 50 bytes has a logical end-of-file of
50 and a physical end-of-file of 1~24.

logical physical
mark end-of- fi Ie end-01- fi Ie

~'" 1 '" 1 '" 1.. Ixlxlxl~lxlxlxlxl~lxlxlxl It~-,--I --'----IL. . ..J
byte 0 byte 1024

Figure 3. End-of-File and Mark

The current position marker, or mark, is the number of the next byte
that will be read or written. The value of the mark can't exceed the
value of t~e logical end-of-file. The mark automatically moves forward
one byte for every byte read from or written to the file. If, during a
write operation, the mark meets the logical end-of-file, both are moved
forward one position for every additional byte written to the file.
Figure 4 shows the movement of the mark and logical end-of-file.

5/21/84 Hacker /OS/FS.I

8 File Manager Programmer's Guide

Figure 4.

end-of-fi Ie

~,.....-.,---,,1
________ ~I ~I --"'--'L.l

i
mark

Beginning position

end- of -fi Ie

.1
·r I L..j

t
marl<

After reading two bytes

end-of-fi Ie

·.i.·1
....----~I·l~1 If!

. mark

After wr it i no two bytes

Movement of Logical End-of-File and Mark
j .

If, during a write operation, the mark must move past the physical
end-af-file, another allocation block is added to the file--the
physical end-of-file is placed one byte beyond the end .of the new
allocation block, and the mark and logical end-of-file are placed at
the first byte of the new allocation block.

An application can move the logical end-of-file to anywhere from the
beginning of the file to the physical end-of-file (the mark is adjusted
accordingly). If the logical end-of-file is moved to a position more
than one allocation block short of the current physical end-of-file,
the unneeded allocation block will be deleted from the file. The mark
can be placed anywhere from the first byte in the file to the logical
end-of-file.

5/21/84 Hacker /OS/FS.I

ABOUT THE FILE MANAGER 9

Accessing Files

A file can be open or closed. An application can only perform certain
operations, such as reading and writing, on open files; other
operations, such as deleting, can only be performed on closed files.

To open a file, you must identify the file and the volume containing
it. When a file is opened, the File Manager creates an access path, a
description of the route to be followed when accessing the file. The
access path specifies the volume on which the file is located (by
volume reference number, drive number, or volume name) and the location
of the file on the volume. Every access path is assigned a unique path
reference number used to refer to it. You should always refer to a
file via its path reference number, so that files with the same name
aren't confused with one another.

A file can have one access path open for writing or for both reading
and writing, and one or more access paths for reading only; there
cannot be'more than one access path that writes to a file. Each access
path is separate from all other access paths to the file. A maximum of
'12 access paths can be open at one time. Each access path can move its
own mark and read at the position it indicates. All access paths to
the same file share common logical and physical end-of-file markers.

The File Manager reads descriptive information about a newly opened
file from its volume and stores it in memory. For example, each file
has open permission information, which indicates whether data can only
be read from it, or both read from and written to it. Each access path
contains read/write permission informatio~ that specifies whether data
is allowed to be read from the file, written to the file, both read and
written, or whatever the file's open permission allows. If an
application wants to write data to a file, both types of permission
information must allow writing; if either type 'allows reading only,
then no data can be written.

When an application requests that data be read from a file, the File
Manager reads the data from the file and transfers it to the
application's data buffer. Any part of the data that can be
transferred in entire 512-byte blocks is transferred directly. ,Any
part of the data aomposed of fewer than 512 bytes is also read from the
file in, one 512-byte block, but placed in temporary storage space in
memory. Then, only the bytes containing the requested data are
transferred to the application.

When an application writes data to a file, the File Manager transfers
the data from the application's data, buffer and writes it to the file.
Any part of the data that can be transferred in entire 512-byte blocks
is written directly. Any part of the data composed of fewer than 512
bytes is placed in temporary storage space in memory until 512 bytes
have accumulated; then the entire block is written all at once.

5/21/84 Hacker /OS/FS.I

10 File Manager Programmer's Guide

Normally the temporary space in memory used for all' reading and writing
is the volume buffer, but an application can specify that an access
path buffer be used instead for a particular access path (Figure 5).

./ , access path buffer)< ,r
" ./ " file "A"

appl icatioo'$ /
....... ./

1/ -~ volume buffer I' ./

1/ ,
data buffer ',," ./

file "B n

1/ '", access, path buffer 1/ ~

I" ./
,/

"
Figure 5. Buffers For Transferring Data

(warning)
You must lock every access path buffer you use, so its
location doesn't change while the file is open.

Your application can lock a file to prevent unauthorized writing to it.
Locking a file ensures that none of the data in it can be changed ***
Currently, the Finder won't let you rename or delete a locked file, but
it will let you change the data the file contains ***.

(note)
Advanced programmers: The File·Manager can also read a
continuous stream of characters or a line of characters.
In the first case, you ask the File Manager to read a
specific number of bytes: when that many have been read
or when the mark has reached the logical end-of-fi1e, the
read operation terminates. In the second case, called
newline mode, the read will terminate when either. of the
above conditions is fulfilled or when a specified
character, the newline character, is read. The newline

,character is usually Return (ASCII code $0D), but can be
"any character whose ASCII code is between $00 and $FF,
inclusive. Information about newline mode is associated
with each access path to a file, and can differ from one
access path to another.

FILE INFORMATION USED BY THE FINDER

A file directory on a volume lists information about all the files on
the volume. The information used by the Finder is contained in a data
structure of type Flnfo:

5/21/84 Hacker /OS/FS.I

FILE INFORMATION USED BY THE FINDER 11

TYPE Flnfo RECORD
fdType:
fdCreator:
fdFlags:
fdLocation:
fdFldr:

END;

OSType;
OSType;
INTEGER;
Point;
INTEGER

{type of file}
{file's creator}
{flags}
{file's location}
{file's window}

Normally an application need only set the file type and creator when a
file is created, and the Finder will manipulate the other fields.
(File type and creator are discussed in The Structure of a Macintosh
Application.) Advanced programmers may be interested in changing the
contents of the other fields as well.

FdFlags indicates whether the file's icon is invisible, whether the
file has a bundle, and other characteristics used internally by the
Finder:

Bit Meaning if set
5 File has a bundle
6 File's icon'is invisible

Masks for these two bits are available as predefined constants:

CONST fHasBundle
'flnvisible

32; {set if file has a bundle}
= 64; {set if file's icon is invisible}

When you first install an app;Lication, you'll need to set its "bundle
bit", as described in The Structure of .!. Macintosh Application.
Whenever you create a file with a bundle, you'll need to set its bundle
bit.

The next two fields indicate where the file's icon will appear if the
icon is visible. FdLocation contains the location of the file's icon
in its window, given in the local coordinate system of the window •.
FdFldr indicates the window in which the file's icon will appear, and
may contain one of the following predefined constants:

CONST fTrash
fDesktop
fDisk

~ ,
=-3; {file is in trash window}
= -2; {file is on desktop}
= 0; {file is in disk window}

If fdFldr contains a positive number, the file's icon will appear in a
folder; the numbers that identify folders are assigned by the Finder.
Advanced programmers can get the folder number of an existing file, and
place additional files in that same folder.

USING THE FILE MANAGER

'~Thi's section discusses how the File Manager routines fit into the
general flow of an application program and gives an idea of what
routines you'll need to use. The routines themselves are described in

5/21/84 Hacker /OS/FS.U

12 File Manager Programmer's Guide

detail in the next two sections.

You can call File Manager routines via three different methods:
high-level Pascal calls, low-level Pascal calls, and assembly language.
The high-level Pascal calls are designed for Pascal programmers
interested in using the File ,Manager in a simple manner; they provide
adequate file I/O and don't require much special knowledge to use. The
low-level Pascal and assembly-language calls are designed for advanced
Pascal programmers and assembly-language programmers interested in
using the File Manager to its fullest capacity; they require some
special knowledge to be used most effectively.

Information for all programmers follows here. The next two sections
contain special information for high-level Pasca~ programmers and for
low-level Pascal and assembly-language programmers.

(note)
The names used to refer to routines here are actually the
assembly-language macro names for the low-level routines,
but the Pascal routine names are very similar.

,The File Manager is automatically initialized each time the system is
started up.

To create a new, empty file, call Create. Create allows you to set
some of the infdrmationstored on the volume,about the· file.

To open a file, call Open. The File Manager creates an access path and
returns a path reference number that you'll use every time you want to
refer to it. Before you open a file, you may want to call the Standard
File Package, which presents the standard interface through which the
user can specify the file to be opened. The Standard File Package will
return the name of the file, the volume reference number of the volume
containing the file, and additional information. (If the user inserts
an unmounted volume into a drive, the Standard File Package will
automatically call the Disk Initialization Package to attempt to mount
it.)

After opening a file, you can transfer data from it to an application's
data buffer with Read, and send data from an application's data buffer
to the file with Write. Read and Write allow you to specify a byte
position within the data buffer, a number of bytes to transfer, and the
location within the file. You can't use Write on a file whose open
permission only allows reading, or on a file on a locked volume.

, Once you've completed whatever reading and writing you want to do, call
Close to close the file. Close writes the contents of the file's
access path buffer to the volume and deletes the access path. You can
remove a closed file (both forks) from a volume by calling Delete.

To protect against power loss or unexpected disk ejection, you should
periodically call FlushVol (probably after each time you close a file),
which writes the contents of the volume buffer and all access path
buffers (If any) to the volume and updates the descriptive information

5/21/84 Hacker /OS/FS.U

USING THE FILE MANAGER 13

contained on 'the volume.

Whenever your application is finished with a disk, or the user chooses
Eject from a menu, call Eject. Eject calls FlushVol, places the volume
off-line, and then physically ejects the volume from its drive.

The preceding paragraphs covered the simplest File Manager routines:
Open, Read, Write, Close, FlushVol, Eject, and Create. The remainder
of this section describes the less commonly used routines, some of
which are available only to advanced programmers. Skip the remainder
of this section if the preceding paragraphs have provided you with all
the information you want to know about using the File Manager.

When the Toolbox Event Manager function GetNextEvent receives a disk
inserted event, it calls the Desk Manager function SystemEvent.
SystemEvent calls the File Manager function MountVol, which attempts to
mount the volume on the disk. GetNextEvent then returns the disk
inserted event: the low-order word of the event message contains the
number of the drive, and the high-order word contains the result code
of the attempted mounting. If the result code indicates that an error
occurred, you'll n~ed to call th~ D~sk Initializatibn Package to allow
the user to initialize or eject the volume.

(note)
Applications that.rely on the Operating System Event
Manager function GetOSEvent to learn about events (and
don "t call GetNextEvent) must explicitly call MountVol to
mount volumes.

After a volume has been mounted, your application can call GetVolInfo,
which will return the name of the volume, the amount of unused space on
the volume, and a volume reference number that you can use every time
you refer to that volume.

\

To minimize the amount of memory used by mounted volumes, an
application can unmount or place off-line any volumes ,that aren't
currently being used. To unmount a volume, call UnmountVol, which
flushes a volume (by calling FlushVol) and releases all of the memory
used for it (releasing about 1 to 1.5K bytes). To place a volume
off-line, call OffLine, which flushes a volume (by calling FLushVol)
and releases all of the memory used for it except for 94 bytes of
descriptive information about the volume. Off-line volumes are placed
on-line by the File Manager as needed, but your application must
remount any unmounted volumes it wants to access. The File Manager
itself may place volumes off-line during its normal operation.

If you would like all File Manager calls to apply to one volume, you
can specify that volume as the default. You can use SetVol to set the
default volume to any mounted volume, and GetVol to learn the name and
volume reference number of the default volume.

Normally, volume initialization and naming is handled by the Standard
File Package, which calls the Disk Initialization Package. If you want
to, initialize a volume explicitly or erase all files from a volume, you

5/21/84 Hacker /OS/FS.D

14 File Manager Programmer's Guide

can call the Disk Initialization Package directly. When you want to
change the name of a volume, call the File Manager function Rename.

Applications normally will use the Resource Manager to open resource
forks and change the information contained within, but programmers
writing unusual applications (such as a disk-copying utility) might
want to use the File Manager to open resource forks. This is done by
calling OpenRF. As with Open, the File Manager creates 'an access path
and returns a path reference number that you'11 use every' time you want
to refer to this resource fork.

As an alternative to specifying byte positions within a file with Read
and Write, you can specify the byte position of the mark by calling
SetFPos. GetFPos returns the byte position of the mark.

Whenever a disk has been reconstructed in an attempt to salvage lost
files (because its directory or other file-access information has been
destroyed), the logical end-of-file of each file will probably be equal
to each physical end-of-file, regardless of where the actual logical
end-of-file is. The first time an application attempts to read from a
file on a reconstructed volume, it will blindly pass the correct
logical end-of-file and read misinformation until it reaches the new,
incorrect logical end-of-file. To prevent this from occurring, an
application should always maintain an independent record of the logical
end-of-file of each file it uses. To determine the File Manager's
conception of the length of a file, or find out how many bytes have yet
to be read from it, call GetEOF, which returns the logical end-of-file.
You can change the length of a file by calling SetEOF.

Allocation blocks are automatically added to and deleted from a file as
necessary. If this happens to a number of files alternately, each of
the files will be contained in allocation blocks scattered throughout
the volume, which increases the time required to access those files.
To prevent such fragmentation of files, you can allocate a number of

,contiguous allocation blocks to an open file by calling Allocate.

Instead of calling FlushVol, an unusual application might call
FlushFile. FlushFile forces the contents of a file's volume buffer and
access path buffer (if a~y) to be written to its volume. FlushFile
doesn't update the descriptive information contained on the volume, so
the volume information won't be correct until you call FlushVol.

~o get information about a file (such as its name and creation date)
stored on a volume, call GetFileInfo. You can change this information
by calling SetFileInfo. Changing the name or version number of a file
is accomplished by calling Rename or SetFilType, respectively; they
will have a similar effect, since both the file name and version number
are needed to identify a file. You can lock or unlock a file by
calling SetFilLock or RstFilLock, respectively.'

You can't use Write, Allocate, or SetEOF on a locked file, a file whose
open permission only allows reading, or a file on a locked volume. You
can't 'use Rename or SetFilType on a file on a locked volume.

5/21/84 Hacker /OS/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 15

HIGH-LEVEL FILE MANAGER ROUTINES

This section describes all the high-level Pascal routines of the File
Manager. Assembly-language programmers cannot call these routines.
For information on calling the low-level Pascal and assembly-language
routines, see the next section.

When accessing a volume, you must identify it by its volume name,- its
volume reference number, or the drive number of its drive--or allow the
default volume to be accessed. The parameter names used in identifying
a, volu~e are volName, vRefNum, and drvNum. VRefNum and drvNum are both
integers. VolName is a pointer, of type StringPtr, to a volume name.

The File Manager determines which volume to access by using one of the
following:

1. VolName. (If volName points to a zero-length name,' an error is
returned.)

2. If vol Name is NIL or points to an improper volume name, then
vRefNum or drvNum (only one is given per routine).

3. If vRefNum or drvNum is zero, the default volume. (If there isn't
a default volume, an error is returned.)

(warning)
Before you pass a parameter of type StringPtr to a File
Manager routine, such as GetVol, be sure that memory has
been allocated for the variable. For example, the
following statements will ensure that memory is allocated
for the variable myStr:

VAR myStr: Str255;

BEGIN
result := GetVol(@myStr, myRefNum);

END;

When accessing a closed file on, a volume,)Tou must identify the 'volume
by the method given above, and identify the file by its name in the
fileName parameter. (The high-level File Manager routines will work
only with files having a version number of ~.) FileName can contain
eith~r the, file name alone or the file name prefixed by a volume name. ,

(note)
Although fileName can include both the volume name and
the file name, applications shouldn't encourage users to
prefix a file name with a volume name.

You cannot specify an access path buffer when calling high-level Pascal
routines. All access paths open on a volume will share the volume
buffer, causing a slight increase in the amount of time'required to

5/21/84 Hacker /OS/FS.P

16 File Manager Programmer's Guide

access files.

All File Manager routines return a result code of type OSErr as their
function result. Each routine description lists all of the applicable
result codes, along wi th a short description of what' the result code
means. Lengthier explanations of all the result codes can be found in
the summary at the end of this manual.

Accessing Volumes

FUNCTION GetVInfo (drvNum: ~NTEGER; volName: StringPtr; VAR vRefNum:
INTEGER; VAR freeBytes: LongInt) : OSErr;

GetVInfo returns the name, reference number, and available space (in
bytes), in volName, vRefNum, and freeBytes, for the volume in the
specified drive.

Result codes noErr
nsvErr
paramErr

No error
No default volume
Bad drive number

FUNCTION GetVol (vol~ame: StringPtr; VAR vRefNum: INTEGER) : OSErr;

GetVol returns the name of the default volume in volName and its volume
reference number in vRefNum.

Result codes 'noErr
nsvErr

No error
No default volume

FUNCTION SetVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;

SetVol sets the default volume to the mounted volume specified by
vol Name or vRefNum.

Result codes

5/21/84 Hacker

noErr
bdNamErr
nsvErr
paramErr

No error
Bad volume name
No such volume
No default volume

/OS/FS.P

HIGH-LEVEL' FILE MANAGER ROUTINES 17

FUNCTION' FlushVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;

On the volume specified by volName or vRefNum, FlushVol writes the
contents of the associated volume buffer and descriptive information
about the volume (if they've changed since the last time FlushVol was
called).

Result codes noErr No error
bdNamErr Bad volume name
extFSErr External file system
ioErr Disk I/O error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

FUNCTION UnmountVol (volName: StringPtr; vRefNum: INTEGER) : OSErr;

UnmountVol unmounts the volume specified by volName or vRefNum, by
calling FlushVol to flush the volume buffer, closing all open files on
the volume, and releasing the memory used for the volume.

(warning)
Don't unmount the startup volume.

Result codes noErr No error
bdNamErr Bad volume name
extFSErr External file system
ioErr Disk I/O error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

FUNCTION Eject (volName: StringPtr; vRefNum: INTEGER) : OSErr;

Ej ect calls FlushVol to ,flush the volume specified by volName or
vRefNum, places the volume offline, and then ejects the volume.

Result codes

5/21/84 Hacker

noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
Disk I/O error
No such drive
No such volume
No default volume

/OS/FS.P

18 File Manager Programmer's Guide

Changing File Contents

FUNCTION Create (fileName: Str255; vRefNum: INTEGER; creator: OSType;
fileType: OSType) : OSErr;

Create creates a new file with the specified name, file type, and
creator, on the specified volume. (File type and creator are discussed
in The Structure of ~ Macintosh Application.) The new file is unlocked
and empty. Its modification and creation dates are set to the time of
the system clock.

Result codes noErr No error
bdNamErr Bad file name
dupFNErr Duplicate file name
dirFulErr Directory full
extFSErr External file system
ioErr Disk 'I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION FSOpen (fileName: Str255; vRefNum: INTEGER; VAR refNum:
INTEGER) : OSErr;

FSOpen creates an access path to the file having the name fileName on
the specified volume. A path reference number is returned in refNum •

. The access path's read/write permission is set to whatever the file's
open permission allows.

'Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr Disk I/O error
mFulErr Memory full
nsvErr No such volume
opWrErr File already open for writing
tmfoErr Too many f~les

r

open

5/21/84 Hacker /OS/FS.P

(

HIGH-LEVEL FILE MANAGER ROUTINES 19

FUNCTION FSRead (refNum: INTEGER; VAR count: Longlnt; buffPtr: Ptr)
OSErr;

FSRead attempts to read the number of bytes specified by the count
parameter from the open file whose access path is specified by refNum,
and transfer them to the data buffer pointed to by buffPtr. The read
operation begins at the mark, so you might,want to precede this with a
call to SetFPos. If you try to read past ~he logical end-of-file,
FSRead moves the mark to the end-of-file and returns eofErr as its
function result. After the read is completed, the number of Dytes
actually read is returned in the count parameter.

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr Disk I/O error
paramErr Negative count
rfNumErr Bad referertce number

FUNCTION FSWrite (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr)
OSErr;

FSWrite takes the number of bytes specified by the count parameter from
the buffer pointed to by buffPtr and atte~pts to write them to the open
file whose access path is specified by refNum. The write operation
begins at the mark, so you might want to precede this with a call to
SetFPos. . After the wri te is completed, .the number of bytes actually
written is returned tn the count parameter.

Result codes

5/21/84 Hacker

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
paramErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

No error
Disk full
File locked
File not open
Disk I/O error
Negative count
Bad reference number
Software volume lock
Hardware volume lock
Read/write or open permission
doesn't allow writing

/OS/FS.P

20 File Manager Programmer's Guide

FUNCTION GetFPos (refNum: INTEGER; VAR filePos: Longlnt) : OSErr;

GetFPos returns, in filePos, the mark of the open file whose access
path is specified by refNum.

Result codes noErr
extFSErr
fnOpnEi-r
ioErr
rfNumErr

No error
External file system
File not open
Disk·I/O error .
Bad reference number

FUNCTION SetFPos (refNum: INTEGER; posMode: INTEGER; posOff: Longlnt)
OSErr;

SetFPos sets the mark of the open file whose access path is specified
by refNum, to the position specified by posMode and posOff. PosMode
indicates whether the mark should be set relative to the beginning of
the file, the logical end-of-file, or the mark; it must contain one of
the following predefined constants:

CONST fsAtMark = 0; {at current position of mark }
{ (posOff ignored)}

fsFromStart 1 ; {offset relative to beginning of file}
fsFromLEOF 2; {offset relative to logical end-of-file}
fsFromMark 3; {offset relative to current mark}

PosOff specifies the byte offset (either positive or negative) relative
to posMode where the mark should actually be set. If you try to set
the mark past the logical end-of-file, SetFPos moves the mark to the
end-of-file and returns eofErr as its function result.

Result codes noErr No error
eofErr End-of-file
extFSErr External file system
fnOpnErr File not open
ioErr Disk I/O error
posErr Tried to position before start

of file
rfNumErr Bad reference number

FUNCTION GetEOF (refNum: INTEGER; VAR logEOF: Longlnt) : OSErr;

GetEOF returns, in logEOF, the logical end-of-file of the open file
whose access path is specified by refNum.

Result codes

5/21/84 Hacker

noErr
extFSErr
fnOpnErr
ioErr
rfNumErr

No error
External file system
File not open
Disk I/O error
Bad reference number

/OS/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 21

FUNCTION SetEOF (refNum: INTEGER; logEOF: LongInt) : OSErr;

SetEOF sets the logical end-of-file of the open file whose access path
is specified by refNum, to the position specified by logEOF. If you
attempt to set the logical end-of-file beyond the physical end-of-file,
the physical end-of-file is set to one byte beyond the end of the next
free allocation block; if there isn't enough space on the volume, no
change is made, and SetEOF returns dskFulErr as its function result.
If logEOF is 0, all space on the volume occupied by the file is
released.

Result codes noErr
dskFulErr
extFSErr
fLckdErr
fnOpnErr
ioErr
'rfNumErr
vLckdErr
wPrErr
wrPermErr

No error
Disk full
External file system
File locked
File nC?t open
Disk I/O error
Bad reference number
Software volume lock
Hardware volume lock
Read/write or open permission
doesn't allow writing

FUNCTION Alloca~e (refNum: INTEGER; VAR count: LongInt) : OSErr;

Allocate adds the number of bytes specified by the count parameter to
the open file whose access path is specified by refNum, and sets the
physical end-of-file to one byte beyond the last block allocated. The
number of bytes allocated is always rounded up to the nearest multiple
of the allocation block size, and returned in the count parameter. if
there isn't enough empty space on the volume to satisfy the allocation
request, the rest of the space on the volume is allocated, and Allocate
returns dskFulErr as its function result.

Result codes

5/21/84 Hacker

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

No error
Disk full
File locked
File not open
Disk I/O error
Bad reference number
Software volume lock
Hardware volume lock
Read/write or open permission
doesn't allow writing

/OS/FS.P

22 File Manager Programmer's Guide

FUNCTION FSClose (refNum: INTEGER) : OSErr;

FSClose removes the access path specified by refNum t writes the
contents of the volume buffer to the volume t and updates the file's
entry in the file directory.

(note)
Some information stored on the v~lume won't be correct
until FlushVol is called.

Result codes noErr No error
extFSErr External file system
fnfErr File not found
fl\OpnErr File not open
ioErr Disk I/O error
nsvErr No such volume
rfNumErr Bad reference number

Changing Information About Files

All of the routines described in this section affect both forks of the'
filet and don't require the file to be open.

FUNCTION GetFlnfo (fileName: Str255; vRefNum: INTEGER; VAR fndrlnfo:
Flnfo) : OSErr;

For the file having the name fileName on the specified volume t GetFlnfo
returns information used by the Finder in fndrlnfo (see the section
"File Information "'Used by the Finder").

Result codes noErr No error
.. bdNamErr Bad file name

extFSErr External file system
fnfErr File not found
ioErr Disk I/O error
nsvErr No such volume
paramErr No default volume,

FUNCTION SetFlnfo (fileName: Str255; vRefNum: INTEGER; fndrInfo: Flnfo)
: OSErr;

For the file having the name fileName on the specified volume t SetFlnfo,
sets information needed by the Finder to fndrlnfo (see the section
"File Information Used by the Finder").

Result codes

5/21/84 Hacker

noErr
extFSErr
fLckdErr
fnfErr
ioErr
nsvErr

No error
External file system
File locked
File not found
Disk I/O error
No such volume

/OS/FS.P

HIGH-LEVEL FILE MANAGER ROUTINES 23

vLckdErr
wPrErr

Software volume lock
Hardware volume lock

FUNCTION SetFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;

SetFLock locks the file having the name f~leName on the specified
volume. Access paths currently in use aren't affected.

Result codes noErr No error
extFSErr External file system
fnfErr File not found
ioErr Disk I/O error
nsvErr No such volume
vLckqErr Software volume lock
wPrErr Hardware volume lock

FUNCTION RstFLock (fileName: Str255; vRefNum: INTEGER) : .OSErr;

RstFLock unlocks the file having the name fileName on the specified
volume. Access paths currently in use aren't affected.

Result codes noErr No error
extFSE,rr External file system
fnfErr File not found
ioErr Disk I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

FUNCTION Rename (oldName: Str255; vRefNum: INTEGER; newName: Str255)
OSErr;

Given a file name in oldName, Rename changes the name of th~ file to
newName. Access paths currently in use aren't affected. Given a
volume name in oldName or a volume reference number in vRefNum, Rename
changes the name of the specified volume to newName.

Result codes noErr No error
bdNamErr Bad file name
dirFulErr Directory full
dupFNErr Duplicate file name
extFSErr External file system
fLckdErr File locked
fnfErr File not found
fsRnErr Renaming difficulty
ioErr Disk I/O error
nsvErr No such volume
paramErr No default volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

5/21/84 Hacker /OS/FS.P

24 File Manager Programmer's Guide

FUNCTION FSDelete (fileName: Str255; vRefNum: INTEGER) : OSErr;

FSDelete removes the closed file having the name fileName from the
specified volume.

(note)
This function will delete both forks of the file.

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fBsyErr File busy
fLckdErr File locked
fnfErr File not found
ioErr Disk I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

LOW-LEVEL FILE MANAGER ROUTINES

This section contains special information ~or programmers using the
low-level Pascal or assembly-language routines of the File Manager, and
describes them in detail. For more information on using assembly
language, see Programming Macintosh Applications in Assembly Language.

You can execute most File Manager routines either synchronously
(meaning that the application must wait until the routine is completed)
or asynchronously (meaning that the application is free to perform
other tasks while the routine is executing). MountVol, UnmountVol,
Eject, and OffLine cannot be executed asynchronously, because they use
the Memory Manager to allocate and deallocate memory.

When an application calls a File Manager routine asynchronously, an I/O
request is placed in the file I/O queue, and control returns to the --
calling application--even before the actual I/O is completed. Requests
are taken from the queue one at a time (in the same order that they
were entered), and processed. Only one request may be processed at any
given time.

The calling application may -specify a completion routine to be executed
as soon as.the I/O operation has been completed.

At any time, yO'u can use the Ini tQueue procedure to clear all queued
File Manager calls except the current one. InitQueue is especially
useful when an error occurs and you no longer wish queued calls to be
executed •

.J

Routine parameters passed by an application to the File Manager and
returned by the File Manager to an application are contained in a
parameter block, which is memory space in the heap or sta~k. Most

5/21/84 Hacker /OS/FS.A.1

LOW-LEVEL FILE MANAGER ROUTINES 25

low-level Pascal calls to the File Manager are of the form

PBCaiiName (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

PBCaiiName is the name of the routine. ParamBlock points to the
parameter block containing the ~arameters for the routine. If async is
TRUE, the call will be executed asynchronously; if FALSE, it will be
executed synchronously. Each call returns an integer result code of
type OSErr. Each routine description lists all of the applicable
result codes, along with a short description of what the result code
means. Lengthier explanations of all the result codes can be found in
the summary at the end of this manual.

Assembly-language note: When you call a File Manager routine,
A0. must point to a parameter block containing the parameters for
the routine. If you want the routine to be executed
asynchronously, set ·bit 10 of the routine trap word. You can do
this by supplying the word ASYNC as the second argument to the
routine macro. For example:

Read paramBlock,ASYNC

You can set or test bit 10 of a trap word by using the global
constant asynTrpBit.

If you want a routine to be executed immediately (bypassing the
file I/O queue), set bit 9 of the routine trap word. This can
be accomplished by supplying the word IMMED as the second
argument to the routine macro. For example:

Write paramBlock,IMMED

You can set or test bit 9 of a trap word by using the global
constant noQueueBit. You can specify either ASYNC or IMMED, but
not both.

All routines except InitQueue return a result code in D0.

Routine Parameters

There,are three different kinds of parameter blocks you'll pass to File
Manager routines. Each kind is used with a particular set of routi~e
calls: I/O routines, file information routines, and v~lume information
routines.

The lengthy, variable-length data structure of a parameter block is
given below. The Device Manager and File Manager use this same data
structure, but only the parts relevant to the File Manager are shown

5/21/84 Hacker /OS/FS.A.1

26 File Manager Programmer's Guide

here. Each kind of parameter block contains eight fields of standard
information and nine to 16 fields of additional information:

TYPEParamB~kType = (ioParam, fileParam, volumeParam, cntrIParam);

ParamBlockRec = RECORD
qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:

QElemPtr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
StringPtr;
INTEGER;

CASE ParamBlkType OF
ioParam:

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{volume or file name}
{volume reference or }
{ drive number}

• • • \ {I/O routine parameters}
fi1eParam: ~

{file information routine parameters}
vo1umeParam:

{volume information routine parameters}
cntr1Param:

{Control and Status call parameters}
END;

ParmBlkPtr = ~ParamBlockRec;

The first four fields in each parameter block are handled entirely by
the File Manager, and most programmers needn't be concerned with them;
programmers who are interested in them should see the section "Data
Structures in Memory".

IOComp1etion contains the address of a completion routine to be
executed at the end of an asynchronous call; it should be N~L for

. asynchronous calls with no completion routine, and is automatically set
to NIL for all synchronous calls. For asynchronous calls, ioResu1t is
positive while the routine is executing, and returns the result code.
Your application can poll ioResult during the asynchronous execution of
a routine, to determine when the routine has completed. Completion
routines are executed after ioResult is returned.

IONamePtr points to either a volume name or a file name (which can be
prefixed by a volume name).

(note)
Although ioNamePtr can include both the volume name and
the file name, applications shouldn't encourage users to
prefix a file name with a volume name.

IOVRefNum contains either the reference number of a volume or the drive
number of a drive containing a volume.

5/21/84 Hacker /OS/FS. A.I

LOW-LEVEL FILE MANAGER ROUTINES 27

For routines that access volumes, the File Manager determines which
\

volume to access by using one of the following:

1. IONamePtr, a pointer to the volume name.

2. If ioNamePtr is NIL, or points to an improper volume name, then
ioVRefNum. (If ioVRefNum is negative, it's a volume reference
number; if positive, it's a drive number.)

3. If ioVRefNum is 0, the default volume. (If there isn't a default
volume, an error is returned.)

For routines that access closed files, the File Manager determines
which file to access by using ioNamePtr, a pointer to the name of the
file (and possibly also of the volume).

- If the string pointed to by ioNamePtr doesn't include the volume
name, the File Manager uses steps 2 and 3 above to determine the
volume.

- If ioNamePtr is NIL or points to an improper file name, an error
is returned.

The first eight fields are adequate for a few calls, but most of the
File Manager routines require more fields, as described below. The
parameters used with Control and Status calls are described in the
Device Manager manual *** doesn't yet exist ***.

I/O Parameters

When you call one of the I/O routines, you'll use these nine additional
fields after the standard 8-field parameter block:

ioParam:
(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:

INTEGER;
SignedByte;
SignedByte;
Ptr;
Ptr;
Longlnt;
Longlnt;
I~TEGER;

ioPosOffset: Longlnt);

{path reference number}
{version number}
{read/write permission}
{miscellaneous}
{d~ta. buffer}
{requested number of bytes}
{actual number of bytes}
{newline character and type of }
{ positioning operation}
{size of positioning offset}

For routines that access open files, the File Manager determines which
file to access by using the path reference number in ioRefNum.
IOPermssn requests permission to read or write via an access path, and
must contain one of the following predefined constants:

5/21/84 Hacker /OS/FS.A.l

28 File Manager Programmer's Guide

CONST fsCurPerm = 0; {whatever is currently allowed}
fsRdPerm = 1; {request to read only
fsWrPerm = 2; {request to write only}
fsRdWrPerm = 3; {request to read and write}

This request is compared with the open permission of th~ file. If the
open permission doesn't allow I/O as requested, an error will be
returned.

The content of ioMisc depends on the routine called; it contains either
a pointer to an access path buffer, a new logical end-of-file, a new
version number, or a pointer to a new volume or file name. Since
ioMisc is of type Ptr, while end-of-file is Longlnt and version number
is SignedByte, you'll need to perform type conversions to correctly
interpret the value of ioMisc.

IOBuffer points to a data buffer into which data is written by Read
calls and from which data is read by Write calls. IOReqCount specifies
the requested number of bytes to be read, written, or allocated. -
IOActCount contains the number of bytes actually read, written, or
allocated.

IOPosMode arid ioPosOffset contain positioning information used for
Read, Write, and SetFPos calls. Bits 0 and 1 of ioPosMode indicate how
to position the mark, and you can use the follQwing predefined
constants to set or test their value:

CONST fsAtMark .' = 0; {at current position of mark }
{ (ioPosOffset ignored)}

fsFromStart = 1 ; {offset relative to beginning of file}
fsFromLEOF = 2; {offset relative to logical end-of-file}
fsFromMark = 3; {offset relative to current mark}

IOPosOffset specifies the byte offset (either positive or negative)
relative to ioPosMode where the operation will be performed •.

(note)

Assembly-language~: If bit 6 of ioPosMode is set, the File
Manager will verify that all data read into memory by a Read
call exactly matches the data on the volume (ioErr will be
returned if any of the data doesn't match).

Advanced programmers: Bit 7 of ioPosMode is the newline
flag--set if read operations should terminate at newline
characters', and clear if reading should terminate at the
end of the access path buffer or volume buffer. The
high-order byt'e of ioPosMode contains the ASCII code of
the newline character.

5/21/84 Hacker /OS/FS.A.1

LOW-LEVEL FILE MANAGER ROUTINES 29

File Information Parameters

When' you call the PBGetFileInfo and PBSetFileInfo functions, you'll use
the following 16 additional fields after the standard 8-field parameter
block:

fileParam:
(ioFRefNum:
ioFVersNum:
fillerl:
ioFDirlndex:
ioFlAttrib:
ioFlVersNum:
ioFlFndrlnfo:
ioFINum:
ioFIStBlk:
ioFILgLen:
ioFIPyLen:
ioF1:RStBlk:
ioFIRLgLen:
ioFlRPyLen:
ioFICrDat:
ioFlMdDat:

INTEGER;
SignedByte;
SignedByte;
INTEGER;
Signed Byte;
Signed Byte;
Flnfo;
Longlnt;
INTEGER;
Longlnt;
LongInt;
INTEGER;
Longlnt;
Longlnt;
Longlnt;
Longlnt);

{path reference number}
{version number}
{not used}
{file number}
{file attributes}
{version number}
{information used by the Finder}
{file number}
{first allocation block of data fork}
{logical end-of-file of data fork}
{physical end-of-file of data fork}

·{first allocation block of resource fork}
{logical end~of-file of resource fork}
{physical end-of-file of resource fork}
{date and time of cr~ation}
{date and time of last modification}

IOFDirlndex contains the file number, another method of referring to a
file; most programmers needn't be concerned with file numbers, but
those interested can read the section "Data Organization on Volumes".

Assembly-language~: IOFlAttrib contains eight bits of file
attributes: if bit 7 is set, the file is open; if bit ~ is set,
the file is locked.

IOFlStBlk and ioFIRStBlk contain 0 if the file's data or resource fork
is empty, respectively. The date and time in the ioFlCrDat and
ioFIMdDat fields are specified in seconds since 12:00 AM, January 1,
1904.

Volume Information Parameters

When you call GetVolInfo, you'll use the following 14 additional
fields:

5/21/84 Hacker /OS/FS.A.l

30 File Manager Programmer's Guide

volumeParam:
(filler2:
ioVolIndex:
ioVCrDate:
ioVLsBkUp:
ioVAtrb:
ioVNmFls:
ioVDirSt:
ioVBlLn:
ioVNmAlBlks:
ioVAlBlkSiz:
ioVClpSiz:
ioAIBlSt:
ioVNxtFNum:
ioVFrBlk:

LongInt;
INTEGER;
LongInt;
LongInt;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
LongInt;
LongInt;
INTEGER;
LongInt;
INTEGER) ;

{not used}
{volume index}
{date and time of initialization}
{date' and time of last volume backup}
{bit 15=1 if volume locked}
{number of files in file directory}
{first block of file directory}
{number of blocks in file directory}
{number of allocation blocks on volume}
{number of bytes per allocation block}.
{number of bytes to allocate}
{first block in volume .block map}
{next free file number}
{number of free allocation blocks}

IOVolIndex contains the volume index, another method of referring to a
volume; the first volume mounted has an index of 1, and so on. Most
programmers needn't be concerned with the parameters providing
information about file directories and block maps (such as ioVNmF~s),
but interested programmers can read the section "Data Organization on
Volumes".

Routine Descriptions

This section describes the procedures and functions. Each routine
description includes the low-level Pascal form of the call and the
routine's assembly-language macro. A list of the fields in the
parameter block affect.ed by the call is also given.

Assembly-Ianguage~: The field names given in these
descriptions are those of the ParamBlockRec data type; see the
"Summary of the File Manager" for the equivalent assembly
language equates.

The number next to each parameter name indicates the byte offset of the
parameter from the start of the parameter block pointed to by A0; only
assembly-language programmers need be concerned with it. An arrow
drawn next to each parameter ~ame indicates whether it's an input,
output, or input/output parameter:

Arrow
--~
~
~-~

5/21/84 Hacker

Meaning
Parameter must be passed to the routine
Parameter will be returned by the routine
Parameter must be passed to and will be returned
by the routine

/OS/FS·. A. 2

LOW-LEVEL FILE MANAGER ROUTINES' 31

Initializing the File I/O Queue

PROCEDURE InitQueuej

Trap macro _InitQueue

InitQueue clears all queued File Manager calls except the current one.
There are no parameters or result 'codes associated with InitQueue.

Accessing Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) OSErrj

Trap macro MountVol

Parameter block
~-- 16
~-~ 22

ioResult
ioVRefNum

Result codes noErr
badMDBErr
extFSErr
ioErr
mFulErr
noMacDskErr
nsDrvErr
paramErr
volOnLinErr

word
word.

No error
Master directory block is bad
External (ile system
Disk I/O error
Memory full
Not a Macintosh volume
No such drive
Bad drive number
Volume already on-line

PBMountVol mounts the volume in the drive whose number is ioVRefNum,
and returns a volume reference number in ioVRefNum. If. there are' no
volumes already mounted, this volume becomes the default volume.
PBMountVol is alwa~s' executed synchronously.

5/21/84 Hacker /OS/FS.A.2

32 File Manager Programmer's Guide

FUNCTION PBGetVolInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro

Parameter block
--~

~--
~-~
~-~
--~

~--
~--
~--
~--
~--
~--
~--
~-
~--
~--
~--
~--

Result codes

GetVolInfo

12 ioCompletion pointer
16 ioResult word
18 ioNamePtr pointer
22 ioVRefNum word
28 ioVolIndex word
3~ ioVCrDate long word
34 ioVLsBkUp long word
38 ioVAtrb word
40 ioVNmFls word
42 ioVDirSt word
44 ioVBlLn word
46 ioVNmAlBlks word
48 ioVAlBlkSiz long word
52 ioVClpSiz
56 ioAlBlSt
58 ioVNxtFNum
62 ioVFrBlk

noErr
nsvErr
paramErr

long ·word
word
long word
word

No error
No such volume
No default volume

PBGetVolInfo returns information about the specified volume. If
ioVolIndex is positive, ,the File Manager attempts to use it to find t~e
volume. If ioVolIndex is negative, the File Manager uses ioNamePtr and
ioVRefNum in the standard way to determine which volume. If ioVolIndex
is 0, the File Manager attempts to access the volume by using ioVRefNum
only. The volume reference number is returned in ioVRefNum, and the
volume name is returned in ioNamePtr (unless ioNamePtr is NIL).

5/21/84 Hacker /OS/FS.A.2
)

LOW-LEVEL FILE MANAGER ROUTINES 33

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro GetVol

Parameter block
--~ 12
~-- 16
~-- 18
~-- 22

ioCompletion
ioResult
ioNamePtr
ioVRefNum

pointer
word
point_er
word

Result codes noErr
nsvErr

No error
No default volume

OSErr;

PBGetVol returns the name of the default volume in ioNamePtr and its
volume reference number in ioVRefNum (unless ioNamePtr is NIL).

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro SetVol

Parameter block
--~ 12
~-- 16
--~' 18
--? 22

ioCompletion
ioResult
ioNamePtr
ioVRefNum

pointer
word
pointer
word

Result codes noErr
bdNamErr
nsvErr
paramErr

No error
Bad volume name
No such volume
No default volume

OSErr;

PBSetVol sets the default volume to the mounted volume specified by
ioNamePtr or ioVRefNum.

5/21/84 Hacker /OS/FS.A.2

34 File Manager Programmer's Guide

FUNCTION PBFlshVol (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro . FlushVol

Parameter block
--~. 12 ioCompletion

ioResult
ioNamePtr
ioVRefNum

pointer
word
pointer
word

Result

~-- 16
--~ 18
--~ 22

codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

No error
Bad volume name
External file system
Disk I/O error
No such drive
No such volume
No default volume

OSErr;

PBFlshVol writes descriptive information, the contents of the
associated volume buffer, and all access path buffers to the volume
specified by ioNamePtr or ioVRefNum, to the volume (if they've changed
since the last time PBFlshVol was called). The volume modification
date is set to the current time.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 35

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) OSErr;

Trap macro UnmountVol

Parameter block
~-- 16
--~ 18

ioResult
ioNamePtr
ioVRefNum --~ 22

Result codes noErr
bdNamErr
extFSErr
ioErr
nsDrvErr
nsvErr
paramErr

word
pointer
word

No error
Bad volume name
External file system
Disk I/O error
No such drive
No such volume
No default volume

PBUnmountVol unmounts the volume specified by ioNamePtr or ioVRefNum,
by calling PBFlshVol to flush the volume, closing all open files on the
volume, and releasing ali the memory used for the volume. PBUnmountVol
is always executed synchrpnously.

(warning)
Don't unmount the startup volume.

FUNCTION PBOffLine (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro OffLine

Parameter block
--~ 12
~-- 16
--~ 18
--~ 22

Result Jcodes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum

No

pointer
word
pointer
word

error
bdNamErr Bad volume name'
extFSErr External file system
ioErr Disk I/O error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

OSErrj

PBOffLine places off-line the volume specified by ioNamePtr or
ioVRefNum, by calling PBFlshVol to flush the volume, and releasing all

(the memory used for the volume except f~r 94 bytes of descriptive
information.

5/21/84 Hacker /OS/FS.A.2

36 File Manager Programmer's Guide

FUNCTION PBEject (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro

Parameter block
--~ 12
~-- 16
--~ 18
--~ 22

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum

No

pointer
word
pointer
word

error
bdNamErr Bad volume name
extFSErr External file system
ioErr Disk I/O error
nsDrvErr No such drive
nsvErr No such volume
paramErr No default volume

OSErr;

PBEject calls PBOffLine to place the volume specified by ioNamePtr or
ioVRefNum off-line, and then ejects the volume.

You may call PBEject asynchronously; the first part of the call is
executed synchronously, and the actual ejection is executed
asynchronously.

5/21/84 Hacker /OS/FS.A.2

'.

LOW-LEVEL FILE MANAGER ROUTINES 37

Changing File Contents

FUNCTION PBCreate (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro

Parameter block
--~
~--
--~
--~
--~

Result codes

Create

12 ioCompletion pointer
16 ioResult
18 ioNamePtr
22 ioVRefNum
26 ioVersNum

noErr
bdNamErr
dupFNErr
dirFulErr
extFSErr
ioErr
nsvErr
vLckdErr
wPrErr

word
pointer
word
byte

No error
Bad file name
Duplicate file name
Directory full
External file system
Disk I/O error
No such volume
Software volume lock
Hardware volume lock

PBCreate creates a new file having the name ioNamePtr and the version
number ioVersNum, on the specified volume. The new file is unlocked
and empty. Its modification and creation dates are set to the time of
the system clock. The application should call PBSetFlnfo to fill in
the information needed by the Finder~

5/21/84 Hacker /OS/FS.A.2

38 File Manager Programmer's Guide

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro _Open

Parameter block
--~ 12 ioCompletion pointer
~-- 16 ioResult word
--~ 18 ioNamePtr pointer
--~ 22 ioVRefNum word
~-- 24 ioRefNum word
--~ 26 ioVersNum byte
--~ 27 ioPermssn byte
--~ 28 ioMisc pointer

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr Disk I/O error
mFulErr Memory full
nsvErr No such volume
opWrErr File already ~pen for writing
tmfoErr Too many files open

PBOpen creates an access path to the file having the name ioNamePtr and
~he version number ioVersNum t on the specified volume. A path
reference number is returned in ioRefNum.

IOMisc either points to a 522-byte portion of memory to be used as the
~ccess path's buffer, or is NIL if you want the volume buffer to be
used instead.

(warning)
All access paths to a single file that's opened mUltiple
times should share the same buffer so that they will read
and write the same data.

IOPermssn specifies the path's read/write permission. A path can be
opened for writing even if it accesses a file on a locked volume t and
an error won't be returned until a PBWrite t PBSetEOF t or PBAllocate
call is made.

If you attempt to open a locked file for writing t PBOpen will return
opWrErr as its function result. If you attempt to open a file for
wri.ting and it already has an access path that allows writing, PBOpen
will return the reference number of the existing access path in
ioRefNum and opWrErr as its function result.

5/21/84 Hacker /OS/FS. A. 2

LOW-LEVEL FILE MANAGER ROUTINES 39

FUNCTION PBOpenRF (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErr;

Trap macro _OpenRF

Parameter block
--~ 12 ioCompletion pointer
~-- I 16 ioResult word
--~ 18 ioNamePtr pointer
--~ 22 ioVRefNum word
~-- 24 ioRefNum word
--~ 26 ioVer-sNum byte
--~ 27 ioPermssn byte
--~ 28 ioMisc pointer

Result codes noErr No error
bdNamErr Bad file name
extFSErr External file system
fnfErr File not found
ioErr Disk I/O error
mFulErr Memory full
nsvErr No such volume
opWrErr File already open for writing
permErr Open permission doesn't

allow reading
tmfoErr Too many files open

PBOpenRF is identical to PBOpen, except that it opens the file's
resource fork instead of its data fork.

5/21/84 Hacker /OS/FS.A.2

40 File Manager Programmer's Guide

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro Read

Parameter block
--~ 12 ioCompletion pointer
~-- 16 ioResult word
--~ 24 ioRefNum word
--~ 32 ioBuffer pointer
--~ 36 ioReqCount long word
~-- 40 ioActCount long word
--~ 44 ioPosMode word
~-~ 46 ioPosOffset long word

Result codes noErr No error
eofErr End~of-file
extFSErr External file system
fnOpnErr File not open
ioErr Disk I/O error
paramErr Negative ioReqCount
rfNumErr Bad reference number

PBRead attempts to read ioReqCount bytes from the open file whose
access path is specified by ioRefNum, and transfer them to the data
buffer pointed to by ioBuffer. If you try to read past the logical
end-of-file, PBRead moves the mark to the end-of-file and returns
eofErr as its function result. After the read operation is completed,
the mark is returned in ioPosOffset and the number of bytes actually
read is returned in ioActCount.

(note)
Advanced programmers: IOPosMode contains the newline
character (if any), and indicates whether the read should
begin relative to the beginning of the file, the mark, or
the end-of-file. The byte offset from the position
indicated by ioPosMode, where the read should actually
begin, is given by ioPosOffset. If a newline character
is not specified, the data will be read one byte at a
time until ioReqCount bytes have been read or the
end-of-file is reached. If a newline character is
specified, the data will be read one byte at a time until
the newline character is encountered, the end-of-file is
reached, or ioReqCount bytes have been read.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 41

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro Write

Parameter block
--7 12 ioCompletion pointer
~-- 16 ioResult word
--7 24 ioRefNum word
-~7 32 ioBuffer pointer
--7 36 ioReqCount long word
~-- 40 ioActCount long word
--7 44

1

ioPosMode word
--7 46 ioPosOffset long word

Result codes noErr No error
dskFulErr Disk full
fLckdErr File locked
fnOpnErr File not open
ioErr Disk I/O error
paramErr Negative ioReqCount
posErr Position is beyond end-of-file
rfNumErr Bad reference number
vLckdErr Software volume lock
wPrErr Hardware volume lock
wrPermErr Read/write or open permission

doesn't allow writing

PBWrite takes ioReqCount bytes from the buffer pointed to by ioBuffer
and attempts to write them to the open~.file whose access path is
specified by ioRefNum. After the write operqtion is completed, the
mark is returned in ioPosOffset, and the number of bytes actually
written is returned in'ioActCount.

IOPosMode indicates whether the write should begin relative to the
beginning of the file, the mark, or the end-of-file. The byte offset
from the position indicated by ioPosMode, where the write should
actually begin, is given by ioPosOffset.

5/21/84 Hacker /OS/FS./i.2

\.

42 File Manager Programmer's Guide

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro GetFPos

Parameter block
--~ 12 ioCompletion pointer
~-- 16 ioResult word
--~ 22 ioRefNum word
~-- 36 ioReqCount long word
~-- 40 ioActCount long word
~-- 44 ioPosMode word
~-- 46 ioPosOffset long word

Result codes noErr No error
extFSErr External file system
fnOpnE~r File not open
ioErr Disk I/O error
rfNumErr Bad reference number

PBGetFPos returns, in ioPosOffset, the mark of the open file whose
access path is specified by ioRefNum. PBGetFPos sets ioReqCount,
ioActCount, and ioPosMode to 0.

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro SetFPos

Parameter block
--~ 12
~-- 16
--~ 22
--~ 44
--~ 46

Result codes noErr

ioCompletion
ioResult
ioRefNum
ioPosMode
ioPosOffset

pointer
word .
word
word
long word

No error
eofErr End-of-file
extFSErr External file
fnOpnErr File not open
ioErr Disk I/O error

system

posErr Tried to position before start
of file

rfNumErr Bad reference number

PBSetFPos sets the mark of the open file whose access path is specified
by ioRefNum, to the position specified by ioPosMode and ioPosOffset.
IoPosMode indicates whether the mark should be set relative to the
beginning of the file, the mark, or the logical end-of-file. The byte
offset from the position given by ioPosMode, where the mark should
actually be set, is given by 'ioPosOffset. If you try to set the mark
past the logical end-of-file, PBSetFPos moves the mark to the
end-af-file and returns eofErr as its function result.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 43

FUNCTION PBGetEOF(paramBlock: ParmBlkPtrj async: BOOLEAN)

Trap macro GetEOF

Parameter block
--~ 12
~-- 16
--~ 22
~__ I 28

ioCompletion
ioResult
ioRefNum
ioMisc

pointer
word
word
long word

Result codes noErr No error
extFSErr External file system
fnOpnErr File not open,
ioErr Disk I/O error
rfNumErr Bad reference number

OSErrj

PBGetEOF returns, in ioMisc, the logical end~of-file of the open file
whose access path is specified by ioRefNum.

FUNCTION.PBSetEOF (paramBlock: ParmBlkPtrj async: BOOLEAN)

Trap macro SetEOF

Parameter block
--~ 12
~-- 16
--~ 22
--~ 28

Result codes

ioCompletion
ioResult
ioRefNum
ioMisc

pointer
word
word
long word

No error
Disk full
External file system
File locked
File not'open
D~sk I/O error
Bad reference number
Software volume lock

OSErrj

noErr
dskFulErr
extFSErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

Hardware volume lock
Read/write or open permission
doesn't allow writing

PBSetEOF sets the.logical end-of-file of the open file whose access
path is specified by ioRefNum, to ioMisc. If the logical end-of-file
is set beyond the physical end-of-file, the physical end-of-file is set
to one byte beyond the end of the next free allocation block; if there
isn't enough space on the volume, no change is made, and PBSetEOF
returns dskFulErr as its function result. If ioMisc is 0, all space on
the volume occupied by the file is released.

5/21/84 Hacker /OS/FS.A.2

--;.;.

44 File Manager Programmer's Guide

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro Allocate

Parameter block
--~ 12
~-- 16
--~ 22
--~ 36
~-- 40

Result codes

ioCompletion
ioResult
ioRefNum
ioReqCount
ioActCount

pointer
word
word
long word
long word

No error
Disk full
File locked
File not open
Disk I/O error
Bad reference number
Software volume lock

OSErr;

noErr
dskFulErr
fLckdErr
fnOpnErr
ioErr
rfNumErr
vLckdErr
wPrErr
wrPermErr

Hardware volume lock
Read/write or open permission
doesn't allow writing

PBAllocate adds ioReqCount bytes to the open file whose access path is
specified by ioRefNum, and sets the physical end-of-file to one byte
beyond the last block allocated. The number of bytes allocated is
always rounded up to the nearest multiple of the allocation block size,
and returned in ioActCount. If·there isn't enough empty space on the
volume 'to satisfy the allocation request, PBAllocate allocates the rest
of the space on the volume and returns dskFulErr as its function
result.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 45

FUNCTION PBFlshFile (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro FlushFile

Parameter block
--~ 12
~-- 16
--~ 22

ioCompletion
ioResult
ioRefNum

pointer
word
word

Result codes noErr No error
extFSErr External file
fnfErr File not found
fnOpnErr File not open
ioErr Disk I/O error
nsvErr No such volume

system

rfNumErr Bad reference number

OSErr;

PBFlshFile writes the contents of the access path buffer indicated by
ioRefNum to the volume, and updates the' file's entry in the file
directory.

(warning)
Some information stored on the volume won't be correct
until PBFlshVol is called.

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro Close

Parameter block
--~ 12
~-- 16
--~ 24

ioCompletion
ioResult
ioRefNum

pointer
word
word

Result codes noErr No error
extFSErr External file system
fnfErr File not found
fnOpnErr File not open
ioErr Disk I/O error
nsvErr No such volume
rfNumErr Bad reference number

PBClose writes the contents of the access path buffer specified by
ioRefNum to the volume and removes the access path.

(warning)
Some information stored on the volume won't be correct
until PBFlshVol is.called.

5/21/84 Hacker /OS/FS.A.2

46 File Manager Programmer's Guide

Changing Information About Files

All of the routines described in this section affect both forks of a
file.

FUNCTION PBGetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro ~GetFileInfo

Parameter block
--~ 12 ioCompletion pointer
~-- 16 ioResult word __ ~' 18 ioNamePtr pointer
--~ 22 ioVRefNum word
~-- 24 ioRefNum word
--~ 26 ioVersNum byte
--~ 28 ioFDirIndex word
~-- 30 ioFlAttrib byte
~-- 31 ioFlVersNum byte
~-- 32 ioFndrInfo 16 bytes
~-- 48 ioFlNum long word
~-- 52 ioFlStBlk word

. ~-- 54 ioFlLgLen long word
~-- 58 ioFlPyLen long word
~-- 62 ioFlRStBlk word
~-- 64 ioFlRLgLen long word
~-- 68 ioFlRPyLen long word
~-- 72 ioFlCrDat long word
~-- 76 ioFlMdDat l long word

Result codes noErr No error
bdNamErr Bad- file name
extFSErr External file system
fnfErr File not found
ioErr Disk I/O error
nsvErr No such volume
paramErr- No default volume

PBGetFInfo returns information about the specified file. If
ioFDirIndex is positive, the File Manager returns information about the
file whose file number is ioFDirIndex on the specified volume (see the
section "Data Organization on Volumes" if you're interested in using
this method). If ioFDirIndex is negative or 0, the File Manager
returns information about the file having the name ioNamePtr and the
version number ioVersNum, on the specified volume. Unless ioNamePtr is
NIL, ioNamePtr returns a pointer to the name of the file. If the file
is open, the reference number of the first access path found is
returned in ioRefNum.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 47

FUNCTION PBSetFInfo (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro SetFileInfo

Parameter block
--~ 12 ioCompletion pointer
~-- 16 ioResult word
--~ 18 ioNamePtr pointer
--~ 22 ioVRefNum word
--~ 26 ioVersNum byte
--~ -32 ioFndrInfo 16 'bytes '
--~ 72 ioFICrDat long word
--~ 76 ioFIMdDat long word

Result codes noErr No error,
bdNamErr Bad file name
extFSErr External file system
fLckdErr File locked
fnfErr File not found
ioErr Disk I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

PBSetFInfo sets information (including creation and modification dates,
and information needed by the Finder) about the file having the name
ioNamePtr and the version number ioV~rsNum on the specified volume.
You should call PBGetFInfo just before PBSetFlnfo, so the current
information is present in the parameter block.

5/21/84 Hacker /OS/FS.A.2

48 File Manager Programmer's Guide

FUNCTION PBSetFLock (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro SetFilLock

Parameter block
--~ 12
~-- 16
--~ 18
--~ 22
--~ 26

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum

No

pointer
word
pointer
word
byte

error
extFSErr External file system
fnfErr File not found
ioErr' Disk I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

OSErr;

PBSetFLock locks the file having the name ioNamePtr and the version
number ioVersNum on the specified volume. Access paths currently in
use aren't affected.

FUNCTION PBRstFLock (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro RstFilLock

Parameter block
--~ 12
~-- 16
--~ 18
--~ 22
--~ 26

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum

No

pOinter
word
pointer
word
byte

error
extFSErr External file system
fnfErr File not found
ioErr Disk I/O error
nsvErr No such volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

OSErr;

PBRstFLock unlocks the file having the name {oNamePtr and the version
number ioVersNum on the specified volume. Access paths currently in
use aren't affected.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 49

I

FUNCTION PBSetFVers (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro _SetFilType

Parameter block
--? 12 ioCompletion pointer
~-- 16 ioResult word
--? 18 ioNamePtr pointer
--~ 22 ioVRefNum word
--? 26 ioVersNum byte
--~ 28 ioMisc byte

Result codes noErr No error
bdNamErr Bad file name
dupFNErr Duplicate file name and v'ersion
extFSErr External file system
fLckdErr File locked
fnfErr File not found
nsvErr No such volume

·ioErr Disk I/O error
paramErr No default volume
vLckdErr Software volume lock
wPrErr Hardware volume lock

PBSetFVers changes the version number of the file having the name
ioNamePtr and version number ioVersNum on the specified volume, to
ioMisc. Access paths currently in use aren't affected.

(warning)
The Resource Manager and Segment Loader operate only on
files with version number 0;' changing the version' number
of a file to a nonzero number will prevent them from
operating on it.

5/21/84 Hacker /OS/FS.A.2

-~o File Manager Programmer's Guide

FUNCTION PBRename (paramBlock: ParmBlkPtrj async: BOOLEAN)

Trap macro Rename

Parameter block
--~ 12
~-- 16
--~ 18
--~ 22
--~ 26
--~ 28

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum
ioMisc

pointer
word
pointer
word
byte
pointer

No error
bdNamErr Bad file name
dirFulErr Directory full
dupFNErr Duplicate file name and
extFSErr External file system
fLckdErr File locked
fnfErr File not found
fsRnErr Renaming difficulty
ioErr Disk I/O error
nsvErr No such volume
paramErr No default volume
vLckdErr Software volume lock
wPrErr ~ardware volume lock

OSErrj

version

Given a file name in ioNamePtr and a version number in ioVersNum t

Rename changes the name of the specified fi"le to ioMisc; given a volume.
name in ioNamePtr or a volume reference number in ioVRefNum t it changes
the name of the specified volume to ioMisc. Access paths currently in
use aren't affected.

5/21/84 Hacker /OS/FS.A.2

LOW-LEVEL FILE MANAGER ROUTINES 51

FUNCTION PBDelete (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro Delete

Parameter block
--~ 12
~-- 16
--~ 18
--~ 22
--~. 26

Result codes noErr

ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioVersNum

pointer
word
pointer
word
byte

No error
bdNamErr Bad file name
extFSErr External file system
fBsyErr File busy
fLckdErr File locked
fnfErr File not found
nsvErr No such volume
ioErr Disk I/O error
vLckdErr Software volume lock
wPrErr Hardware volume lock

OSErr;

PBDelete removes the closed file having the name ioNamePtr and the
version number ioVersNum, from the specified volume.

(note)
This function will delete both forks of the file.

5/21/84 Hacker /OS/FS.A.2

52 File Manager Programmer's Guide

DATA ORGANIZATION ON VOLUMES

This section explains how information is organized on volumes. Most of
the information is accessible only through assembly language, but some
advanced Pascal prog~ammers may be interested.

The File Manager communicates with device drivers that read and write
data via block-level requests to devices containing Macintosh
initialized volumes. (Macintosh-initialized volumes are volumes
initialized by the Disk Initialization Package.) The actual type of
volume and device is unimportant to the ,File Manager; the only
requirements are that the volume was initialized by the Disk
Initialization Package and that the device drive~ is able to
communicate via block-level requests.

The 3 1/2-inch built-in and optional external drives 'are accessed via
the Disk Driver. If you want to use the File Manager to access files
on Macintosh-initialized volumes on other types of devices, you must
write a device driver that can read and write data via block-level
requests to the device on which the volume will be mounted. If you
want to access files on nonMacintosh-initialized volumes, you must
write your own external file system (see the section "Using an External
File System").

The information on all block-formatted volumes is organized in logical
blocks and allocation blocks. Logical blocks contain a number of bytes
of standard information (512 bytes on Macintosh-initialized volumes),
and an additional number of bytes of information specific to the disk
driver (12 bytes on Macintosh-initialized volumes). Allocation blocks
are composed of any integral number of logical blocks, and are simply a
means of grouping logical blocks together in more convenient parcels.

The remainder of this section applies only to Macintosh-initialized
volumes. NonMacintosh-initialized volumes must be accessed via an
external file system, and the information on them must be organized by
an external initializing program.

A Macintosh-initialized volume contains information needed to start up
the system in logical blocks 0 and 1 (Figure 6). Logical block 2 of
the volume begins the master directory block. The master directory
block contains volume information and the volume allocation block map,
which records whether each block on the volume is unused or what part
,of a file it contains data from.

5/21/84 Hacker /OS/FS.D

DATA ORGANIZATION ON VOLUMES 53

logical block 0

logical block 1

system startup

i nformati on

............ 1----------------1
volume i nformati on logical 'block 2 .. .

............ block map

logical block 3
unused I-------...::..:~.;:..::;:..------I

logical block 4

fi Ie directory

logical block n .. .
unused 1----------------:--1

logical block n+ 1

file contents

logical block 799
............ '----~----------~

.

zero if not a startup disk

master directory block

allocation block 2

allocation block m

Figure 6. A 4~~K-Byte Volume With 1K-Byte Allocation Blocks

The master directory "block" always occupies two blocks--the Disk
Initialization Package varies the allocation block size as ne~essary to
achieve this constraint.

In the next logical block following the block map begins the file
directory, which contains descriptions and locations of all the files
on the volume. The rest of the logical blocks on the volume contain
files or garbage (such as parts of deleted files). The exact format
of the volume information, volume allocation block map, file directory,
and files is explained in the following sections.

Volume Information

The volume information is contained in the first 64 bytes of the master
directory block (Figure 7). This information is written on the volume
when it's initialized, and modified thereafter by the File Manager.

5/21/84 Hacker /OS/FS.D

54 File Manager Programmer's Guide

byte 0 drS i gWord (weird) always $D2D7

2 date and time of intialization drCrDate .(long word)

drLsBkUp (long word) 6 date and time of last backup

10 volume attributes dr ll. trb (word)

12 number of fi les in fi Ie directory drNmF I s (word)

drD i rSt (word) 14 first logical block of file directory

drBILen (word) 16 number of logical blocks in fi Ie directory.

18 number of allocation blocks on volume drNroll.IBlks (word)

20 size of allocation blocks drll.IBlkSiz (long word)

24 number of bytes to allocate drClpSiz (long word)

28 logical block number of first allocation block: drAIBISt (word)

30 next unused f i Ie r,umber drNxtFNuro (long word)

34 number of unused a II oeat i on blocks drFreeBk~i (word)

36 I ength of vo lume name drVN (byte)

37 characters of vo lume name drVN + 1 (bytes)

Figure 7. Volume Information

DrAtrb contains the volume attributes. Its bits, if set, indicate the
following:

~it Meaning
7 Volume is locked by hardware

15 Volume is locked by software

DrClpSiz contains the minimum number of bytes to allocate each time the
Allocate function is called, to minimize fragmentation of files; it's
always a mUltiple of the allocation block size. DrNxtFNum contains the
next unused file number (see the "File Directory" section below for an
explanation of file numbers).

5/21/84 Hacker /OS/FS.D

DATA ORGANIZATION ON VOLUMES 55

Volume Allocation Block Map

The volume allocation block map represents every allocation block on
the volume with a 12-bit entry indicating whether the block is unused
or allocated to a file. It begins in the master directory block at the
byte following the volume information, and continues for as many
logical blocks as needed. For example, a 4~~K-byte volume with a
10-block file directory and 1K-byte allocation blocks would have a
591-byte block map.

The first entry in the block map is for block number 2; the block map
doesn't contain entries for the startup blocks. Each entry specifies
whether the block is unused, whether it's the last block in the file,

/

or which ~llocation block is next in the file:

Entry
~
1
2 •• 4095

Meaning
Block is unused
Block is the last block of the file
Number of next block in the file

For instance, assume that there's one file on the volume, stored in
allocation blocks 8, 11, 12, and 17; the first 16 entries of the block
map would read

The first allocation block on a volume typically follows the file
directory. The first allocation block' is number 2 because of the
special meaning of numbers 0 and 1.

(note)
As explained below, it's possible to begin the allocation
blocks immediately following the master directory block
and place the file directory somewhere within the
allocation blocks. In this case, the allocation blocks
occupied by the file directory must be marked with $FFF's
in the allocation block map.

r. •

File Directory

The file directory contains an entry for each file. Each entry lists'
information about one file on the volume, including its name and
location. Each file is listed by its own unique file number, which the
File ~anager uses to distinguish it from other files on the volume.

A file directory entry, contains 51 bytes plus one byte for each
character in the file name (Figure ~); if the'file names average 2~
characters, a directory can hold seven file entries per logical block.
Entries are always an integral number of words' and don't cross logical
block boundaries. The length of a file directory depends on the '
maximum number of files the volume can contain; for example, on a
4~~K-byte volume the file directory occupies 12 logical blocks.

5/21/84 Hacker /OS/FS.D

56 File Manager Programmer's Guide

The file directory conventionally follows the block map and precedes
the allocation blocks, but a volume-initializing program could actually
place the file directory anywhere within the allocation blocks as long
as the blocks occupied by the file directory are marked with $FFF's in
the block map.

byte 0 bit 7=1 if entry usedj bit 0=1 if file locked flFlags (byte)

, versi on number flTyp (byte)

2 information used by the Finder f IUsrWds (16 bytes)

18 fi Ie number 'flFINum (long word)

22 first allclcation block of data forI< flSt81k (word)

24 data fork's logical end-ot-file f ILgLen (long word)

28 data forlr:' s phys ica I end-of- file flPyLen (long word)

32 first all (Icat i on block of res(,urce forI< flRStBlk (word)

34 resource forkls logical end-of- fi Ie f I RLgLen (long word)

38 resource forkl s physi ca I end-of- til e flFiPyLen (long word)

42 date and time file was created f I CrOat (long word)

46 date and time fi Ie was last modified f I MdDat (long word)

SO length of file name f IName (byte)

~., characters clf f i I e name flNam+ 1 (bytes)

Figure 8. A File Directory Entry

FlStBlk and flRStBlk are ~ if the data or resource fork doesn't exist.
FlCrDat and flMdDat are given in seconds since 12:~0 AM, January 1,
19~4.

Each time a new file is created, an entry for the new file is placed in
the file directory. Ea~h time a file is deleted, its entry in the file
directory is cleared,' and all blocks used by that file on the volume
are released.

File Tags on Volumes

As mentioned previously, logical blocks contain 512 bytes of standard
information preceded by 12 bytes of file tags (Figure 9). The file
tags are designed to allow easy reconstruction of files from a volume
whose directory or other file-access information has been destroyed.

5/21/84 Hacker /OS/FS.D

DATA ORGANIZATION ON VOLUMES 57

byte 0 f i I e number (long word) f i I e number

4 fork type (byte) bit 1 = 1 if resource fork

5 fi Ie attributes (byte) bit 7 = 1 if open; bi1 0 = 1 i1 ·Ioc~:ed

6 fi Ie sequence (word) I ogi c:al b I oc:k seq uence number

8 mod date (long w(lrd) date and time las1 modified

Figure 9. File Tags on Volumes

The file sequence indicates which relative portion of a file the block
. contains--the first logical block of a file hOas a sequence number of ~,

the second a sequence number of 1, and so on.

DATA STRUCTURES IN MEMORY

This section describes the memory data structures used by the File
Manager and any external file system that accesses files on
Macintosh-initialized volumes. Most of this data is accessible only
through assembly language, but some advanced Pascal programmers may be
interested.

The data structures in memory used by the File Manager and all external
file systems include:

- the file I/O queue, listing the currently executing routine (if
any), and any asynchronous routines awaiting execution

- the volume-control-block queue, listing information about each
mounted volume

- copies of volume allocation block maps; one for each on-line
volume

- the file-control-block buffer, listing information about each
access path

- volume buffers; one for each on-line volume

- optional access path buffers; one for each access path

- the drive queue, listing information about each drive connected to
the Macintosh

5/21/84 Hacker /OS/FS.D

58 File Manager Programmer's Guide

The File I/O Queue

The file I/O queue is a standard Operating System queue (described in
the appendlx) ,that contains a list of all asynchronous routines
awaiting execution. Each time a routine is called, an entry is placed
in the queue; each time a routine is completed, its entry is removed
from the queue.

The file I/O queue uses entries of type ioQType, each of which consists
of a parameter block for the routine that w,s called. The" structure of
this block is shown in part below:

TYPE ParamBlockRec = RECORD
qLink: QE1emPtr;
qType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;

END;

{next queue entry}
{queue type}
{routine trap}
{routine address}
{rest of block}

QLink points to the next entry in the queue, and qType indicates the
queue type, which must always be ORD(ioQType). lOT rap and ioCmdAddr
contain the trap word and address of the File Manager routine that was
called. You can get a pointer to. the file I/O queue by calling the
File Manager function GetFSQHdr.

FUNCTION GetFSQHdr : QHdr'Ptr; [Pascal only]

GetFSQHdr returns a pointer to the file I/O queue.

Assembly-language~: To access the contents o~ the file I/O
queue from assembly language, you can use offsets from the
address of'the global variable fsQHdr. Bit 7 of the queue flags
is set if there are any entries in the queue; you can use the
global constant qlnUse to test the value"of bit 7.

Volume Control Blocks
,

Each time a volume is mounted, its volume information is read from the
volume and used to build a new volume control block in the
volume-control-block gueue (unless an ejected or off-line volume is
being remounted). A copy of the volume block map is also read from the
volume and placed in the system heap, and a volume buffer is created on
the system heap.

5/21/84 Hacker /OS/FS.D

DATA STRUCTURES IN MEMORY 59

The volume-control-block queue is a list of the volume control blocks
for all mounted volumes, maintained on the system heap. It's a
standard Operating System queue (described in tne appendix), and each
entry in the volume-control-block queue is a volume control block. A
volume control block is a 94-byte nonrelocatable block that contains
volume-specific information, including the first 64 bytes of the master
directory block (bytes 8 ~o 72 of the volume control block match bytes
o to 64 of the volume information). It has the followi~g structure:

TYPE VCB = RECORD
qLink: QElemPtr; {next queue entry}
qType: INTEGER; {not used}
vcbFlags: INTEGER; {bit 15=1 if dirty}
vcbSigWord: INTEGER; {always $D2D7}
vcbCrDate: LongInt; {date volume was initialized}
vcbLsBkUp: LongIntj {date of last backup}
vcbAtrb: INTEGER; {volume attributes}
vcbNmFls: INTEGER; {number of files in directory}
vcbDirSt: INTEGER; {directory's first block}
vcbBILn: INTEGER; {length of file directory}
vcbNmBlks: INTEGER; {number of allocation blocks}
vcbAlBlkSiz: LongInt; {size of allocation blocks}
vcbClpSiz: LongInt; {number of bytes to allocate}
vcbAlBlSt: INTEGER; {first block in block map}
vcbNxtFNum: LongInt; {next unused file number}
vcbFreeBks: INTEGER; {number of unused blocks}
vcbVN: STRING [27] ; {volume name}
vcbDrvNum: INTEGER; {drive number}
vcbDRefNum: INTEGER; {driver reference number}
vcbFSID: INTEGER; {file system identifier}
vcbVRefNum: INTEGER; {volume reference number}
vcbMAdr: Ptr; {location of block map}
vcbBufAdr: Ptrj {location of volume buffer}
vcbMLen: INTEGER; {number of bytes in block map}
vcbDirIndex: INTEGER; {used internally}
vcbDirBlk: INTEGER {used internally}

END;

Bit 15 of vcbFlags is set if the volume information has been changed by
a routine call since the volume was last affected by a FlushVol call.
VCBAtr contains the volume attributes. Each bit, if set, indicates the
following:

Bit Meaning
0-2 Inconsistencies were found between the volume information

and the file directory when the volume was mounted
6 Volume is busy (one or more files are open)
7 Volume is locked by hardware

15 Volume is locked by software

VCBDirSt contains the number of the first logical block of the file
directory; vcbNmBlks, the number of allocation blocks on the volumej
vcbAlBlSt, the number of the first logical block in the block mapj and
vcbFreeBks, the number of unused allocation blocks on the volume.

5/21/84 Hacker /OS/FS.D

60 File Manager Programmer's Guide

VCBDrvNum contains the drive number of the drive on which the volume is
mounted; vcbDRefNum contains the driver reference number of the driver
used to access on volume is mounted. When a mounted volume is placed
off-line, vcbDrvNum is cleared. When ejected, vcbDrvNum is cleared and
vcbDRefNum is set to the negative of vcbDrvNum (becoming a positive
number). VCBFSID identifies the file system handling the volume; it's
o for volumes handled by the File Manager, and nonzero for volumes
handled by other file systems.

When a volume is placed off-line, its buffer and block map are
deallocated. When a volume is unmounted, its volume control block is
removed from the volume-control-block queue.

You can get a pointer to the volume-control-block queue by calling the
File Manager function GetVCBQHdr.

FUNCTION GetVCBQHdr : QHdrPtr; [Pascal only1

GetVCBQHdr returns a pOirtter to the volume-control-block queue.

Assembly-language note: To access the contents of the volume
control-block queue from assembly language, you can use offsets
from the address of the global variable vcbQHdr. Bit 7 of the
queue flags is set if there are any entries in the queue; you
can use the global constant qlnUse to test the value of bit 7.
The default volume's volume control block is pointed to by the
global variable defVCBPtr.

File Control Blocks

Each time a file is opened, the file's directory entry is used to build
a 30-byte file control block in the file-control-block buffer, which
contains information about all access paths. ,The file-control-bloc~
buffer can contain up to 12 file control blocks (since up to 12 paths
can be open at once), and is a 362-byte (2 + 30 bytes*12 paths)
nonrelocatable block on the system heap (see Figure 10).

5/21/84 Hacker /OS/FS.D

DATA STRUCTURES IN MEMORY 61

byte 0

2

32

62

332

7

length (word)

first fi Ie
contro I block

second file
contro I block

7
~

twelfth fi Ie
control block

Figure 10. The File-Control-Block Buffer

You can refer to the file-control-block buffer by using the global
variable fcbSPtr, which points to the length word. Each file control
block contains 30 bytes of information about an access path (Figure
11).

byte 0 file number fcbFINum (long word)

4 flags fcbMdRByt (b~te)

5 versi on number fcbTyp8yt (byte)

6 first allocation block of fi Ie fcbS81k (word)

8 logical end-of-fi Ie fcbE OF (long word)

12 physical end-of- fi Ie fcbPLen (long word)

16 mark fcbCrPs (long word)

20 location of volume control block fcbVPtr (pointer)

fcb8fAdr (po inter) 24 I ocat i. on of access path buffer

28 for internal use of F i I e Manager fcbFIPcls (word)

Figure 11. A File Control Block

Bit 7 of fcbMdRByt is set if the file has been changed since it was
last flushed; bit 1 is set if the entry describes a resource fork; bit
o is set if data can be written to the file.

5/21/84 Hacker /OS/FS.D

62 File Manager Programmer's Guide

Files Tags in Memory

As men~ioned previously, logical blocks on Macintosh-initialized
volumes contain 12 bytes of file tags. Normally, you'll never need to
know about file tags, and the File Manager will let you read and write
only the 512 bytes of standard,information in each logical block. The
File Manager automatically removes the file tags from each logical
block it reads into memory (Figure 12) and places them at the location
referred to by the global variable tagData + 2. It replaces the last
four bytes of the file tags with the number of the logical block from'
which the file was read (leaving a total of ten bytes).

\

f i I e number (long word) byte 0 file number

(note)

4 bit 1 = 1 if resource fork fork type (byte)

5 bit 0 = 1 if locked f i Ie aUr i butes (byte)

6 logi cal block sequence number f i I e sequence (word)

8 logical block logical block number (word)

Figure 12. File Tags in Memory

~

Access path buffers and volume buffers' are 522 bytes long
in order to contain the ten bytes of file tags and 512
bytes of standard information.

The Drive< Queue

Disk drives connected to the Macintosh are opened when the system
starts up, and information describing each is placed in the drive
queue. It's a standard Operating System queue (des~ribed in the
appendix), and each entry in the drive queue has the following.
structure:

TYPE DrvQEI ='RECORD
{ flags:

qLink:
qType:
dQDrive:
dQRefNum:
dQFSID:
dQDrvSize:

END;

LongInt; }
QElemPtr; {next queue entry}
INTEGER; {not used}
INTEGER; {drive number}
INTEGER; {driver reference number}
INTEGER; {file-system identifier}
INTEGER {optional: number of blocks}

QDrvNum contains the drive number of the drive on which the volume is
mounted; qDRefNum contains the driver reference number of the driver

5/21/84 Hacker /OS/FS.D

DATA STRUCTURES IN MEMORY 63

controlling the device on which the volume is mounted. QFSID
identifies the file system handling the volume in the drive; it's 0· for
volumes handled by the File Manager, and nonzero for volumes handled by
other file systems. If the volume isn't a 3-1/2 inch disk, dQDrvSize
contains the number of 512-byte blocks on 'the volume mounted in this
drive; if the volume is a 3-1/2 inch disk, this field isn't used.

Assembly-language note: The first four bytes in a drive queue
entry are accessible only from assembly language, and contain
the following:

2
3

Contents
Bit 7=1 if volume is locked
o if no disk in drive; 1 or 2 if disk in drive;
8 if nonejectable disk in drive; $FC-$FF if disk
was ejected withi~ last 1.5 seconds
used internally during system startup
Bit 7=0 if disk is single-sided

You can get a pointer to the drive queue by calling the File Manager
function GetDrvQHdr:

FUNCTION GetDrvQHdr : QHdrPtr; [Pascal onlyJ

GetDrvQHdr returns a pointer to the qFlags field.

Assembly-language~: To access the contents of the drive
queue from assembly language, you can use offsets from the
address of the global variable drvQHdr.

The drive queue can support any number of drives, limited only by
memory space.

USING AN EXTERNAL FILE SYSTEM

The File Manager is used to access files on Macintosh-initialized
volumes. If you want to access files on nonMacintosh-initialized
volumes, you must write your own external file system and
volume-initializing program. After the external file system has been
written, it must be used in conjunction with the File Manager as
described in this section.

5/21/84 Hacker /OS/FS.D

64 File Manager Programmer's Guide

Before any File Manager routines are called, you must place the memory
location of the external file system in the global variable toExtFS,
and link the drive(s) accessed by yOU! file system'into the drive
queue. As each nonMacintosh-initialized volume is mounted, you must
create your own volume control block for each mounted volume and link
each one into the volume-control-block queue. As each access path is
opened, you must create your own file control block and add it to the
file-control-block buffer.

All SetVol, GetVol, and GetVolInfo calls then can be handled by the
File Manager via the volume-control-block queue and drive queue;
external file systems needn't support these calls.

When an application calls any other File Manager routine accessing a
nonMacintosh-initialized volume, the File Manager passes control to the
address contained in toExtFS (if toExtFS is 0, the File Manager returns
directly to the application with the result code extFSErr). The
external file system must then use the information in the file I/O
queue to handle the call as it wishes, set the result code noErr, and
return control to the File Manager. Control is passed to an external
file system for the following specific routine calls:

- for MountVol if the drive queue entry for the requested drive has
a nonzero file-system identifier

- for Create, Open, OpenRF, GetFileInfo, SetFileInfo, SetFilLock,
RstFilLock, SetFilType, Rename, Delete, FlushVol, Eject, OffLine,
and UnmountVol, if the volume control block for, the requested file
or volume has a nonzero file-system identifier

~ for Close, Read, Write; Allocate, GetEOF, SetEOF, GetFPos,
SetFPos,~nd FlushFile, if the file control,block for the
requested file points to a volume control block with a nonzero
file-system identifier

5/2i/84 Hacker /OS/FS.D

APPENDIX -- OPERATING SYSTEM QUEUES 65

APPENDIX -- OPERATING SYSTEM QUEUES

*** This appendix will eventually be part of the Operating System
Utilities manual. ***
Some of the information used by the Operating System is stored in data
structures called gueues. A queue is a list of identically structured
entries linked together by pointers. Queues are used to keep track of
vertical retrace tasks, I/O requests, disk drives, events, and mounted
volumes.

The structure of a standard Operating System queue is as follows:

TYPE QHdr RECORD
qFlags: INTEGER; {queue flags}
qHead: QElemPtr; {first queue entry}
qTail: QElemPtr {last queue entry}

END;

QHdrPtr = AQHdr;

QFlags contains information that's different for each queue type.
QHead points to the first entry in the queue, and qTail points to the
last entry in the queue. The entries within each type of queue are
different, since each type of queue contains different information.
The Operating System uses the following variant record to access queue
entries:

{vertical retrace queue}
{I/O request queue}
{drive queue}

TYPE QTypes = (dummyType,
vType,
ioQType,
drvQType~
evType,
fsQType);

{event queue}
{volume-control-block queue}

QElem .= RECORD
CASE QTypes OF

END;

(vblQElem: VBLTask);
(ioQElem: ParamBlockRec);
(drvQElem: Drvo'El);
(evQElem: EvQEl);
(vcbQElem: VCB)

QElemPtr = AQElem;

The exact structure of the entries in each type of Operating System
queue is described in the manual that discusses that queue in detail.

Assembly-language note: The values given in the Pascal QTypes
set are available to assembly-language programmers as the global

5/21/84 Hacker lOS/APPENDIX

66 File Manager Programmer's Guide

constants vType, ioQType, evType, and fsQType (there is no
global constant corresponding to drvQType).

5/21/84 Hacker lOS/APPENDIX

SUMMARY OF THE FILE MANAGER 67

SUMMARY OF THE FILE MANAGER

Constants

CONST { Flags in file information used by the Finder }

fHasBundle 32; {set if file has a bundle}
flnvisible = 64; {set if file's icon is invisible}
fTrash = -3; {file is in trash window}
fDesktop = -2 ; {file is on desktop}
fDisk = 0; {file is in disk window}

{ Values for posMode and ioPosMode }

fsAtMark = 0; {at current position of mark }
{ (posOff or ioPosOffset ignored)}

fsFromStart = 1; {offset relative to beginning of file}
f s FrOlnLEOF = 2; {offset relative to logical end-of-file}
fsFromMark = 3; {offset relative to current mark}

{ Values for requesting read/write access }

fsCurPerm =
fsRdPerm =

0;
1 ;

{whatever is currently allowed}
{request to read only}

fsWrPerm = 2; {request to write only}
fsRdWrPerm = 3; {request to read and write}

(See also the result codes at end of this summary.)

Data Structures

TYPE Flnfo = RECORD
fdType:
fdCreator:
fdFlags:
fdLocation:
fdFldr:

END;

OSType;
OSType;
INTEGER;
Point;
INTEGER

{file type}
{file's creator}
{flags}
{file's location}
{file's window}

ParamBlkPtr = AParamBlockRec;

ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam);

5/21/84 Hacker /OS/FS.S

68 File Manager Programmer's Guide

ParamBlockRec
qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:

= RECORD
QElemPtr;
INTEGER;
INTEGER;
Ptr;
ProcPtr;
OSErr;
StringPtr;
INTEGER;

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{volume or file name}
{volume reference or }
{ drive number}

CASE ParamBlkType OF
ioParam:

(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:

INTEGER;
SignedByte;
SignedByte;
Ptr;
Ptr;
Longlnt;
Longlnt;
INTEGER;

{path reference number}
{version number}
{read/write permission}
{miscellaneous}
{data buffer}
{requested number of bytes}
{actual number of'bytes}
{newline character and type of }
{ positioning operation}

ioPosOffset: Longlnt); {size of positioning offset}
fileParam:

(ioFRefNum:
ioFVersNum:
filler1:
ioFDirlndex:
ioFIAttrib:

'ioFIVersNum:
ioFIFndrlnfo:
ioFINum:
ioFIStBlk:
'ioFILgLen:
ioFIPyLen:
ioFIRStBlk:
ioFIRLgLen:
ioFIRPyLen:
ioFlCrDat:
ioFIMdDat:

volumeParam:
(filler2:
ioVollndex:
ioVCrDate:
ioVLsBkUp:
ioVAtrb:
ioVNmFls:
ioVDirSt:
ioVBILn:
ioVNmAIBlks:
ioVAIBlkSiz:
ioVClpSiz:
ioAIBISt:
ioVNxtFNum:
ioVFrBlk:

5/21/84 Hacker

INTEGER;
SignedByte;
SignedByte;
INTEGER;
SignedByte;
SignedByte;
Flnfo;
Longlnt;
INTEGER;
Longlnt;
Longlnt;
INTEGER;
Longlnt;
Longlnt;
Longlnt;
Longlnt);

{path reference number}
{version number}
{not used}
{file number}
{file attributes}
{version number}
{information used by the Finder}
{file-number}
{first allocation block of data fork}
{logical end-of-file of data fork}
{physical end-of-file of data fork}
{first allocation block of resource fork}
{logical end-of-file of resource fork}
{physical end-of-file of resource fork}
{date and time of creation}
{date and time of last modification}

Longlnt;
INTEGER;
Longlnt;
Longlnt;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
Longlnt;
Longlnt; ,
INTEGER;
Longlnt;
INTEGER) ;

{not used}
{volume index}
{date and time of initialization}
{date and time of last volume backup}
{bit 15=1 if volume locked}
{number of files in file directory}
{first block of file directory}
{number of blocks in file directory}
{number of allocation blocks on volume}
{number of bytes per allocation block}
{number of bytes to allocate}
{first block in volume block map}
{next free file number}
{number of free allocation blocks}

/OS/FS.S

cntrlParam:

END;
{used by Device Manager}

VCB = RECORD
qLink: QElemPtr; ,
qType: INTEGER;
vcbFlags: INTEGER;
vcbSigWord: INTEGER;
vcbCrDate: LongIntj
vcbLsBkUp: LongInt;
vcbAtrb: INTEGER;
vcbNmFls: INTEGER;'
vcbDirSt: INTEGER;
vcbBILn: INTEGER;
vcbNmBlks: INTEGER;
vcbAlBlkSiz: LongInt;
vcbClpSiz: LongInt;
vcbAlBISt: INTEGER;
vcbNxtFNum: LongInt;
vcbFreeBks: INTEGER;
vcbVN: STRING [27] ;
vcbDrvNum: INTEGER;
vcbDRefNum: INTEGER;

'vcbFSID: INTEGER;
vcbVRefNum: INTEGER;
vcbMAdr: Ptr;
vcbBufAdr: Ptr;
vcbMLen: ' INTEGER;
vcbDirIndex:
vcbDirBlk :'

END;

DrvQEI = RECORD
qLink:
qType:
dQDrive:
dQRefNum:
dQFSID:
dQDrvSize:

END;

INTEGER;
INTEGER

QElemPtr;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER

SUMMARY OF THE FILE MANAGER 69

{next queue entry}
{not used}
{bit 15=1 if dirty}
{always $D2D7}
{date volume was initialized}
{date of last backup}
{volume attributes}
{number of files in directory}
{directory's first block}
{length of file directory}
{number of allocation blocks}
{size of allocation blocks}
{number of bytes to allocate}
{first block in-block map}
{next unused file number}
{number of unused blocks}
{volume name}
{drive number}
{driver reference number}
{file system identifier}
{volume reference number}
{location of block, map}
{location of volume buffer}
{number of b'ytes in block map}
{used internally}
{used i~ternally}

{next queue entry}
{not used}
{drive number}
{driver reference number}
{file-system identifier}
{number of logical blocks}

High-Level Routines [Pascal only] __________________________________ ___

Accessing Volumes

FUNCTION GetVInfo

FUNCTION GetVol

5/21/84 Hacker

(drvNum: INTEGER; volName: StringPtr; VAR
vRefNum: INTEGER; VAR freeBytes: LongInt)
OSErrj

(voIName: StringPtrj VAR vRefNum: INTEGER)
OSErrj

IOS/FS.S

70 File Manager Programmer's Guide

FUNCTION SetVol (voIName: StringPtr; vRefNum: INTEGER)
FUNCTION FlushVol (voIName: StringPt,r; vRefNum: INTEGER)
FUNCTION UnmountVol (voIName: StringPtr; vRefNum: INTEGER)
FUNCTION Eject (voIName: StringPtr; vRefNum: INTEGER)

OSErr;
OSErr;
OSErr;
OSErr;

Changing File Contents

FUNCTION Create

FUNCTION FSOpen

FUNCTION FSRead

FUNCTION FSWrite

FUNCTION GetFPos
FUNCTION SetFPos

FUNCTION GetEOF
FUNCTION SetEOF
FUNCTION Allocate
FUNCTION FSClose

(fileName: Str255;
OSType; fileType:

(fileName: Str255;
refNum: INTEGER)

{refNum: INTEGER;
: OSErr;

{refNum: INTEGER;
: OSErr;

{refNum: INTEGER;
{refNum: INTEGER;

: OSErr.;
(refNum: INTEGER;
{refNum: INTEGER;
{refNum: INTEGER;
(refNum: INTEGER)

vRefNum: INTEGER; creator:
OSType) : OSErr;
vRefNum: INTEGER; VAR

OSErr;
VAR count: Longlnt; buffPtr: Ptr)

VAR count: Longlnt; buffPtr: Ptr)

VAR filePos: Longlnt) : OSErr;·
posMode: INTEGER; posOff: Longlnt)

VAR logEOF: Longlnt) : OSErr;
logEOF: Longlnt) : OSErr;
VAR count: Longlnt) : OSErr;
: OSErr;

Changing Information About Files

FUNCTION GetFlnfo (fileName: Str255; vRefNum: INTEGER; VAR
fndrlnfo: Flnfo) : OSErr;

FUNCTION SetFlnfo (fileName: Str255; vRefNum: INTEGER; 'fndrlnfo:
Flnfo) : OSErr;

FUNCTION SetFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;
FUNCTION RstFLock (fileName: Str255; vRefNum: INTEGER) : OSErr;
FUNCTION Rename (oldName: Str255; vRefNum: INTEGER; newName:

Str255) : OSErr;
FUNCTION FSDelete (fileName: Str255; vRefNum: INTEGER) : OSErr;

Low-Level Routines

Initializing the File I/O Queue

PROCEDURE InitQueue;

5/21/84 Hacker /OS/FS.S

SUMMARY OF THE FILE MANAGER 71

Accessing Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr) : OSErr;
FUNCTION PBGetVolInfo (paramBlock: ParmBlkPtr; async: BOOLEAN)
FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: BOOLEAN)
FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: BOOLEAN)
FUNCTION PBFlshVol (paramBlock: ParmBlkPtr; async: BOOLEAN)
FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr) : OSErr;
FUNCTION PBOffLine (paramBlock: ParmBlkPtr; as ync ": BOOLEAN)
FUNCTION PBEject (paramBlock: ParmBlkPtr; async: BOOLEAN)

Changing File Contents

FUNCTION PBCreate (paramBlock:
FUNCTION PBOpen (paramBlock:
FUNCTION PBOpenRF (paramBlock:
FUNCTION PBRead (paramBlock:
FUNCTION PBWrite (paramBlock:
FUNCTION PBGetFPos (paramBlock:
FUNCTION PBSetFPos (paramBlock:
FUNCTION PBGetEOF (paramBlock:
FUNCTION PBSetEOF (paramBlock:
FUNCTION PBA1locate (paramBlock:
FUNCTION PBFlshFile (paramBlock:
FUNCTION PBClose (paramBlock:

Changing Information About Files

FUNCTION PBGetFInfo (paramBlock:
FUNCTION PBSetFInfo (paramBlock:
FUNCTION PBSetFLock (paramBlock:
FUNCTION PBRstFLock (paramBlock:
FUNCTION PBSetFVers (paramBlock:
FUNCTION PBRename (paramBlock:
FUNCTION PBDelete (paramBlock:

Accessing Queues [Pascal only]

FUNCTION GetFSQHdr
FUNCTION GetVCBQHdr
FUNCTION GetDrvQHdr

5/21/84 Hacker

QHdrPtrj
QHdrPtrj
QHdrPtrj

ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtrj async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtrj async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)

ParmBlkPtrj async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtr; async: BOOLEAN)
ParmBlkPtrj async: BOOLEAN)

OSErr;
OSErr;
OSErr;
OSErrj

OSErrj
OSErrj

OSErr;
OSErr;
OSErr;
OSErr;
OSErr;
OSErr;
OSErr;
OSErr;
OSErr;
OSErr;
OSErr;
OSErr;

OSErr;
OSErrj
OSErrj
OSErr;
OSErrj
OSErr;
OSErr;

/OS/FS.S

72 File Manager Programmer's Guide

Assembly-Language Information

Constants

; Flags in file information used by the Finder

fsQType
fHas Bund Ie
fInvisible

.EQU

.EQU

.EQU

5
5
6

;1/0 request queue entry type
;set if file has a bundle
;set if file's icon is invisible

; Flag set when queue is in use

qInUse .EQU 7 ;set if queue is in use

. Flags for testing trap ,words ,

asnycTrpBit .EQU 1~ ;set in trap word for an asynchronous call
noQueueBit .EQU 9 ;set in trap word for immediate execution·

Structure

fdType
fdCreator
fdFlags
fdLocation
fdFldr

of File Information Used

File type
File's creator
Flags
File's location
File's window

b~ the Finder

Standard Parameter Block Data Structure

qLink
qType
ioTrap
ioCmdAddr
ioCompletion
ioResult
ioFileName
ioVNPtr
ioVRefNum
ioDrvNum

5/21/84 Hacker

Next queue entry
Queue type
Routine trap
Routine address
Completion routine
Result code
File name (and possibly volume name)
Volume name
Volume reference number
Drive number

/OS/FS.S

SUMMARY OF THE FILE MANAGER 73

I/O Parameter Block Data Structure

ioRefNum
ioFileType
ioPermssn
ioNewName
ioLEOF
ioOwnBuf
ioNewType
ioBuffer'
ioReqCount
ioActCount
ioPosMode
ioPosOffset

Path reference number
Version number
Read/write permission
New file or volume name for Rename
Logical end-of-file for SetEOF
Access path buffer
New version number for SetFilType
Data buffer
Requested number of bytes
Actual number of bytes
Newline character and type of positioning, operation
Size of positioning offset

File Information Parameter Block Data Structure

ioRefNum
ioFileType
ioFDirIndex
ioFIAttrib .
ioFFIType
ioFIUsrWds
ioFFlNum
ioFIStBlk
ioFILgLen
ioFIPyLen
ioFIRStBlk
ioFIRLgLen
ioFIRPyLen
ioFICrDat
ioFlMdDat

Path refe~ence number
Version number
File number
File attributes
Version number
Information used by the Finder
File number
First allocation block of data fork
Logical end-of-file of data fork
Physical end-of-file of data fork
First allocation block of resource fork
Logical end-of-file of resource fork
Physical end-of-file of resource fork
Date and time file was created
Date and time file was last modified

Volume Information Parameter Block Data Structure

ioVollndex
ioVCrDate
ioVLsBkUp
ioVAtrb
ioVNmFls
ioVDirSt
ioVBILn
ioVNmAlBlks
ioVAlBlkSiz
ioVClpSiz
ioAlBISt
ioVNxtFNum
ioVFrBlk

5/21/84 Hacker

Volume index number
Date and time volume was initialized
Date and time of last volume backup
Bit 15=1 if volume is locked
-Number of files in file directory
First block of file directory
Number of blocks in file directory
Number of allocation blocks on volume
Number of bytes per allocation block

. 'Number of bytes to allocate
First block in volume block map
Next free file number
Number of free allocation blocks

/OS/FS.S

74 File Manager Programmer's Guide

Volume Information Data Structure

Always $D2 D7
Date and time of initialization
D~te and time of last backup
Volume attributes
Number of files in file directory
First logical block of file directory
Number of logical blocks in file directory
Number of allocation blocks on volume
Size of allocation blocks
Number of bytes to allocate

drSigWord
drCrDate
drLsBkUp
drAtrb
drNmFls
drDirSt
drBILen
drNmAIBlks
drAIBlkSiz
drClpSiz
drAliHSt
drNxtFNum
drFreeBks

Logical block number of first allocation block
Next unused file number

'drVN
Number of unused allocation blocks
Length'and characters of volume name

-File Directory Entry Data Structure

flFlags Bit 7=1 if entry used; bit 0=1 if file locked
flTyp Version number
flUsrWds Information used by the Finder
flFINum File number
flStBlk First allocation block of data fork
flLgLen Data fork's logical end-of-file
flPyLen Data fork's physical end-of-file
flRStBlk- First allocation block of resource fork
flRLgLen Resource fork's logical end-of-file
flRPyLen Resource fork's physical end-of-file
flCrDat Date and time file was created
flMdDat Date and time file was last modified
flName· Length and characters of file name

Queue Header Data Structure

qFlags
qHead
qTail

Queue flags
Pointer to first queu~ entry
Pointer to last queue entry

Volume Control Block Data Structure

qLink
qType
vcbFlags
vcbSigWord
vcbCrDate
vcbLsBkUp
vcbAtrb
vcbNmFls
vcbDirSt

5/21/84 Hacker

Next queue entry
Not used
Bit 15=1 if volume control block is dirty
Always $D2D7
Date and time volume was initialized
Date and time las~ backup copy was made
Volume attribute~
Number of files in directory
First logical block of file directory

/OS/FS.S

vcbBlLn
vcbNmBlks
vcbAlBlkSiz
vcbClpSiz
vcbAlBlSt
vcbNxtFNum
vcbFreeBks
vcbVN
vcbDrvNum
vcbDRefNum

vcbFSID
vcbVRefNum'
vcbMAdr
vcbBufAdr
vcbMLen
vcbDirIndex
vcbDirBlk

SUMMARY OF THE FILE MANAGER 75

Length of file directory
Number of allocation blocks on volume
Size of allocation blocks
Number of bytes to allocate
First logical block in block map
Next unused file number
Number of unused allocation blocks
Length and characters of volume name
Drive number of drive in which volume is mounted
Driver reference number of driver for drive in
which volume is mounted
ID for file system handling volume
Volume reference number
Memory location of volume block map
Memory location of volume buffer
Number of bytes in volume block map
For internal File Manager use
For internal File Manager use

File Control Block Data Structure

fcbFlNum
fcbMdRByt
fcbTypByt
fcbSBlk
fcbEOF
fcbPLen
fcbCrPs
fcbVPtr
fcbBfAdr
fcbFlPos

File number
Flags
Version number
First allocation block of file
Logical end-of-file
Physical end-of-file
Mark
Location of volume control block '
Location of access path buffer
For internal use of File Manager

File Control Block Data Structure

qLink,'
qType
dQDrive
dQRefNum
dQFSID
dQDrvSize

Macro Names

Routine name
InitQueue
PBMountVol
PBGetVolInfo
PBGetVol
P~SetVol
PBFlshVol
PBUnmountVol

5/21/84 Hacker

Next queue entry
Always drvType
Drive number
Driver reference number
File system ID
Number of logical blocks

Macro name
_InitQueue

MountVol
GetVolInfo
GetVol
SetVol
FlushVol
UnmountVol

/OS/FS.S

7.6 File Manager Programmer's Guide

PBOffLine
PBEject
PBCreate
PBOpen
PBOpenRF
PBRead
PBWrite
PBGetFPos
PBSetFPos
PBGetEOF
PBSetEOF
PBAllocate
PBFlshFile
PBClose
PBGetFlnfo
PBSetFlnfo
PBSetFLock
PBRstFLock
PBSetFVers
PBRename
PBDelete

Variables

Name
fsQHdr
vcbQHdr
defVCBPtr
fcbSPtr
tagData + 2
drvQHdr
toExtFS

Result Codes

OffLine
_Eject

Create
_Open
_OpenRF

Read
Write
GetFPos
SetFPos
GetEOF
SetEOF
Allocate
FlushFile
Close
Get File Info
SetFilelnfo
SetFilLock
RstFilLock

_SetFilType
Rename
Delete

Size
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes

Contents
File I/O queue
Volume-control-block queue
Pointer to default volume control block
Pointer to file-control-block buffer
Location of file tags
Drive queue
Pointer to external file system

These values are available as predefined constants in both Pascal and
assembly language.

Name Value
badMDBErr -60

bdNamErr -37

dirFulErr -33
dskFulErr -34
dupFNErr -48

eofErr -39

extFSErr -58

5/21/84 Hacker

Meaning
Master directory block is bad; must
reinitialize volume
Bad file name or volume name (perhaps zero
length)
File directory full
All allocation blocks on the volume are full
A file with the specified name already
exists
Logical end-of-file reached during read
operation
External file system; file-system identifier
is nonzero, or path reference number is
greater than 1024

/OS/FS.S

fBsyErr
fLckdErr
fnfErr
fnOpnErr
fsRnErr
ioErr
mFulErr
noErr
nsDrvErr

noMacDskErr
nsvErr
opWrErr

paramErr

permErr
posErr
rfNumErr

tmfoErr
volOffLinErr
volOnLinErr

vLckdErr
wrPermErr

wPrErr

5/21/84 Hacker

-47
-45
-43
-38
-59
-36
-41

o
-56

-57
-35
-49

-50

-54
-40
-51

-42
-53
-55

-46
-61

-44

SUMMARY OF THE FILE MANAGER· 77

One or more files are open·
File locked
File not found
File not open
Problem during Rename
Disk I/O error.
System heap is full
No error
Specified drive number doesn't match any
number in the drive queue
Volume lacks Macintosh-format directory
Specified volume doesn't exist
The read/write permission of only one
access path to a file can allow writing
Parameters don't specify an existing
volume, and there's no default volume
Read/write permission doesn't allow writing
Attempted to position before start of file
Reference number specifies non~xistent
access path
Only 12 files can be open simultaneously
Volume not on-line
Volume specified is already mounted and
on-line
Volume is locked by a software flag
Read/write permission or open permission
doesn't allow writing
Volume is locked by a hardware setting

/OS/FS.S

78 File Manager Programmer's Guide

GLOSSARY

access path: A description of the route that the File Manager follows
to access a file; created when a file is opened.

access path buffer: Memory used by the File Manager to transfer data
between an application and a file.

allocation block: Volume space composed of an integral number of
logical blocks.

asynchronous execution: During asynchronous execution of a File
Manager routine, the calling application is free to perform other
tasks.

block map: Same as volume allocation block map.

closed file: A file without an access path. Closed files cannot be
read from or written to.

completion routine: Any application-defined code to be executed when
an asynchronous call to a File Manager routine is completed.

data buffer: Heap space containing information to be written to a file
or driver from an application, or read from a file or driver to an
application.

data fork: The part of a file that contains data accessed via the File
Manager.

default volume: A volume that will receive I/O during a File Manager
routine call, whenever no other volume is specified.

drive number: A number used to identify a disk drive. The internal
drive is number 1, and the external drive is number 2.

drive queue: A list of disk drives connected to the Macintosh.

end-of-file: See logica~ end-of-file or physical end-of-file.

file: A named, ordered sequence of bytes; a principal means by which
data is stored and transmitted on the Macintosh.

file control block: 30 bytes of system heap space in a file-control
block buffer containing information about an access path.

file-control-block buffer: A 362-byte nonrelocatable block containing
one file control block for each access path.

file directory: The part of a volume that contains descriptions and
locations of all the files on the volume.

5/21/84 Hacker /OS/FS.G

GLOSSARY 79

file I/O queue: A queue containing parameter blocks for all I/O
requests to the File Manager.

file name: A sequence of up to 255 characters that identifies a file.

file number: A unique number assigned to a file, which the File
Manager uses to distinguish it from other files on the volume. A file

_number specifies the file's entry in a file directory.

file tags: Information associated with each logical block, designed to
allow reconstruction o-f files on a volume whose directory or other
file-access information has been destroyed.

fork: One of the two parts of a fil~; see data fork and'resource fork.

I/O request: A request for input fr~m or output to a file or device
driver; caused by calling a File Manager or Device Manager routine
asynchronously.

locked file: A file whose data cannot be changed.

locked volume: A volume whose data cannot be changed. Volumes can be
locked by either a software flag or a hardware setting.

logical block: Volume space composed of 512 consecutive bytes of
standard information and an additional number of bytes of disk-driver
specific information.

logical end-of-file: The position of one byte past the last byte in a
- file;, equal to the actual number of bytes in the file.

mark: The position of the next byte in a file that will be read or
written.

master directory block: Part of the data structure of a volume;
contains the volume information and the first 448 bytes of the block
map.

mounted volume: A volume that previously was inserted into a disk
drive and had descriptive information read from it by the File Manager.

newline character: Any ASCII character, but usually Return (ASCII code
$~D), that indicates the end of a sequence of bytes.

newline mode: A mode of reading data where the end of the data is
indicated by a newline character (and not by a specific byte count).

off-line volume: A mounted volume' with all but 94 bytes of its
descriptive information released.

on-line volume: A mounted volume with its volume buffer and
descriptive information contained in memory.

5/21/84 Hacker /OS/FS.G

80 File Manager Programmer's Guide .

open file: A file with an access path. Open files can be read from
and written to.

open permission: Information about a file that indicates whether the
file can be read from, written to, or both.

parameter block: Memory space used to transfer information between
applications and the File Manager.

path reference number: A number that uniquely identifies an individual
access path; assigned when the access path is created.

physical end-of-file: The position of one byte past the last
allocation block of a file; equal to 1 more than the maximum number of
bytes the file can contain.

readiwrite permission: Information associated with an access path that
indicates whether the file can be read from, written to, both read from
and written to, or whatever the file's open permission allows.

resource fork: The part of a file that contains the resources used by
an application (such as menus, fonts, and icons) and also the
application code itself; usually accessed via the Resource Manager.

synchronous execution: During synchronous execution of a File Manager
routine, the calling application must wait until the routine is
completed, and isn't free to perform any other task.

unmounted volume: A volume that hasn't been inserted into a disk drive
and had descriptive information read from it, or a volume that
previously was mounted and has since had the memory used by it
released.

version number: A number from ~ to 255 used to distinguish between
files with the same name.

volume: A piece of storage medium formatted to contain files; usually
a disk or part of a disk. The 3 1/2-inch Macintosh disks are one
volume.

volume allocation block map: A list of 12-bit entries, one for each
allocation block, that indicate whether the block is currently
allocated to a file, whether it's free for use, or which block is next
in the file. Block maps exist both on volumes and in memory.

volume attributes: Information contained on ,volumes and in memory
indicating whether the volume is locked, has one or more files open (in
memory only), and whether the volume control block matches the volume
information (in memory only).

volume buffer: Memory used initially to load the master directory
block, and used thereafter for reading from files that are opened
without an access path buffer.

5/21/84 Hacker los/FS.G

GLOSSARY 81

volume control block: A 90-byte nonrelocatable block that contains
volume-specific information, including the first 64 bytes of the master
directory block.

voIUme-control-block queue: A list of the volume control blocks for
all mounted volumes.

volume index: A number identifying a mounted volume listed in the
volume-control-block queue. The first volume in the queue has an index
of 1, and so on.

volume information: Volume-specific information contained on a volume;
includes the volume name, number of files on the volume, and so on.

volume name: A sequence of up to 27 printing characters that
identifies a volume; always followed by a colon <:) to distinguish it
from a file name.

volume reference number: A unique number assigned to a volume as it's
mounted, used to refer to the volume.

5/21/84 Hacker /OS/FS.G

MACINTOSH USER EDUCATION

Printing From Macintosh Applications

See Also: The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Structure of a Macintosh Application

/PRINTING/PRINT

Programming Macintosh Applications in Assembly Language

Modification History: First Draft S. Chernicoff & B. Hacker 6/11/84

ABSTRACT

Macintosh applications can print information on any variety of printer
the user has connected to the Macintosh by calling Printing Manager
routines. Advanced programmers can also call the Printer Driver to
implement alternate, low-level printing. techniques. This manual
describes the Printing Manager and Printer Driver.

2 Printing From Macintosh Applications

TABLE OF CONTENTS

3 About This Manual
4 About the Printing Manager
6 Methods of Printing
7 Imaging During Spool Printing
9 Pri~ting From the Finder

10 Print Records and Dialogs
12 The Printer Information Subrecord
13 The Style Subrecord
14 The Job Sub record
16 The Band Information Subrecord
16 Background Processing
18 Using the Printing Manager
19 Printing Manager Routines
19 Initialization and Termination
20 Print Records and Dialogs
21 Draft Printing and Spooling
22 Spool Printing
23 Handling Errors
24 Low-Level Driver Access
25 The Printer Driver
26 Bitmap Printing
27 Text Streaming
28 Screen Printing
28 Font Manager Support
29 Printing Resources
33 Summary of the Printing Manager
42 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

Macintosh applications can print information on any variety of printer
the user has connected to the Macintosh by calling the Printing Manager
routines in the User Interface Toolbox. Advanced programmers can also
call the Printer Driver to implement alternate, low-level printing
techniques. This manual describes the Printing Manager and Printer
Driver. *** It will eventually become part of the comprehensive Inside
Macintosh manual. *~*

Like all Toolbox documentation, this manual assumes you're familiar
with the Macintosh User Interface Guidelines, Lisa Pascal, and the
Macintosh Operating System's Memory Manager. You should also be
familiar with the following:

- resources, as described in the Resource Manager manual

- the use of QuickDraw, as described in the QuickDraw manual,
particularly bit images, rectangles, bitMaps, and pictures

- the use of fonts, as described in the Font Manager manual

- the basic concepts of dialogs, as described in the Dialog Manager
manual

- files and volumes, as described in the File Manager manual

- device drivers, as described in the Device Manager manual, ***
doesn't yet exist *** if you're interested in writing your own
Printer Driver

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an overview of the Printing Manager and what you
can do with it. It then discusses the basics about printing: the
various methods of printing available; the relationship between
printing and the Finder; and the Printing Manager's use of dialogs and
data structures, the most important of which is the print record.

Next, a section on using- the Printing Manager introduces its routines
and tells how they fit into the flow of your application. This is
followed by detailed descriptions of all Printing Manager procedures
and functions, their parameters, calling protocol, effects, side
effects, and so on.

Following these descriptions are sections that won't interest all
readers. Special information is given about the Printer Driver and the
format of resource files used when printing, for programmers interested
in writing their own Printer Driver.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

4 Printing From Macintosh Applications

Finally, there's a summary of the Printing Manager for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE PRINTING MANAGER

The Printing Manager is the part of the Macintosh User Interface
Toolbox that's used to print text or graphics on a printer. It's not
contained in the Macintosh ROM; it must be read from a resource file
before it can be used. The Printing Manager provides your application
with:

- two standard printing methods, and the ability to define two more

- a standard dia1qg for the user to specify the paper size and page
orientation they're using, so you can ~asily implement a Page
Setup command in your File menu

- a standard dialog for the user to specify the method of printing,
which pages to print, and so on, so you can easily implement a
Print command in your File menu

- the ability to perform background processing while the Printing
Manager is printing

- a way to' abort printing when the user types Command-period

The Printing Manager is designed such that an application need never be
concerned with what kind of printer the user has connected to the
Macintosh; an application uses the same routine calls to print with all
varieties of printers.

This printer independence is- possible because the Printing Manager uses
separate, printer-specific code to implement its routines for each
different variety of printer. While the code for some Printing Manager
routines (such as those that begin and end printing sessions), is
contained wholly w1thin the Printing Manager itself, the code for other
routines (such as those that do the actual printing) depends on the
printer being used and is contained in a separate printer resource file
on the user's disk. The Printing Manager dispatches calls to these
routines, first loading the code into memory if necessary.

Although the actual routines 'of the' Printing M4nager differ for each
variety of printer,your application uses the same Printing Manager
calls to print on all varieties of printers. The user "installs" a new
printer by giving the Printing Manager a new printer resource file to
work with (Figure 1). Printer installation is transparent to you
application, and you needn't be concerned with it.

6/11/84 Che.rnicoff-Hacker /PRINTING/PRINT.I.1

Printing
MaI.ager

printer IAI
resource file

printer 'A' installed

ABOUT THE PRINTING MANAGER 5

Printing
M81.eger

printer'SI
resolJ"ce f i Ie

printer IB' installed

Figure 1. Printer Install~tion

Each printer resource file also contains a device driver that
communicates between the Printing Manager and the printer. Because the
actual routines of the device driver differ for each variety of
printer, there ~xists a different device driver for each printer. The
Printing Manager routines used to call a printer's device driver are
the same, regardless of printer varietYj this manual will refer to the
device driver of the currently installed printer as .the Printer Driver.

You define the image to be printed by using a printing port, a special
QuickDraw grafPort customized for printing:

TYPE TPPrPort = ATPrPortj
TPrPort = RECORD

gPort: GrafPort; {grafPort to draw in}
gProcs: QDProcs; {pointers to drawing routines}
{more fields for internal use only}

END;

The Printing Manager gives you a printing port when you prepare to
print a document. You print text and graphics by drawing
into this port with QuickDraw, just as if you were drawing on the
screen. The Printing Manager installs its own versions of QuickDraw's
low-level drawing routines in the printing port, causing your
higher-level QuickDraw calls to drive the printer instead of drawing
on the screen. GProcs contains pointers ~o these low-level drawing
routines.

(note)
To convert a pointer to a printing port into an
equivalent grafPtr for use with QuickDraw, you can use
the following variant record type:

6L!1/84 Chernicoff-Hacker /PRINTING/PRINT.I.l

6 Printing From Macintosh Applications

TYPE TPPort'· PACKED RECORD
CASE INTEGER OF

END;

01 (pGPort: GrafPtr);
1: (pPrPort: TPPrPort)

METHODS OF PRINTING

The Printing Manager supports two different methods of printing
documents: draft and spool. In draft printing, your QuickDraw calls
are converted directly into command codes the printer understands,
which are then immediately used 'Ito drive the printer. Each element of
the image is printed as soon as you request it; as you move around to
various coordinates within the grafPort, the print head moves to the
corresponding positions on the printed page. Draft printing uses the
printer's native font and graphics capabilities and probably won't
produce an image matching the one on the screen. This method of
printing is more direct than spool printing', but it can also be
cumbersome, especially for graphics. Draft printing is most
appropriate for making quick copies of text documents, which are
printed straight down the page from top to bottom and left to right.
Depending on the printer and what you're printing, draft printing may
not even be possible; for instance, not all printers are capable of
moving the paper backwards (toward the top of the page).

Spooling and spool printing are complementary halves of a two-stage
process. First you cause the Printing Manager to write out (spool) a
representation of your document's printed image to a disk file. This
spool file is later read back in, each page is imaged (converted into
an array of dots at the appropriate resolution), and the result is sent
to the printer in a single pass from top to bottom. Spool printing
uses QuickDraw and the Font Manager's graphics and font capabilities to
produce an image closely matching the one on the screen.

(note)
The internal format of spool files is private to the
Printing Manager and may vary from one printer to
another. This means that spool files destined for one
printer can't necessarily be printed on another. In
spool files for the Imagewriter printer, each page is
stored in the form of a QuickDraw picture. It's
envisioned that most other printers will use this same
appro~ch, but there may be exceptions.

-Spooling and spool printing are two separate stages because spool
printing a document takes a lot of space--typically from 20K to 40K for
the printing code, buffers, .and fonts, but spooling a document takes
only about 3K. When spooling a document, large portions of your
application's code and data may be needed in memory; when spool
printing, most of your application's code and data are no longer

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.l

METHODS OF PRINTING 7

needed. Normally you'll ~ke your printing code a separate program
segment, so you can swap the rest of your code and data out of memory
during printing and swap it back in after you're finished.

If your application can't afford the space required by spool printing,
it can just perform the spooling stage, and leave the spool file on the
disk for the user to print later from the Finder (see next section).
The maximum number of pages in a spool file is defined by the following
constant *** it may increase ***

(note)

CONST iPFMaxPgs = 128; {maximum number of pages in a spool file}

Advanced programmers: In addition to draft printing and
spooling, you can define as many as two more of your own
methods of document printing for any given printer. (No
such additional printing methods are currently defined
for the Imagewriter.) There are also a number of low
level printing methods available, such as bitmap
printing, text streaming, and screen printing. These

. methoos are discussed in the section "Using a Printer
Driver".

Imaging During Spool Printing

The bit image for a typical page is too big to fit in memory all at
once. For instance, at the highest resolution of the lmagewriter
printer (160 dots per inch horizontally by 144 vertically), an 8-by-10
1/2-inch page image contaibs approximately a quarter megabyte of
information, or twice the total memory capacity of the Macintosh. So
instead of imaging and printing the entire page at once, the page has
to be broken into bands small enough to fit in memory. During spool
printing the Printing Manager actually images each band individually,
adjusting the' fields of the printing port to limit the actual drawing
to the boundaries of the band. It then prints the resulting bit image
before imaging the next band. A page can be broken' into bands
("scanned") in any of four ways. Figure 2 shows the four possible scan
directions of a printing port.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.I

8 Printing Fro~ Macintosh Ap~lications

left to right
)

top to bottom 1 I I I I _L_L ____________ L_L_

I I , , _L_L ____________ L_L_

I I , I

<
right to left

Figure 2. Scan Directions

The bands are always printed from top to bottom relative to the
physical sheet of paper; the scan direction determines the
correspondence between these' printed bands and the dots of the image.
If the long dimension of the paper runs vertically with respect to the
image, the page is said to be in portrait orientation; if the long
dimension runs horizontally, the page is in landscape orientation. In
practice, portrait pages are normally scanned from top to bottom and
landscape pages from left to right.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

PRINTING FROM THE FINDER 9

PRINTING FROM THE FINDER

The Macintosh user can choose to print from the Finder as well as from
an application. Your application shoulo support both alternatives.

To print a document from the Finder, the user selects the document's
icon and chooses the Print command from the File menu. When the Print
command is chosen, the Finder starts up the document's application, and
passes information to the application indicating that the file is to be
printed rather than opened. The application is then expected to print
the document, preferably without doing its entire startup sequence. It
may choose to do any of the following: .

- Draft-print the document.

- Spool the document to a file and then print it immediately.

Spool the document to a file and leave it for the user to print
later via the Printer program (descibed below).

If your application writes spool files on a disk and then doesn't" spool
print them, it's up to the user to print them. The u~er simply selects
the spool file's icon (Figure 3) and chooses the Print command from the
File menu. When the Print command is chosen, the Finder starts up a
special program called Printer, which spool prints spool files. It's
provided as a utility for use with programs that don't do their own
spool printing. Its main purpose is to read a spool file, image it,
and print it.

D
Prilt Fie

Figure 3. Icons for the Printer Program and Spool Files

Spool files can be identified by their file type and creator:

(note)

CONST IPfType - $5046484C; {spool file type 'PFIL'}
IPfSig = $50535953; {spool file creator 'PSYS'}

The details of the Finder interface are discussed in The
Structure of ~ Macintosh Application.

*** Thi~ method of spool printing may be temporary. Currently, the
easiest way for your application to do printing is to leave spool files
on the disk and 'rely on the user to print them via Printer. Eventually
Printer may be eliminated and one of the following solutions will be
employed: The process will remain the same, and the code of Printer
will be integrated into the Finder; or your application will be
required to do spool printing itself.' ***

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.I

10 Printing From Macintosh Applica~icns

PRINT RECORDS AND DJALOGS

For every printing operation, your application needs to determine the
following:

- the resolution and other characteristics of the printer being used

- the dimensions of the printed image and of the physical sheet of
paper

- the printing method to be used (draft or spool)

- the name of the spool file, if applicable

- which pages of the document to print

- how many copies to print

- an optional background procedure to be run during idle times in
the printing process (discussed later)

THis-information is contained in a data structure called a print
record~ The Printing Manager fills in most of the print record for
you. Some values ~epend on the variety of printer installed in the
Printing Manager; others are set as a result of dialogs with the user.

(note)

(note)

Whenever you save a document, it's recommended that you
write an appropriate print record in the document's file
(see the "Printing Resources" section). This allows the
document to "remember" its own printing parameters for
use the next time it's printed.

If you try to use a print record that's invalid for the
current version of the Printing Manager or for the
printer installed in the Printing Manager, the Printing
Manager will correct the record by filling it with
default values.

The information in the print record that can vary from one printing job
to the next is obtained from the user by means of dialogs. The
Printing Manager uses two standard dialogs for this purpose. The style
dialog includes the paper size and page orientation (Figure 4). This
dialog is conventionally associated with a Page Setup command in the
application.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.1

PRINT RECORDS AND DIALOGS 11

Peper: <I US Letter

o US Legel
Ortentetlon: <f) Tall

QB4Latter (OK)

(Cancel)
o Internetlonal Fanfold

o Te" RdJusted 0 Wide

Figure 4. The Standard Style Dialog

The job dialog, normally associated with the application's Print
command, requests information on how to print the document this ti.e.
such as the method of printing (draft or spool), the print quality (for
printers that offer a choice of resolutions), the type of paper feed
(such as fanfold or cut-sheet), the range of pages to be printed, and

. the number of copies (Figure 5).

Quality:

Page Range:

Caples:

o High
@)RII

o
• Standard 0 Draft

o From: D To: D
(OK)

Peper Feed: <i Continuous oeut Sheet (cancel) .

Figure 5. The Standard Job Dialog

Print records are referred to by handles. Their 'structure is as
follows:

TYPE THPrint = ATPPrint;
TPPrint = TPrint;
TPrint = RECORD

iPrVersion:
prlnfo:
rPaper:
prStl:
prlnfoPT:
prXlnfo:
prJob:
printX:

END;

INTEGER; {Printing Manager version}
TPrInfo; {printer information}
Rectj {paper rectangle}
TPrStl; {style information}
TPrlnfo; {copy of prInfo}
TPrXInfoj {band information}
TPrJob; {job information}
ARRAY [1 •• 19] OF INTEGER

{used internally}

IPrVersion identifies the version of the Printing Manager that
initialized this print record.

Most of the other fields of the print record are "subrecords"
containing various parts of the overall printing information; these are
discussed in separate sections below.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

12 Printing From Macintosh Applications

Assembly-language~: The global constant iPrintSize equals
the length in bytes of a print record.

The Printer Information Subrecord

The printer information subrecord (field prInfo of the print record)
describes the characteristics of the particular printer you're using.
Its contents are set by the Printing Manager when it initializes the
print record. All applications will need to refer to the information
it contains. (The prlnfoPT field of the print record is a copy of the
prlnfo field and is used internally by the Printing Manager during
printing.)

The printer information subrecord is defined as follows:

TYPE TPrInfo = RECORD
iDev: INTEGER; {driver information}
i VRes: INTEGER; '{printer vertical resolution}
iHRes: INTEGER; {printer horizontal resolution}
rPage: Rect {page rectangle}

END;

The iDev field contains information used by QuickDraw and the Font
Manager for selecting fonts for the printer. The high-order byte is
the reference number of the Printer Driver; -3. The low-order byte
contains device-specific information on how the printer is being ~sed.
For example~ for the Imagewriter printer, bit 0 specifies high (1) or
low (0) resolution and bit 1 specifies portrait (1) or landscape (0)
orientation.

(note)
If you store this word into ,the device field of a
grafPort, you can use the QuickDraw routines CharWidth,
StringWidth, TextWidth, and GetFontInfo to ask for
information about a font drawn on that device.

IVRes and iHRes give the vertical and horizontal resolution of the
printer, in dots per inch.

RPage is the ~ rectangle, representing the boundaries 'of the
printable page. Its top left corner always has coordinates (0,0); the
co-ordinates of the bottom right corner give the maximum page height and
width attainable on the given printer, in dots. Typically these are
slightly less than the physical dimensions of the paper, because of the
printer's mechanical limitations.

The results of the style dialog conducted with the user determine the
values of the iVRes, iHRes, and rPage fields. For example, with the

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

PRINT RECORDS AND DIALOGS 13

Imagewriter printer, the style dialog's three orientation buttons yield
the following:

Button
Tall
Tall adjusted
Wide

Orientation
Portrait
Portrait
Landscape

IVRes
8(6
72
72 I

IHRes
-72
72
72

The' physical paper size is given by the rPaper field of the print
record. This paper rectangle is outside of the page rectangle: -i t
defines the physical boundaries of the paper in the same coordinate
system as rPage (see Figure 6). Thus the top left coordinates of the
paper rectangle are typically negative and its bottom right coordinates
are greater than those of the page rectangle.

Peper rect~le

Page rectangle

(0,0)
~----------------• I

• • I
I
I
I

L _______________ _

Figure 6. -Page and Paper Rectangles

The Style Subrecord

The style subrecord (field prStl of the print record) describes the
type and size of paper used in the printer. The contents of the style
subrecord are normally set by the Printing Manager after dialogs with
the user, and only advanced programmers need be concerned with them.

The style subrecord is defined as follows:

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

14 Printing From Macintosh Applications

TYPE TPrStl - RECORD
wDev:
iPageV:
iPageH:
bPort:
feed:

'!'Word;
INTEGER;
INTEGER;
Signed Byte ;
TFeed

{used internally}
{paper height}
{paper width}
{printer or modem port}
{paper type}

END;

IPageV and iPageH give the physical dimensions of the paper, in 120ths
of an inch. The user can set them by choosing a standard paper size
(such as U.S. Letter, U.S. Legal, or European A4) from the style
dialo~ The number of units per inch is defined by the. following
constant:

CONST iPrPgFract = 120; {units per inch of paper dimension}

BPort designates which port on the back of the Macintosh the printer is
connected to: 0 for the printer port, 1 for the modem port. ***
Currently the Printing Manager ignores this value, and instead uses the
global variable sPPrint. ***
Feed identifies the type of paper feed being' used:

TYPE TFeed = (feedCut., {hand-fed , individually cut sheets}
feedFanfold, {continuous-feed fanfold paper}
feedMechCut, {mechanically fed cut sheets}
feedOther); {other types of paper}

The user sets this field'by choosing Continuous or Cut Sheet from the
job dialog. When Cut Sheet is chosen, the printer will pause at the
end of each page and a dialog box will prompt the user to insert the
next'sheet.

The Job Subrecord

The job subrecord (field prJob of the print record) contains
information about a particular printing job. Its contents are normally
set by the Printing Manager as a result of a job dialog with the user.

The job subrecord is defined as follows:

TYPE TPrJob - RECORD
iFstPage:
iLstPage:
iCopies:
bJDocLoop:
fFromUsr:
pldleProc:
pFileName:
iFileVol:
bFileVers:
~bJobX:
END;

6/11/84 Chernicoff-Hacker

INTEGER;
INTEGER;
INTEGER;
SignedByte;
BOOLEAN;
ProcPtr;
TPStr80;
INTEGER;
Signed Byte;
Signed Byte

{first page to print}
{last page to print}
{number of copies}
{printing method}
{TRUE if called from application}
{background procedure}
{spool file name}
{volume reference number}
{version number of spool file}
{hot used}

/PRINTING/PRINT.I.2

PRINT RECORDS AND DIALOGS 15

TPStr8~ a ATStr8~;
TStr8~ - STRING[80];

Most programmers need only be concerned with the bJDocLoop, pFileName,
and pIdleProc fields. BJDocLoop represents the method of printing to
use. The user sets this field by choosing High, Standard, or Draft
from the job dialog. BJDocLoop should be one of the following
predefined constants:

CONST bDraftLoop = 0; {draft printing}
bSpoolLoop = 1; {spooling}
bUserlLoop = 2; {printer-specifi~, method I}
bUser2Loop = 3; {printer-specific, method 2}

If you're spool printing, it's a good idea to give each file you spool
to the disk a different name, in the pFileName field, so that it
doesn't overwrite any other spool files on the disk. PFileName is
initialized to NIL, denoting the default file name found in the printer
resource file. *** (Currently the default file name is 'Print
File'.) ***
IPstPage and iLstPage designate the first ~nd last pages to be prlnted.
The Printing Manager knows nothing about any page numbering placed by
an application within a document, and always considers the first
printable page to be page 1. For example, if iFstPage is 2, the
Printing Manager will print the second page in the document, regardless
of how the page is actually numbered. If you're draft printing, you'll
need to use the value of iCopies to determine the number of copies to
print (the Printing Manager automatically handles multiple copies for
spooling).

FFromUsr is TRUE when the Printing Manager is called from an
. application program, FALSE when it's called from the Print~r program.

PIdleProc is a pointer to the background procedure (explained below)
for this printing operation. In a newly initialized print record this
field is set to NIL, designating the default background procedure.
This procedure just polls the keyboard and cancels further printing if
the user types Command-period. You can install a background procedure
of your own by storing directly into the pIdleProc field.

For spooling operations, iFileVol and bFileVers are the volume
reference number and version number of the spool file. IFileVol and

J

bFileVers are both initialized to 0. You can override the default
settings by storing 4irectly into these fields.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

16 Printing From Macintosh Applications

The Band Information Subrecord

The band information subrecord (field prXInfo of the print record)
contains information about the way a page will be imaged during spool
printing. Its contents are set by the Printing Manager. and most
programmers needn't be concerned with it.

The band information subrecord is defined as follows:

TYPE TPrXlnfo = RECORD
iRowBytes .:
iBandV:
iBandH:
iDevBytes:
iBands:
bPatScale:
bUlThick:
bUlOffset:
bUlShadow:
scan:
bXInfoX:

END;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
SignedByte;
SignedByte;
SignedByte;
Signed Byte;
TScan;
SignedByte

{bytes per row}
{vertical dots}
{horizontal dots}
{size of bit image}
{bands per page}
{used by QuickDraw}
{underline thickness}
{underline offset}
{underline descender}
{scan direction}
{not'used}

IRowByt~s is the number of bytes in each row of the band's bit image,
iBandV and iVBandH are the dimensions of the band in .dots, iDevBytes is
the number of bytes of memory needed to hold the bit image, and iBands
is the number of bands per page.

BPatScale is used by QuickDraw when it scales patterns to the
resolution of the printer. BUlThick, bUlOffset, and bUlShadow are used
for underlining text; they stand for the thickness of the underline.
its offset below the base line, ·and the width of the break around
descenders, all in dots. The scan field specifies the scan direction
for banding as a value of type TScan:

TYPE TScan = (scanTB, {scan top to bottom}
scanB1, {scan bottom to top}
scanLR. {scan bottom to top}
scanRL); {scan right to left}

BACKGROUND PROCESSING

As mentioned above, the job subrecord includes a pointer, pIdleProc, to
an optional background procedure to be run whenever the Printing
Manager has directed output to the printer and is waiting for the
printer to finish. The background procedure takes no parameters and
returns no result; the Printing Manager simply runs it at every
opportunity. There's no limit to the length of time that a background
procedure can execute, but beyond a certain length of time printing
will be slowed.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

BACKGROUND PROCESSING 17

If you don't designate a background procedure, the Printing Manager
will use one by default that just polls the keyboard and cancels
further printing if the user types Command-period. In this case you
should display an alert box to inform the user that the Command-period
option is available. It's suggested, however, that instead of relying
on this method, you supply your own background procedure to give the
user a more convenient way to cancel printing. For instance, you might
put up a dialog box with a Cancel button the user can click with the
mouse; or, in a background procedure that runs your application, you
might replace the Print command with Stop Print.

While printing from a spool file, the Printing Manager maintains a
printer status record in which it reports on the progress of the
printing operation:

TYPE TPrStatus = RECORD
iTotPages:
iCurPage:
iTotCopies:
iCurCopy:
iTotBands:
iCurBand:
fpgDirty:
flmaging:
hPrint:
pPrPort:
hPic:

END;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;
BOOLEAN;
THPrint;
TPPrPort;
PicHandle

{total number of pages}
{page being printed}
{number of copies}
{copy being printed}
{bands per page}
{band being printed} .
{TRUE if started printing'page}
{TRUE if imaging}
{print record}
{printing port}'
{used internally}

FPgDirty is TRUE if anything has been printed yet on the current page,
FALSE if not; fImaging is TRUE while a band is being imaged, FALSE
while it's being printed. HPrint is a handle to the print record for
this printing operation; pPrPort is a pointer to the printing port.

Your background procedure can use this information--for example, to
display a progress report on the screen ("Now printing copy ,3 of 5,
page 7 of 12 II) •

(note)
The Printing Manager only calls your background procedure
while it's printing. If you want your background
procedure to execute during spooling, you'll have to call
it yourself.

Advanced programmers can use background processing in a variety of
useful ways. For example, with a' background procedure that performs
one pass through your main program loop, you can achieve ~he effect of
concurrent printing. That is, your' application can continue to run
while the printing is taking place, although there may be some
degradation in performance. The user is given the illusion that the
printing is going on "in the background" behind the application. (In
reality, of course, it's the application that's running in the,
background behind the printing task.)

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.I.2

18 Printing From Macintosh Applications

(warning)
You have to be careful in the way you write your
background procedure, to avoid a number of subtle
concurrency problems that may arise. For instance, if
the background procedure uses QuickDraw, it must be sure
to restore the printing port as the current port before
returning. It's particularly important not to attempt
any printing from within the background procedure: the
Printing Manager is not reentrant! If you use a
background procedure 'that runs your application
concurrently with printing, it should disable all menu
items having to do with printing, such as Page Setup and
Print.

USING THE PRINTING MANAGER

This section discusses how the Printing Manager routines fit into the
general flow of your program and gives you an idea of which routines
you'll need to use. The routines themselves are described in detail in
the next section.

To use the Printing Manager, you must have previously initialized
, QuickDraw, the Font Manager, the Window Manager, the Menu Manager,

TextEdit, and the Dialog Manager. The first Printing Manager routine
to call is PrOpen, which opens the printer resource file. The last
routine to call is PrClose, which closes the Printer Driver and the
printer resource file.

(note)
PrOpen and PrClose are meant to be called once each, at
the beginning and end of your application. However, if
space is particularly critical, you may prefer to bracket
every Printing Manager call with a PrOpen and a PrClose.
This frees the space occupied by various Printing Manager
data structures when they're not in use.

Before printing a document, you need a properly filled out print
record. You can either use an existing print record (for instance,
from a document) or initialize one to the current default settings by
calling PrintDefault. If you use an existing print record, you should
call PrValidate to make sure it's valid for the current version of the
Printing Manager and for the currently installed printer.

When the user chooses the Page Setup commmand, call PrStlDialog to ask
about the paper size and page orientation. From the printer
information subrecord you can then determine where each page break
occurs.

When the user chooses the Print commmand, call PrJobDialog to ask the
user for specific information about that printing job. To apply the
results ,of one job dialog to several documents (when printing from the
Finder, for example), call PrJobMerge.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

USING THE PRINTING MANAGER 19

To draft print or spool a document, begin by calling PrOpenDoc, which
'returns a printing port customized for draft printing or spooling
(depending on the bJDocLoop field of the job subrecord). You can then
print or spool your document by "drawing" into this printing port with
QuickDraw, using the values in the printer information subrecord to
adjust for the parameters of the printer. Call PrOpenPage and
PrClosePage at the beginning and end of each page, and PrCloseDoc at
the end of the entire document. Each page is either printed
immediately (draft printing) or written to the disk as part of a spool
file (spooling).

To print a spool file, swap as much of your program out of " memory as
you can, and then call PrPicFile.

Call PrError to check for errors caused by a Printing Manager routine.
To' cancel a printing operation in progress, use PrSetError. Be sure to
call PrCloseDoc or PrClosePage after you cancel printing in progress.

PRINTING MANAGER ROUTINES

This section describ~s the procedures and functions that make up the
Printing Manager. They're presented in their Pascal form; for
information on using them from assembly language, see Programming
Macintosh Applications in AssemblY Language.

Initialization and Termination

PROCEDURE PrOpen;

PrOpen prepares the Printing Manager for use. It opens the Printer
Driver and the printer resource file. If either of these items is
missing, or if the printer resource file is not properly formed, PrOpen
will do nothing, and PrError will return a Resource Manager result
code.

PROCEDURE PrClose;

PrClose releases the memory used by the Printing Manager. It closes
the printer resource file, allowing the file's resource map to be
removed from memory. It *** currently *** doesn't close the Printer
Driver, however, since the driver may have been opened before the
PrOpen call was issued.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

20 Printing From Macinlosh Applications

Print Records and Dialogs

PROCEDURE PrintDefault (hPrint: THPrint);

PrintDefault fills the fields of a print record with the current
default values stored in the printer resource file. HPrint is a handle
to the record, which may be a new print record that you've just
allocated or an existing one (from a document, for example) •.

FUNCTION PrValidate (hPrint: THPrint) : BOOLEAN;

PrValidate checks the contents of a print record for compatibility with
the current version of the Printing Manager and with the installed
printer. If the record is valid, the function returns FALSE (no
change); if invalid, the record is adjusted to the current default
valu~s, taken from the printer resource file, and the function returns
TRUE.

piValidate, also updates the print record to reflect the current
settings in the style and job subrecords. These changes have no effect
on the function's Boolean result.

FUNCTION, PrStlDialog (hPrint: THPrint) : B,OOLEAN;

PrStlDialog conducts a style dialog with the user to determine the
paper size and paper orientation being used. The initial settings
displayed in the dialog box are taken from the current values in the
print record. If the user confirms the dialog, the results of the
dialog are saved in the print record and the function returns TRUE;
otherwise the print record is left unchanged and the function returns
FALSE.

(note)
If ,the print record was taken from a document, you should
update its contents in the document's file if, PrStlDialog
returns TRUE. This makes the results of the style dialog
"stick" to the document.

FUNCTION PrJobDialog (hPrint: THPrint) BOOLEAN;

PrJobDialog conducts a job dialog with the user to determine the
printing quality, number of pages to print, and so on. The initial
settings displayed in the dialog box are taken from the current values
in the print record. If the user confirms the dialog, both the print
record and the printer)resource file are updated (so that the user's
choices "stick" to the printer) and the function returns TRUE;
otherwise the print record and printer resource file are left unchanged
and the function returns FALSE.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

(note)

PRINTING MANAGER ROUTINES 21

If the job dialog is associated with your application's
Print command. you should proceed with the requested
printing operation if PrJobDialog returns TRUE. If the
print record was taken from a document, you should update
its contents in the document's file.

PROCEDURE PrJobMerge (hPrintSrc,hPrintDst: THPrint);

PrJobMerge copies the job subrecord from one print record (hPrintSrc)
to another (hPrintDst) and updates the destination record's printer
information, band information. and paper rectangle. based on
information in the job subrecord. This allows the information in the
job subrecord to be used for a group of related jobs.

Draft Printing and. Spooling

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort.; pIOBuf: Pt~)
: TPPrPort;

PrOpenDoc initializes a printing port for use in printing a document,
makes it the current port, and returns a pointer to it. HPrint is a
handle to the print record for this printing operation. The printing
port is customized for draft printing or spooling. depending on the
setting of .the bJDocLoop field in the job subrecord. For spooling, the
spool file's name, volume reference number. and version number are
taken from the job subrecord.

PPrPort is a pointer to the storage to be used for the printing port.
If this parameter is NIL, PrOpenDoc will allocate a new printing port
for you. Similarly, pIOBuf points to an area of memory to be used as
an input/output buffer; if it's NIL. PrOpenDoc will use the volume
buffer for the spool file's volume.

(note)

(note)

The pPrPort and pIOBuf parameters are provided because
. both the printing port and the input/output buffer are
nonrelocatable objects. To avoid cluttering the heap
with such objects. you have the opportunity to allocate
them yourself and pass them to PrOpenDoc. Most qf the
time you'll just set both of these parameters to NIL.

Newly created printing ports use the system font (since
they're grafPorts), but newly created windows use the
application font. Be sure the font you use in the
printing port is the same as the font in your application
window if you.want the text in both places to match.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

22 Printing From Macintosh Applications

(,

PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect);

PrOpenPage begins a new page in the document associated with the given
printing port •. The page is printed only if it falls within the page
range designated in the job subrecord.

For spooling, the pPageFrame parameter points to a rectangle that will
be used as the QuickDraw picture frame for this page:

TYPE TPRect = ARect;

When the spool file is later printed, this rectangle will be scaled
(via the QuickDraw DrawPicture procedure) to coincide with the page
rectangle in the printer information subrecord. Unless you want the
printout to be scaled, you should set pPageFrame to NIL--this uses the
current page rectangle as the picture frame, and the page will be'
printed with no scaling.

PROCEDURE PrClosePage (pPrPort: TPPrPort);

PrClosePage finishes up the current page of the document associated
with the given printing port. For draft printing, it ejects the page
from the printer and, if necessary, alerts the user to insert another;
for spooling~ it closes the picture representing the current page.

PROCEDURE PrCloseDoc (pPrPort: TPPrPort);

PrCloseDoc finishes up the printing of the document associated with the
given printing port. For draft printing, it issues a form feed and a
reset command to the printer;. for spooling, it closes the file if the
spooling was successfully completed or deletes it the file if the
spooling was unsuccessful.

Spool Printing

PROCEDURE PrPicFile (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr;
pDevBuf: Ptr; VAR prStatus,: TPrStatus);

PrPicFile images and prints a spool file. HPrint is a handle to the
print record for this printing operation. The name, volume reference
number, and version number of the spool file will be taken from the job
subrecord of this print record. After printing is successfully
completed, the Printing Manager deletes the spool file from the disk.

PPrPort is a pOinter to the storage to be used for the printing port
for this operation. If this parameter is NIL, PrPicFile will allocate
its own printing port. Similarly, pIOBuf. points to an area of memory
to be used as an input/output buffer for reading the spool file; if
it's NIL, PrPicFile will use the volume buffer for the spool file's

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

PRINTING MANAGER ROUTINES 23

volume. PDevBuf points to a similar buffer (the "band buffer") for
holding the bit image to be printed; if NIL. PrPicFile will allocate
its own buffer from the heap. As for PrOpenDoc. you'll normally want
to set all of these storage parameters to NIL.

(note)
If you provide your own storage for pDevBuf. it has to be
big enough to hold the number of bytes indicated by the
iDevBytes field of the TPrXInfo sub record of the print
record.

(warning)
Be sure not to pass, in pPrPort. a pointer to the same
printing port you received from PrOpenDoc. the one you
originally used to spool the file. If that earlier port
was allocated by PrOpenDoc itself (that is. if the
pPrPort parameter to PrOpenDoc was NIL), then PrCloseDoc
will have disposed of the- port, makIng your pointer to it
invalid. PrPicFile initializes a fresh printing port of
its own; you just provide the storage (or let PrPicFile
allocate it for itself). Of course, if you earlier
provided your own storage to PrOpenDoc, there's no reason
you can't uSe the same storage again for PrPicFile.

The prStatus parameter Is a_printer status record that PrPicFile will
use to report on its progress. Your background procedure (if any) can
use this record to monitor the state_ of the printing operation.

Handling Errors

FUNCTION PrError : INTEGER; [Pascal only]

PrError returns the result code returned by the last Printing Manager
routine. The possible result codes are:

CONST noErr = 0; {no error}
iMemFullErr ~. -108; {not enough heap space}

and any Resource Manager result code. A result ~ode of iMemFullErr
means that the Memory Manager was unable to fulfill a memory allocation
request by the Printing Manager.

PROCEDURE PrSetError (iErr: I~TEGER); [Pascal only]

PrSetError stores the specified value into the global variable where
the Printing Manager keeps its result code. The main *** (currently
the only) *** use of this procedure is for canceling a printing
operation in progress. To do this, write

6/11/84 Chernicoff-Hacker /PRIN~ING/PRINT.U

24 Printing From Macintosh applications

PrSetError(iPrAbort)

where iPrAbort is the following predefined constant:

CONST iPrAbort - 128; {result code for halting printing}

Assembly-language~: You can achieve the same effect as
PrSetError by storing directly into the location specified by
printVars+iPrErr. *** Currently you shouldn't store into this
location if it already contains an nonzero value. ***

Low-Level Driver Access

The routines in this section are used for communicating directly with
the Printer Driver; the Printer Driver itself is described in the next
section. You'll need to be familiar with the Device Manager to use the
information given in this section.

PROCEDURE PrDrvrOpen;

PrDrvrOpen opens the Printer Driver.

PROCEDURE PrDrvrClose;

PrDrvrClose closes the Printer Driver.

PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParam1,lParam2,lParam3:
Longlnt);

PrCtlCall calls the Printer Driver's contro~ routine. IWhichCtl
designates the operation to be performed; the ,rest of the parameters
depend on the ·operation.

FUNCTION PrDrvrDCE : Handle;

PrDrvrDCE returns a handle to the Printer Driver's device control
entry.

FUNCTION PrDrvrVers : INTEGER;

PrDrvrVers returns the version number of the Printer Driver in the
system resource file.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.U

PRINTING MANAGER RQUT!NFS 25

The version number of the Printing Manager is available as the
predefined constant iPrRelease. You may want to compare the result of
PrDrvrVers with iPrRelease to see if the Printer Driver in the resource
file is the most recent version.

PROCEDURE PrNoPurge;

PrN~Purge prevents the Printer Driver from being purged from the heap.

PROCEDURE PrPurge;

PrPurge allows the Printer Driver to be purged from the heap.

THE PRINTER DRIVER

This section describes the Printer Driver, the device driver that
communicates with a printer via the printer port or the modem port.
Only programmers interested in low-level printing or writing their own
device driver need r~ad this. You'll need to be familiar with the
Device Manager manual to use most of this information and the low-level
routines described above.

The printer resource file for each variety of printer includes a device
driver for that printer. When a particular printer is installed in the
Printing Manager, the printer's device driver is copied from the
printer resource file into the system resource file, making it the
active Printer Driver.

The Printer Driver responds to the standard Device Manager calls
OpenDriver, CloseDriver, Control, and Status. You can also communicate
with it via. the Printing Manager routines PrDrvrOpen, PrDrvrClose, and
PrCtlCall. (The Status call is normally used only by the Font
Manager.) Its driver name and driver reference number are available as
the following predefined constants:

CONST sPrDrvr ~ '.Print'; {Printer Driver resource name}
iPrDrvrRef = -3; {Printer Driver reference number}

To open the Printer Driver, call PrDrvrOpen; it'll remain open until
you call PrDrvrClose. Calling PrNoPurge will prevent the driver from
being purged from the -heap until you call PrPurge.

You can call the PrDrvrVers function to determine whether the 'printing
resources stored in the system resource file are compatible with the
version of the Printing Manager you're using.

To get a handle to the driver's device control entry, call PrDrvrDCE.
By calling the driver's control routine with PrCtlCall"you can perform
a number of low-level printing operations such as bitmap printing,
screen printing, and direct streaming of text to the printer (described

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

26 Printing From Macint~8h Applications

below). The first parameter to PrCtlCall, iWhichCtl, identifies the
operation you want. The following values are predefined:

CONST iPrBitsCtl - 4; {bitMap printing}
iPrIOCtl - 5; {text streaming}
iPrEvtCtl - 6; {screen printing}
iPrDevCtl - 7; {device control}
iFMgrCtl a 8; {used by the Font Manager}

The remaining parameters of PrCtlCall--lParam1, lParam2, and 1Param3-
are three long integers whose meaning 'depends on the operation, as
described below.

BitMap Printing

To send all or part of a bitMap directly to the printer, use PrCt1Ca11
with iWhichCtl - iPrBitsCt1. Parameter 1Param1 is a pointer to a
QuickDraw bitMap; lParam2 is a pointer to the rectangle to be printed,
in the coordinates of the printing port.

LParamJ is a printer-dependent parameter. On the Imagewriter it's used
to control the printer's aspect ratio (the, ratio of horizontal to
vertical resolution). In low resolution, the Imagewriter normally
prints 80 dots per inch horizontally by 72 vertically. This produces
rectangular dots that are taller than they are wide. Since the
Macintosh screen has square pixels (72 per inch both horizontally and
vertically), images printed on the Imagewriter don't look exactly the
same as they do on the screen.

To address this problem, the Imagewriter has a special square-dot mode
that alters the speed of the ~rint head to produce 72 dots per inch
horizontally instead of 80. Printing in this mode is slower than in
the normal mode, but gives a more faithful reproduction of what the
user sees on the screen. The user can choose~which of the two modes to
use by using the Printer program.

The value of the lParam3 parameter should be one of the following
predefined constants:

CONST lScreenBits = 0; {configurable}
lPaintBits - 1; {72,by 72 dots}

LScreenBits tells the Printer Driver to honor the user's selection
between rectangular and square dots; lPaintBits overrides the user's
choice and forces square dots.

Putting all this together, you can print the entire screen at the
user's chosen aspect ratio with

PrCtlCall(iPrBitsCt1, ORD(@screenBits),
ORD(@screenBits.bounds), lScreenBits)

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

THE PRINTER DRIVER 27

To print the contents of a single window in square dots, use

PrCtlCall(iPrBitsCtl, ORD(@theWindowA.portBits),
ORD(@theWindowA.portRect), IPaintBits)

Text Streaming

Text streaming is useful for fast printing of text when speed is more
important than fancy formatting or visual fidelity. It gives you full
access to the printer's native text facilities, such as control or
escape sequences for boldface, italic, underlining, or condensed or
expanded type, but makes no use of QuickDraw's elaborate formatting
capabilities.

(warning)
Relying on specific printer capabilities and control
sequences will make your application printer-dependent.

You can send a st~eam of text characters directly to the printer with
iWhichCtl = iPrIOCtl. LParaml is a ,pointer to' the begi~ning of the
text; IParam2 is the number of bytes to transfer (a long integer);
lParam3 is a pointer to an optional background procedure, or NIL for
,none.

IPrDevCtl is used for various printer control operations. When
streaming text to the printer, you can use iPrDevCtl to perform these
general operations in a printer-independent way, letting the Printer
Driver take care of the details for a specific printer. The lParaml
parameter specifies the operation you want:

CONST IPrReset ~ $00010000;
IPrPageEnd = $0~~2~~~~;
lPrLin~Feed ~ $0~~30~0~;

{reset printer}
{start new page}
{start new line}

Before starting to print a document with text streaming, use

PrCtICall(iPrDevCtl, IPrReset, 0, 0)

to reset the printer to its standard initial state. The parameters
IParam2 and IParam3 are meaningless and should be set to 0.

At the end of each printed line,

PrCtlCall(iPrDevCtl, IPrLineFe'ed, 0, 0)
(

advances the paper one line and returns to the left margin. This
achieves the effect of the standard "CRLF" (carriage-return-line-feed)
sequence in a printer-independent way. It's strongly recommended that
you use this method instead of sending carriage returns and line feeds
directly to the printer. The lParam2 parameter tells how far to
advance the paper; lParamJ is meaningless and should be set to 0.
*** The exact use of lParam2 in this call hasn't yet been determined.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

28 Printing From Macintosh Applications

A value of 0 will probably denote the printer's standard line height,
which is usually what you'll want. ***
At the end of each page,

PrCtlCall(iPrDevCtl, lPrPageEnd, 0, 0)

does whatever is appropriate for the given printer, such as sending a
form feed character and advancing past the paper fold. It's
recommended that you use this call instead of just sending a form feed
yourself. LParam2 and lParam3 are meaningless and should be set to 0.

Screen Printing

IPrEvtCtl does an immediate dump of all or part of the screen directly
to the printer. LParam1 is one of the following codes:

CONST iPrEvtAll - $00~2FFFD;
iPrEvtTop = $0001FFFD;

{print whole screen} .
{print top (frontmost) window}

The other two parameters are meaningless and should be set to 0. So,
for example"

PrCtlCall(iPrEvtCtl, iPrEvtAll, 0, 0)

prints the entire screen at the user's chosen aspect ratio, and

PrCtlCall(iPrEvtCtl, iPrEvtTop, 0, 0):

prints just the frontmost window.

The Operating System Event Manager uses this call to do immediate
screen printing when the user types a special key combination
(Command-$ for the frontmost window, the same with Caps Lock for the
full screen).

Font Manager Support

The Printer Driver provides one Status and one Control call for use by
the Font Manager in 'selecting fonts for a given printer. Both are
identified by the following csCode value

CONST iFMgrCtl = 8;

With the Status call, the Font Manager asks for the printer's font
characterization table. After using the information in this table to
select a font, it issues the Control call to give the Printer Driver a
chance to modify the choice. This process is described further in the
Font Manager manual.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

PRINTING RESOURCES 29

PRINTING RESOURCES

For programmers who want to write their own device drivers for
different printers or modify existing drivers, this section describes
the two files that contaln the resources needed to run the Printing
Manager: the system resource file and the printer resource file (see
Figure 7). Most of the data described in this section is accessible
only to assembly-language programmers.

System rescuce Ii Ie

printer resolI'ce file name -_ ...

device driver (copy)

o-iver's private data
storage (copy)

Printer resotrce file

device driver (original)

c:river s PI" ivste data
storage (original)

printer-specific ~

default print record

last print record

default spool file name

dielOQ$ end elens

Figure 7. Printing Resources

The system resource file contains:

Resource
Name of the current printer
resource file

A copy of the device driver for
the currently installed printer

A copy of the driver's private
data storage

Resource type
'STR '

'DRVR'

'PREC'

Resource ID
$E~~~

2

2

The printer resource file contains the following information:

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

30 Printing From Macintosh Applications

Resource
The device driver for this
printer

The driver's private storage

Printer-specific code used to
implement Printing Manager
routines

Default print record for use
with this printer

Print record from the previous
printing operation

Default spool file name

Style dialog

Job dialog

Installation dialog

Alerts

Dialog and alert item lists

Resource type
'DRVR'

'PREC'

'PDEF'

'PREC'

'PREC'

'STR '

'DLOG'

'DLOG'

'DLOG'

'ALRT'

'DITL'

Resource ID
$E00~

o through 6
(see below)

1

$E001

$E000

$E001

$E002

(private)

(private)

Notice that the Printer Driver and its private storage are kept in both
the system and printer resource files. The copies in the system
resource file are the ones actually used; thQse in the printer resource
file are there just to be copied into the system reaource file when a
new printer is installed. Installing a new printer is done by copying
the driver and its private storage from the printer resource file to
the system resource file and placing the name of the printer resource
file in the system resource file. (You can use this method to install
a printer yourself,- but normally it's done by the Printer program at
the user's request.)

You can use the following predefined constants to identify the various
resource types and IDs in the printer resource file (they'll be
different in the system resource file):

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

CONST IPrintType - $50524543;

iPrintDef - 0;
iPrintLst - 1;
iPrintDrvr =- 2;

iMyPrDrvr = $E000j

iPStrRFil
iPStrPFil

iPrStlDlg
iPrJobDlg

=- $E000j
=- $E001;

= $E000j
::II $E001j

PRINTING RESOURCES 31

{type ('PREC') for print. records and}
{ private storage}
{ID for default print record}
{ID for previous print record}
{ID for Printer Driver and its private }
{ storage in system resource }
{ file}
{ID for Printer Driver and its private }
{ storage }

{ID for printer resource file name}
{ID for default spool file name}

{ID for style dialog}
{ID for job dialog}

The most important items in a printer resource file are the Printer
Driver and the printer-specific code. The driver has the standard
structure for device, drivers, as described in the Device Manager
manual, and implements the Control and Status calls as discussed above
under "The Printer Driver".

The printer-specific code is kept in a series of separate overlays.
They are all of resource type 'PDEF', and their resource IDs are
available to assembly-language programmers as the following predefined
constants:

iPrDraftID .EQU 0 ;draft printing
iPrSpoolID .• EQU 1 jspooling
iPrUserlID .EQU 2 ;printer-specific printing, method 1
iPrUser2ID .EQU 3 jprinter-specific printing, method 2
iPrDlgsID .EQU· 4 jprint records and dialogs
iPrPicID .EQU 5 ;spool printing

Overlays 0 and 1 do draft printing and spooling, respectivelYj overlays
2 and 3, if present, provide additional printing methods for a
particular printer. All' four overlays include the same routines, but
implement them in different ways for the different printing methods.
When one of the routines is called, the Printing Manager uses the
bJDocLoop field in the job subrecord to decide which overlay to use.
Each overlay begins with a list of offsets to the locations of the
routines within that overlay.

lOpenDoc
lCloseDoc
lOpenPage
lClosePage

.EQU

.EQU

.EQU

.EQU

$000c0000
$0.0048004
$00080008
$.00"40"0c

jPrOpenDoc
j PrClose Doc
;PrOpenPage
jPrClosePage

This list is followed by the code of the routines themselves.

Overlay 4 contains the Printing Manager's routines for manipulating
prin~ records and dialogs:

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.D

32 Printing From Maci~tosh Applications

lDefault .EQU $~~04800~ ;PrintDefault
lStlDialog .EQU $0~0480~4 ;PrStiDialog
lJobDialog .EQU $~~0480~8 ;PrJobDialog
lStllnit .EQU $00~4~00C ;PrStllnit
lJoblnit .EQU $00040010 ;PrJoblnit
lDlgMain .EQU $00048014 ;PrDlgHain
lValidate .EQU $~0048018 ;PrValidate
lJobMerge .EQU $00~88~lC ;PrJobMerge

*** PrStllnit, PrJoblnit, and PrDlgMain are used in customizing the
dialogs, and will be covered in a later draft of this manual. ***
Overlays 5 contains just the spool-printing routine PrPicFile (it's
still preceded by an offset, nowever):

IPrPicFile .EQU $0014800~ ;PrPicFile

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

SUMMARY OF THE PRINTING MANAGER 33

SUMMARY OF THE PRINTING MANAGER

Constants

CONST { Result codes }

iMemFullErr ~ -1~8; {not enough heap space}
noErr ~~; {no error}

{ Printing methods }

bDraftLoop = ~;
bSpoolLoop ~ 1;
bUserlLoop ~ 2;
bUser2Loop ~ 3;

{draft printing}
{spooling}
{printer-specific, method I}
{printer-specific, method 2}

{ Printer Driver Control call parameters }

iPrBitsCtl ~ 4; {bitMap printing}
IScreenBits ~ 0; {configurable}
IPaintBits = 1 ; {72 by 72 dots}
iPrIOCtl ~ 5; {text streaming}
iPrEvtCtl = 6; {screen printing}
iPrEvtAlI = $0002FFFD; {print whole screen}
iPrEvtTop = $0001FFFD; {print top (frontmost)
IPrDevCtl = 7; {device control}
IPrReset _ = $00~1~0~~; {reset printer}
IPrPageEnd = $~~~20000; {start new page}
IPrLineFeed = $~0030000; {start new line}

window}

iFMgrCtl = 8; {used by the Font Manager}

{ Miscellaneous }

IPFMaxPgs = 128; {maximum number of pages in a spool
iPrPgFract = 120; {units per inch of paper dimension}
iPrAbort = 128; {result code for halting printing}
iPrRelease ~ 2; {current version number of Printing

{ Manager}
lPfType = $5046484C; {spool file type 'PFIL'}
lPfSig = $50535953; {spool file creator 'PSYS'}

{ Printing resources }

sPrDrvr = '.Print'; {Printer Driver resource name}
iPrDrvrRef - -3; {Printer Driver reference number}
lPrintType = $50524543; {type ('PREC') for print records}

iPrintDef = 0;
iPrintLst = 1;
iPrintDrvr = 2;

. { and private storage}
{ID for default print record}
{ID for previous print record}
{ID for Printer Driver and its }
{ private storage in system }

file}

}

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

34 Printing From Macintosh Applir.ations

iMyPrDrvr a $E000;

iPStrRFil ~ $E00~;
iPStrPFil ~ $E001;
iPrStlDlg = $E0~0;
iPrJobDlg = $E001;

Data Types

TYPE TPStr80 = ATStr80;
TStr80 = STRING[80];

TPRect =- ARect;

TPPrPort = ATPrPort;
TPrPort = RECORD

{ resource file}
{ID for Printer Driver and its }
{ private storage in printer }
{ resource file}
{ID for printer resource file name}
{ID for default spool file name}
{ID for style dialog}
{ID for job dialog}

gPort: GrafPort; {grafPort to draw in}
gProcs: QDProcs; {pointers to drawing routines}
{more fields for internal use only}

END;

TPPort a PACKED RECORD
CASE INTEGER OF

THPrint
TPPrint
TPrint

0: (pGPort: GrafPtr);
1: (pPrPort: TPPrPort)

END;

ATPPrint;
= ATPrint;
=- RECORD

iPrVersion:
prInfo:
rPaper: .
prStl:
prInfoPT:
prXInfo:
prJob:
printX:

END;

INTEGER; {Printing Manager version}
TPrInfo; {printer information}
Rect; {paper rectangle}
TPrStl; {style information}'
TPrInfo; {copy of PrInfo}
TPrXInfo; {band information}
TPrJob; {job information}
ARRAY [1 •• 19] OF INTEGER

{used internally}

TPrInfo a RECORD
iDev: INTEGER; {driver information}
iVRes: INTEGER; {printer vertical resolution}
iHRes: INTEGER; {printer horizontal resolution}
rPage: Reet {page rectangle}

END;

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

SUMMARY OF,THR PRIN!ING MANAGER 35

TPrStl - RECORD
wDev:
iPageV:
iPageH:
bPort:
feed:

!Word;
INTEGER;
INTEGER;
SignedByte;
TFeed

{used internally}
{paper height}
{paper width}
{printer or modem port}
{paper type}

END;

TFeed ~ (feedCut. {hand-fed. individually cut sheets}
feedFanfold. {continuous-feed fanfold paper}
feedMechCut. {mechanically fed cut sheets}
feedOther); {other types of paper}

TPrJob ~ RECORD
iFstPage:
iLstPage:
iCopies:
bJDocLoop:
fFromUsr:
pIdleProc:
pFileName:
iFi).eVol:
bFileVers:
bJobX:

END;

TPrXInfo ~ RECORD
iRowBytes:
iBandV:
iBandH:
iDevBytes:
iBands:
bPatScale:
bUlThick:
bUIOffset:
bUlShadow:
scan:
bXInfoX:

END;

INTEGER; {first page to print}
INTEGER; {last page to print}
INTEGER; {number of copies}
SignedByt~; {printing method}
BOOLEAN; {TRUE if called from application}
ProcPtr; {background procedure}
TPStr8~; {spool file name} .
INTEGER; {volume reference number}
SignedByte; {version number of spool file}
SignedByte {not used}

INTEGER; I {bytes per row}
INTEGER; {vertical dots}
INTEGER; {horizontal dots}
INTEGER; {size of bit image}
INTEGER; {bands per page}
SignedByte; {used by QuickDraw}
SignedByte; {underline thickness}
SignedByte; {underline offset}
SignedByte; {underline descender}
TScan; '{scan direction}
SignedByte {not used}

TScan - (scanTB. {scan top to bottom}
scanBT. {scan bottom to top}
scanLR. {scan bottom to top}
scanRL); {scan right to 'left}

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

36 Printing From Macintosh Applications

{total number of pages}
{page being printed}
{number of copies}
{copy being printed}
{bands per page}
{band belng printed}

TPrStatus - RECORD
iTotPages:
iCurPage:
iTotCopies:
iCurCopy:
i~otBands:

iCurBand:
fPgDirty:
fImaging:
hPrint:
pPrPort:
hPic:

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;
BOOLEAN;
THPrint;
TPPrPort;
PicHandle

{TRUE if started printing page}
{TRUE if imaging}
{print record}
{printing port}
{used internally}

END;

Routines

Initialization and Termination

PROCEDURE PrOpen;
PROCEDURE PrClose;

Print Records and Dialogs

PROCEDURE Print Default (hPrint: THPrint);
FUNCTION PrValidate (hPrint: THPrint) BOOLEAN;
FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN;
FUNCTION PrJobDialog (hPrint: THPrint) : BOOLEAN;
PROCEDURE Pr~obMerge (hPrintSrc,hPrintDst: THPrint);

Document Printing

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort: TPPrPort; pIOBuf:
TPPrPort;

PROCEDURE PrCloseDoc (pPrPorr: TPPrPort);
PROCEDURE PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect) ;
PROCEDURE PrClosePage (pPrPort: TPPrPort);

. Spool Printing

Ptr)

PROCEDURE PrPicFile (hPrint:' THPrint; pPrPort: TPPrPort; pIOBuf: Ptr;
pDevBuf: Ptr; VAR prStatus: TPrStatus);

Handling Errors [Pascal only]

FUNCTION PrError: INTEGER;
PROCEDURE PrSetError (iErr: INTEGER);

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

Low-Level Driver Access

PROCEDURE PrDrvrOpen;
PROCEDURE PrDrvrClose;

SUMMARY OF THE PRINTING MAl~AGER 37

PROCEDURE PrCtlCall (iWhichCtl: INTEGER; lParaml.lParam2.1Param3:

FUNCTION PrDrvrDCE
FUNCTION PrDrvrVers
PROCEDURE PrNoPurge;
PROCEDURE PrPurge;

Resource File Contents

System Resource File

Resource

LongInt) ;
Handle;
INTEGER;

Name of the current printer
resource f'il:e

A copy of the device driver for
the currently installed printer

A copy of the driver's private
data storage

'~'

6/11/84 Chernicoff-Hacker

Resource type
'STR '

'DRVR'

'PREC'

Resource ID
-8192

2

2

/PRINTING/PRINT.S

38 Printing From Macictosh Applications

Printer Resource File

Resource Resource tIl!e Resource ID
Original copy of the device
driver for this printer

Original copy of the driver's
private storage

Printer-specific code used to
implement Printing Manager
routines

Default print 'record for use
with this printer

Print record from the previous
printing operation

Default spool file name

Style dialog

Job dialog

Installation dialog

Alert definitions

Dialog and alert item lists

Assembly-Language Information

Constants

; Result codes

iMemFullErr
noErr

.EQU

.EQU

; Printing methods

-108
(6

'DRVR'

'PREC'

'PDEF' (6

'PREC'

'PREC'

'STR '

'DLOG'

'DLoo'

'DLOG'

'ALRT'

'DITL'

;not enough heap space
;no error

bDraftLoop
bSpoolLoop
bUserlLoop
bUser2Loop

.EQU

.EQU
.EQU
.EQU

o
1
2
3

;draft printing
; spooling
;printer-specific, method 1
;printer-specific, method 2

; Printer Driver Control call parameters

iPrBitsCtl .EQU 4 ;bitMap printing

6/11/84 Chernicoff-Hacker

-8192

-8192

through 6
\,

1

-8191

-8192

-8191

-819~

(private)

(private)

/PRINTING/PRINT~S

IScreenBits
IPaintBits
iPrIOCtl
iPrEvtCtl
iPrEvtAll
iPrEvtTop
iPrDevCtl
IPrReset
IPrPageEnd
IPrLineFeed
iFMgrCtl

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

; Miscellaneous

iPrintSize .EQU
iPrPortSize .EQU
iPrStatSize .EQU
iPrAbort .EQU
iPrRelease .EQU

IPfType .EQU
IPfSig .EQU

; Printing resources

iPrDrvrRef .EQU
IPrintType .EQU

iPrintDef .EQU
iPrintLst .EQU
iPrDrvrID .EQU

IPStrType .EQU

iPStrRFll .EQU

iPStrPFil .EQU
iPrStlDlg .EQU
iPrJobDlg .EQU

~
1
5
6
$~0FFFFFD
$0~FEFFFD
7
1
2
3
8

SUKHARY OF THE PRINTING MANAGER 39

configurable
; 72 by 72 dots
;text streaming
;screen printing

print whole screen
; print top (frontmost) window
;device control

reset printer
start new page

; start new line
jused by the Font Manager

120 ;length of print record
178 ;length of printing port
26 ;length of printer status record
128 ;result code for halting printing
2 ;current version number of Printing

; Manager
$5046484C ;file type ('PFIL') for spool files
$5~535953 ;signature (.'PS~S') of Printer program

-3 ;Printer Driver reference number
$50524543 ;type ('PREC') for print records

; and private storage
0 ;10 for default print rec~rd
1 ;10 for previous print record
2 ;ID for Printer Driver and its

; private storage in system
; resource file

$5354522~ ;type 'STR ' for file name
; resources

$E0~(I ;ID for printer resource file
; name

$E0(11 ;'ID for default s'pool file name
$E0~~ ;ID for style dialog
$E(I(l1 ;ID for job dialog

; Resource IDs for code overlays

iPrDraftID .EQU' ~ ;draft printing
iPrSpoolID .EQU 1 ;spooling
iPrUserlID .EQU 2 ;printer-specific printing, method 1
iPrUser2ID .EQU 3 ;printer-specific printing, method 2
iPrDlgsID .EQU 4 ;print records and dialogs
iPrPicID .EQU 5 ;spool printing

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.' S

40 Printing From Macintosh Applications

; Offsets to document printing code overlays

lOpenDoc .EQU $0"0C0000 ;PrOpenDoc
lCloseDoc .EQU $00048004 ;PrCloseDoc
lOpet:lPage .EQU $00080008 jPrOpenPage
lClosePage .EQU $0"04000c ;PrClosePage

; Offsets to print record and dialog code overlays

lDefault .EQU $0004800" ;PrintDefault
lStlDialog .EQU $00048004 ;PrStlDialog
IJobDialog .EQU $00048008 ;PrJobDialog
lStllnit .EQU $0"04000c ;PrStllnit
lJoblnit .EQU $0"04001" ;PrJobInit
lDlgMain .EQU $0"048014 ;PrDlgHain
lValidate .EQU $00048018 ;PrValidate
lJobMerge .EQU $0008801C ;PrJobMerge

; Offset to spool printing code overlay

lPrPicFile

Printing Port

gPort
gProcs

Print Record

iPrVersion
prlnfo
rPaper
prStl
prJob

.EQU $00148"00 ;PrPicFile

GrafPort to draw in
Pointers to drawing routines

Printing Manager version
Printer information
Paper rectangle
Style information
Job information

Printer Information Subrecord

iDev
iVRes
iHRes
rPage

Driver information
Printer vertical resolution
Printer horizontal resolution
Page rectangle

Style Subrecord

iPageV
iPageH
bPort
feed

Paper height
Paper width
Printer or modem port
Paper type

6/11/84 Chernicoff-Hacker /PRINTI~G/PRINT.S

SUMMARY OF THE PRINTING MANAGER 41

Job Subrecord

iFstPage
iLstPage
iCopies
bJDocLoop
fFromApp
pIdleProc
pFileName

. iFileVol
bFileVers

First page to print
Last page to print
Number of copies
Printing method
Nonzero if called from application
Pointer to background procedure
Spool file name
Volume reference number
Version number spool file

Band Information Subrecord

iRowBytes
iBandV
iBandH
iDevBytes
iBands
bPatScale
bUlThick
bUlOffset
bUlShadow
scan

Bytes per row
Vertical dots
Horizontal dots
Size of bit image
Bands per page
Used by QuickDraw
Underline thickness
Underline offset
Underline descender
Scan direction

Printer Status Record

iTotPages
iCurPage
iTotCopies
iCurCopy
iTotBands
iCurBand
fPgDirty
fImaging
hPrint
pPrPort

Variables

1!!!!.

Total number of pages
Page being printed
Number of copies
Copy being printed
Bands per page
'Band being printed
Nonzero if started printing page
Nonzero if imaging
Print record
Printing port

Size Contents
printVars+iPrErr 2 bytes Cu~rent result code

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.S

42 Printing From Macintosh Applications

GLOSSARY

background procedure: A procedure passed to the Printing Manager to be
run during idle times in the printing process.

band: One of the sections into which a page is divided for imaging and
printing.

draft printing: Printing a document by using QuickDraw' calls to drive
the printer's character generator directly.

imaging: The process of converting an application's ,description of an
image (such as a QuickDraw picture) into an actual array of bits to be
displayed or printed.

job dialog: A dialog pertaining to one particular printing job;
conventionally, associated with the application's Print command.

landscape orientation: The positioning of a document in a printer with
the long dimension of the paper running horizontally.

page rect'angle: The rectangle marking the boundaries of' a printed page
image.

paper rectangle: The rectangle marking the boundaries of the physical
sheet of paper on which a page is printed.

portrait orientation: The positioning of a document in a printer with
the long dimension of the paper running vertically.

Printer: A special application program for printing spool files from a
disk and configuring different printers.

Printer Driver: The device ariver for the currently installed pri~ter •.

printer resource file: A file containing all the resources needed to
run the Printing Manager with a particular printer.

printer status record: A record used by the Printing Manager to report
on the progress of printing operations.

printing port: A special grafPort customized for printing instead of
drawing on the screen.

print record: A record containing all the information needed by the
Printing Manager to perform a particular printing job.

spool file: A disk file created as the result of spooling.

spooling: Writing a representation of a document's printed image to a
disk file, rather than directly to the printer.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.G

GLOSSARY 43

spool printing: Printing the image contained in a spool file.

style dialog: A dialog pertaining to the use of the printer for a
particular document; conventionally associated with the application's
Page Setup command.

6/11/84 Chernicoff-Hacker /PRINTING/PRINT.G

MACINTOSH USER EDUCATION

The Device Manager: A Programmer's Guide /DMGR/DEVICE

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
The Vertical Retrace Manager: A Programmer's Guide
Inside Macintosh: A Road Map
Programming Macintosh Applications in Assembly Language

Modification History: First Draft (ROM 7) Bradley Hacker 6/15/84

ABSTRACT

This manual describes the Device Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and devices. It also discusses interrupts.

2 Device Manager Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
4 About the Device Manager
6 Using the Device Manager
7 Device Manager Routines
7 High-Level Device Manager Routines
9 Low-Level Device Manager Routines
1~ Routine Parameters
13 Routine Descriptions
18 The Structure of a Device Driver
21 A Device Control Entry
22 The Unit Table
25 Writing .Your Own Device Drivers
26 Routines for Writing Drivers
28 A Sample Driver
3~ Interrupts
31 Level-1 (VIA) Interrupts
33 Level-2 (SCC) Interrupts
34 Writing Your Own Interrupt Handlers
3S Summary of the Device Manager
40 Glqssary

'Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Device Manager, the part of the Macintosh
Operating System that controls the exchange of information between a
Macintosh application and devices. It also discusses interrupts. ***
Eventually it will become part of the comprehensive Inside Macintosh
manual. *** General information about using and writing device drivers
can be found in this manual; specific information about the standard'r
Macintosh drivers is contained in separate manuals.

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the basic
concepts behind the Macintosh Operating System's Memory Manager.

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language
programmers only' is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an introduction to the Device Manager and what
you can do with it. It then discusses some basic concepts behind the
Device Manager: what devices and device drivers are and how they'r~
used.

A section on using the Device Manager introduces its routines and tells
how they fit into the flow of your application. This is followed by
detailed descriptions of all the commonly used Device, Manager routines,
their parameters, calling protocol, effects, side effects, and so on.

Following these descriptions are sections that provide information for
programmers who want to write their own drivers, including a discussion
of interrupts and a sample device driver.

Finally, there~s a summary of the Device Manager, for quick reference,
followed by a glossary of terms used in this manual.

ABOUT THE DEVICE MANAGER

The Device Manager is the part of the Operating System that'handles.
communication between applications and devices. A device is a part of
the Macintosh, or a piece of external equipment, that can transfer
information into or out of the Macintosh. Macintosh devices include
disk drives, two serial communications ports, the sound generator, and
printers. The video screen is not a device; drawing on the screen is
handled by QuickDraw.

There are two kinds of devices: character devices and block devices.
A character device reads or writes a stream of characters, one at a
time:' it can neither skip characters nor go back to a previous
character. A character device is used to get information from or send
information to the world outside of the Macintosh Operating System and

6/15/84 Hacker /DMGR/DEVICE.I

4 Device Manager Programmer'~ Guide

memory: it can be an input device, an output device, or an
input/output device. The serial ports and printers are all character
devices.

A block device reads and writes blocks of 512 characters at a time; it
can read or write any accessible block on demand. A block device is
usually used to store and retrieve information; disk drives are block
devices.

Applications communicate with devices through the Device Manager-
either directly, or indirectly through another Operating System or
Toolbox "Manager". For example, an application can communicate with a
disk drive directly via the Device Manager, or indirectly via the File
Manager (which calls the Device ~~nager). The Device Manager doesn't
manipulate devices directly; it calls device drivers that do (Figure
1). Device drivers are programs that take data coming from the Device
Manager and convert them into actions of devices, and convert device
actions into data for the Device Manager to process.

(- appi ica1ion

~ 1 . T
1..,-__ F_i_le_tv,-,i8.,.-n_8_g_er _J

1:
l'

I.. F'r i nt i ng M8n~Qe~)
.0- ...

... '

Dev ice Manager -)
'1 1'"
eo. ~, '-:1"

("

('J Disk'Driver J Pr inter Dr i ver
r •• _

' .• .,' r] ". ~.

("j ",--
") disk dri ... ··e (printer

' ' -'- .'

Figure 1. Communication with Devices

The Operating Sys tern include.s three standard device d ri vers in ROM:
the Disk Driver, the Sound Driver, and the ROM Serial Drivers. There
are also a number of standard RAM drivers: the Printer Driver, the RAM
Serial Drivers, and desk accessories. RAM drivers are resources, and
are read from the system resource file as needed.

You can add other drivers independently or build on top of the existing
drivers (for example, the Printer Driver is built on top of the Serial
Driver); the section "Writing Your Own Device Drivers" describes how to
do this. Desk accessories are a special type of device driver, and are
manipulated via the specialized routines of the Desk Manager.

6/15/84 Hacker /DMGR/DEVICE.I

ABOUT THE DEVICE MANAGER 5

(warning)
Information about desk accessories covered in the Desk
Manager manual will not be repeated here. Some
information in this manual may not apply to desk
accessories.

A device driver can be either open or closed. The Sound Driver and
Disk Driver are opened when the system starts up--the rest of the
drivers are opened at the specific request of an application. After a
driver has been opened, an application can read data from and write
data to the driver. You can close device drivers that are no longer in
use, and recover the memory used by th'em. Up to 32 device drivers may
be open at anyone time.'

Before it's opened, you identify a device driver by its driver name;
after it's opened, you identify it by its reference number. A driver
name consists of a period (.) followed by any sequence of 1 to 254
printing characters. A RAM driver's name is the same as its resource
name. You can use uppercase and lowercase letters when naming drivers,
but the Device Manager ignores case when comparing names (it doesn't
ignore diacritical marks).

(note)
Although device driver names can be quite long, there's
little reason for them to be more than a few characters
in length.

The Device Manager assigns each open device driver a driver reference
number, from -1 to -32, that's used instead of its driver name to refer
to it.

Most communication between an application and an open device driver
occurs by reading and writing data. Data read from a driver is placed
in the application's data buffer, and data written to a driver is taken
from the application's data bufffer. A data buffer is memory allocated
by the application for communication with drivers.

In addition to data that's read from or written to device drivers,
drivers may require or provide other information. . Information
transmitted to a driver by an application is called control
information; information provided by a ,driver is called status
information. Control information may select modes'of operation, start
or stop processes, enable buffers, choose protocols, and so on. Status
information may indicate the current mode of operation, the readiness
of the device, the occurrence of errors, and so on. Each- device driver
may respond to a number of different types of control information and
may provide a number of different types of status information.

Each of the standard Macintosh drivers includes predefined calls for
transmitting control information and receiving status information.
Explanations of these calls can be found in the manuals describing the
drivers.

6/15/84 Hacker /DMGR/DEVICE.U

\-

6 Device Manager Programmer's Guide

USING THE DEVICE MANAGER

This section discusses how the Device Manager routines for calling
device drivers fit into the general flow of an application program and
gives an idea of what routines you'll need to use. The routines
themselves are described in detail in the section "Device Manager
Routines". The Device Manager routines for writing device drivers are
described in the section "Writing Your Own Device Drivers"

You can call Device Manager routines via three different methods:
high-level Pascal calls, low-level Pascal calls, and assembly language.
The high-level Pascal calls are designed for Pascal programmers
interested ·in using the Device Manager in a simple manner; they provide
adequate device I/O and don't require much special knowledge to use.
The low-level Pascal and assembly-language calls are designed for
advanced Pascal programmers and assembly-language programmers
interested in using the Device Manager to its fullest capacity; they
require some special knowledge to be used most effectively.

(note)
The names used to refer to routines here are actually
assembly-language macro names for the low-level routines,
but the Pascal routini names are very similar.

The Device Manager is automatically initialized each time the system is
started up.

Before an application can exchange information with a device driver, it
must open the driver. ROM drivers are opened when the system starts
up; for RAM drivers, call Open. The Device Manager will return the
driver reference number that you'll use every time you want to refer to
that device driver.

An application can send data from its data buffer to an open driver
with a Write call, and transfer data from an open driver to its data
buffer with Read. An application passes control information to a
device driver by calling Control, and receives status information from
a driver by calling Status.

Whenever you want to stop a device driver from completing I/O initiated
by a Read, Write, Control, or Status call, call KillIO.. KillIO halts
any current I/O and deletes any pending I/O. For example, you could
use KillIO to implement a Cancel button that interrupts printing by
your application.

When you're through using a driver, call Close. Close forces the
device driver to complete any pending I/O, and then releases all the
memory used by the driver.

6/15/84 Hacker /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 7

DEVICE MANAGER ROU~INES

This section describes the Device Manager routines'used to call
drivers. It's divided into two parts. The first describes all the
high-level Pascal routin~s of the Device Manager, and the second
presents information about calling the low-level Pascal and
assembly-language routines.

All the Device Manager routines in this section return a result code of
type OSErr. Each routine description lists all of the applicable
result codes, along with a short description of what the result code
means. Lengthier explanations of all the result codes can be found in
the summary at the end of this manual.

High-Level Device Manager Routines

The Pascal calls in this section cannot be invoked from assembly
language; see the following section for equivalent calls.

(note)
As described in the File Manager manual, the FSRead and
FSWrite routines are also used to read from and write to
files.

FUNCTION OpenDriver (name: Str255; VAR refNum: INTEGER) : OSErr;

OpenDriver opens the device driver specified by name and returns its
reference number in refNum.

Result codes noErr
badUnitErr
dInstErr

openErr

unitEmptyErr

No error
Bad reference number
Couldn't find driver in resource
file
Driver cannot perform the
requested reading or writing
Bad reference number

FUNCTION CloseDriver (refNum: INTEGER) : OSErr;

CloseDriver closes the device driver having the reference number
refNum. Any pending I/O is 'completed, and the memory used by the
driver is released.

Result codes

6/15/84 Hacker

noErr
badUnitErr
dRemoveErr
unitEmptyErr

No error
Bad reference number
Tried to remove an open driver
Bad reference number

/DMGR/DEVICE.R

8 Device Manager Programmer's Guide

FUNCTION FSRead (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr)
OSErr; •.

FSRead attempts to read the number of bytes specified by the count
parameter from the device driver having the reference number refNum,
and transfer them to the data buffer pointed to by buffPtr. After the
read operation is completed, the number of bytes actually read is
returned in the count par'ameter.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
readErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to Read,
calls

FUNCTION FSWrite (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr)
OSErr;

FSWrite attempts to take the number of bytes specified by the count
parameter from the buffer pointed to by buffPtr and write them to the
open device driver having the reference number refNum. After the write
operation is completed, the number of bytes actually written is
returned in the count parameter.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
writErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to Write
calls

FUNCTION Control (refNum: INTEGER; csCode: INTEGER; csParam: Ptr)
OSErr;

Control sends control information to the device driver having the
,reference number refNum. The type of information sent is specified by
csCode, and the information itself- is pointed to by csParam.' The
values passed in csCode and pointed to by csParam depend on the driver
being called.

Result code$

6/15/84 Hacker

noErr
badUnitErr
notOpenErr
unitEmptyErr
controlErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to this
Control call

/DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 9

FUNCTION Status (refNum: INTEGER; csCode: INTEGER; csParam: Ptr)
OSErr;

Status returns status information about the device driver having the
reference number refNum. The type of information returned is specified
by csCode, and the information itself is pointed to by csParam. The
values passed in csCode and pointed to by csParam depend on the driver
being called.

Result codes noErr
badUnitErr
notOpenErr
unitEmptyErr
statusErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to this
Status call

FUNCTION KillIO (refNum: INTEGER) : OSErr;

KillIO terminates all current and pending I/O with the device driver.
having the reference number refNum.

(note)

Result codes noErr
badUnitErr
unitEmptyErr
controlErr

No error
Bad reference number
Bad reference number
Driver can't respond to KillIO
calls

KillIO is actually a special type of PBControl call, and
all information about PBControl calls applies equally to
KillIO.

Low-Level Device Manager Routines

This section contains special information for programmers using the
low-level Pascal or assembly-language routines of the Device Manager,
and then describes the routines in detail.

All low-level Device Manager rQutines can be executed either
synchronously (meaning that the application cannot continue until the
I/O is completed) or asynchronously (meaning that the application is
free to perform other tasks while the I/O is being completed).

When you call a Device Manager routine asynchronously, an I/O reguest
is placed in the driver's I/O queue, and control returns to the calling
app1ication--even before the actual I/O is completed. Requests are
taken from the queue one at a time (in the same order that they were
entered), and processed. Only one request per driver may be processed
at any given time.

The calling application may specify a completion routine to be executed
as soon as the I/O operation has been completed.

6/15/84 Hacker /DMGR/DEVICE.R

10 Device Manager Programmer's Guide

Routine parameters passed by an application to the Device Manager and
returned by the Device Manager to an application are contained in a
parameter block, which is memory space in the heap or stack. All
low-level Pascal calls to the Device Manager are of the "form

PBCaiiName (paramBlock: ParmBlkPtr; async: BOOLEAN) : OSErr;

PBCallName is the name of the routine. ParamBlock points to the
parameter block containing the parameters for the routine~ If async is
TRUE, the call is executed asynchronously; if FALSE, it's executed
synchronously.

Assembly-Ianguage~: When you call a Device Manager routine,
A0 must point to a parameter block containing the parameters for
the routine. If you want the routine to be executed
asynchronously, set bit 10 of the routine trap word. You can do
this by supplying the word ASYNC as the second argument to the
routine macro. For example:

Read ,ASYNC

You can set or test bit 10 of a trap word by using the global
constant asynTrpBit.

If you want a routine to be executed immediately (bypassing the
driver's I/O queue), set bit 9 of the routine trap word. This
can be accomplished by supplying the word IMMED as the second
argument to the routine macro. (The driver must be able to
handle immediate calls ,for this to work.) For example

Write ,IMMED

You can set or test bit 9 of a trap word by using the' global
constant noQueueBit. You can specify either ASYNC or IMMED, but
not both.

All routines return a result ,code in D0.

Routine Parameters

The lengthy, variable-length data structure of a parameter block is
given below. The Device Manager and File Manager use this same data
structure, but only the parts relevant to the Device Manager are
discussed here. Each kind of parameter block contains eight fields of
standard information and two to nine fields of additional information:

6/15/84 Hacker /DMGR/DEVICE.R
I

DEVICE MANAGER ROUTINES 11

TYPE ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam);

ParamBlockRec = RECORD .
qLink: QElemPtr;
qType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptrj
ioCompletion: ProcPtr;
ioResult: OSErrj
ioNamePtr: StringPtr;
ioVRefNum: INTEGER;
CASE ParamBlkType OF

ioParam:

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{driver name}
{used by Disk Driver}

{I/O routine parameters}
fileParam:

END;

{used by File Manager}
volumeParam:

{used by File Manager}
cntrlParam:
• •• {Control and Status call parameters}

ParmBlkPtr = AParamBlockRec;

The first four fields in each parameter block are handled entirely by
the Device Manager, and most programmers needn't be concerned with
them; programmers who are interested in them should see the section
"The Structure of a Device Driver".

IOCompletion contains the address. of a completion routine to be
executed at the end of an asynchronous call; it should be NIL for
asynchronous calls with no completion routine, and is automatically set
to NIL for all synchronous calls. For asynchronous calls, ioResult is
positive while the routine is executing, and returns the result code.

IONamePtr' is a pointer to the name of a driver and is used only for
calls to the PBOpen routine. IOVRefNum is used by the Disk Driver to
identify volumes.

An 8-field parameter block is adequate for opening a driver, but most
of the Device Manager routines require longer parameter blocks, as
described below.

6/15/84 Hacker /DMGR/DEVICE.R

12 Device Manager Programmer's Guide

I/O routines use seven additional fields:

ioParam:
(ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer:
ioReqCount:
ioActCount:
ioPosMode:

, ioPosOff set:

INTEGER;
SignedByte;
Signed Byte;
Ptr;
Ptr;
Longlnt;
LongInt;
INTEGER;
LongInt) ;

{driver reference n~mber}
{not used}
{read/write permission}
{not used}
{data buffer}
{requested number of bytes}
{actual number of bytes}
{type of positioning operation}
{~ize of positioning offset}

IOPermssn requests permission to read from or write to a driver when
the driver is opened, and must contain one of the following predefined
constants:

fsCurPerm = 0; {whatever is currently ,allowed}
fsRdPerm 1 ; {request to read only}
fsWrPerm = 2; {request to write only}
fsRdWrPerm = 3; {request to read and write}

This request is compared with the capabilities of the driver (some
drivers are read-only, some are write-only). If the driver is
incapable of performing as requested, an error will be returned.

IOBuffer points to an application's data buffer into which data is
written by Read calls and from which data is read by Write calls.
IOReqCount specifies the requested number of bytes to be read or
written. IOActCount contains the number of bytes actually read or
written.

Advanced programmers: IOPosMode and ioPosOffset contain positioning
information used for Read and Write calls by drivers of block devices.
Bi ts 0 and 1 of ioPosMode indicate a byte posi tion from the phys,ical
beginning of the block-formatted medium (such as a disk); it must
contain one of the following predefined constants:

fsAtMark = 0; {at current position of mark }
{ (ioPosOffset ignored)}

fsFromStart = 1 ; {offset relative to beginning of file}
fsFromLEOF = 2; {offset relative to logical end-of-file}
fsFromMark = 3; {offset relative to current mark}

IOPosOffset specifies the byte offset beyond ioPosMode where, the
operation is to be performed. Control and Status calls use two
additional fields:

cntrlParam:
(csCode: INTEGER; {type of Control or Status call}
csParam: ARRAY[0 •• 01 OF Byte); {control or status information}

CSCode contains a number identifying the type of call. This number may
be interpreted differently by each driver. The csParam field contains

6/15/84 Hacker /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 13

the control or status information for the call; it's declared as a zero
length array because its exact contents will vary depending from one
Control or Status call to the next.

(note)
Programmers who want to use the low-level Control and
Status calls will need to declare their own data type
that mimics all fields of the ParamBlockRec except for
csParam. For example, if you want to pass a long integer
in csParam, declare the following:

TYPE MyPa~amBlockRec = RECORD
qLink: QElemPtr;

csCode: INTEGER;
csParam: Longlnt;

END;

VAR MyPBR: MyParamBlockRec;

Then pass @MyPBR (a pointer to your variable) to the
low-level Control and Status routines.

Routine Descriptions

This section describes the procedures and functions. Each routine
description includes the low-level Pascal form of the call and the
routine's assembly-language macro. A list of the fields in the
parameter block affected by the call is also given.

Assembly-language note: The field names given in these
descriptions are those of the ParamBlockRec data type; see
"Summary of the Device Manager" for the corresponding
assembly-language equates.

The number next to each parameter name indicates the byte offset of the
parameter from the start of the parameter block pointed to by A0; only
assembly-language programmers need be concerned with it. An arrow
drawn next to each parameter name indicates whether it's an input,
output, or input/output parameter:

Arrow
--~

~-
~-~

6/15/84 Hacker

Meaning
Parameter is passed to the routine
Parameter is returned by the routine
Parameter is passed to and returned by the routine

/DMGR/DEVICE.R

14 Device Manager Programmer's Guide

(note)
As described in the File Manager manual, the PBOpen and
PBClose rout~nes are also used to open and close files.

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro

Parameter 1>lock
--? 12 ioCompletion pointer
~-~
--~

~--
--?

Result codes

16 ioResult
18 ioNamePtr
24 ioRefNum
27 ioPermssn

noErr
badUnitErr
dInstErr

openErr

unitEmptyErr

word
pointer
word
byte

No error
Bad reference number
Couldn't find driver in
resource file
Driver cannot perform the
requested reading or writing
Bad reference number

PBOpen opens the device driver specified by ioNamePtr and returns its
reference number in ioRefNum. IOPermssn specifies the 'requested
read/write permission.

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro Close

Parameter block
--? 12
~-- 16
--~ 24

Result codes

ioCompletion
ioResult '
ioRefNum

pointer
word
word

No error

OSErr;

noErr
badUnitErr
dRemoveErr
unitEmptyErr

Bad reference number
Tried to remove an open driver
Bad reference number

PBClose closes the device driver having the reference, nQmber ioRefNum.
Any pending I/O is completed, and the memory used by the driver is
released. .

6/15/84 Hacker /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 15

FUNCTION PBRead (paramBlock: ParmBlkPtrj async: BOOLEAN) OSErrj

'Trap macro Read

Parameter block
--~ 12 ioCompletion pointer
~-- 16 ioResult word
--~ 24 ioRefNum word
--~ 32 ioBuffer pointer
--~ 36 ioReqCount long word
~-- 4(6 ioActCount long word
--~ 44 ioPosMode word
~-~ 46 ioPosOffset long word

Result codes noErr No error
badUnitErr Bad reference number
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
readErr Driver can't respond to Read

calls

PBRead attempts tq read ioReqCount bytes from the device driver having
the reference number ioRefNum, and transfer them to the data buffer
pointed to by ioBuffer. After the read operation is completed, the
number of bytes actually read is returned in ioActCount.

Advanced programmers: If the driver is reading from a block device,
the byte offset from the position indicated by ioPosMode, where the
read should actually begin, is given by ioPosOffset.

6/15/84 Hacker /DMGR/DEVICE.R

16 Device Manager Programmer's Guide

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Trap macro

Parameter block
--~

~--
--~

--~
--~
~--
--~
--~

Result codes

Write

12 ioCompletion pointer
16 ioResult word
24 ioRefNum word
32 ioBuffer pointer
36 ioReqCount long word
40 ioActCount long word
44 ioPosMode word
46 ioPosOffset long word

noErr
badUnitErr
notOpenErr
unitEmptyErr
writErr

No error
Bad reference number
Driver isn't open
Bad reference number
Driver can't respond to/Write
calls

PBWrite attempts to take ioReqCount bytes from the buffer pointed to by
ioBuffer and write them to the device driver having the reference
number ioRefNum. After the write operation is completed, the number of
bytes actually written is returned in ioActCount.

Advanced programmers: If the driver is writing to a block device,
ioPosMode indicates whether the write should begin relative to the
beginning of the device or the current position. The byte offset from
the position indicated by ioPosMode, where the write should actually
begin, is given by ioPosOffset.

6/15/84 Hacker /DMGR/DEVICE.R

DEVICE MANAGER ROUTINES 17

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN)

Trap macro

Parameter block
--~

~--
--~

--~
--)

Result codes

Control

12 ioCompletion pointer
16 ioResult
24 ioRefNum
26 csCode
28 csParam

word
word
wor,d,
record

No error
Bad reference number
Driver isn't open
Bad reference number

OSErr;

noErr
badUnitErr
notOpenErr
unitEmptyErr
controlErr Driver can't respond to this

Control call

PBControl sends control information to the device driver having the
reference number ioRefNum. The type of information sent is specified
by csCode, and the information itself begins at csParam. The values
passed in csCode and csParam depend on_the driver being called.

FUNCTION PBStatus (paramBlock: ParmBlkPtrj async: BOOLEAN)

Trap macro Status

Parameter block
--~ 12
~-- 16
--~ 24
--~ 26
--~ 28

Result codes noErr

ioCompletion
ioResult
ioRefNum
csCode
csParam

No

pointer
word
word
word
record

error
badUnitErr Bad reference number
notOpenErr Driver isn't open
unitEmptyErr Bad reference number
statusErr Driver can't respond

Statlls call

OSErrj

to this

PBStatus returns status information about the device driver having the
reference numbe~ ioRefNum. The type of information returned is
specified by csCode, and the i'nformation itself begins at csParam. The
values passed in csCode and csParam depend on the driver being called.

6/15/84 Hacker /DMGR/DEVICE.R

18 Device Manager Programmer's Guide

FUNCTION PBKi11IO (paramB1ock: ParmB1kPtr; async: BOOLEAN)

Trap macro Kil1TO

Parameter block
--7 . 12
~-- 16
--7 24

Result codes

ioCompletion . pointer
ioResult word
ioRefNum i word

No error
Bad reference number
Bad reference number

OSErr;

noErr
badUnitErr
unitEmptyErr
controlErr Driver can't respond to Kil1IO

calls

KillIO stops any current I/O request being processed t and removes all
pending I/O requests from the I/O queue of the device driver having the
reference number ioRefNum. The completion routine of each 'pending I/O
request is called t with ioResult equal to the following result code:

(note)

CONST abortErr = -27;

KillIO is :actually a special type of Control call t and
all information about Control calls applies equally to
KillIO.

THE STRUCTURE OF A DEVICE DRIVER

This section describes the structure of device drivers for programmers
interested in writing their own driver or manipulating existing
drivers. Most of the information presented here is accessible only
through assembly language.

RAM drivers are stored in resource files. The resource type for
drivers is ·'DRVR'. The resource name is the driver name. The resource
ID for a driver is its unit number (explained below) and will be
between 0 and 31 inclusive. Don't use the unit number of an existing
driver unless you want the existing driver to be replaced.

As illustrated in Figure 2, a driver begins with a few words of flags
and other data, followed by offsets to the routines tha~ do the work of
the driver, an optional title, ana finally the routines themselves.

6/15/84 Hacker IDMGR/DEVICE~D

byte I)

'"\
L

4

8

. 1 I)

, .-}
£...

14

16

18

19

THE STRUCTURE OF A DEVICE DRIVER 19

drvrFlags (word) flag::;

drvrDelay ("yord) number of ticks bet~'een periodic action::;

drvrE M8::;~~ (word) Ijes~~ accessory event mask

drvrt .. ·1enu (\'/ord) menu ID of menu as:K,c:iated \~··itr-I driver

drvrOpen ('.'lord) off::;et to otten rout i ne

drvrF'r i me (\~,'or d) otf::;et to prime routine
.-

drvrCtl (\vord) of1::;et to contro I rout i ne

drvr::itatus (word) offset to status routine

drvrC I 088 (\vord) off::;et to close routine
--"---

drvrName (byte) i eng1t-! of :jr i ver n;:1rne
-,

drvrNarne + 1 (by1e~<:, ch;~r8c1er::; of driver flame

I ' __ d_r_1 ~_. p._A_rC_,u_t_l_n_e_~._~

Figure 2. Driver Structure

Every driver contains a routine to handle Open and Close calls, and may
contain routines to handle Read, Write, Control, Status, and KiIIIO
calls. The driver routines that handle Device Manager calls are as
follows:

Device Manager call
Open
Read
Write
Control
KillIO
Status
Close

Driver routine
Open
Prime
Prime
Control
Control
Status
Close

For example, when a KilllO call is made to a driver, the driver's
control routine must implement the call. Each bit of the bigh-order

6/15/84 Hacker /DMGR/DEVICE~D

20 Device Manager Programmer's Guide

bytes of the drvrFlags word contains a flag:

dReadEnable .EQU
dWritEnable .EQU
dCtlEnable .EQU
dStatEnable .EQU
dNeedGoodBye .EQU

dNeedTime .EQU

dNeedLock .EQU

0
1
2
3
4

5

6

;set if driver can respond to Read calls
;set if driver can respond to Write calls
;set if driver can respond to Control calls
;set if driver can respond to Status calls
;set if driver needs to be called.before the
; application heap is reinitialized
;set if driver needs time,for performing a
; periodic action
;set if driver will be locked in memory as
; soon as it's opened (always set for
; ROM dr'i vers)

Bits 8 through 11 indicate which Device Manager calls the driver's
routines can respond to.

Unlocked RAM drivers that exist on the application' heap will be lost
every time the heap is reinitialized (when an application starts up,
for example). If dNeedGoodBye is set, th~ control routine of the
device driver will be called before the heap is reinitialized, and the
driver can perform any "clean-up" actions it needs to. The driver's
control routine identifies this "good-bye" call by checking the csCode
parameter--it will be -1.

Device drivers may- need to perform predefined actions periodically.
For example, a network driver may want· to poll its input buffer every
ten seconds to see if it has received any messages. If the dNeedTime
flag is set, the driver does need to perform a periodic action, and the
drvrDelay word contains a tick count indicating how often the periodic
action should occur. A tick count of 0 means it should happen as often
as possible, 1 means it should happen every 60th of a second, 2 means
every 30th of a second, and so on. Whether the action actually occurs
this frequently depends on how often you call the Desk Manager routine
SystemTask. SystemTask calls the driver's control routine (if the time
indicated by drvrDelay has elapsed),~ and the control routine must
perform whatever predefined action is desired. The·driver's control
routine identifies the SystemTask call by checking the csCode
parameter--it will be the global constant accRun.

(note)
Some drivers may not want to rely o~ the application to
call SystemTask, and should install their own task in the
vertical retrace queue to accomplish the desired action
(see the Vertical Retrace Manager manual).

DrvrEMask and drvrMenu are used only for desk accessories and are
discussed in the Desk Manager manual.

Following drvrMenu are the offsets to the driver routines, a title for
the driver (preceded by its length in bytes), and the routines that do
the work of the driver.

6/15/84 Hacker /DMGR/DEVICE.D

THE STRUCTURE OF A DEVICE DRIVER 21

A Device Control Entry

The first ,time a driver is opened, information about it is read into a
structure in memory called a device control entry. A device control
entry tells the Device Manager the location of the driver's routines,
the location of the driver's I/O queue, and other information. A
device control entry is a 40-byte relocatable block located on the
system heap. It's locked while the driver is open, and unlocked while
the driver is closed.

The structure of a device control entry is illustrated in Figure 3.
Notice that some of the data is taken from the first four words of the
driver. Most of the data in the device control entry is stored and
accessed only by the Device Manager, but in some cases the driver
itself must store into it. ,

byte 0

4

6

8

12

16

20

24

26

30

34

36

38

dCtlDriver (long word)

dCt I Flags (word)

dCtlQueue (word)

dC11QHea~ (pointer)

dCtlQTai I (pointer)

dCtlPosition (long weird)

dCtlStorage (hand I e)

dCt IRefNum (word)

dClICurTicks (long word)

det I Window (pointer)

dCtlDe lay (word)

dCtlEMasK (word)

dCtlMenu (word)

Figure 3.

po inter to ROM dr i ver or
hand Ie to RAM dri ver

flags

I ow- order byte: dr iver' s vers i on number

pointer to fir~;t entry in driver's 1/0 Queue

pointer to last entry in driver'~i 110 Queue

byte pos i t i on used by Read and Wri te ca II s

handle to RAM driver'::: private ~;tor8ge

dr iver' s reference number

used i nternel fy by Dev ice Manager

pointer to driver's window record (if any)

number of ticks between periodic actions

menu I D of menu ss::;oc i sted witt-. dr i ver

Device Control Entry

The low-order byte of the dCtlFlags word contains the following flags:

dOpened .EQU 5 ;set if driver is open
dRAMBased .EQU 6 ;set if driver is RAM-based
drvrActive .EQU 7 ;set if driver is currently executing

6/15/84 Hacker /DMGR/DEVICE.D

22 Device Manager Programmer's Guide

,The high-order byte contains information copied from the drvrFlags word
of the driver:

.EQU 0 ;set if driver can respond to Readrcalls

.EQU 1 ;set if driver can respond ·to Write calls
dReadEnable
dWritEnable
dCtlEnable .EQU 2 ;set if driver can respond to Control calls
dStatEnable
dNeedGoodBye

.EQU 3 ;set if driver can respond to Status calls

.EQU 4 ;set if driver needs to be called before the
; application heap is reinitialized'

dNeedTime .EQU 5 ;set if driver needs time for performing a
; periodic action

dNeedLock .EQU 6 ;set if driver will be locked in memory as
soon as it's opened (always set for
ROM drivers)

DCtlPosition is used only by drivers of block devices, and indicates
the current source or destination position of a Read or Write call.
The position is given as a number of bytes beyond the physical
beginning of the medium used by the device. For example, if one
logical block of data has just been read from a 3 1/2-inch disk via the
Disk Driver, dCtlPosition will be 512.

ROM drivers generally use locations in low memory for their local
storage. RAM drivers may reserve memory within their code space, or
allocate a relocatable block and keep a handle to it in dCtlStorage (if
the block resides in the application heap, its handle will be set to
NIL when the heap is reinitialized).

The Unit Table

The location of each device control entry is maintained in a list
called the unit table. The unit table is a 128-byte nonrelocatable
block containing 32 4-byte entries. Each entry has a number, from 0 to
31, called the unit number, and contains a handle to the device control
entry for a dri~ The unit number can be used as an index into the
unit table to locate the handle to a specific driver's device control
entry; it's equal to

-1 * (refNum + 1)

where refNum is the driver's reference number. For example, the Sound
Driver's reference number is -4 and its unit number is 3.

Figure 4 shows the layout of the unit table just after the system
starts up.

(note)
Any new drivers contained in resource files should have
resource IDs that don't conflict with the unit numbers of
existing drivers--unless you want an existing driver to
be replaced.

6/15/84 Hacker /DMGR/DEVICE.D

byte 0

4

8

12

16

20

24

28

32

48

52

56

60

64

68

72

'7
.I.

'1'

THE STRUCTURE OF A DEVICE DRIVER 23

reserved

reserved

Pr inter Dr i ver

Sound Dri ver

Disk Driver

Serial Driver port A input

Ser i al Dr i ver port A output

Serial Driver port B input

Ser i al Dr i ver port B output

not used

Cal (:u lator

Alarm Clock

Key Caps

Puzzle

Note Pad

Scrapbo(lk

Contra I Pane I

r .:

un it number 0

1

2

3

4

5

6

7

8

12

13

14·

15

16

17

18

'r I I p. _7 lot lJs."d

1241 _____ r:_,o_lt_u_se_d ___ --'131
Figure 4. The Unit Table

Assembly-language~: The global variable uTableBase ,points
to the unit table.

Each device driver contains an I/O queue with a list of I/O requests to
be completed by the driver. A driver I/O queue is a standard Operating

6/15/84 Hacker /DMGR/DEVICE.D

24 Device Manager Programmer's Guide

System queue (described in the Operating System Utilities manual ***
doesn't yet- exist; for now, see the appendix of the File Manager manual
***). The queue is located in the device control entry for the driver
(Figure 5).

6

8

12

dCtlQueue (word)

dCtlQHead (pointer)

dCtlQTai I (pointer)

low-order byte: drivers ver::iion number

pointer 10 fir::it entry in driver's 110 queue

pointer 10 last entry in driver'::i -flO queue

Figure 5. Driver I/O Queue Structure

The three fields shown in Figure 5 are analogous to the QHdr data type
of a standard Operating System queue.

I,

Each driver I/O queue uses entries of type ioQType. Each entry in the
queue consists of a parameter block for the routine that was called.
The structure of this block is shown in part below:

TYPE ParamBlockRec = RECORD
qLink:
qType:
ioTrap:
ioCmdAddr':

END;

QElemPtr;
INTEGER;
INTEGER;
Ptr

{next queue entry}
{queue type}
{routine trap}
{routine address}
{rest of block}

QLink points to the next entry in the queue, and qType indicates the
queue type, which must always be ORD(ioQType). IOTrap and ioCmdAddr
contain the trap and address of the Device Manager routine that was
called. You can use the following global constants to identify Device
Ma~ager traps, by comparing the global constant with the low-order byte
of the trap:

aRdCmd
aWrCmd
aCtlCmd
aStsCmd

.EQU

.EQU

.EQU

.EQU

2
3
4
5

;Read call (trap $A002)
;Write call (trap $A003)
;Control call (trap $A004)
;Status call (trap $A005)

You can get a pointer to a driver's I/O queue by calling the- Device
Manager function GetDCt1QHdr.

FUNCTION GetDCtlQHdr (refNum: INTEGER) : QHdrPtr; [Pascal only]

GetDCtlQHdr returns a pointer to the I/O queue of the device driver
having the reference number refNum.

6/15/84 Hacker /DMGR/DEVICE.D

THE STRUCTURE OF A DEVICE DRIVER 25

Assembly-language note: To access the contents of a driver's
I/O queue from assembly language, you can use offsets from the
address of the global variable dCtlQueue.

WRITING YOUR OWN DEVICE DRIVERS

This section describes what you'll need to do to write your own device
driver. If you aren't interested In writing your own driver, skip
ahead to the summary.

Drivers are usually 'written in assembly language. The structure of
your driver must match that shown in the previous section. The
routines that do the work of the driver should be written to operate
the device in whatever way you require.~ Your driver must contain
routines to handle Open and Close calls, and may choose to handle Read,
Write, Control, Status, and KillIO calls as well.

When the Device Manager executes a driver routine to handle an
application call, it passes a pointer t6 the call's parameter block in
AC/J and a pointer to the driver's device control entry' in AI. From this
information, the driver can determine exactly what operations are
required to fulfill the call's requests, and do them.

Open and close routines must execute synchronously. They needn't
preserve any registers that they use. Open and close routines should
place a result code in DC/J and return via an RTS instruction. ***
Currently the Device Manager sets DC/J to zero upon return from an Open
call. ***
The open routine must allocate any private storage required 'by the
driver, st.ore a handle to it in the device control entry'(in the
dCtlStorage field), initialize any local variables, and, then be ready
to receive a Read, Write, Status, Control, or KillIO call. It might
also install interrupt handlers, change interrupt vectors, and store a
pointer to the device control entry somewhere in its local storage for
its interrupt handlers to use. The close routine must reverse the
effects of the open routine, by releasing all used memory, removing
interrupt handlers, and replacing changed interrupt vectors. If
anything about the operational state of the driver should be saved
until the next time the driver is opened, it should be kept in the
relocatable block of memory pointed to by dCtlStorage.

Prime, control, and status routines must be able to respond to queued
calls and asynchronous calls, and should be interrupt-driven.
Asynchronous portions of the routines can use registers AC/J to A3 and DC/J
to D3, but must preserve any other registers used; synchronous portions
can use all registers. Prime, control, and status routines should

6/15/84 Hacker /DMGR/DEVICE.D

26 Device Manager Prograt1l~er's Guide

return a result code in D0. They must return via an RTS if called
immedIately (with IMMED as the second argument to the routine macro) or
via an RTS if the device couldn't complete the I/O request right away,
or via a JMP to t~e IODone routine (explained below) if the device
completed the request.

(warning)
If they can be called as the result of an interrupt, the
prime, control, and status routines should never call
Memory Manager .routines that cause heap compactions.

The prime routine must implement all Read and WrIte calls made to the
driver. It can distinguish between Read and Write calls by checking
the value of the ioTrap field. You may want to use the Fetch and Stash
routlnes described below to read and write characters. If the driver
ls for a block device, it should update the dCtlPosition field of the
device control entry after each read, or wri te. The control routine
must accept the control information passed to it, and manipulate the
devlce as requested. The status routine must return requested status
lnformation. Since both the control and status routines may be
subjected to Control and Status calls sending and requesting a variety
of lnformation, they must be prepared to respond correctly to all
types. The control routine must ~andle KillIO calls; the driver
identifies KillIO calls by checklng the csCode parameter--it will be
the global constant killCode.

(warning)
KillIO calls mus t re turn via' an RTS, and shouldn't jump
(via JMP) to the IODone routlne.

Routines for Writing Drivers

The Device Manager lncludes thr.ee routine~, Fetch, Stash, and IODone,
that provide low-level support for driver routlnes. Include them in
the code of your devlce driver If they're useful to you. Fetch, Stash,
and IODone are invoked via "jump vectors" (jFetch, jStash,. and jIODone)
rather than macros (in the interest of speed). You use a jump vector
by moving its address onto the stack:

MOVE.L
RTS

j IODone , -(SP) ,

Fetch and Stash don't return a result code, since the only result
possible is dSIOCoreErr, which invokes the System Error Handler.
IODone can return a result code.

6/15/84 Hacker . /DMGR/DEVICE.D

Fetch Function

Jump vector

On entry

On exit ---

WRITING YOUR OWN DEVICE DRIVERS 27

jFetch

AI: pointer to device control entry

D0: character fetched; bit 15=1 if it's the
last character in the data buffer

Fetch gets the next character from the data buffer pointed to by
ioBuffer and places it in 00. IOActCount is incremented by 1. If
ioActCount equals ioReqCount, bit 15 of D0 is set. After receiving the
last byte requested, the driver should call IODone.

Stash Function

Jump vector

~ entry

jStash

AI: pointer to device control entry
D0: character to stash

00: bit 15=1 if it's the last character
requested

Stash places the character in D0 into the data buffer pointed to by
ioBuffer,-and increments ioActCount by 1. If ioActCount equals
ioReqCount, bit 15 of D0 is set. After stashing the last byte
requested, the driver should call IODone.

6/15/84 Hacker /DMGR/DEVICE.D

28 Device Manager Programmer's Guide

IODone Function

Jump vector

On entry

On exit ---
Result codes

jIODone

AI: pointer to device control entry

D0: result code

noErr
unitEmptyErr

No error
Reference number specifies NIL
handle in unit table

IODone removes the current I/O request from the driver's I/O queue,
marks the driver inactive, unlocks the driver and its device control
entry (if it's allowed to by the dNeedLock bit of the dCtlFlags word),
and executes the completion routine (if there is one). Then it begins
executing the next I/O request in the I/O queue.

A Sample Driver

Here's the skeleton of the Disk Driver, as an example of how a driver
should be constructed.

; Driver header

DiskDrvr
• WORD

• WORD
• WORD

$4F00 ;RAM driver, read, write,
; control, status, needs
; lock
;no delay or event mask
;no menu

Offsets to driver routines

• WORD
• WORD
• WORD
• WORD
• WORD
• BYTE

-.ASCII

DiskOpen-DiskDrvr ;open
DiskPrime-DiskDrvr ;prime
DiskControl-DiskDrvr ;control
DiskStatus-DiskDrvr
allDone-DiskDrvr
5
'.Disk'

;status
;close (just RTS)
;length of name
;driver name

Local variables and constants

Driver routines

Open routine

DiskOpen MOVEQ

. . .

6/15/84 Hacker

#(DiskVarLth/2>,D0 ;get memory for variables
;allocate variables
;initialize drive queue
;install a vertical-

/DMGR/DEVICE.O

DiskRTS

DiskDone

; Prime routine

DiskPrime

RTS

MOVE.W
MOVE.L
CLR.B
MOVE.L
MOVE.L
RTS

ORI

. . .
RTS

WRITING YOUR OWN DEVICE DRIVERS 29

D0,DskErr
DiskVars ,AI
Active(AI)
DiskUnitPtr(AI) ,AI
jIODone,-(SP)

11$0100, SR

retrac~ task

;return result code
;get pointer to locals
;driver isn't active
;return pointer to DCE
;go to IODone

;exclude vertical-retrace
; interrupts

Control routine

- DiskControl

@1

Status routine

DiskStatus

6/15/84 Hacker

A0 (input): pointer to Control call's parameter block
csCode killCode for KillIO, ejectCode for Eject

MOVE.W
SUBQ.W
BNE.S
MOVE
ORI
BSR

MOVE.B

RTE

SUBQ.W
BEQ.S
MOVEQ
BRA.S

BSR.S

BRA.S

csCode(A0) ,D0
IIkiliCode,D0
@0
SR,-(SP)
1I$0100,SR
PowerDown

tI$20,VIER(A2)

;get the control code
;is it KiIIIO?
;branch if not

;no VIA interrupts
;start power down,
; get VIA address
;remove any pending
; timer interrupts
;special for KillIO

tI<ejectCode-killCode),D0 ;Eject?
@I ;branch if so
#controlErr,D0 ;can't handle csCode
DiskDone ;exit

CkDrvNupl ;set drive to eject

DiskDone ;exit

A0 (input): pointer to Status call's parameter block
csCode = 8 for drive status

MOVE.Q

CMP.W
BNE.S

BSR.S
BNE.S

.END

#statusErr,D0 ;assume status error

#drvrStsCode,csCode(A0) ;drive status call?
DiskDone ;exit for other calls

CkDrvNum
DiskDone ;exit on error

/DMGR/DEVICE.D

30 Device Manager Programmer's Guide

Interrupts

This section discusses interrupts: how the Macintosh uses them, and
how you can use them if you're writing your own device driver. Only
programmers who want to write their own interrupt-driven device drivers
need read this section. Programmers who want to build their own driver
on top of a built-in Macintosh driver may be interested in som~ oof the
information presented here.

An interrupt is a form of exception: an error or abnormal condition
detected by the processor in the course of program execution.
Specifically, an interrupt is an exception that's signaled to the
processor by a device, a~ distinct from a trap, which arises directly
from the execution of an instruction. Interrupts are used by devices
to notify the processor of a change in condition of the device, ~uch as
the completion of an I/O request. An interrupt causes the processor to -.
suspend normal execution, save the address of the next instruction and
the processor's internal status on the stack, and execute an interrupt
handler.

The MC68~~~ recognizes seven different levels of interrupt, each with
its own interrupt handler. The addresses of the various handlers,
called interrupt vectors, are kept in a vector table in the system
communication area. Each level of interrupt has its own vector located
in the vector table! When an interrupt occurs, the processor fetches
the proper vector from the table, uses it to locate the interrupt
handler for that level of interrupt, and jumps to the handler. On
completion, the handler exits with an RTE instruction, which restores
the internal state of the processor from the stack and resumes normal
execution from the point of sus~ension.

There are three devices that can create interrupts: 0 the 6522 Versatile
Interface Adapter (VIA), the 853~oSerial Communications Controller, and
the debugging switch. They send a 3-bit number, from ~ to 7, called
the interrupt priority level, to the processor. The interrupt level
indicates which device is interrupting, and indicates which interrupt
handler should be executed:

Level
91
1
2
3

4-7

Interrupting device
None
VIA
SCC
VIA and sec
Debugging button

A level-3 interrupt occurs when both the VIA and sec interrupt at the
same instant; the interrupt handler for a level-3 interrupt is simply
an RTE instruction. Debugging interrupts shouldn't occur during the
normal execution of an application.

6/15/84 Hacker /DMGR/DEVICE.D

WRITING YOUR OWN DEVICE DRIVERS 31

The interrupt priority level is compared with the processor priority in
bits 8, 9, and 1~ of the status register. If the interrupt priority
level is greater than the processor priority, the MC680~0 acknowledges
the interrupt and initiates interrupt processing. The processor
priority determines which interrupting devices are ignored, and which
are serviced:

Level Services
0 All interrupts
1 VIA and debugging interrupts only
2 SCC and d'ebugging interrupts only

3-6 Debugging interrupts only
7 No interrupts

When an interrupt is acknowledged, the processor priority is set to the
interrupt priority level, to prevent additional interrupts of equal or
lower priority, until 'the interrupt handler has finished servicing the
interrupt.

The interrupt priority level is used as an index into the primary
interrupt vector table. This table contains seven long words beginning
at address $64. Each long word contains the starting address of an
interrupt handler (Figure 6). ¥ •

$64 pointer 10 level-1 interrupt handler 8utcllnt1

autolnt2 $68 pointer to fevel-2 interrupt handler

$6(: pointer to level-3 interrupt handler autolnt3

autolnt4 $70 pointer to level-4 interrupt handler

$74 pointer to level-5 interrupt handler 8utolnt5

autolntB $78 pointer to level-6 interrupt handler

8utolnt7 $7C pointer to level-7 interrupt handler

Figure 6. Primary Interrupt Vector Table

Execution jumps to the interrupt handler at the address specified in
the table. The interrupt handler then must identify and service the
interrupt. Then, it must restore the processor priority, status
register, and program counter to the values they contained before the
interrupt occurred.

Level-1 (VIA) Interrupts

Level-l interrupts are generated by the VIA. You'll need to read the
Synertek manual describing the VIA to use most of the information
provided in this section. The level-l interrupt handler determines the

6/15/84 Hacker /DMGR/DEVICE.D

32 Device Manager Programmer's Guide

source of the interrupt (via the VIA's IFR and IER registers) and then
uses a table of secondary vectors in the system communication area to
determine which interrupt handler to call (Figure 7).

byte 0

4

8

12

16

20

24

28

one-second interrupt V I A' s C.A.2 (:ontro I line

vert i cal- retrace interrupt \lIA's CA 1 control line

sh i ft- reg i ster interrupt VIA's shift register

not used

not used

T2 timer: Disk Driver

T1 timer: Sound Dr iver VIA's timer 1

not used

Figure 7. Level-l Secondary Interrupt Vector Table

The level-l secondary interrupt vectot table begins at the address of
the global variable IvlIDT. Each vector in the table points to the
interrupt handler for a different source of interrupt. The interrupts
are handled in order of their entry in the table, and only one
interrupt handler is called per level-l interrupt (even if two or more
sources at"e interrupting). This allows the level-l interrup.t handler
to be reentrant, and interrupt handlers should lower the processor
priority as soon as possible in order to enable other pending
interrupts to be processed.

One-second interrupts occur every second, and simply update the system
global variable time (explained in the Operating System Utilities
manual *** doesn't yet exist ***) and invert menu items that are
chosen. Vertical retrace interrupts are generated once every vertical
retrace interval; control is passed to the Vertical Retrace Manager,
which updates the global variable named ticks, handles changes in the
state of the cursor, keyboard, and mouse button, and executes tasks
installed in the vertical retrace queue.

The shift-register interrupt is used by the Keyboard/Mouse Handler).
Whenever the Disk Driver or Sound Driver isn't being used, you can use
the} Tl and T2 timers for your own needs.

If the cumulative elapsed time for all tasks during a vertical retrace
interrupt exceeds 16 milliseconds (one video frame), the v~rtical
retrace interrupt may itself be interrupted by another vertical retrace
interrupt. In this case, the second vertical retrace interrupt is
ignored.

6/15/84 Hacker /DMGR/DEVICE.D

WRITING YOUR OWN DEVICE DRIVERS 33

The base address of the VIA (stored in the global variable VIA) is
passed to each interrupt handler in AI.

Level-2 (See) Interrupts

Level-2 interrupts are generated by the sec. You'll need to read the
Zilog manual describing the sce to effectively use the information
provided in this section. The level-2 interrupt handler determines the
source of the interrupt, and then uses a table of secondary vectors in
the system communication area to determine which interrupt handler to
call (Figure 8).

byte 0

4

8

12

16

20

24

28

channe I B transrn i t bu11er empty

channe I . B externall status change mOU~ie vert i c:a I

channe I B rece i ve character ava i lab I e

channe' B spec i al rece i ve cond it i on

channe' A transrn i t buffer erripty

channel A external/status change rnOU~je horizontal

channel A receive character avai fable

etienne' A special receive condition

Figure 8. Level-2 Secondary Interrupt Vector Table

The level-2 s.econdary interrupt vector table begins at the address of
the global variable IvI2DT. Each vector in the table points to the
interrupt handler for a different source of interrupt. The interrupts
are handled according to the following fixed priority:

channel A receive character available and special r-eceive
channel A transmit buffer empty
channel A external/status change
channel B receive character available and special receive
channel B transmit buffer empty ./

channel B external/status change

Only one interrupt handler is called per level-2 interrupt (even if two
or more sources are interrupting). This allows the level-2 interrupt
handler to be reentrant, and interrupt handlers should lower the
processor priority as soon as possible in order to enable other pending
interrupts to be processed. .

External/status interrupts pass through a tertiary vector table in the
system communication area to determine which interrupt handler to call
(Figure 9).

6/15/84 Hacker /DMGR/DEVICE.D

34 Device Manager Programmer's Guide

byte 0

4

1 .-, .::..

channel B communications interrupt \
i

mouse vert ica I interrupt

~-

C~18nne t A c:omrnurt i cat ions i n1errupt

I rnOIJ::iI=- rlor i zon1al i n1erru'pt

Figure 9. Level-2 External/Status Interrupt Vector Table

The external/status interrupt vector table begins at the address of the
global variable extStsDT. Each vector in the table points to the
interrupt handler for a different source of interrupt. Communications
interrupts (break/abort, for example) are always handled before mouse,
interrupts.

When a level-2 interrupt handler is called, D0 contains the address of
the SCC read register 0 (external/status interrupts only), and Dl
contains the bits of read register 0 that have changed since the last
external/status interrupt. A0 points to the SCC channel A or channel B
control read address and Al points to SCC channel A or channel B
control write address, depending on which 'chanhel is interrupting. The
SCC's data read address and data write address are located four bytes
beyond A0 and Ai, respectively. The following global constants can be
used to'refer td these locations:

Global constant Value Refers to
bCtl 0 Offset for channel B control
aCtl 2 Offset for channel A control
bData 4 Offset for channel B data
aData 6 Offset for channel A data

Writing Your Own Interrupt Handlers

You can write your own interrupt handlers to replace any of the
standard interrupt handlers just described. Be sure to place a vector
that points to your interrupt handler in one of the vector tables.

Both the level-l and level-2 interrupt handlers preserve A0 through A3
and 00 through D3. Every interrupt handler (except for external/status
interrupt handlers) is responsible for clearing the source of the
interrupt, and for saving and restoring any addi tional registe'rs used.
Interrupt handlers should return directly via an RTS instruction,
unless the interrupt is handled immediately, in which case they should
jump (via JMP) to the IODone routine.

6/15/84 Hacker /DMGR/DEVICE.D

SUMMARY OF THE DEVICE MANAGER 35

SUMMARY OF THE DEVICE MANAGER

Constants

{ Values for posMode and loPosMode }

CONST fsAtMark 0; {at cur~ent position of mark }
{ (ioPosOffset Ignored)}

fsFromStart = 1 ; {offset relative to beginning of file}
fsFromLEOF = 2; {off set relative to logical end-of-file}
fsFromMark 3; {offset relative to current mark}

{ Values for requesting read/write access }

Data

TYPE

fsCurPerm
fsRd~erm

0;
1 ;

{whatever is currently allowed}
{request to' read only}

fsWrPerm
fsRdWrPerm =

2;
3;

{request to write only}
{request to read and write}

Types

ParmBlkPtr ParamBlockRec;

ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam);

ParamBlockRec RECORD
qLink: QElemPtr;
qType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;
ioCompletlon: ProcPtr;
ioResult: OSErr;
ioNamePtr: StringPtr;
ioVRefNum: INTEGER;

CASE ParamBlkType OF
loParam:

(ioRefNum:
loVersNum:
loPermssn:
ioMisc:
ioBuffer:

INTEGER;
SignedByte;
SignedByte;
Ptr;
Ptr;

ioReqCount: LongInt;
ioActCount: LongInt;
loPosMode: INTEGER;
ioPosOffset: LongInt);

flleParam:

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{driver name}
{used by Disk Driver}

{driver reference number}
{not used}
{read/write permission}
{not used}
{data buffer}
{requested number of bytes}
{actual number of bytes}

,{type of positioning operation}
{size of positioning offset}

••• {used by File Manager}
volumeParam:

••• {used by File Manager}

6/15/84 Hacker /DMGR/DEVICE.S

36 Device Manager Programmer's Guide

cntrlParam:
(csCode: INTEGER; {type of Control or Status call}
csParam: ,ARRAY[~ •• ~] OF Byte); {control or status inf"ormation}

END;

High-Level Routines

FUNCTION OpenDrlver (name: Str255; VAR refNum: INTEGER) : OSErr;
FUNCTION CloseDrlver (r~fNum: INTEGER) : OSErr;
FUNCTION FSRead (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr)

" : OSErr;
FUNCTION FSWrite (refNum: INTEGER; VAR count: LongInt; buffPtr: Ptr)

: OSErr;
FUNCTION Control (refNum: INTEGER; csCode: INTEGER; csParam: Ptr)

OSErr;
FUNCTION Status (refNum: INTEGER; csCode: INTEGER; csParam: Ptr)

OSErr; .
FUNCTION KillIO (refNum: INTEGER) : OSErr;

Low-Level Routines

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBClose (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBRead (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBWrlte (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBControl (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;
FUNCTION PBKillIO (paramBlock: ParmBlkPtr; async: BOOLEAN) OSErr;

Accessing a Driver's I/O Queue

FUNCTION GetDCtlQHdr (refNum: INTEGER) QHdrPtr;

Assembly-Language Information

Constants

; I/O queue type

ioQType" .EQU 2 ;1/0 request queue entry type

; Driver flags

dReadEnable .EQU ~ ;set, if driver can respond to Read calls
dWritEnable .EQU 1 ;set if driver can respond to Write calls
dCtlEnable .EQU 2 ;set if driver can respond to Control calls
dStatEnable .EQU 3 ;set if drlver can respond to Status calls
dNeedGoodBye .EQU 4 ;set if driver needs to be called before the

6/15/84 Hacker /DMGR/DEVICE.S

dNeedTime .EQU 5

dNeedLock .EQU 6

SUMMARY OF THE DEVICE MANAGER 37

; application heap is reinitialized
;set if driver needs time for performing a
; periodic action
;set if driver will be locked in memory as

soon as it's opened (always set for
ROM drivers)

; Device control entry flags

;set if driver is open
;set if driver is RAM-based

dOpened
dRAMBased
drvrActive

.EQU

.EQU

.EQU

5
6
7 ;set if driver is currently executing

; Trap words for Device Manager calls

aRdCmd .EQU 2 ;Read call (trap $A~~2)
aWrCmd .EQU 3 ;Write call (trap $A~~3)
aCtlCmd .EQU 4 ;Control call (trap $A~~4)
aStsCmd .EQU 5 ;Status call (trap $A~~5)

; Offsets for SCC

bCtl .EQU ~ ;Offset for SCC channel B control
aCtl .EQU 2 ;Offset for SCC channel A control
bData .EQU 4 ;Offset for SCC channel B data
aData .EQU 6 ;Offset for SCC channel A data

Standard Parameter Block Data Structure

qLink
qType
ioTrap
ioCmdAddr
ioCompletion
ioResult
ioFileName
ioVNPtr
ioVRefNum
ioDrvNum

Next queue entry
Queue type
Routine trap
Routine address
Completion routine
Result code
File name (and possibly volume name too)
Volume name
Volume reference number
Drive number

Control and Status Parameter Block Data Structure

csCode
csParam

6/15/84 Hacker

Type of Control or Status call
Parameters for Control or Status call

/DMGR/DEVICE.S

38 Device Manager Programmer's Guide

I/O Parameter Block Data Structure

ioRefNum
ioFileType
ioPermssn
ioBuffer
ioReqCount
ioActCount
ioPosMode
ioPosOffset

Driver Structure

drvrFlags
drvrDelay
drvrEMask
drvrMenu
drvrOpen
drvrPrime
drvrCtl
drvrStatus
drvrClose
drvrName

Driver reference number
Not used
Open permission
Data buffer
Requested number of bytes
Actual number of bytes
Type of positioning operation

,Size of positioning offset

Flags
Number of ticks between periodic actions
Desk accessory event m~sk
Menu ID of menu associated with driver
Offset to open routine
Offset to prime routine
Offset to control routine
Offset to status routine
Offset to close routine
Length and characters of driver name

Device Control Entry Data Structure

dCtlDriver
dCtlFlags
dCtlQueue
dCtlQHead
dCtlTail
dCtlPosition
dCtlStorage
dCtlRefNum
dCtlCurTicks
dCtlWindow
dCtlDelay
dCtlEMask
dCtlMenu

Primary Interrupt

autolnt1
autoInt2
autolnt3
autoInt4
autolnt5
autolnt6
autolnt7

6/15/84 Hacker

Pointer to ROM driver or handle to RAM driver
Flags
Low-order byte is driver's version number
Pointer to first entry in driver's I/O queue
Pointer to last entry in driver's I/O queue
Byte position used by Read and Write calls
Handle to RAM driver's private storage
Driver's reference number
Used internally by Device Manager
Pointer to driver's window record (if any)
Number of ticks between periodic actions
Desk accessory event mask /
Menu ID of menu associated with driver

Vector Table

Pointer to level-l interrupt handler
Pointer to level-2 interrupt handler
Pointer to level-3 interrupt handler
Pointer to level-4 interrupt handler
Pointer to level-5 interrupt handler
Pointer to level-6 interrupt handler
Pointer to level-7 interrupt handler

/DMGR/DEVICE.S

SUMMARY OF THE DEVICE MANAGER 39

I/O Parameter Block Data Structure

ioRefNum Driver reference number

Macro Names

Routine name
PBRead
PBWrite
PBControl
PBStatus
PBKillIO

Macro name
Read
Write

-Control
Status

-KillIO

Routines for Writing Drivers

Routine
Fetch
Stash
IODone

Variables

Name
uTableBase

Jump vector
jFetch
j Stash
jIODone

Size
4 bytes

unitNtryCnt· 2 bytes
IvllDT 4 bytes

lv12DT 4 bytes

extStsDT 4 bytes
[

sccRBase 4 bytes
sccWBase 4 bytes
VIA 4 bytes

6/15/84 Hacker

Contents
Pointer to unit table
Maximum number of entries in unit table
Beginning of level-l secondary
interrupt vector table
Beginning of level-2 secondary
interrupt vector table
Beginning 'of external/status
interrupt vector table
SCC base read address
SCC base write address
VIA base address

/DMGR/DEVICE.S

40 Device Manager Programmer's Guide

Result Codes

Name
abortErr
badUnitErr
controlErr
dInstErr
dRemoveErr
noErr

. notOpenErr
openErr

readErr
statusErr
unitEmptyErr

writErr

6/15/84 Hacker

Value
-27
-21
-17
-26
-25

0
-28
-23

-19
-18
-22

-20

l-ieaning
I/O request aborted by KillIO
Reference number doesn't match unit table
Driver can't respond to this Control call
Couldn't find driver in resource file
Tried to remove an open driver
No error
Driver isn't open
Requested read/write permission
doesn't match driver's open permission
Driver can't respond to Read calls
Driver can't respond to this Status call
Reference number specifies NIL
handle' in unit table
Driver can't respond to Write calls

/DMGR/DEVICE.S

GLOSSARY 41

GLOSSARY

asynchronous execution: After calling a routine asynchronously, an
application is free to perform other tasks until the routine is
completed.

block device: A device that reads and writes blocks of 512 characters
at a time; it can read or write any accessible block on demand.

character device: A device that reads or writes a stream of
characters, o~e at a time: it can neither skip characters nor go back
to a previous character.

closed driver: A device driver that cannot b~ read from or written to.

I
close routine: The part of a driver's code that implements Device
Manager Close calls.

completion routine: Any application-defined code to be executed when
an asynchronous call to a Device Manager routine is complet~d.

control information: Information transmitted by an application to a
device driver; it can typically select modes of operation, start or
stop processes, enable buffers, choose protocols, and so on.

control routine: The part of a device driver's code that implements
Device Manager Control and KillIO calls •

. data buffer: Heap space containing information to be written to a file
or driver from an application, or read from a file or driver to an
application.

device: A part of the Macintosh or a piece of external equipment, that
can transfer information into or out of the Macintosh.

device control entry: A 40-byte relocatable block of heap space that
tells the Device Manager the location of a driver's routines, the'
location of a driver's I/O queue, and other information.

device driver: A program that exchanges information between an
application and a device.

driver name: A sequence of up to 254 printing characters used to'refer
to an open device driver; driver names always begin with a period (.).

driver reference number: A number that uniquely identifies an
individual device driver.

exception: An error or abnormal condition detected by the processor in
the course of, program execution.

interrupt: An exception that's signaied to the processor by a device,
to notify the processor of a change in condition of the device, such as

6/15/84 Hacker /DMGRjDEVICE.G

42 Device Manager Programmer's Guide

the completion of an I/O request.

interrupt handler: A routine that services interrupts.

interrupt priority level: A number identifying the importance of the
interrupt. It indicates which device is interrupting, and which
interrupt handler should be executed.

interrupt vector: A pointer to an interrupt handler.

I/O queue: A queue 'containing the parameter blocks of all I/O requests
for one driver.

I/O request: A request for input from or output to a file or device
driver; caused by calling a File Manager or Device Manager routine
asynchronously.

open driver: A driver that can be read from and written to.

open routine: The part of a device driver's code that implements
Device Manager Open calls.

parameter block: An area of heap space used to transfer information
between applications and the Device Manager.

prime routine: The part of a device driver's code that implements
Device Manager Read and Write calls.

processor priority: Bits 8, 9, and 10 of the MC68000's status
register, that indicate which interrupts will be processed and which
will be ignored. /

status information: Information transmitted to an application by a
device driver; it may indicate the current mode of operation, the
readiness of the device, the 'occurrence of errors, and so on.

status routine: The part of a device driver's code that implements
Device Manager Status calls.

synchronous execution: After calling a routine synchronously, an
application cannot continue execution until the routine is completed.

unit number: The number of each device driver's entry in the unit
table.

unit table: A 128-byte nonrelocatab~e block containing a handle to the
device control entry for each device'-driver.

vector: A pointer.

vector table: A table of vectors in the system communication area.

6/15/84 Hacker /DMGR/DEVICE.G

--~~--

MACINTOSH USER EDUCATION

The Disk Driver: A Programmer's Guide /DRIVER/DISK

See Also: Inside Macintosh: A Road Map
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Memory Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
Macintosh Packages: A Programmer's Guide

Modification History: First Draft Bradley Hacker 9/18/84

ABSTRACT

The Disk Driver is a Macintosh device driver used for storing and
retrieving information on Macintosh 3 I/2-inch disk drives. This manual
describes the Disk Driver in detail. It's intended for programmers who
wish to access Macintosh drives directly, bypassing the File Manager.

2 Disk ,Drb7er Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the Disk Driver
5 Using the Disk Driver
7 Disk Driver Routines

10 Assembly-Language Example
11 Summary of the Disk Driver
14 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

The Disk Driver is a Macintosh device driver used for storing and
retrieving information on Macintosh 3 1/2-inch disk drives. This
manual describes the Disk Driver ip detail. It's intended for
programmers who wish to access Macintosh drives directly, bypassing the
File Manager.- *** Eventually it will become part of the comprehensive
Inside Macintosh manual. ***

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal and the information in the following manuals:

- Inside Macintosh: A Road Map

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications in Assembly Language, if you're
using asssembly language

You should also be familiar with the following:

- the Memory Manager

- files and disk drives, as described in the File Manager manual

- interrupts and the use of devices and device drivers, as described
in the Device Manager manuai

-,events, as discussed in the Toolbox and Operating System Event
Manager manuals *** (The Operating System Event Manager manual
doesn't yet'exist) ***

ABOUT THE DISK DRIVER

The Disk Driver is a standard Macintosh device driver in ROM. It
allows Macintosh applications to read from disks, write to disks, and
eject di~ks. The Disk Driver cannot format disks; this task is
accomplished by the Disk Initialization Package.

Information on disks is stored in 512-byte sectors. There are 800
sectors on one 400K-byte Macintosh disk. Each sector consists of an
address mark that cont'ains information used by the .Disk Driver to
determine the position of the secto~on the disk, and a data mark that
primarily contains data stored in that sector.

Consecutive sectors on a disk are grouped into tracks. There are 80
tracks on one 400K-byte Macintosh disk. Track 0 is the outermost and
track 79 is the innermost. Each track-corresponds to a ring of
constant radius around the disk. *** Future double-sided disks may
contain 1600 sectors. ***

9/18/84 Hacker /DRIVER/DISK.2

4 Disk Driver Programmer's Guida

Macintosh disks are formatted in a manner that allows a more efficient
use of disk space than most microcomputer formatting schemes: The
·tracks are ,divided into five groups of 16 tracks each, and each group
of tracks is accessed at a different speed from the other groups.
(Those at the edge of the disk are accessed at slower disk speeds than
those toward the center.)

Each group of tracks contains a different number of sectors:

Tracks
0-15

16-31
32-47
48-63
64-79

Sectors per track
12
11
10
9
8

Sectors
0-191

192-367
368-527
528-671
672-799

An application can read or write data in whole disk sectors only. The
application must specify the data to be read or written in 512-byte
multiples, and the Disk Driver automatically calculates which .sector to
access. The application specifies where on the disk the data should be
read or written by providing a positioning operation and a positioning
offset. Data cah be read from or written to the disk:

- at the current sector on the disk (the 'sector following the last
sector read or written)

- from a position relative to the current sector on the disk

- from a position relative to the beginning of first sector on the
disk

The following constants are used to specify the positioning operation:

CONST currPos
absPos
relPos

= 0;
= 1;
= 3;

{at current sector}
{relative to first sector}
{relative to current sector}

If the positioning operation is relative to a sector (absPos or
relPos), the relative offset from that sector must be given as a
512-byte multiple.

Whenever the Disk Driver reads a sectgr from a disk, it places the
sector's 12 bytes of file tags at a special location in low memory
c~lled the file tags buffer (the remaining 512 bytes in the sector are
passed on to the File Manager). Each time one s~ctor's file tags are
written there, the previous file tags are overwritten.

Conversely, whenever the Disk Driver writes a sector on a disk, it
takes the 12 bytes in the file tags buffer and writes them on the disk.

9/18/84 Hacker /DRIVER/DISK.2

ABOUT THE DISK DRIVER 5

Assembly-language note: The low memory location TagData + 2
contains the file tags buffer.

The Disk Driver disables interrupts for 12 to 24 milliseconds during
disk accesses. During this interval it stores any serial data received
via the modem port and later passes the data to the Serial Driver.
This allows the modem port to be used simultaneously with disk accesses
without fear of hardware overrun ,errors.

'USING THE DISK DRIVER

This section introduces you to the Disk Driver routines and how they
fit into the general flow of an application program. The routines
themselves are described in detail in the next section.

The Disk Driver is opened automatically when the system starts up. It
allocates sp~ce in the system heap for variables, installs entries in
the drive queue for each drive that's attached to the Macintosh, and
installs an application task into the vertical retrace queue. The Disk
Driver's name is '.Sony', and its reference number is -5.

To write data onto a disk, make a Device Manager Write call. You must
pass the following parameters:

The driver reference number -5.

- The drive number 1 (internal drive) or 2 (external drive).

- A positioning operation indicating where on the disk the
information.should be written.

- A positioning offset that's a multiple of 512 bytes.

- A buffer that contains the data you want to write.

- The number of bytes (in multiples of 512) that you want to write.

The Disk Driver's prime routine returns one of the following result
codes to the Write routine:

.noErr
badBtSlpErr
badCksmErr
badDBtSlp
badDCksum
cantStepErr
initIWMErr
noAdrMkErr

9/18/84 Hacker

No error
Bad address mark
Bad address mark
Bad data mark
Bad data mark
Hardware error
Hardware error
Can't find an address mark

/DRIVER/DISK.2

6 Disk Driver Programmer's Guide

Drive isn't connected
Can't find data mark
Disk is probably blank
No such drive
No disk in drive
Bad positioning information
Can't find sector
Hardware error
Hardware error
Hardware error

noDriveErr
noDtaMkErr
noNybErr
nsDrvErr
offLinErr
paramErr
sectNFErr
seekErr
spdAdjErr
tk0BadErr
twoSideErr Tried to read side 2 of a disk in a single-sided

drive
wPrErr Disk is locked

To read data from a disk, make a Device Manager Read call. You must
pass the 'following parameters:

- The driver reference number -5.

The drive number 1 (internal drive) or 2 (external drive).

- A positioning operation indicating where on the disk the
information shou~d be read from. 'If the following constant is
added to the positioning operation, the Disk Driver will verif~
that the data written to the disk exactly matches the data in
memory (the result code dataVerErr will be returned if any of the
data doesn't match):

CONST rdVerify = 64; {read-verify mode}

- A positioning offset that's a multiple of 512 bytes'.

- A buffer to receive the data that's read.

- The number of bytes (in multiples of 512) that you want to read.

The Disk Driver's prime routine returns one of the following result
codes to the Read routine:

no Err
badBtSlpErr
badCksmErr
badDBtSlp
badDCksum
cantStepErr
dataVerErr
initIWMErr
noAdrMkErr
noDriveErr
noDtaMkErr
noNybErr
nsDrvErr
offLinErr
tk0BadErr

9/18/84 Hacker

No error
Bad address mark
Bad address mark
Bad data mark
Bad data mark
Hardware error
Read-verify failed
Hardware error
Can't find an address mark
Drive isn't connected
Can't find data mark
Disk is probably blank
No such drive
No disk in drive
Hardware error

/DRIVER/DISK.2

paramErr
sectNFErr
seekErr
spdAdjErr
twoSideErr

USING TH~ DISK DRIVER 7

Bad positioning information
Can't find sector
Hardware error
Hardware' error
Tried to read side 2 of a disk in a single-sided
drive

The Disk Driver can read and write sectors in any order, and therefore
operates faster on one large data requ~st than it would on a series of
equivalent but smaller data requests.

There are three different calls you can make to the Disk Driver's
control routine:

- KillIO causes all current I/O requests to be aborted. KillIO is a
Device Manager call.

- SetTagBuffer specifies the information to be used in the file tags
buffer.

- DiskEject ejects a disk from a drive.

An application using the File Manager should always unmount the volume
in a drive before "ejecting the disk.

You can make one call, DriveStatus, to the Disk Driver's status
routine, to learn about the state of the driver.

An application can bypass the implicit mounting of volumes done by the
File Manager by calling the Operating System Event Manager function
GetOSEvent and looking for disk-inserted events." Once the volume has
been inserted in the drive it can be read from normally.

DISK DRIVER ROUTINES

This section describes the Disk Driver routines. They return an
integer result code of type OSErr; each routine description lists all
of the applicable result codes.

Assembly-language~: There are no trap macros for these "
routines, but assembly-language programmers can make equivalent
Control and Status calls, as indicated in the routine
descriptions.

9/18/84 Hacker /DRIVER/DISK.2

8 Disk Dr!ver Programmer's Guide

FUNCTION DiskEject (drvNum: INTEGER) OSErr;

Assembly-Ianguage~: DiskEject is equivalent to a Control
call with csCode equivalent to the global constant ejectCode.

DiskEject ejects the disk from the internal drive if drvNum is 1, or
from the external drive if drvNum is 2.

Result codes noErr ,
nsDrvErr

No error
No such drive

FUNCTION SetTagBuffer (buffPtr: Ptr) OSErr;

Assembly-Ianguage~: SetTagBuffer is equivalent to a Control
call with csCode = 8.

An application can change the information used in the file tags buffer
by calling SetTagBuffer. 'The buffPtr parameter points to a buffer 'that
contains the information to be used. ,If buffPtr is NIL, the
information in the ,file tags buffer isn't changed.

If buffPtr isn't ,NIL, every time the Disk Driver reads a sector from
the disk, it stores the file tags in 'the file tags buffer and in the
buffer pointed to by buffPtr. Every time the Disk Driver writes a
sector onto the disk, it reads 12 bytes from the buffer pointed to by
buffPtr, places, them in the file tags buffer, and then writes them onto
the disk.

The contents of the buffer pointed to by buffPtr are overwritten at the
end of every read request (which can be composed of a number of
sectors) instead of at the end of every sector. Each read request
places 12 bytes in the buffer for each sector, always beginning at the
start of the buffer. This wayan application can examine the file tags

) for a number of sequentially read sectors. If a read request is
composed of a number of sectors, the Disk Driver reads 12 bytes from
the buffer for each sector. For example, for a read request of five
sectors, the Disk Driver will read 60 bytes from the buffer.

Assembly-language~: An assembly-language program can change
the information used in the file tags buffer by ~toring a

9/18/84 Hacker /DRIVER/DISK.2

./

DISK DRIVER ROUTINES 9

pointer to the buffer containing the information in the global
variable TagBufPtr. If TagBufPtr is 0. the information in the
file tags buffer isn't changed.

Result codes noErr No error

FUNCTION DriveStatus (drvNum: INTEGER; VAR status: DrvSts) OSErr;

Assembly-Ianguage~: DriveStatus is equivalent to a Status
call with csCode equivalent to the global constant.drvStsCode.

DriveStatus returns information about the internal drive if drvNum is
1. or about the external drive if drvNum is 2. The information is
returned in a record of type DrvSts:

TYPE DrvSts = RECORD
track: INTEGER; {current track} .
writeProt: Signed Byte; {bit 7=1 if volume is locked}
diskInPlace: Signed Byte; {disk in place}
installed: Signed Byte ; {drive installed}
sides: Signed Byte; {bit 7=0 if single-sided drive}
qLinlt% QElemPtr; {next queue entry}
qType: INTEGER; {not used}
dqDrive: INTEGER; {drive number}
dqRefNum: INTEGER; {driver reference number}
dqFSID: INTEGER; {file-system identifier}
twoSideFmt: SignedByte; I {-1 if two-sided disk}
needsFlush: SignedByte; {reserved}
diskErrs: INTEGER {error count}

END;

The diskInPlace field is 0 if there's no disk in the drive, 1 or 2 if
there is a disk in the drive. ,or -4 to -1 if the disk was ejected in
the last 1.5 seconds. The installed field is 1 if the drive is
connected to the Macintosh, 0 if the drive might be connected to the
Macintosh. and -1 if the drive isn't installed. The value of
twoSideFmt is valid only when diskInPlace = 2. The value of diskErrs
is incremented every time an error occurs internally within the Disk
Driver.

Result codes

9/18/84 Hacker

noErr
nsDrvErr

No error
No such drive

/DRIVER/DISK.2

10 Disk Driver Progrc-,mmer' s G'lide

ASSEMBLY-LANGUAGE EXAMPLE

The following assembly-language example ejects the disk in drive 1:

MyEject
@1

MOVEQ
CLR.W
o BRA
MOVE.L
MOVE.W
MOVE.W
MOVE.W
_Eject
ADD

#<ioQElSize/2)-1,D0
-(SP)
D0,@1
SP,A0
#dskRfN,ioRefNum(A0)
1 , io DrvNum(A0)
#ejectCode,csCode(A0)

#ioQElSize,SP

;prepare an I/O
; request block
; on the stack
;A0 points to it
;driver refNum
;internal drive
;eject control code
;synchronous call
;clean up stack

To asynchronously read sector 4 from the disk in drive 1, you would do
the following:

MyRead MOVEQ #<ioQElSize/2)-I,D0 ;prepare an I/O
@1 CLR.W -(SP) ; request block

o BRA D0;@1 ; on the stack
MOVE.L SP,A0 ;A0 points to it
MOVE.W #dskRfN,ioRefNum(A0) ;driver refNum
MOVE.W # 1, ioDrvNum(A0) ;internal drive
MOVE.W #1,ioPosMode(A0) ;absolute positioning
MOVE.L #(512*4),ioPosOffset(A0) ;sector 4

MOVE.L #512,ioByteCount(A0) ;read one sector
LEA MyBuffer ,AI
MOVE.L AI, ioBuffer(A0) ;buffer address

Read ,ASYNC ;read data

; Do any other processing here. Then, when the sector is needed:

@2 MOVE.W
BGT.S
ADD

MyBuffer .BLOCK

'9/18/84 Hacker

ioResult(A0) ,00 ;wait for completion
@2 ,
#ioQElSize,SP ;clean up stack

512,0

/DRIVER/DISK.2

SUMl1ARY OF THE DISK DRIVER 11

SUMMARY OF THE DISK DRIVER

Constants

CONST { Positioning information }

currPos
absPos
relPos
rdVerify

= 0;
= 1 ;
= 3;
= 64;

{at current sector}
{relative to first sector}
{relative to current sector}
{read-verify mode}

Data Types

TYPE DrvSts = RECORD
track:
writeProt:
diskInPlace:
installed:
'sides,:
qLink:
qType:
dQDrive:
dQRefNum:
dQFSID:
twoSideFmt:
needsFlush:
diskErrs:

END;

INTEGER;
Signed Byte ;
Signed Byte ;
SignedByte;
Signed Byte ;
QElemPtr;
INTEGER;
INTEGER;
INTEGER; ,
INTEGER;
SignedByte;
Signed Byte;
INTEGER

{current track}
{bit 7=1 if volume is locked}
{disk in place}
{drive installed}
{bit 7=0 if single-sided drive}
{next queue entry}
{not used}
{dri ve number}
{driver reference number}
{file-system identifier}
{-I if two-sided disk}
{reserved}
{error ,count}

Disk Driver Routines [No trap macro] ________________________________ __

FUNCTION DiskEject (drvNum: INTEGER) : OSErr;
FUNCTION SetTagBuffer (buffPtr: Ptr) : OSErr;.
FUNCTION DriveStatus (drvNum: INTEGER; VAR status: DrvSts) OSErr;

Assembly-Language Information

Constants

ejectCode
drvStsCode

.EQU

.EQU

9/18/84 Hacker

7
8

/DRIVER/DISK.S

12 Disk Driver Programmer's Guide

Structure of Status Information

track Current track
writeProt Bit 7=1 if volume is locked
diskInPlace Disk in place
installed Drive installed
sides Bit 7=0 if single-sided drive
dQEI Drive queue entry
twoSideFmt -1 if two-sided disk
diskErrs Error count

Variables

Size Contents
Default file tags buffer

Name
TagData + 2
TagBufPtr

12 bytes
4 bytes Pointer to information for file tags buffer

Equivalent Device Manager Calls

Pascal routine Call CSCode
DiskEject Control ejectCode /

SetTagBuffer Control 8
DriveStatus Status drvStsCode

Result Codes

These values are available as predefined cons taRts in both Pascal and
assembly language.

Name
badBtSlpErr
badCksmErr
badDBtSlp
badDCksum
cantStepErr
dataVerErr
initIWMErr
noAdrMkErr
noDriveErr
noDtaMkErr
noErr
noNybErr
nsDrvErr
offLinErr
paramErr
sectNFErr
seekErr
spdAdj Err
tk0BadErr

Value
-70
-69
-73

.-72
-75
-68
-77
-67
-64
-71

o
-66
-56
-65
-50
-81
-80
-79
-76

9/18/84 Hacker

Meaning
Bad address mark
Bad address mark
Bad data mark
Bad data mark
Hardware error
Read-verify failed
Hardware error
Can't find an address mark
Drive isn~t connected
Can't find data mark
No error
Disk is probably blank
No such drive
No disk in drive-
Bad positioning information
Can't find sector
Hardware error
Hardware error
Hardware error

/DRIVER/DISK.S

twoSideErr -78

wPrErr -44
'--

9/18/84 Hacker

/

SUMMARY OF THE DISK DRIVER 13

Tried to read side 2 of a disk in a single-sided
drive
Disk is locked

/DRIVER/DISK.S

14 Disk Driver Programmer's Guide

GLOSSARY

address mark: In a sector, information that's used internally by the
Disk Driver, including information it uses to determine the position of
the sector on the disk.

data mark: In a sector, information that primarily contains data from
an application.

file tags buffer: A location in memory where file tags are read from
and written to.

sector: Disk space composed of 512 consecutive bytes of standard
information and 12 bytes of file tags.

track: Disk space composed of 8 to 12 consecutive sectors. A track
corresponds to one ring of constant radius around the disk.

9/18/84 Hacker /DRIVER/DISK.G

MACINTOSH USER EDUCATION

The Sound Driver: A Programmer's Guide /SNDRVR/SOUND

See Also: Programming Macintosh Applications in Assembly Language
Inside Macintosh: A Road Map
Macintosh Memory Management: An Introduction
The Memory Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide

Modification History: First Draft
Second Draft

Bradley Hacker
Bradley Hacker &

Caroline Rose

7/16/84

11/15/84

ABSTRACT

The Sound Driver is a Macintosh device driver for handling sound and
music generation in a Macintosh application. This manual describes the
Sound Driver in detail.

Summary of significant changes and additions since last draft:

- The definition of the term "amplitude" has been corrected, and the
term "magnitude" added (page 4).

- The note concerning how to call Stop Sound from assembly language
has been corrected (pag~ 15).

- The equivalent assembly-language instructions for. the Set Sound Vol
procedure have been removed; in assembly-language, you can just
call this Pascal procedure from your program (page 16)~

- The summary now includes numbers not only for Ptolemy's diatonic
scale, but also for an equal-tempered scale (page 20).

2 Sound Driver Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About The Sound Driver
6 Sound Driver Synthesizers
7 Square-Wave Synthesizer
8 Four-Tone Synthesizer

11 Free-Form Synthesizer
12 Using The Sound Driver
13 Sound Driver Routines
16 Sound Driver Hardware
18 Summary of the Sound Driver
23 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3'

ABOUT THIS MANUAL

The Sound Driver is a Macintosh device driver for handling sound and
music generation in a Macintosh application. This manual describes the
Sound Driver in detail. *** Eventually it will become part of the
comprehensive Inside Macintosh manual. ***

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal and the information in the following manuals:

- Inside Macintosh: A Road Map

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications in Assembly Language, if you're
.using assembly language

You should also be familiar with the following:

the Memory Manager

- devices and device drivers, as des.cribed in the Device Manager
Manual

ABOUT THE SOUND DRIVER

The Sound Driver is a standard Macintosh device driver used to
synthesize sound. You can generate sound characterized by any kind of
waveform by using the three different sound synthesizers in the Sound
Driver:

- The four-tone synthesizer is used to make simple harmonic tones,
with up' to four "voices" producing sound simultaneously; it
requires about 50% of the microprocessor's attention during any
given time interval.

- The square-wave synthesizer is used to produce less harmonic
sounds such as beeps, and requires about 2% of the processor's
time.

- The free-form synthesizer is used to make complex music and
speech; it requires about 20% of the processor's time.

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

)

4 Sound Driver Programmer's Guide

Figure 1 depicts the waveform of a typical sound wave, and the terms used to
describe it. The magni.tude is the vertical distance between any given point
on the wave and the horizontal line about which the wave o.scillates; you can
think of the magnitude as the volume level. The amplitude is the maximum
magnitude of a periodic wave. The wavelength is the horizontal extent of one
complete cycle of the wave-. Magnitude and wavelength can be measured in .any
unit of distance. The period is the time elapsed during one complete cycle of
a wave. The frequency is the reciprocal of the period, or the number of
cycles per second (also called Hertz). The phase is some fraction of a wave
cycle (measured from a fixed point on the wave).

period T (sec) frequency 1 (Hz) := ~
,.----wavelength ----,.

'------ one eye I e ____ oJ

Figure 1. A Waveform

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

ABOUT THE SOUND DRIVER 5

There are many different types of waveforms, three of which are
depicted in Figure 2. Sine waves are generated by objects that
oscillate periodically at a single frequency (such as a guitar string).
Square waves are generated by objects that toggle instantly between two
states at a single frequency (such as a doorbell buzzer). Free-form
waves are the most common waves of all, and are generated by all
objects that vibrate at rapidly changing frequencies with rapidly
changing magnitudes (such as your vocal cords or the instruments of an
orchestra all playing at once).

sine ",ave

- - - -

--- ~ ~ i...--

square wave

free· form weve

Figure 2. Types of Waveforms

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

6 Sound Driver Programmer's Guide

Figure 3 shows analog and digital representations of a waveform. The
Sound Driver represents waveforms digitally. so all waveforms must be
converted from their analog representation to a digital representation.
The rows of numbers at the bottom of the figure are digital
representations of the waveform. The numbers in the upper row are the
magnitudes relative to the horizontal zero-magnitude line. The numbers
in the lower row all represent the same relative magnitudes. but have
been normalized to positive numbers; you'll use numbers like these when
calling the Sound Driver.

a.
E
CD

+

o

time/di,tance

• ,.,.
II ... II'

.. .~ . II'

.. .. analog representation

• IlL JIlL
I'" .

ill IIIL
a 3 5 6 7 6 5 3 0 -3 -5 -6 -7 -6 ·5·3 0 } digital representations

"7 10 12 13 14 13 12 10 7 4 2 1 0 1 2 4 7

Figure 3. Analog and Digital Representations of a Waveform

A digital representation of a waveform is simply a sequence of wave
magnitudes measured at fixed intervals. This sequence of magnitudes is
stored.in the Sound Driver as a sequence of bytes. each one of which
specifies an instantaneous voltage to be sent to the speaker. The
bytes are stored in a data structure called a waveform description.
Since a sequence of bytes can only represent a group of numbers whose
maximum and minimum values differ by less than 256. the magnitudes of
your waveforms must be constrained to these same limits.

SOUND DRIVER SYNTHESIZERS

A description of the sound to be generated by a synthesizer is
contained in a data structure called a synthesizer buffer. A
synthesizer buffer contains the duration. pitch, phase, and waveform of
the sound the synthesizer will generate. The exact structure of a
synthesizer buffer differs for each type of synthesizer being used.
The first word in every synthesizer buffer is an integer that
identifies the synthesizer. and must be one of the following predefined
constants:

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

SOUND DRIVER SYNTHESIZERS 7

= -1; {square-wave synthesizer}
1; {four-tone synthesizer}
0; {free-form synthesizer}

CONST swMode
ftMode =
ffMode

Square-Wave Synthesizer

The square-wave synthesizer is used to make sounds such as beeps. A
square-wave synthesizer buffer has the following structure:

TYPE SWSynthRec = RECORD
mode: INTEGER; {always swMode}
triplets: Tones -{sounds}

END;

SWSynthPtr = ASWSynthRec;

Tones
Tone

ARRAY [0 •• 5000] OF Tone;
= RECORD

count: INTEGER; {frequency}
amplitude: INTEGER; {amplitude, 0-255}
duration: INTEGER {duration in ticks}

END;

Each tone triplet contains the count, amplitude, and duration of a
different sound. You can store as many triplets in a synthesizer
buffer as there's room for.

The count integer can range in value from 0 to 65535. The actual
frequency the count corresponds to is given by the relationship:

frequency (Hz) = 783360 / count

A partial list of count values and corresponding frequencies for notes
is given in the summary at the end of this manual.

The type Tones is declared with 5001 elements to allow you to pass up
to 5000 sounds (the last element must contain~). To be space
efficient, your application shouldn't declare a variable of type Tones;
instead, you can do something like this:

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

8 Sound Driver Programmer's Guide

VAR myPtr: Ptr;
myHandle: Handle;
mySWPtr: SWSynthPtr; . . .

myHandle := NewHandle(buffSize); {allocate space for the buffer}
HLock(myHandle); {lock the buffer}
myPtr := myHandle A; {dereference the handle}
mySWPtr := SWSynthPtr(myPtr); {coerce type to SWSynthPtr}
mySWPtrA.mode := swMode; {identify the synthesizer}
mySWPtr A .triplets[0].count := 2; {fill the buffer with values}

• • • { describing the sound}
StartSound(myPtr,buffSize,POINTER(-1»;, {produce the sound}
HUnlock(myHandle) {unlock the buf,fer}

where buff Size contains the number of bytes in the synthesizer buffer.
This example dereferences handles instead of using pointers directly,
to minimize the number of nonrelocatable objects on the heap.

Assembly-language note: The global variable CurPitch contains
the current value of the count field.

The amplitude integer can range from 0 to 255. The duration integer
specifies the number of ticks that the sound will be generated.

The list of tones ends with a triplet in which all fields are set to 0.
When the square-wave synthesizer is used, the sound specified by each
triplet is generated once, and then the synthesizer stops.

Four-Tone Synthesizer

The four-tone synthesizer is used to produce harmonic sounds such as
music. It can simultaneously generate four different sounds, each with
its own frequency, phase, and waveform.

A four-tone synthesizer buffer has the following structure:

TYPE FTSynthRec = RECORD
mode: INTEGER; {always ftMode}
sndRec: FTSndRecPtr {tones to play}

END;

FTSynthPtr = AFTSynthRec;

The sndRec field points to a four-tone record, which describes the four
tones:

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

SOUND DRIVER SY!~ESIZERS 9

TYPE FTSoundRec = RECORD
duration: INTEGER; {duration in ticks}
soundlRate: Fixed; {tone 1 cycle rate}
soundlPhase: LONGINT; {tone 1 byte offset}
sound2Rate: Fixed; {tone 2 cycle rate}
sound2Phase: LONGINT; {tone 2 byte offset} .
sound3Rate: Fixed; {tone 3 cycle rate}
sound3Phase: LONGINT; {tone 3 byte offset}
sound4Rate: Fixed; \ {tone 4 cycle rate}
sound4Phase: LONGINT; {tone 4 byte offset}
soundlWave: Wav.ePtr; , {tone 1 waveform}
sound2Wave: WavePtr; {tone 2 waveform}
sound3Wave: WavePtr; {tone 3 waveform}
sound4Wave: WavePtr {tone 4 waveform}

END;

FTSndRecPtr = AFTSoundRec;

Wave PACKED ARRAY [0 •• 255] OF Byte;
WavePtr = AWave;

Assembly-language note: The address of the four-tone record
currently in use is stored in the global variable SoundPtr.

The duration integer indicates the number of ticks that the sound will
be generated. Each phase long integer indicates the byte within the
waveform description at which the synthesizer should begin producing
sound (the first byte is byte number 0). Each rate value determines'
the speed at which the synthesizer cycles through the waveform, from 0
to 256. '

The four-tone synthesizer,creates sound by starting at the byte in the
waveform description speci~ied by the phase, and skipping rate bytes
ahead every 44.93 microseconds; when the time specified by the duration'
integer has elapsed, the synthesizer stops. The rate field determines
how the-waveform will be "sized", as shown in Figure 4. The rate field
is, in effect, a way of changing the frequency of the waveform, based
on multiples of 44.93 microseconds. For nonperiodic waveforms, this
effect is best illustrated by example: If the rate field "is 1, each
byte value of the waveform will produce sound for 44.93 microseconds;
if the rate field is 0.1, each byte will produce sound for 449.3
microseconds; if the rate field is 5, every fifth byte in the waveform
will produce sound for 44.93 microseconds.

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

10 Sound Driver Programmer's Guide

original wave

rate field = ,

rate field = 2

rate field = .5

Figure 4. Effect of the Rate Field

"\

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

SOUND DRIVER SYNTHESIZERS 11

If the waveform contains one wavelength, the frequency the rate
corresponds to is given by:

frequency (Hz) - 1000000 1 (44.93 ~ 256 1 rate)

The maximum 'rate of 256 corresponds to approximately 22.3 kHz if the
waveform contains one wavelength, and a rate of 0 produces no sound. A
partial list of rate values and corresponding frequencies for notes is
given in the summary at the end of this manual.

Free-Form Synthesizer

The free-form synthesizer is used to synthesize complex music and
speech. The sound to be produced is represented as a waveform whose
complexity and length are limited only by available memory.

A free-form synthesizer buffer has the following structure:

TYPE FFSynthRec - RECORD
mode: INTEGER; {always ffMode}

{"sizing" factor}
{waveform description}

count: Fixed;
waveBytes: F~eeWave

END;

FFSynthPtr = AFFSynthRec;

FreeWave = PACKED ARRAY [0 •• 30000] OF Byte;

Each magnitude in the waveform description will be generated once; when
the end of the waveform is. reached, the synthesizer will stop. The
type FreeWave is declared with 30001 elements to allow you to pass a
very long waveform. To be space-efficient, your application shouldn't:
declare a variable of type FreeWave; instead, you can do something like
this:

VAR myPtr: Ptr;
myHandle: Handle;
myFFPtr: FFSynthPtrj

myHandle := NewHandle{buffSize);
HLock{myHandle);
myPtr := myHandle A;
myFFPtr := FFSynthPtr{myPtr);
myFFPtrA.mode :- ffMode;
myFFPtrA.count :- 1;
myFFPtr A.waveBytes[01 :- 0;

{allocate space for the buffer}
{lock the buffer}
{deref~rence the handle}
{coerce type to FFSynthPtr}
{identify the synthesizer}
{fill the buffer with values }
{describing the sound}

StartSound{myPtr,buffSize,POINTER{-1»;
HUnlock{myHandle)

{produce the sound}
{unlock the buffer}

where buff Size contains the number of bytes in the synthesizer buffer.
This example dereferences handles instead of using pointers directly,
to minimize the number of nonrelocatable objects on the heap.

11/15/84 Hacker-Rose ISNDRVRISOUND.2

12 Sound Driver Programmer's Guide

The free-form synthesizer creates sound by starting at the first byte
in the waveform and skipping count bytes ahead every 44.93
microseconds. The count field determines how the waveform will be
"sized". in a manner analogous to that of the rate field of the four
tone synthesizer, as shown in Figure 4 above.

For periodic waveforms. you can determine the frequency of the wave
cycle by using the following relationship:

frequency (Hz) = 1000000 / (44.93 * (wavelength / count))

where the wavelength is given in bytes. For example. the frequency of
a wave with a 100-byte wavelength played at a count value of 2 would be
approximately 445 Hz.

Assembly-language~: The address of the free-form buffer
currently in use is stored in the global variable SoundBase.

USING THE SOUND DRIVER

The Sound Driver is a standard Macintosh device driver in ROM. It's
automatically opened when the system starts up. Its driver name is
• Sound. and its driver reference number is -4. To close or open the
Sound Driver. you can use the Device Manager Close and Open functions.
Because the driver is in ROM. there's really no reason to close it.

To use one of the three types of synthesizers to generate sound. you
can do the following: Use the Memory Manager function NewHandle to
allocate heap space for a synthesizer buffer; then lock the buffer.
fill it with values describing the sound, and make a StartSound call to
the Sound Driver. StartSound can be called either synchronously or
asynchronously (with an optional completion routine). When called
synchronously, control returns to your application after the sound is
completed. When called asynchronously, control returns to your
application immediately, and your application is free to perform other
tasks while the sound is produced.

The Sound Driver uses interrupts to produce sound. Other device
drivers, such as the Disk Driver, turn off interrupts while they're
operating. Be sure you don't call such drivers while you're producing
sounds.

(note)
To produce continuous. unbroken sounds, it's sometimes
advantageous to preallocate· space for all the sound
buffers you require before you make the first Start Sound
call. Then. while one asynchronous StartSound call is

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

USI~G THE SOUND DRIVER 13

being completed, you can calculate the waveform values
for the next call.

To avoid the click that may occur between Start Sound
calls when using the four-tone synthesizer, set the
duration field to a large value and just change the value
of one of the rate fields to start a new sound.

To determine when the sound initiated by a StartSound call has been
completed, you can poll the SoundDone function. You can cancel any
current StartSound call and any pending asynchronous Start Sound calls
by calling StopSound. By calling GetSoundVol and SetSoundVol, you can
get and set the current speaker volume level.

SOUND DRIVER ROUTINES

Assembly-language note: There are no trap macros for these
routines; assembly-langnage .programmers can take the equivalent
actions noted in the routine descriptions.

PROCEDURE StartSound (synthRec: Ptr; numBytes: LONGINT; completionRtn:
ProcPtr);

StartSound begins. producing the sound(s) described by the synthesizer
buffer pointed to by synthRec. NumBytes indicates the length of the
synthesizer buffer (in bytes), . and completionRtn points toa completion
routine to be executed when the sound finishes:

- If completionRtn is POINTER(-l), the sound will be produced
synchronously.

- If completionRtn is NIL, the sound will be produced
asynchronously, but no completion routine will be execute~.

- Otherwise, the sound will be produced asynchronously and the
routine pointed to by completionRtn will be executed when the
sound finishes.

(warning)
You may want the completion routine to start the next
sound when one sound finishes, but beware: Completion
routines are executed at the interrupt level, and
shouldn't make any calls to the Memory Manager. Be sure
to preallocate all the space you'll need. Or, instead of
using a completion routine to start the next sound, the

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

14 Sound Driver Programmer's Guide

completion routine can post an application-defined event
and your application's main event loop can start the next
sound when it gets the event.

Because the type of pointer for each type of synthesizer buffer is
different and the type of the synthRec parameter is Ptr, you'll need to
do something like the following example (which applies to the free-form
synthesizer):

VAR myPtr: Ptr;
myHandle: Handle;
myFFPtr: FFSynthPtr;

myHandle := NewHandle(buffSize);
HLock(myHandle);
myPtr := myHandle A

;

myFFPtr := FFSynthPtr(myPtr);
myFFPtrA.mode := ffMode;

{allocate space for the Quffer}
{lock the buffer}
{dereference the handle}
{coerce type to FFSynthPtr}
{identify the synthesizer}
{fill the buffer with values }
{describing the sound}

StartSound(myPtr,buffSize,POINTER(-1»; {produce the sound}
HUnlock(myHandle) {unlock the buffer}

where buff Size is the length of the synthesizer record.

The sounds' are generated as follows:

- Free-form synthesizer: The magnitudes described by each byte in
the waveform description are generated sequentially until the
number of bytes specified by the numBytes parameter have been
written.

- Square-wave synthesizer: The sounds described by each sound
triplet are generated sequentially until either the end of the
buffer has been reached (indicated by a count, amplitude, and
duration of 0 in the square-wave buffer), or the number of bytes
specified by the numBytes parameter have been written.

- Four-tone synthesizer: All four sounds are generated for the
length of time specified by the dura~ion integer in the four-tone
record.

Assembly-language note: Assembly-language programmers can make
a Device Manager Write call with the following parameters:
ioRefNum must be -4, ioBuffer must point to the synthesizer
buffer, and ioReqCount must contain the length of the
synthesizer buffer.

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

SOUND DRIVER ROUTINES 15

PROCEDURE StopSound;

StopSound immediately stops the current StartSound call (if any),
executes the current StartSound call's completion routine (if any), and
cancels any pending asynchrounous StartSound calls.

Assembly-language note: To stop sound from assembly-language,
you can make a Device Manager KillIO call (and, when using the
square-wave synthesizer, set the global variable CurPitch to 0).
Although StopSound executes the completion routine of only the
current StartSound call, KillIO executes the completion routine
of every pending asynchronous call.

FUNCTION SoundDone : BOOLEAN;

Sound Done returns TRUE if the So'und Driver isn't currently producing
so~nd and there are no asynchronous StartSound calls pending; otherwise
it returns FALSE.

Assembly-Ianguage~: Assembly-language programmers can poll
the ioResult field of the most recent Device Manager Write
call's parameter block to determine when the Write call
finishes.

PROCEDURE GetSoundVol (VAR level: INTEGER);

GetSoundVol returns tpe current speaker volume, from 0 (silence) to 7
(loudest).

Assembly-Ianguage~: Assembly-language programmers can get
the speaker volume level from the low-order three bits of the
global variable SdVolume.

11/15/84 Hacker-Rose /SNDRVR/SOUND.2

16 Sound Driver Programmer's Guide

PROCEDURE SetSoundVol (level: INTEGER);

SetSoundVol immediately sets the speaker volume to the specified level,
from 0 (silence) to 7 (loudest).

(note)

Assembly-language note: To, set the speaker volume level from
assembly language, call this Pascal routine from your program.
As a side effect, it will set the low-order three bits of the
global variable SdVolume to the specified level.

Your program shouldn't change the speaker volume unless
it'sa Control Panel-like desk accessory, since it's
really up, to the user to choose the desired volume level
via the dontrol Panel.

SOUND DRIVER HARDWARE

This section describes how the Sound Driver uses the Macintosh hardware
to produce sound, and how advanced programmers can intervene in the
process to control the square-wave synthesizer. You can skip this
section if it doesn't interest you, and you'll still be able to use the
Sound Driver as described.

The Sound Driver and disk-motor speed-control circu~try share a special
740-byte buffer in memory, of which the Sound Driver uses the 370 even
numbered bytes to generate sound. Every horizontal retrace interval
(every 44.93 microseconds--when the beam of the video screen moves from
the right edge of the screen to the left) the 68000 automatically
fetches two bytes from this buffer and sends the high-order byte to the
speaker. Every vertical retrace interval (every 16.6 milliseconds-
when the beam of the video screen moves from the bottom of the screen
to the top) the Sound Driver fills its half of the 740-byte buffer with
the next set of values. For square-wave sound the buffer is filled
with a constant value; for more complex sound the buffer is filled with
many values'.

(note) "-
All the frequencies generated by the Sound Driver are
multiples of this 44.93 microsecond period. The highest
frequency the Sound Driver can physically generate
corresponds to twice this period, 89.96 micros~conds, or
a frequency of 11116 Hz.

11/15/84 Hacker-Rose /SNDRVR/~OUND.2

SOUND DRIVER HARDWARE 17

. AssemblY-language~: Assembly-language programmers can
determine the value in the 740-byte buffer from the global
variable SoundLevel •. You can cause the square-wave synthesizer
to start generating sound, and-then change the amplitude of the
sound being generated any time you wish:

1. Make an asynchronous Device Manager .Write call to the
Sound Driver specifying the count, amplitude, and
duration of the sound you want. The amplitude you
specify will be placed in the 740-byte buffer, and the
Sound Driver will begin producing sound.

2. Whenever you want to change the sound being generated,
make an ia.ediate Control call to the Sound Driver
with the following parameters: ioRefNum must be -4,
csCode must 3, and csParam must provide the new
amplitude level. The amplitude you specify will be
placed in the 740-byte buffer, and the sound will
change. You can continue to change the sound until
the time specified by the duration has elapsed.

When the immediate Control call is completed, the
Device Manager will execute the completion routine
(if any) of the currently executing Write call. For
this reason, the Write call shouldn't have a
completion routine.

11/15/84 Hacker-Rose / SNDRVR/ SOUND .• 2

18 Sound Driver Programmer's Guide

SUMMARY OF THE SOUND DRIVER

Constants

CONST { Mode values for synthesizers }

swMode = -1; {square-wave synthesizer}
ftMode = 1; {four-tone synthesizer}
ffMode = 0; {free-form synthesizer}

Data Types

TYPE { Free-form synthesizer }

FFSynthRec = RECORD
mode: INTEGER;
count: Fixed;
waveBytes: FreeWave

{always ffMode}
{"sizing" factor}
{waveform description}

END;

FFSynthPtr = AFFSynthRec;

FreeWave PACKED ARRAY [0 •• 300001 OF Byte;

{ Square-wave synthesizer }

SWSynthRec = RECORD
mode: INTEGER; {always swMode}
triplets: Tones {sounds}

END;

SWSynthPtr = ASWSynthRec;

Tones = ARRAY [0 •• 5000] OF Tone;
Tone = RECORD

count: INTEGER; {frequency}
amplitude: INTEGER; {amplitude, 0-255}
duration: INTEGER {duration in ticks}

END;

{ Four-tone synthesizer }

FTSynthRec = RECORD
mode: INTEGER; {always ftMode}
sndRec: FTSndRecPtr {tones to play}

END;

FTSynthPtr = AFTSynthRec;

11/15/84 Hacker-Rose /SNDRVR/SOUND.S

SUMMARY OF THE SOUND DRIVER 19

FTSoundRec = RECORD
duration: INTEGER; {duration in ticks}
~ound1Rate: Fixed; {tone 1 cycle rate}
soundlPhase: LONGINT; , {tone 1 byte offset}
sound2Rate: Fixed; {tone 2 cycle rate}
sound2Phase: LONGINT; {tone 2 byte offset}
sound3Rate: Fixed; {tone 3 cycle rate}
sound3Phase: LONGINT; {tone 3 byte offset} (j

sound4Rate: Fixed; {tone 4 cycle rate}
sound4Phase: LONGINT; {tone 4 byte offset}
soundlWave: WavePtr; {tone 1 waveform}
sound2Wave: WavePtr; . {tone 2 waveform}
sound3Wave: WavePtr; {tone 3 waveform}
sound4Wave: WavePtr {tone 4 waveform}

END;

FTSndRecPtr = AFTSoundRec;

Wave PACKED ARRAY [0 •• 255] OF Byte;
WavePtr = AWave;

PROCEDURE StartSound (synthRec: Ptr; numBytes: LONGINT; completionRtn:
ProcPtr) ;

PROCEDURE StopSound;
FUNCTION Sound Done : BOOLEAN;
PROCEDURE GetSoundVol (VAR level: INTEGER);
PROCEDURE SetSoundVol (level: INTEGER);

Assembly-Language Information

Routines

Name
Start Sound

Stop Sound
Sound Done

GetSoundVol
SetSoundVol

Equivalent for Assembly-Language
Call Write with ioRefNum=-4, ioBuffer=pointer to
synthesizer buffer, ioReqCount=length of buffer
Call KillIO and (for square-wave) set CurPitch to 0
Poll ioResult field of most recent Write call's
parameter block
Get low-order three bits of variable SdVolume
Call this Pascal procedure from your program

11/15/84 Hacker-Rose /SNDRVR/SOUND.S

20 Sound Driver Programmer's-Guide

Variables

Size Contents Name
ScivOlume
SoundPtr
Sound Base
SoundLevel
CurPitch

1 byte
4 bytes
4 bytes
1 byte
2 bytes

Speaker volume level (low-order three bits only)
Pointer to four-tone record
Pointer to free~form buffer
Amplitude in 740-byte buffer
Value of count in square-wave synthesizer buffer

Sound Driver Values For Notes

The following table contains values for the rate field of a four-tone
synthesizer and the count field of a square-wave synthesizer. The four
left columns give Ptolemy's diatonic scale, which you can use for a
perfectly tuned C major scale, and the four right columns give an
equal-tempe~ed scale, for when the application will use·other keys.

Ptolemy's Diatonic Scale

Rate for
'Four-Tone

Count for
Square-Wave

Equal-Tempered Scale

Rate for
Four-Tone

Count for
Square-Wave

Note Long Fixed Word Integer Long Fixed Word Integer

3 octaves below middle C

c
C,
o
01
E
F
FI
G
GI,
A
'AI

B

612B
67A5
6050
749A
7976
818E
8A35
91CO
9878
A1F2
AAOB
8631

O. 37957 5CB" 23749
0.40487 56EF 22265
0.42701 5206 21111
0.45548 4046 19791
O. 47446 4A2F 19000
0.50609 . 458C 17812
0.53988 4131 16697
0.56935
0.60731
0.63261
0.66424
0.71169

3001 15833
39F4 14843
37A3 14250
34FD 13571
3174 12666

11/15/84 Hacker-Rose

604C
6606
6C16
7286

·7953
808A
882.F
9048
980C
A7F3
"B94
B5C8

0.37615
0.39853
0.42222
0.44736
0.47392
0.50210
0.53197

5090 23965
585C 22620
5367 21351
4EB7 20151
4"40 19021
4622 17954
4232 16946

0.56360 3E76 15995
0.59710 3"F9 15097
0.63261 37A" 14250
O. 67023 348" 13450
0.71009 3197 12695

/SNDRVR/SOUND.S

SUMMARY OF THE SOUND DRIVER 21

2 octaves below middle C

C C256 0.75914 2E5D 11875 C097 0.75231 2ECF 11983
CI CF48 0.80974 2B77 11133 CCOC 0.79706 2C2E 11310
D DAAl 0.85403 2938 10555 0820 0.84443 29B3 10675
DI E934 0.91096 26A3 9896 E50C 0.89472 275B 10075
E . F2EC 0.94892 2517 9500 F2A6 0.94784 2527 9511
F 10310 1.01218 22C8 8906 10113 1.00420 2311 8977
FI 1146A 1.07976 2099 8349 1105E 1.06394 2119 8473
G .12381 1.13870 lEE9 7916· 12090 1.12720 IF'3D 7997
GI 136FO 1.21462 lCFA 7422 13167 1.19420 1070 7549
A 143E5 1.26523 lBOl 7125 143E6 1.26523 1805 7125
AI 15417 1.32849 lA7E 6786 15728 1.34046 lA45 6725
8 16C62 1.42338 188A 6333 16891 1.42018 18C8 6347

1 octave below middle C

C 184AC 1.51827 172F 5937 1812E 1.50461 1767 5991
CI 19E96 1.61949 158C 5566 19818 1.59411 1617 5655
0 18542 1.70805 1498 5278 lB059 1.68886 140A 5338
01 10269 1.82193 1351 4948 lCA18 1.78943 13AE 5038
E lE508 1.89784 128C 4750 1E548 1.89568 1293 4755
F 20638 2.02436 1163 4453 20227 2.00840 1188 1488
FI 22805 2.15951 104C 4174 22080 2.12788 10BC 4236
G 24703 2.27741 F74 3958 24121 2.25440 F9F 3999
GI 260E1 2.42923 E7D 3711 2636E 2.38840 EBE 3774
A 287CA 2.53045 OE9 3562 287CC 2.53045 OEA 3562 J

AI 2A82E 2.65697 D3F 3393 2AE50 2.68091 022 3362
B 208C4 2.84676 C5D 3167 20722 2.84036 C66 3174

Middle C

C 30959 3.03654 897 2969 30250 3.00922 BB4 2996
CI 3302C 3.23898 ADE 2783 33030 3.18823 BOB 2827
D 36A85 3.41611 A4E 2639 360B2 3 .• 37772 A60 2669
01 3A402 3.64385 9A9 2474 39430 3.57886 907 2519
E 3CBBO 3.79568 946 2375 3C097 3.79136 9.4 A 2378
F 4AC77 4.04872 881 2227 4044D 4.01680 8e4 2244
FI 451AA 4.31902 826 2087 43E~F 4.25576 846 2118
G 48E06 4.55481 7BA 1979 48241 4.50880 7CF 1999
GI 40BC3 4.85847 73F 1855 4C600 4.77680 75F 1887
A 50F95 5.06090 6F4 1781 50F97 5.06090 6F5 1781
AI 55050 5.31395 6AO 1696 55CAl 5.36183 691 1681
B 5B188 5.69352 62F 1583 5AE44 5.68072 633 1587

11/15/84 Hacker-Rose /SNDRVR/SOUND.S

22 Sound Driver Programmer's Guide

1 octave above middle C

C 61283 6.07308 5CC 1484 60489 6.01845 50A 1498
CI 67A59 6.47796 56F 1392 6605F 6.37645 586 1414
0 6050A 6.83222 527 1319 6C165 6.75544 536 1334
01 749A4 7.28770 404 1237 72861 7.15713 4E8 1259
E 79760 7.59136 4A3 . 1187 7952E, 7.58273 4A5 1189
F 818EF 8.09745 459 1113 8089B 8.03361 462 1122
FI 8A354 8.63804 413 1044 882F3 8.51152 423 1059
G 91COO 9.10963 300 989.6 . 9048B 9·.01761 3E8 999.7
GI 98.786 9.71693 39F 927.7 98oB9 9.55361 3BO 943.6
A A1F2B 10.12181 37A 890.6 A1F2F 10.12181 37B 890.6
AI AAOBA 10.62790 350 848.2 AB941 10.72365 349 840.6
B B6311 11.38703 317 791.6 B5C87 11.36144 319 793.4

2 octaves above middle C

C C2567 12.14617 2E6 742.2 C0972 12.03690 2Eo 748.9
CI CF4B2 12.95591 2B7 695.8 CCOBE 12.75290 2C3 706.9
0 OAA14 13.66444 293 659.7 O82C9 13.51089 29B 667.2
01 E9349 14.57540 26A 618.5 ·E50C2 14.31546 276 629.7
E f2EC1 15.18271 251 593.7 f2A5B 15.16546 252 594.4
F 10310f 16.19489 220 556.6 101135 16~06722 231 561
fl 1146A8 17.27608 20A 521.8 1105E6 17.02304 212 529.5
G 123818 18.21925 1 Ef . 494.8 120904 18.03522 lf4 499.8
GI 136fOC 19.43387 1 DO 463.9 131872 19.10721 108 471.8
A 143E57 20.24361 lBO 445.3 143E50 20.24361 lBo 445.3
AI 154175 21.25579 lA8 424.1 157282 21.44730 lA4 420.3
B 16C622 22.77407 18C 395.8 16B90F 22.72288 180 396.7
3 octaves above middle C

C 184ACF 24.29222 173 371 1812E4, 24.07380 176 374.5
CI 19E965 25.91171 15C 348 19817C 25.50580 161 353.4
0 1B5429 27.32875 14A 330 180593 27.02177 14E 333.6
01 102692 29.15067 135 309 lCA183 28.63091 138 314.9
E' 1E5083 30.36528 129 297 1E54B7 30.33091 129 297.2
F 20638F 32.38963 116 278 20226A' 32.13444 119 280.5
FI 228050 34.82806 105 261 220BCC 34.04608 109 264.8 .
G 247036 36.43834 F7 .247 241208 36.07044 FA 249.9
GI 26oE18 38.86756 E8 232 2636E4 38.21442 EC 235.9
A 287CAE 40.48704 OF 223 287CBB 40.48723 OF 222.7
AI 2A82EA 42.51139 04 212 2AE505 42.89461 02 210.2
B 208C44 45.54790, C6 198 207210 45.44576 C6 198.4

11/15/84 Hacker-Rose /SNDRVR/SOUND.S

GLOSSARY 23

GLOSSARY

amplitude: The maximum vertical distance of a periodic wave from the
horizontal line about which the wave oscillates.

four-tone record: A data structure describing the four tones produced
by a four-tone synthesizer.

four-tone synthesizer: The part of the Sound Driver used to make
simple harmonic tones, with up to four "voices" producing sound

,simultaneously.

free-form synthesizer: The part of the Sound Driver used to make
co~p~ex music and speech.

frequency: The number of cycles per second (also called Hertz) at
which a wave oscillates.

magnitude: The vertical distance between any given point on a wave and
the horizontal line about which the wave oscillates.

period: The time elapsed during one complete cycle of a wave.

phase: Some fraction of a wave cycle (measured from a fixed point on
the wave).

square-wave synthesizer: The part of the Sound Driver used to produce
less harmonic sounds than the four-tone synthesizer, such as beeps.

synthesizer buffer: A description of the sound to be generated by a
synthesizer.

waveform: The physical shape of a wave.

waveform description: A sequence of bytes describing a waveform.
I

wavelength: The horizontal extent of one complete cycle of a wave.

11/15/84 Hacker-Rose /SNDRVR/SOUND.G

MACINTOSH USER EDUCATION

The Serial Drivers: A Programmer's Guide /SDRVR/SERIAL

See Also: Inside Macintosh: A Road Map
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Memory Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide
The Resource Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide

Modification History: First Draft Bradley Hacker 9/28/84

ABSTRACT

The Macinto$h RAM Serial Driver and ROM Serial Driver are Macintosh
device drivers for handling asynchronous serial communication between a
Macintosh application and serial devices. This manual describes the
Serial Drivers in detail. ,

2 Serial Dri\'ers Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 Serial Communication
4 About the Serial Drivers
6 Using the Serial Drivers
8 Serial Driver Routines
8 Opening and Closing the RAM Serial Driver
9 Changing Serial Driver Information

12 Getting Serial Driver Information
14 Advanced Control Calls
16 Summary of the Serial Drivers
20 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT TH I S MANUAL 3

ABOUT THIS MANUAL

The Macintosh RAM Serial Driver and ROM Serial Driver are Macintosh
device-drivers for handling asynchronous se~i8l communication between a
Macintosh application and serial devices. This manual describes the
Serial Drivers in detail. *** Eventually it will become part of the
comprehensive Inside Macintosh manual. ***
Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal and the information 1n the following manuals:

- Inside Macintosh: A ~ Map

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications in Assembly Language, 1f you're
using assembly language

You should also be familiar with the following:

- resources, as discussed in the Resource Manager manual

- events, as discussed in the Toolbox Event Manager manual

- the Memory Manager·

- interrupts and the use of devices and device drivers, as described
in the Device Manager manual

- asynchronous serial data communication

SERIAL COMMUNICATION

The Serial Drivers support full-duplex asynchronous serial
communication. Serial data is transmitted over a single-path
communication line, one bit at a time (as opposed to parallel data,
which is transmitted over a multiple-path communication line, multiple
bits at a time). FU11-dupt"ex means that the Macintosh and another
serial device connected to it can transmit data simultaneously (as
opposed to half-duplex operation, in which data can be transmitted by
only oue device at a time). Asynchronous communication means that the
Macintosh and other serial devices communicating with it don't share a
common timer, and no timing data is transmitted. The time interval
between characters transmitted asynchronously can be of any length.
The format of asynchronous serial data communication used by the Serial
Drivers is shown in Figure 1.

9/28/84 Hacker /SDRVR/SERIAL.2

4 Serial Drivers Programmer's Guid€

start dete dete t'top stop

mark (>+3 volts)---·

'pace (< -3 volts) I ________ ~
idle bit bit 1 bit n bit 1 bit 2

I ~ I I . '
..

idle

...

freme

Figure 1. Asynchronous Data Transmission

When a transmitting serial device is idle (not sending data), it
maintains the transmission line in a continuous state ("mark" in
Figure 1). The transmitting device may begin sending a character at
any time by sending a start bit. The start bit tells the receiving

'device to prepare to receive-a-character. The transmitting device then
transmits 5, 6, 7, or 8 data bits, optionally followed by a parity bit.
The value of the parity bit is chosen such that the number of l's among
the data and parity bits is even o~ odd, depending on whether the
parity is even or oqd, respectively. Finally, the transmitting device
sends 1, 1.5,_ or 2 stop bits, indicating the end of the character. The
measure of the total number of bits sent over the transmission line per
second is called the baud rate.

, ----
If a parity bit is set incorrectly, the receiving device will note a
parity error. The time elapsed from the start bit to the last stop bit
is called a frame. If the receiving device doesn't get a stop bit
'after the data and parity bits, it will note a framing error. After
the stop bits, the transmitting device may send another character, or
maintain the line in the mark state. If the line is held in the
"space" state (Figure 1) for one frame or longer, a break occurs.
Breaks are used to interrupt data transmission.

ABOUT THE SERIAL DRIVERS

There are two Macintosh device drivers for serial communication: the
RAM Serial Driver and the ROM Serial Driver. The two drivers are
-nearly identical, although the RAM driver has a few features the ROM
driver doesn't. Both allow Macintosh applications to communicate with
serial devices via the two-RS-232/RS-422 serial ports on the back of
the Macintosh.

(note)
On a Lisa running MacWorks, the RAM Serial Driver acts as
a ROM driver.

Each Serial Driver actually consists of four drivers: one input driver
and one output 'driver for the ~odem port, and one input driver and one
output driver for the printer port (Figure 2). Each input driver
receives data via a serial port and transfers it to the application.

9/28/84 Hacker /SDRVR/SERIAL.2

ABOUT THE SERIAL DRIVERS 5

Each output driver takes data from the applicetion and sends it out
. through a serial port. The input 'and output drivers -for a port are

closely related, and share some of the same routines. Each driver
does, however. have a separate device control entry, which allows the
Serial Drivers to support full-duplex communication. An individual
port can both trans~t and receive data at the same time. The serial
ports are controlled by the Macintosh's Zilog Z8530 Serial
Communications Controller (SeC). Channel A of the SCC controls the
.odem port. and channel B controls the printer port.

eppl icaticn

modem port pr inter port

external seriel device -externel ser i e I dev i ce

Figure 2. Input and Output Drivers of a Serial Driver

Data received via a serial port passes through a three-character buffer
in the sec and then into a buffer in the input driver for the port.
Characters are remoy~d from the input driver's buffer each time an
application issues a Read call to the driver. Each input driver's
buffer can initially hold up to 64 characters, but your application can
increase this if necessary. The following errors may occur:

- If the see buffer ever overflows (because the input driver doesn't
read it often enough). a hardware overrun error occurs.

- If an input driver's buffer ever overflows (because the
application doesn't issue Read calls to the driver often enough),
a software overrun error occurs.

The printer port should be used for output-only connections to devices
such as printers. or at low baud rates (300 baud or less). The modem
port has no such restrictions. It may be used simultaneously with disk
accesseF without fear of hardware overrun errors, because whenever the
Disk Driv'er must turn off interrupts for longer than 100 microseconds,
it stores any data received via the modem port and later passes the
data to the modem port's input driver. .

All four drivers default to 9600 baud, eight da~a bits per character,
no' parity bit, and two stop bits. You can change any of these options.

9/28/84 Hacker /SDRVR/SERIAL.2

6 Seric: Drivers Pro~:dmmer's Guide

The Serial Drivers support eTS (clear to send) hardware handshaking and
XOn/XOff software flow control.

(note)
The ROM Serial Driver defaults to hardware handshake
only; it doesn't support XOn/XOff input flow control-
only output flow control. Use the RAM Serial Driver if
you want XOn/XOff input flow control. The RAM Serial
I'river defaults to no hardwa:re hands.haking and no
software flow control.

Whenever an input driver receives a break, it terminates any pending
Read requests, but not Write requests. You can choose to have the
i~put drivers terminate Read requests whenever a parity, overrun, or
framing error occurs.

(note)
The ROM Serial Driver always terminates input requests
when an error occurs. Use the RAM Serial Driver if you
don't want input requests to be terminated by errors.

You can. request the Serial Drivers to post device driver events
whenever a change in the hardware handshake status or a break oc.curs,
if you want your application to take some specific action upon these

I

occurrences.

USING THE SERIAL DRIVERS

This section introduces you to the Serial Driver routines described in
detail in the next section, and discusses other calls you can make to
communicate with the Serial Drivers.

Drivers are referred to by name and reference number:

Driver Driver name Reference number
Modem port input .AIn -6
Modem port output .AOut -7
Printer port input .BIn -8
Printer port output • BOut -9

Before you can receive data through a port, both the' input and output
drivers for the port must be opened. Before you can send data through.
a port, the output driver for the port must be opened. To open the ROM
input and output drivers, call the Device Manager Open function; to
open the RAM input and output drivers, call the Serial Driver function
RAMSDOpen. The RAM rlrivets occupy less than 2K bytes of memory in the
application heap.

When you open an o~tput driver, the Serial Driver initializes local
variables for the output driver and the associated input driver,
allocates and locks buffer storage for both drivers, installs interrupt
handlers for both drivers, and initializes the correct sec channel (ROM

9/28/84 Hacker /SDRVR/SERIAL.2

USING THE SERIAL DRIVERS 7

Serial Driver only). When you open an input driver, the Serial Driver
only notes the location of its device control entry.

If you would like to reclaim the space occupied by a driver's storage,
you can can call the Device Manager Close function to close the ROM
Serial Driver, and RAMSDClose to close the RAM Serial Driver;
RAHSDClose will also release the memory occupied by the driver itself.
When you -close an output driver, the Serial Driver resets the
appropriate SCC chan~el, releases all local variable and buffer storage
space, and restores any changed interrupt vectors. If it's already
open, the ROM Serial Driver 1s automatically closed when you call
RAMSDOpen.

(warning)
You should not close the ROM Serial Driver unles.~ you're
immediately going to open a RAM Serial Driver for the
same port, or mouse interrupts will be lost.

To transmit serial data out through a port, make a Device Manager Write
call to the output driver for the port. You must pass the fol~owing
parameters:

- the driver reference number -7 or -9, depending on whether you'r~
using the modem port or the printer port

- a data buffer that contains the data you want to transmit

- the number of bytes you want to transmit

To receive serial data from a port, make a Device Manager Read call to
the input driver for the port. You must pass the following parameters:

- the driver reference number -6 or -8, depending on whether you're
using the modem port or the printer port

- the location of the buffer where you want to receive the data

- the number of bytes you want to receive

There are s.ix different calls you can make to the Serial Driver's
control routine:

- KillIO causes all current I/O requests to be aborted and any bytes
remaining in both input buffers to be discarded. KillIO is a
Device Manager call.

- SerReset resets and reinitializes a driver with new data bits,
stop bits, parity bit, and baud rate information.

- .SerSetBuf allows you to specify a new input buffer.

- SerHShake allows you to specify handshake options.

9/28/84 Hacker /SDRVR/SERIAL.2

8 Serial Drivers Programmer's Guide

- SerSetBrk sets break mode.

- SerClrBrk clears break mode.

Advanced programmers can make nine additional calls to the RAM Serial
Driver'. control routine; see the "Advanced Control Calls" section.

Ther~ are two different calls you can make to the Serial Driver's
status routine:

- SerGetBuf returns the number of available unread bytes currently
stored by an input driver.

- SerErrFlag returns information about errors. I/O requests. and
handshake.

Assembly-language~: Control and Status calls to the RAM
Serial Driver may be immediate (use 1MMED as the second argument
to the routine macro).

SERIAL DRIVER ROUTINES

This section describes the Serial Driver routines. Most of them return
an integer result code of type OSErr; each routine description lists
all of the applicable result codes.

Assembly-language~: There are no trap macros for these
routines. Assembly-language programmers can in some cases make
equivalent Control and Status calls, as indicated in the routine
descriptions.

Opening and Closing the RAM Serial Driver

FUNCTION RAMSDOpen (whichPort: SPortSel; rsrcType: OSType; rsrcID:
INTEGER) : OSErr;

RAMSDOpen closes the ROM Serial Driver and opens the RAM input and
output drivers for the port identified by the whichPort parameter.
which must be a member of the SPortSel St~t:

9/28/84 Hacker /SDRVR/SERIAL.2

SERIAL Dr'.IVER ROUTINES 9

TYPE SPortSel - (sPortA, {modem port}
sPortB {printer port});

RsrcType and rsrcID indicate the resource type and resource ID of the
RAM Serial Driver. which should be stored in your application's
resource file. (OSType is an Operating System Utility data type
declared the same as ResType in the Resource Manager.)

Result codes noErr
openErr

No error
Can't open driver

PROCEDURE RAHSDClose (whichPort: SPortSel);

RAMSDClose closes the RAM input and output drivers for the port
identified by the whichPort parameter, which must be a member of the
SPortSel set (defined in the description of RAMSDOpen above).

Changing Serial Driver Information

FUNCTION SerReset (refNum: INTEGER; serConfig: INTEGER) : OSErr;

SerReset resets and reinitializes the input or output driver having the
reference number refNum according to the information in serConfig.
Figure 3 shows the format of serConfig.

15 1" 13 12 11 1{) 9 o
I I I· 'I baud rate

I 0., 1, 2, 3 for 5, 7, 6, B
date bit, per character

'--__________ 0, 1, 2,3 for no, odd,
no, even par i ty

Figure 3.

" 2, 3 for 1, 1.5, 2
stop bit,

Driver Reset Information

You can use the following predefined constants to set the values of
various bits of serConfig:

9/28/84 Backer /SDRVR/SERIAL.2

10 Serial Urivers Programmer's Guide

CONS! baud300 - 380;
baud6~0 - 189;
baudl200 - 94;
baudl800 - 62;
baud2400 - 46;
baud3600 - 30;
baud4800 - 22;
baud7200 - 14;
baud9600 - 10;
baud 19200 - 4;
baudS7600 - 0;
stopl0 • 16384;
stopl5 - -32768;
stop20 - -16384.
noParity • 8192;
oddParity - 4096;'
evenParity • 12288;
dataS - 0;
data6 - 2048;
data7 - 1024;
data8 - 3072;

{300 baud}
{600 baud}
{1200 baud}
{1800 baud}
{2400 baud}
{3600 baud}
{4800 baud}
{7200 baud}
{9600 baud}
{19200 baud}
{57600 baud}
{I stop bit}
{1.S stop bits}
{2 stop bits}
{no parity}
{odd parity}
{even parity}
{5 data bits}
{6 data bits}
{7 data bits}
{a data bits}

For example " the default setting of 9600 baud, eight data bits, two
stop bits, and no parity bit is equivalent to baud9600+data8+stop20+
noParity.

'Assembly-language~: SerReset is equivalent to a Control
call with csCode=8 and csParam=serConfig.

Result codes noErr No error
.Y

FUNCTION SerSetBuf (refNum: INTEGER; serBPtr: Ptr; serBLen: INTEGER)
OSErr;

\ SerSetBuf specifies a new input buffer for the input driver having the·"
reference number refNum. SerBPtr points to the buffer, and serBLen
specifi~s the number of bytes in the buffer. If serBLen is 0, a
64-byte default buffer provided by the driver is used.

(warning)
You must lock this buffer while it's in use.

Assembly-language note: SerSetBuf is equivalent to a Control
call with csCode=9, csParam=serBPtr, and.c.sParam+2=serBLen.

9/28/84 Hacker /SDRVR/SERfAL.2 ,.

SERIAL DRIVER ROUTINES 11

Result codes noErr No error

FUNCTION SerHShake (refNum: INTEGER; flags: SerShk) : OSErr;

SerHShake sets handshake options and other control information, 8S

8pecified by the flags parameter, for the input or output driver having
the reference number refNum. The flags parameter has the following
data structure:

TYPE SerShk - PACKED RECORD
fXOn: Byte;
fCTS: Byte;
xOn: CHAR;
xOff: CHARj
errs: Byte;
evts: Byte;
flnX: Byte;
null: Byte

END;

{XOn/XOff output flow control flag}
{CTS hardware handshake flag}
{xOn character}
{XOff character}
{errors that cause abort}
{status changes that cause events}
{XOn/XOff input flow control flag}
{not used}

If fXOn is nonzero, XOn/XOff output flow control is enabled; if flnX is
nonzero, XOn/XOff input flow control is enabled. xOn and xOff specify
the xOn character and XOff character used for XOn/XOff flow control.
If fCTS is nonzero,' CTS hardware handshake is enabled. The errs field
indicates which errors will cause input requests to be aborted; for
each type of error, there's a predefined constant in which the
corresponding bit is set:

(note)

eONST parityErr - 16;
hwOverrunErr - 32;
framingErr a 64;

{set for parity error}
{set for hardware overrun error}
{set for framing error}

The ROM Serial Driver doesn't support XOn/XOff input flow
control or aborts caused by error conditions.

The evts field indicates whether changes in·the eTS or break status
will cause the Serial Driver to post device driver events; you can use
the following predefined constants to set or test the value of evts:

CONST ctsEvent -= 32;

breakEvent = 128;

(warning)

{set if CTS change will cause event to }
{ be posted}
{set if break status change will cause }
{ event to be posted}

Use of this option is discouraged because of the long
time that interrupts are disabled while such an event is
posted.

9/28/84 Hacker /SDRVR/SERIAL.2

12 ~erial Drivers Programmer's Guide

Assembly-Ian~uage~: SerHShake is equivalent to a Control
call with csCode-10 and csParam through csParam+6 equivalent to
the fields of a variable of type SerShk.

Result codes· noErr No error

FUNCTION SerSetBrk (refNum: INTEGER) : OSErr;

SerSetBrk sets break moae in the input or output driver having the
reference number refNum.

Assembly-Ianguage~: SerSetBrk is equivalent to a Control
call with csCode z 12.

Result codes DoErr No error

FUNCTION SerClrBrk (refNum: INTEGER) : OSErr;

SerClrBrk clears break mode in the input or output driver having the
reference number refNum.

I

Assembly-language~: SerClrBrk is equivalent to a Control
call with csCode-ll.

Result codes DoErr No error

Getting Serial Driver Information

FUNCTION SerGetBuf (refNum: INTEGER; VAR count: LONGINT) : OSErrj

SerGetBuf returns. in the count parameter, the number of bytes in the
buffer of the input driver having the reference number refNum.

9/28/84 Hacker /SDRVR/SERIAL.2

SERIAL DRIVER ROUTINES 13

Assembly-language~: SerGetBuf is equivalent to a Status
call with csCode-2. The number of bytes in the buffer is
returned in csParam.

Result codes DoErr No error

FUNCTION SerErrFlag (refNum: INTEGER; VAR serSta: SerStaRec) : OSErrj

SerErrFlag returns 1n serSta three words of status information for the
input or output driver having the reference number refNum. The serSta
parameter has the following data structure:

TYPE SerStaRec - PACKED RECORD
cumErrs: Bytej
xOffSent: Byte;

rd Pend: Byte;
wrPend: Byte;
ctsHold: Byte;
xOffHold: Byte

END;

{cumulative errors}
{XOff sent as input flow }
{ control}
{read pendiQg flag}
{write pending flag}
{CTS flow control hold flag}
{XOff received as output }
{ flow control}

CumErrs indicates which errors have occurred since the last time
SerErrFlag was called:

CONST swOverrunErr - 1; {set for software overrun error}
parityErr - 16; {set for parity error}
hwOverrunErr = 32; {set' for hardware overrun error}
framingErr - 64; {set for framing error}

If the driver has sent an XOff character, xOffSent will be equal to the
following predefined constant:

CONST xOffWasSent - $80; {XOff. character was sent}

If the driver has a Read or Wri te call pending, rd P'end or wrPend,
respectively, will be nonzero. If output has been suspended because
the hardware handsh4~e was negated, ctsHold will be nonzero. If output
has been suspended because an XO££ character was received, xOffHold
will be nonzero.

Assembly-Ianguage~: SerStatus is equivalent to a Status
call with csCode-8. The status information is returned in
csParam through csParam+5.

9/28/84 Hacker /SDRVR/SERIAL.2

14 Serial Drivers Programmer's Guide

Result codes noErr No error

ADVANCED CONTROL CALl.5

This aection dese ri bes the c'alls that advanced programmers can make to
the RAM Serial Driver's control routine via a Device Manager Control
call. *** If you use the high-level Device Manager function named
Close, remember that its third parameter (caParam) is a pointer to the
csParam value indicated below; to clarify this, the next draft of the

, Device Manager manual will rename that parameter csParamPtr. ***

csCode - 13 csParam - baud Rate

This call provides an additional way (in addition to SerReset) to set
the baud rate. CsParam specifies the baud rate. The closest baud rate
that the Serial Dr1~er will generate is returned in csParam.

csCQde c 19 csParam· char

After ,this call is made, all incoming characters with parity errors
will be replaced by the character specified by the ASCII code in
csParam. If csParam is 0, no character replaeement will be done.

csCode - 21

This call unconditionally sets XOff for output flow control. It's
equivalent to receiving an XOff character. Data transmission is halted
until an xOn is received or a Control call with csCode-24 is made.

csCode - 22

This call unconditionally clears XOff for output flow control. It's
equivalent to receiving an xOn character.

csCode - 23

This call sends an xOn character for input flow control if the last
input flow control character sent was XOff.

csCode - 24

This call unconditionally sends an XOn.character for input flow
control, regardless of the current state of input flow control.

9/28/84 Hacker /SDRVR/SERIAL.2

J

ADVANCED CONTROL CALY .. S 15

csCode - 25

This call .ends an XOff character for input flow control if the last
input flow control character sent was xOn.

csCode - 26

This call unconditionally sends an XOff character for input flow
control. r,egardless of the current state of input flow control.

csCode - 27

This call resets the see channel belonging to the driver specified by
ioRefNum. Immediately after this you should either close the RAM
Serial Driver or call SerReset to reenable mouse interrupts.

9/28/84 Hacker /SDRVR/SERIAL.2

16 Sound Driver Programmer's Guide

Assembly-language note: Assembly-language programmers can set
the volume level with the following instructions:

MOVE.L (SP)+,A0 ;get return address
MOVE.W (SP)+,D0 ;get volume level
MOVE.L A0,'-(sP) ;restore return address
CMP.B iI$FF,$400009 ;Mac or Lisa?
BEQ.S LisaSound

MOVE SR,-(SP) ;save status register
ORI iI$0300,SR ;only debug interrupts
MOVE.B avBufA,Dl ;get VIA port byte
AND 1I$00F8,Dl ;clear low 3 bits
AND 117,D0 ;use ~nly low 3 bits
MOVE.B D0,SdVolume ;update global variable
OR D0,Dl ;combine them
MOVE.B Dl,avBufA ;store it back
RTE

LisaSound AND.W 117 ,D0 ;use only low 3 bits
MOVE.B D0,SdVoluuie ;update global variable
LSL.W III ,D0 ;shift into position
MOVE.B $FCDD81,Dl ;read port B
AND.B II$Fl,Dl ;clear low 3 bits
OR.B D0,Dl ;combine them
MOVE.B Dl,$FCDD81 ;store it back
RTS

THE SOUND DRIVER HARDWARE

The following paragraphs describe how the Sound Driver uses the
Macintosh hardware to produce sound, and how advanced programmers can
intervene in the process to control the square-wave synthesizer. You
can skip this section if it doesn't interest you, and you'll still be
able to use the Sound Driver as described.

The Sound Driver and disk-motor speed-control circuitry share a special
740-byte buffer in memory, of which the Sound Driver uses the 370 even
numbered bytes to generate sound. Every horizontal retrace interval
(every 44.93 microseconds--when the beam of the video screen moves from
the right edge of the screen to the left) the 68000 automatically
fetches two bytes from this buffer and sends the high-order byte to the
speaker. Every vertical retrace interval (every 16.6 milliseconds-
when the beam of the video screen moves from the bottom of the screen
to the top) the Sound Driver fills its half of the 740-byte buffer with
the 'next set of values. For square-wave sound the buffer is filled
with a constant value; for more complex sound the buffer is filled with

7/16/84 Hacker /ORIVER/SOUND.2

SUMMARY OF THE SERIAL DRIVERS· 17

Data Types

TYPE SPortSel • {sPortA, {modem port}
sPortB {printer port});

SerShk • PACKED RECORD
fXOn: Byte;
fCTS:' Byte;
xOn: CHAR;
xOff: CHAR;
errs: Byte;
evts: Byte;
floX: Byte;
null: Byte

END;

{XOn/XOff output flow control flag}
{CTS hardware handshake flag}
{xOn character}
{XOff character}
{errors that cause abort}
{status changes. that cause events}
{XOn/XOff input flow control flag}
{not used}

SerStaRec • PACKED RECORD
cumErrs:
xOffSent:
rr Pend:
wrPend:
ctsHold.:
x'OffHold:

END;

Byte;
Byte;
Byte;
Byte;
Byte;
Byte

{cumulative errors}
{XOff sent as input flow control}
{read pending flag}
{write pending flag}
JeTS flow control hold flag}
{XOff received as output flow }
{ control}

Serial Driver Routines [No trap macros] ____________________________ __

Openin~ and Closing the RAM Serial Driver .

FUNCTION RAMSDOpen (whichPort: SPortSel; rsrcType: OSType; rsrcID:
INTEGER) : OSErr;

PROCEDURE RAMSDClose (whichPort: SPortSel)j

Changing Serial Driver Information

FUNCTION SerReset (refNum: INTEGER; serConfig: INTEGER) OSErr;
FUNCTION SerSetBuf (refNum: INTEGER; serBPtr: Ptr; serBLen: INTEGER)

OSErr;
FUNCTION SerHShake (refNum: INTEGER; flags: SerShk) : OSErr;
FUNCTION SerSetBrk (refNum: INTEGER) OSErr;
FUNCTION SerClrBrk (refNum: INTEGER) : OSErr;

Getting Serial Driver Information

FUNCTION SerGetBuf (refNum: INTEGER; VAR count: LONGINT) : OSErr;
FUNCTION SerErrFlag (refNum: INTEGER; VAR serSta: SerStaRec) : OSErrj

9/28/84 Hacker /SDRVR/SERIAL.S

18 Sound Driver Programmer's Guide

SUMMARY OF THE SOUND DRIVER

Constants

CONST { Mode values for synthesizers }

swMode ~ -1; {square-wave synthesizer}
'ftMode = 1; {four-tone synthesizer}
ffMode = 0; {free-form synthesizer}

Data Types

TYPE { Free·Form synthesizer }

FFSynthRec a RECORD
mode: INTEGER;
count: Fixed;
waveBytes: FreeWave

END;

{always ffMode}
{"sizing" factor}
{waveform description}

FFSynthPtr = AFFSynthRec;

FreeWave = PACKED ARRAY [0 •• 30000] OF Byte; .

{ Square-Wave synthesizer} ,

SWSynthRec = RECORD
mode: INTEGER; {always sWMode}
triplets: Tones {sounds}

END;

SWSynthPtr • ASWSynthRec;

Tones

Tone

- ARRAY [0 •• 5000] OF Tone;

= RECORD'
count: INTEGER; {frequency}
amplitude: INTEGER; {amplitude. 0-255}
duration: INTEGER {duration. 0-255 ticks}

END;

{Four-Tone synthesizer }

FTSynthRec = RECORD
mode: INTEGER; {always ftMode}
sndRec: FTSndRecPtr {tones to play}

END;

FTSynthPtr ~ AFTSynthRec;

7/16/84 Hacker /DRIVER/SOUND.S

SUMMARY OF THE SERIAL DRIVi.RS 19

wrPend
ct8Hoid
xOffBold

Write pending flag
CTS flow control hold flag
XOff received as output flow control

Equivalent Device Manager Calls

Pascal routine
SerReset
SerSetBuf
SerHSha~e
SerSetBrk
SerClrBrk
SerGetBuf
SerErrFlag

9/28/84 Hacker

Call
COntrol
Control
Control.
Control
Control
Status
Status

CsCode
8
9

10
12
11
2
8

/SDRVR/SERIAL.S

20 Serial Drivers Programmer's Guide

GLOSSARY

asynchronous communication: A method of data transmission where the
receiving and sending devices don't share a common timer, and no timing
data is transmitted.

baud rate: The measure of the total number of bits sent over a
transmission line per second.

break: The condition resulting when a device maintains its
transmission line in the space state for at least one frame.

data bits: Data communication bits that encode transmitted characters.

frame: The time elapsed from the start bit to the last stop bit.

framing error: The condition resulting when a device doesn't receive a
stop bit when expected.·

full-duplex communication: A method of data transmission where two
devices transmit data simultaneously.

hardware overrun error: The condition that occurs when the sec's
buffer becomes full.

input driver: A device driver that receives serial data via a serial
port and transfers it to an application.

mark state: The state of a transmission line indicating a binary '1'.

output driver: A device driver that receives data via a serial port
and transfers it to an application.

overrun error: See hardware overrun error and software overrun error.

parity bit: A data communication bit used to verify that data bits
received by a device match the data bits transmitted by another device.

parity error: The condition resulting when the parity bit received by
a device isn't what was expected.

serial data: Data communicated over a single-path communication line,
one bit at a time.

software overrun error: The condition that occurs when an input
driver's buffer becomes full.

space state: The state of a transmission line indicating a binary '0'.

start bit: A serial data communications bit that signals that the next
bits transmitted are data bits.

9/28/84 Hacker /SDRVR/SERIAL.G

MACINTOSH USER EDUCATION

The AppleTalk Manager: A Programmer's Guide /NET/ATALK

See Also: Inside Macintosh: A Road Map
Macintosh Memory Management: An Intcoduction
Programming Macintosh Applications in Assembly Language
The Resource Manager: A Programmer's Guide
The Toolbox Event Manager: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide
Inside AppleTalk

Modification History: First Draft Bradley Hacker &
Bob Anders 1/31/85

ABSTRACT

-The AppleTalk Manager is a set of routines and a pair of RAM device
drivers that allow Macintosh programs to send and receive information
via AppleTalk. This manual describes the AppleTalk Manager in detail.

*** This document doesn't discuss the relevant interface files needed
to use the AppleTalk Manager- They are as follows:

- TlAsm/ATalkEqu: include this in your assembly pass to use the
equates of the .MPP driver and the .ATP driver

- ·ABPasIntf: add this to your USES clause in your Pascal program,
if you're using any of the Pascal calls to the AppleTalk manager

- ABPasCalls: link this with your Pascal program ***

2 AppleTalk Manager Programmer's Guide

TABLE OF CONTENTS

4 About This Manual
4 AppleTalk Protocols
9 AppleTalk Transactiori Protocol
9 Transactions

11 Datagram Loss Recovery
13 About the AppleTalk Manager
16 Calling .the AppleTalk Manager from Pascal
19 Opening a~d Closing AppleTalk
19 AppleTalk Link Access Protocol
20 Data Structures
20 Using ALAP
21 ALAP Routines
24 Example
26 Datagram Delivery Protocol
26 Data Structures
27 Using DDP
27 DDP Routines
30 Example
32 AppleTalk Transaction Protocol
32 Data Structures
35 Using ATP
36 ATP Routines
45 Example
46 Name-Binding Protocol
46 Data Structures
47 Using NBP
48 NBP ~outines
51 Example
53 Miscellaneous Routines
53 Calling the AppleTalk Manager from Assembly Language
54 Opening AppleTalk
54 Example
55 AppleTalk Link Access Protocol
55 Data Structures
57 Using ALAP
57 ALAP Routines
58 Datagram Delivery Protocol
58 Data Structures
61 Using DDP
62 DDP Routines
63 AppleTalk Transaction Protocol
63 Data Structures
66 Using AT,P
67 ATP Routines
72 Name-Binding Protocol
72 Data Structures
74 Using NBP
75 NBP Routines
78 Protocol Handlers and Socket Listeners
78 Data Reception in the AppleTalk Hanager
80 Writing Protocol Handlers

TABLE OF CONTENTS 3

83 Timing Considerations
84 Writing Socket Listeners
86 Summary of the AppleTalk Manager
101 Glossary

Copyright (c) 1985 Apple Computer, Inc. All rights reserved.

4, AppleTalk Manager Programmer's Guide

ABOUT THIS HANUAL

The AppleTalk Manager~ is a set of routines and a pair of RAM device
drivers that allow Macintosh programs to send and receive information
via AppleTalk. This manual describes'the AppleTalk Manager in detail.
*** Eventually it will become" part of the comprehensive Inside
Hacintosh manual~ ***

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal and the information in the following manuals:

- Inside Hacintosh: A Road Map

- Macintosh Memory Management: An Introduction

- Programming Hacintosh Applications in Assembly Language, if you're
using assembly language

You should also be familiar with the following:

- interrupts and the use of devices and device drivers, as described
in the Device Manager manual, if you want to write your own
assembly-language additions to the AppleTalk Manager

- Inside AppleTalk (Apple Product #nnn) *** number to be supplied
***, if you want to understand AppleTalk protocols in detail

APPLETALK PROTOCOLS

The AppleTalk Manag~r provides a variety of services that allow
Macintosh programs to interact with programs in devices connected to an
AppleTalk network. This interaction, achieved through the exchange of
variable-length blocks of data (known as packets) over AppleTalk,
follows well-defined sets of rules known as protocols.

Although most programmers using AppleTalk needn't understand the
details of these protocols, they should understand the information in
this section--what the services provided by the different protocols
are, and how the protocols are interrelated. Detailed information
about AppleTalk protocols is available _in Inside AppleTalk.

The AppleTalk system architecture consists of a number of protocols
arranged in layers. Each protocol in a specific layer provides
services to higher-level layers (known as the protocol's clients) by
building on the services provid~d by lower-level layers. A Macintosh
program can use services provided by any of the layers inrorder to
construct more sophisticated or more specialized services.

The AppleTalk Manager contains the following protocols:

1/31/85 Hacker-Anders /NET/ATALK.I

APPLETALK PROTOCOLS 5

- AppleTalk Link Access Protocol

- Datagram Delivery Protocol

- Routing Table Maintenance Protocol

- Name-Binding Protocol

- AppleTalk Transaction Protocol

Figure 1 illustrates the layered structure of the protocols in the
AppleTalk Manager; the heavy connecting lines indicate paths of
interaction. Note that the Routing Table Maintenance Protocol isn't
directly accessible to Macintosh programs.

.ATP

driver

..... Macintosh program

......
;'

.MPP

Protocol driver
\.

,----------------""' :
AppleTal1c transaction

Protocol

r
Routing Table

Maintenance Protocol

........... : ;: :,-----:: ::: :~,I;:: : ___ : :::: :~. ~ ---------..Llf~~

Datagram De I i very

Protocol

AppleTal1c Link Access
Protocol

AppleTal k hardware

Figure 1. AppleTalk Manager Protocols

1/31/85 Hacker-Anders /NET/ATALK.I

6 AppleTalk Manager Programmer's Guide

The AppleTalk Link Access Protocol (ALAP) provides the lowest-level
services of the AppleTalk system. Its main function is to control
access to the AppleTalk network among various competing devices. Each
device connected to an AppleTalk network, known as a node, is assigned
an 8-bit node ID number that identifies the node. ALAP ensures that ---each node on an AppleTalk network has a unique node number, assigned
dynamically when the node is started up.

ALAP provides its clients with node-to-node delivery of data frames on
a single AppleTalk network. An ALAP frame is a variable-length packet
of data preceded and followed by control information referred to as the
ALAP frame header and frame trailer, respectively. The ALAP frame
header includes the node numbers (eight bits each) of the frame's
destination and source nodes. The AppleTalk hardware uses the
destination node number to deliver the frame. The frame's source node
ID allows a program in the receiving node to determine the identity of
the source. A sending node can ask ALAP to send a frame to all nodes
on the AppleTalk; this broadcast service is obtained by specifying a
destination node number of 255.

ALAP can have multiple clients in a single node. When a frame arrives
at a node, ALAP determines which client it should be delivered to by
reading the frame's LAP protocol~. The LAP protocol type is an
8-bit quantity, contained in the frame's header, that identifies the
LAP client to whom the frame will be sent. ALAP calls the client's
protocol handler, which is a software process in the node that reads in
and then services the frames. The protocol handlers for a node are
listed in a protocol handler table.

An ALAP frame trailer contains a 16-bit frame check sequence generated
by the AppleTalk hardware. The receiving node uses the frame check
sequence to detect transmission errors, and discards frames with
errors. In effect, a frame with an error is "lost" in the AppleTalk
netwot:k, because ALAP doesn't attempt to, recover from errors by
requesting the sending node' to retransmit such frames. Thus ALAP is
said to make a "best effort" to deliver frames, without any guarantee
of delivery.

\
An ALAP frame can contain up to 600 bytes of client data. The first
two bytes must be an integer equal to the length of the client data
(including the length bytes themselves).

Datagram Delivery Protocol (DDP) provides the next-higher level
protocol in the AppleTalk architecture, managing socket-to-socket
delivery of datagrams Qver AppleTalk internets. DDP is an ALAP client,
and uses the node-to-node delivery service provided by ALAP to send and
receive datagrams. Dstagrams are packets of data transmitted by DDP.
A DDP datagram can contain up to 586 bytes of client data. Sockets are
logical entities within the nodes of a network; each socket within a
given node has a unique 8-bit socket number.

On a single AppleTalk network, a socket is uniquely identified by its
AppleTalk address--its socket number together with its node number. To
identify a socket in the scope of an AppleTalk internet, the socket's

, 1/31/85 Hacker-Anders /NET/ATALK.I

APPLETALK PROTOCOLS 7

AppleTalk address and network number are needed. Internets a~e formed
by interconnecting AppleTalk networks via intelligent nodes called
bridges. A network number is a 16-bit number that uniquely identifies
a network in an internet. A socket's AppleTalk address together with
its network number provide an internet-wide unique socket identifier
called an internet address.

Sockets are owned by socket clients, which typically are software
processes in the node. Socket clients include code called the socket
listener, which receives and services datagrams addressed to that
socket. Socket clients must open a socket before datagrams can be sent
or received through it. Each node contains a socket table that lists
the listener for each open_socket.

A datagram is sent from its source socket through a series of AppleTalk
networks, being passed on from bridge to bridge, until it reaches its
destination network. The ALAp'in the destination network then delivers
the datagram to the node containing the destination socket. Within
that node' the datagram is received by ALAP calling the DDP protocol
handler, and by the DDP protocol handler in turn calling the
destination socket listener, which for most applications will be a
higher-level protocol such as the AppleTalk Transaction Protocol. You
can't send a datagram between two sockets in the same node.

Bridges on AppleTalk internets use the Routing Table Maintenance,
Protocol (RTMP) to maintain routing tables for routing datagrams
through the internet. In addition, nonbridge nodes use RTMP to
determine the number of the network to which they're connected and the
node number of one bridge on their network. The RTMP code in nonbridge
nodes contains only a subset of RTMP (the RTMP stub), and is a DDP
client.owning socket number 1 (the RTMP soCk;t)-.---

Socket clients a~e also known as network-visible entities, because
they're the primary accessible entities on an internet. Network
visible 'entities can choose to identify themselves by an entity ~,
an identifier of the form

object:type@zone

Each 6f the three fields of this name is an alphanumeric string of up
.to 32 characters. The object and type fields are arbitrary identifiers
assigned by a socket client, to provide itself with a name and type
descriptor (for example, abs:Mailbox). The zone field identifies the
zone in which the socket client is located; a zone is an arbitrary
subset of AppleTalk networks in an internet. A socket client can
identify itself by as many different names as it chooses. These
aliases are'all treated as independent identifiers for the same socket
client.

The Name-Binding Protocol (NBP) maintains a names table in each node
that contains the name and internet address of each entity in that
node. These name-address pairs are called NBP tuples. The collection
of 'names tables in an internet is known as the names directory.

1/31/85 Hacker-Anders /NET/ATALK.I

8 AppleTalk Manager Programmer's Guide

NBP allows its clients to add or delete their ~ame-address tuples from
the node's names table. It also allows its clients to obtain the
internet addresses of entities from their names. This latter
operation, known as name lookup (in the names directory), requires that
NBP install itself as a DDP client and broadcast special name-lookup
packets to the nodes in a specified zone. These datagrams are sent by
NBP to the names information socket--socket number 2 in every node
using NBP.

NBP clients can use special meta-characters in place of one or more of
the three fields of the name of an entity it wishes to look up. The
character "=" in the object or type field signifies "all possible
values". The zone field can be replaced by "*", which signifies "this
zone"--the zone in which the NBP client's node is located. For
example, an NBP client performing a lookup with the name

=:Mailbox@*

will obtain in return the entity names and internet addresses of all
mailboxes in the client's zone (excluding the client's own names arid
addresses). The client can specify whether one or all of the matching
names should be returned.

NBP clients specify how thorough a name lookup should be by providing
NBP with the number of times (retry count) that NBP should broadcast
the lookup packets and the time interval (retry interval) between these
retries •

. As noted above, ALAP and DDP provide "best effort" delivery services
with no recovery mechanism when packets are lost or discarded because
of errors. Although for many situations such a service suffices, the
AppleTalk Transaction Protocol (ATP) provides a reliable loss-free
transport service. ATP uses transac'tions, consisting of a transaction
request and a transaction response, to deliver data reliably. Each
transaction is assigned a 16-bit transaction ID number to distinguish
it from other transac~ions. A transaction request is retransmitted by
ATP until a complete response has been received, thus allowing for
recovery from packet-loss situations. The retry interval and retry
count are specified by the ATP client sending the request.

Although transaction requests must be contained in a single datagram,
transaction responses can consist of as many as eight datagrams. Each
datagram in a response is assigned'a sequence number from.0 to 7, to
indicate its ordering within the response.

ATP is a DDP client, and uses the services provided by DDP to transmit
requests and responses. ATP supports both at-least-once and
exactly-once transactions. Four of the bytes in an ATP header, called
the user bytes, are provided for use by ATP's clients--they're ignored
by ATP.

ATP's transaction model and means of recovering from datagram loss are
covered in detail under "AppleTa1k Transaction Protocol" below.

1/31/85 Hacker-Anders /NET/ATALK.I

APPLETALK TRANSACTION PROTOCOL 9

APPLETALK TRANSACTION PROTOCOL

This section covers ATP in greater depth, providing more detail about
three of its fundamental concepts: transactions, buffer allocation,
and recovery of lost datagrams.

Transactions

A transaction is a interaction between two ATP clients, known as the
requester and the responder. The requester calls the .ATP driver in
its node to send a transaction request (TReq) to the responder, and
then awaits a response. The TReq is received by the .ATP driver 1n the
responder's node and is delivered to the responder. The responder then
.calls its .ATP driver to send back a transaction response (TResp),
which is received by the requester's .ATP driver and delivered to the
requester. Figure 2 illustrates this process.

A TP I nterf ace

Aequester

Aequester's
,AlP
driver

send lReq

lReq

TResp

Responder

Responder's
,ATP
driver

get TAeq

send TAesp

Figure 2. Transaction Process

1/31/85 Hacker-Anders /NET/ATALK.I

10 AppleTalk Manager Programmer's Guide

Simple examples of transactions are:

- read a counter, reset it, and send back the value read

- read six sectors of a disk and send· back the data read

- write the data sent in the TReq to a printer

A basic assumption of the transaction model is that the amount of ATP
data sent in the TReq specifying the operation to be performed is small
enough to fit in a single datagram. A TResp, on the other hand, may
span several datagrams, as in the second example. Thus, a TReq is a
single datagram, while a TResp consists of up to eight datagrams, each
of which is assigned a sequence number from 0 to 7 to indicate its
position in the response.

The requester must, before calling for a TReq to be sent, set aside
enough buffer space to receive the datagram(s) of the TResp. The
number of buffers allocated (in other words, the maximum number of
datagrams that the. responder can send) is indicated in the TReq by an
eight-bit bit map. The bits of this bit map are numbered 0 to 7 (the
least significant bit being number 0); each bit corresponds to the
response datagram with the respective sequence number.

Datagram Loss Recovery

The way that ATP recovers from datagram loss situations is best
explained by an example; see Figure 3. Assume that the requester wants
to read six sectors of 512 bytes each from the responder's disk. The
requester puts aside six 512-byte buffers (which mayor may not be
contiguous) for the response datagrams, and calls ATP to send a TReq.
In this TReq the bit map is set to binary 00111111 or decimal 63. The
TReq carrie!? a 16-bit transaction ID, generated by the requester's .ATP
driver before sending it. (This example assumes that the fact that
each buffer can hold 512 bytes has already been agreed upon by the
requester and responder.) The TReq is delivered to the responder,
which reads the six disk sectors and sends them back, through ATP, in
TResp datagrams bearing sequence numbers 0 through 5. Each TResp
datagram also carrie~ exactly the same transaction ID as the TReq to
which they're responding.

1/31/85 Hacker-Anders /NET/ATALK.I

Requeste..-s
.ATP

Driver

Retry
timeout

APPLETALK TRANSACTION PROTOCOL 11·

TAeq
(bit map = 0011111')

TAesp(O)

TAesp(3)

TResp(1)

TAesp(S)

TReq
(b i t map = 0000001 0)

TAesp(1)

Responde"'s
. . ATP
Driver

Figure 3. Datagram Loss Recovery

There are several ways that datagrams may be lost in this case. The
original TReq could be lost for one of many reasons. The responding
node might be too busy to receive the TReq or might be out of buffers
for receiving it, there could be an undetected collision on the
network, a bit error in the transmission line, and so on. To recover
from such errors, the reqllester's .ATP driver maintains an ATP retry
timer for each tr.ansaction sent. If this timer expires and the
complete TResp has not been received, the TReq is retransmitted and the
retry timer is restarted.

1/31/85 Hacker-Anders /NET/ATALK.I

12 AppleTalk Manager Programmer's Guide

A second error situation occurs when one or more of the TResp datagrams
is not received correctly by the requester's .ATP driver (datagram 1 in
Figure 3). Again, the retry timer will expire and the complete TResp
will not have been received; this will result in a retransmission of
the TReq. However, to avoid unnecessary retransmission of the TResp
datagrams already properly received, the bit m~p of this retransmitted
TReq is modified to reflect only'those datagrams not yet received.
Upon receiving this TReq, the responder retransmits only the missing
response datagrams.

Another possible failure is that the responder's .ATP driver goes down
or the responder becomes unreachable through the underlying network
system. In this case, retransmission of the TReq could continue
indefinitely. To avoid this situation, the requester provides a
maximum retry count; if this count is exceeded, the requester's .ATP
driver returns an appropriate error message to the requester;

(note)
There may be situations where, due to an anticipated
delay, you'll want a request to be retransmitted more
than 255 times; specifying a retry count of 255 indicates
"infinite retries" to ATP and will cause a message to be
retransmitted until the request has either been serviced,
or been cancelled through a specific call.

.
Finally, in our example, what if the responder is able to provide only
four disk sectors (having reached the end of the disk) instead of the

, six requested? To handle this situation, there's an end-of-message
(EOM) flag in each TResp datagram. In this case., the TResp datagram
numbered 3 would come with this flag set. The reception of this
datagram informs the requester's .ATP driver that TResps numbered 4 and
5 will not be sent and should not be expected.

.r

When the transaction completes successfully (all expected TResp
datagrams are received or TResp datagrams numbered 0 to n are received
with datagram n's EOM flag set), the requester is informed and can then
use the data received in the TResp.

ATP provides two classes of'service: at-least-once (ALO) and exactly
once (XO). The TReq datagram contains an XO flag that's set if XO
service is required and cleared if ALO service is adequate. The main
difference between the two is in the sequence of events that occurs
when the TReq is received by the responder's .ATP driver •

In the case of ALO service, each time a TReq is re~eived (with the XO
flag cleared), it's delivered to the responder by its~ .ATP driver; this
is true even for retransmitted TReqs of the same transaction. Each
time the TReq is delivered, the responder performs the requested
operation and sends the necessary TResp datagrams. Thus, the requested
operation is performed at least once, and perhaps several times, until
the transaction is completed at the requester's end.

The at-least-once service is satisfactory in a variety of situations.
For instance, if the requester wishes to read a clock or a counter

1/31/85 Hacker-Anders /NET/ATALK.I·

APPLETALK TRANSACTION PROTOCOL 13

being maintained at the responder's end. However, in other
circumstances, repeated execution of the requested operation is
unacceptable. This is the case, for instance, if the requester is
sending data to be printed at the responding end; it's for such
situations that exactly-once service is designed.

The responder's .ATP driver maintains a transactions list of recently
received XO TReqs. Whenever a TReq is received with its XO flag set,
the driver goes through this list to see if this is a retransmitted
TReq. If it's the first TReq of a transaction, it's entered into the
list and delivered to the responder. The responder executes the
requested operation and calls its driver to send a TResp. Before
sending it out, the .ATP driver saves the TResp in the list.

When a retransmitted TReq for the same XO transaction is received, the
responder's .ATP driver will find a corresponding entry in the list.
The retransmitted TReq is not'delivered to the responder; instead the
driver automatically retransmits the response datagrams that were saved
in the list. In this way, the responder never sees the retransmitted
TReqs and the requested operation is performed only once. .

ATP must inciude a mechanism for eventually removing XO entries from
the responding end's transaction list; two provisions are made for
this. When the requester's .ATP driver has received all the TResp
datagrams of a particular transaction, it sends a datagram known as a
transaction release (TRel); this tells the responder's .ATP driver to
remove the transaction from the list. However, the TRel could be lost
in the network (or the responding end may die, and so on), leaving the
entry in the list forever. To account for this situation, .the
responder's .ATP driver maintains a release timer for each transaction.
If this timer expires and no activity has occurred for the transaction,
its entry is removed from the transaction list.

ABOUT THE APPLETALK MANAGER

The AppleTalk Hanager is di vided into th,ree parts (see Figure 4):

- A lower-level driver called ".MPP" that contains code to implement
ALAP, DDP, NBP, and the RTMP stub; this includes separate code
resources loaded in when an NBP name is registered or· looked up.

- A higher-level driver called ".ATP" that implements ATP.

- A Pascal interface to these two drivers, which is a set of Pascal
data types and routines to aid Pascal programmers in calling the
AppleTalk Manager.

1/31/85 Hacker-Anders /NET/ATALK.l

14 AppleTalk Manager Programmer's Guide

r

Pascal programs assemb I y-I anguage programs
.J

AppleTalk Manager calls
Dev ice Manager

Control calls .

1 I ,
.ATP driver

, ~

I ,
... .MPP driver I-

~

Figure 4. Calling the AppleTalk Manager

Pascal programmers make calls to the AppleTalk Manager's Pascal
interface, which in turn calls the two drivers. Assembly-language
programmers make Device Manager Control calls directly to the drivers.

(note)
Pascal programmers can, of course, make PBControl calls
directly if they wish.

The AppleTalk Manager provides ALAP routines that allow a program to:

- send a frame to another node

- receive a frame from another node

- add a protocol handler to the protocol handler table

- remove a protocol handler from the protocol handler table

Each node may have up to four protocol handlers in its protocol handler
ta ble, two. 0 f which are currently used by DDP.'

By calling DDP, socket clients can:

send a datagram via a socket

- receive a datagram via a socket

- open a socket and add a socket listener to the, socket table

1/31/85 Hacker-Anders /NET/ATALK.I

ABOUT THE APPLETALK MANAGER 15

- close a socket and remove a socket listener from the socket table

Each node may have up to 12 open sockets in its socket table.

Programs cannot access RTMP directly via the AppleTalk Manager; RTMP
exists solely for the purpose of providing DDP with routing
information.

The NBP code allows a socket client to:

register the name and socket number of an entity in the node's
names table

determine the address (and confirm the existence) of an entity

- delete the name of an entity from the node's names table

The AppleTalk Manager's .ATP driver allows a socket client to do the
following:

- open a responding socket to receive requests

- send a request to another socket and get back a response

receive a request via a responding socket

- send a response via a responding socket

- close a responding socket

(note)
Although the AppleTalk Manager provides four different
protocols ,for your use, you're not bound to use all of
the~. In fact, most programmers will use only the NBP
and ATP protocols.

AppleTalk communicates via channel B of the Serial Communications
Controller (SeC). When the Macintosh is started up with a disk
containing the AppleTalk code, the status of serial port B is checked.
If port B isn't being used by another device driver, and is available
for use by AppleTa1k, the .MPP driver is loaded into the system heap.
On a Macintosh 128K, only the MPP code is loaded at system startup; the
.ATP driver and NBP code are read into the application heap when the

\

appropriate commands are issued. On a Macintosh 512K or XL, all
App1eTa1k code is loaded into the system heap at system startup.

After loading the AppleTa1k code, the .MPP driver installs its own
interrupt handlers, installs a task into the vertical retrace queue,
and prepares the sce for use. It then chooses a node ID for'the
Macintosh and confirms that the node ID isn't already being used by
another node on the network.

1/31/85 Hacker-Anders /NET/ATALK.I

16 AppleTalk Manager Programmer's Guide

(warning)
For this reason it's imp~rative that the Macintosh be
connected to the AppleTalk network through serial port B
(the printer port) before being switched on.

The AppleTalk, Manager also provides Pascal routines for opening and
clpsing the .MPP and .ATP drivers. ,The open calls allow a program to
load AppleTalk code at other than system startup. The close calls
allow a program to remove the AppleTalk code from the Macintosh; the
use of close calls is highly discouraged, since other co-resident
programs are then "disconnected" from AppleTalk. Both sets of calls
are described in deta'il in "Calling the AppleTalk Manager from Pascal"
below. '

(warning)
If, at system startup, serial port B isn't available for
use by AppleTalk, the .MPP driver won't open. However, a
driver doesn't return an error message when it fails to
open. Pascal programmers must ensure the proper opening
of AppleTalk by calling one of the two routines for
opening the AppleTalk drivers (either MPPOpen or
ATPLoad). If AppleTalk was successfully loaded at system
startup, these calls will have no effect; otherwise
they'll check the availability of port B, attempt to load
the AppleTalk code, and return an appropriate result
code.

Assembly-language note: Assembly-language programmers can use
the Pascal routines for openini AppleTalk. They can also check
the availability of port B themselves and then decide whether to
open MPP or ATP. Detailed information on how to do this is
provided in the section "Calling the AppleTalk Manager from
Assembly Language" below.

CALLING, THE APPLETALK MANAGER FROM PASCAL

This section discusses ho~ to use the AppleTalk Manager from Pascal.
Equivalent assembly-language information is given in the next section.

Many Pascal calls to the AppleTalk Manager require information passed
in a data structure of type ABusRecord. The exact content of an
ABusRecord depends on the protocol being called:

1/31/85 Hacker-Anders /NET/ATALK.P.l

CALLING THE APPLETALK MANAGER FROM PASCAL 17

TYPE ABProtoType = (lapProto,ddpProto,nbpProto,atpProto);

ABusRecord = RECORD
abOpcode:
abResult:

ABCallType; {type of call}
INTEGER; {result code}

abUserReference:
~ CASE ABProtoType

lapProto:

LONGINT; {for your use}

ABRecPtr
ABRecHandle

OF

~ •• {ALAP parame~ers}
ddpProto:

• •• {DDP parameters}
nbpProto:

• •• {NBP parameters}
atpProto:

END;
END;

• •• {ATP parameters}

"'ABusRecord;
"'ABRecPtr;

The value of the abOpcode field is inserted by the AppleTalk Manager
when the call is made, and is always a member of the following set:

TYPE ABCallType (tLAPRead,tLAPWrite,tDDPRead,tDDPWrite,
tNBPLookup,tNBPConfirm,tNBPRegister,
tATPSndRequest,tATPGetRequest,tATPSndRsp,
tATPAddRsp,tATPRequest,tATPRespond);

The abUserReference field is available for use by the calling program
in any way it wants. This field isn't used by the AppleTalk Manager
routines or drivers.

The size of an ABusRecord data structure in bytes is given by one of
the following constants:

CONST lapSize 20;
ddpSize 26;
nbpSize 26;
atpSize 56;

Variables of type ABusRecord must be allocated on the heap with Memory
Manager NewHandle calls. For example:

myABRecord .- ABRecHandle(NewHandle(ddpSize»

(warning)
These Memory Hanager calls can't be made inside
interrupts.

Most AppleTalk Manager routines return a result code of type OSErr.
Each routine description lists all of the applicable result codes
generated by the AppleTalk Manager, along with a short description of
what the result code means. If no error occurred, it returns the

1/31/85 Hacker-Anders /NET/ATALK.P.1

18 AppleTalk Manager Programmer's Guide

result code noErr. Lengthier explanations of all the result codes can
be found in the summary at the end of the manual. Result codes from
other parts of the Operating System may also be returned. (See the
Operating System Utilities manual for a list of all result codes.)

Many AppleTalk Manager routines can be executed either synchronously
(meaning that the application can't continue until the routine is
completed) or asynchronously (meaning that the application is free to
perform other tasks while the routine is being executed).

When you call an AppleTalk Manager routine asynchronously, an I/O
request is placed in the appropriate driver's I/O queue, and control
returns to the calling program--possibly even before the actual I/O is
completed. Requests are taken from the queue, one at a time, and
processed; meanwhile, the calling program is free to work on other
things.

The routines that can be executed asynchronously contain a Boolean
parameter called async. If async is TRUE, the call is executed
asynchronously; otherwise the call is executed synchronously. Every
time an asynchronous routine call is completed, the AppleTalk Manager

:posts a network event. The message field of the event record will
contain a handle to the ABusRecord that was used to make that call.

Routines that are executed asyhchronously return control to the calling
program with noErr as soon as the call is placed in the driver's I/O
queue; this isn't an indication of successful call completion. It
simply indicates that ,the call was successfully queued to the
appropriate driver. To determine when the call is actually completed,
you can either check for a network event or poll the abResult field of
the call's ABusRecord. The abResult field, set to 1 when the call is
made, receives the appropriate result code upon completion of the call.

(warning)
Since a data structure of type ABusRecord is often used
by the AppleTalk Manager during an asynchronous call,
it's locked by the AppleTalk Manager. Don't attempt to
unlock or use such a variable.

"-
Each routine description includes a list of the ABusRecord fields
affected by the routine. The arrow next to each field name indicates
whether it's an input, output~ or input/output parameter:

Arrow
--~

~-
~-~

Meaning
Parameter must be passed to the routine
Parameter will be returned by the routine
Parameter must be passed to and will be returned
by the routine

1/31/85 Hacker-Anders /NET/ATALK.P.l

CALLING THE APPLETALK t-lANAGER FROH PASCAL 19

Opening and Closing AppleTalk

FUNCTION MPPOpen : OSErr; [Not in ROM]

MPPOpen first checks whether the .MPP driver is already loaded; if it
is, MPPOpen does nothing and returns noErr. If MPP hasn't been loaded,
MPPOpen attempts to load it into the system heap. If it succeeds, it
then initializes the driver's variables and goes through the process of
dynamically assigning a node ID to that Macintosh. On a Macintosh 512K
or XL, it also loads the .ATP driver and NBP code into the system heap.

If serial port B isn't configured for AppleTalk, or is alr.eady in use,
the .MPP driver isn't loaded and an appropriate result code is
returned.

Result codes noErr
portInUse
portNotCf

No error
Port B is ~lready in use
Port B not configured for AppleTalk

FUNCTION MPPClose : OSErr; [Not in ROM]

MPPClose removes the .MPP driver, and any data structures associated
with it, fro~ memory. If the .ATP driver or NBP code were also
installed, they'll also be removed. }1PPClose also returns the use of
port B to the Serial Driver.

(warning)
Since other co-resident programs may be using AppleTal~,
it's strongly recommended that you never use this call.
MPPClose will completely disable AppleTalk; the only way
to restore AppleTalk is to call MPPOpen again.

AppleTalk Link Access Protocol

Data Structures

ALAP calls use the following ABusRecord fields:

lapProto:
(lapAddress: LAPAdrBlock;

lapReqCount: INTEGER;

lapActCount: INTEGER;

lapDataPtr: Ptr);

1/31/85 Hacker-Anders

{destination or source node ID}
{length of frame data or }
{ buffer size in bytes}
{number of frame data bytes }
{ actually received}
{pointer to frame data or }
{ pointer to buffer}

/NET/ATALK.P.l

20 AppleTalk Manager Programmer's Guide

When an ALAP frame is sent, the lapAddress field indicates theID of
the destination node. When an ALAP frame is received, lapAddress
returns the ID of the source node. The lapAddress field also indicates
the LAP protocol type of the frame:

TYPE LAPAdrBlock = PACKED RECORD
dstNodeID: Byte; {destination node IO}
srcNodeID: Byte; {source node ID}
lapProtType: ABByte {LAP protocol type}

END;

When an ALAP frame is sent, lapReqCount indicates the size of the frame
data in bytes and lapDataPtr points to a butfer containing the frame
data to be sent. When an ALAP frame is received, lapDataPtr points to
a buffer. in which the incoming data can be stored and lapReqCount
indicates the size of the buffer in bytes. The number of bytes
actually sent or received is returned in the lapActCount field.

Each ALAP frame contains an 8-bit LAP protocol type in the header. LAP
protocol types 128 through 255 are reserved for internal use by ALAP,
hence the declaration:

TYPE ABByte = 1 •• 127; {LAP protocol type}

(warning)
Don't use LAP protocol type values 1 and 2; they're
reserved for use by DDP. Value 3 through 15 are reserved
for internal use by Apple and also shouldn't be used.

Using ALAP

Most programs will never need to call ALAP, because higher-level
protocols will automatically call it as necessary. If you do want to
send a frame directly via ALAP, call the LAPWrite function. If you
want to read ALAP frames, you have two choices:

- Call LAPOpenProtocol with NIL for protoPtr (see below); this
installs the default protocol handler provided by the AppleTalk
Manager. Then call LAPRead to receive frames.

- Write your own protocol handler, and call LAPOpenProtocol to add
it to the node's protocol handler table. The ALAP code will
examine every incoming frame and send all those with the correct
LAP protocol type to your protocol handler. S~e the section
"Protocol Handlers and Socket Listeners" for information on how to
write a protocol handler.

When your program no longer wants to receive frames with a particular
LAP protocol type value, it can call LAPCloseProtocol to remove the
corresponding protocol handler from the protocol handler table.

1/31/85 Hacker-Anders /NET/ATALK.P.1

CALLING THE APPLETALK MANAGER FROM PASCAL 21

ALAP Routines

FUNCTION LAPOpenProtocol (theLAPType: ABByte; protoPtr: Ptr). OSErr;
[Not in ROM}

LAPOpenProtocol a~ds the LAP protocol type specified by theLAPType to
the node's protocol table. If you provide a pointer to a protocol
handler in protoPtr, ALAP will send each frame with a LAP protocol type
of theLAPType to that protocol handler.

If protoPtr is NIL, the default protocol handler will be used for
receiving frames with a LAP protocol type of theLAPType. In this case,
to receive a frame you must call LAPRead to provide the default
protocol handler with a buffer for placing the data. If, however,
you've written your own protocol handler and protoPtr points to it,
your protocol handler will have the responsibility for receiving the
frame and it's not necessary to call LAPRead.

Result codes noErr
lapProtErr

No error
Error attaching protocol type

FUNCTION LAPCloseProtocol (theLAPType: ABByte) OSErr; [Not in ROM]

LAPCloseProtocol removes from the node's protocol table the specified
LAP protocol type, as well as its protocol handler.

(warning)
Don't close LAP protocol type values 1 or 2. If you
close these protocol types, DDP will be disabled; once
disabled, the only way to restore DDP is to reboot, or to
close and then reopen AppleTalk.·

Result codes

1/31/85 Hacker-Anders

noErr
lapProtErr

No error
Error detaching protocol type

/NET/ATALK.P.l

22 AppleTalk Manager Programmer's Guide

FUNCTION LAPWrite (abRecord: ABRecHandle; async: BOOLEAN)
[Not ~n ROM]

OSErr;

ABusRecord
~-- abOpcode .
~-- abResult
--~ abUserReference
--~ lapAddress.dstNodeID
--~ lapAddress.lapProtType
--~ lapReqCount
--~ lapDataPtr

{always tLAPWrite}
{result code}
{for your use} ..
{destination node ID}
{LAP protocol typ~}
{length of. frame data}
{pointer to frame data}

LAPWrite sends a frame to another node. LAPReqCount and lapDataPtr
specify the length and location of the data to send. The
lapAddress.lapProtType field indicates the' LAP protocol type of the
frame and the lapAddress.dstNodeID indicates the node ID of the node to
which the frame should be sent.

(note)
The first two bytes of an ALAP frame's data must contain
the length in bytes of that data t including the length
bytes themselves.

Result codes noErr
excessCollsns

~o error.
Unable to contact destination
node; packet not sent

1/31/85 Hacker-Anders /NET/ATALK.P.1

\

CALLING THE APPLETALK MANAGER FROM PASCAL 23

FUNCTION LAPRead (abRecord: ABRecHandle; async: BOOLEAN)
in ROM]

OSErr; [Not

ABusRecord
~-- abOpcode
~-- abResult
--? abUserReference
~-- lapAddress.dstNodeID
~-- lapAddress.srcNodeID
--? lapAddress.lapProtType
--~ lapReqCount
~-- ,1apActCount

--? lapDataPtr

{always tLAPRead}
{result code}
{for your use}
{packet's destination node ID}
{packet's ~ource node ID}
{LAP protocol type}
{buffer size in bytes}
{number of frame data bytes actually }
{ received}
{pointer to buffer}

LAPRead receives a frame from another node. LAPReqCount and lapDataPtr
specify the length and location of the buffer that will receive the
frame data. If the buffer isn't large enough to hold all of the
incoming frame data, the extra bytes will be discarded and buf2SmallErr
will be returned. The number of bytes actually received is returned in
lapActCount. Only frames with LAP protocol type equal to
lapAddress.lapProtType will be received. The node number of the
frame's source and destination nodes are returned in
lapAddress.srcNodeID and lapAddress.dstNodeID respectively. You can
determine if the packet was broadcast to you by examining the value of
lapAddress.dstNodeID--if the packet was broadcast it's equal to 255,
otherwise it's equal to your node ID.

(note)
You should issue LAPRead calls only for LAP protocol
types that were opened (via LAPOpenProtocol) to use the
default protocol handler.

Result codes noErr
buf2SmallErr
readQErr,

No error
Frame too large for buffer
Invalid protocol type or
protocol type not found in table

FUNCTION LAPRdCancel (abRecord: ABRecHandle) : OSErr; [Not in ROM]

Given the handle to the ABusRecord of a previously made LAPRead call,
LAPRdCancel dequeues the LAPRead call, provided that a packet
satisfying the LAPRead has not already arrived. LAPRdCancel returns
noErr if the LAPRead call is successfully removed from the queue. If
LAPRdCancel returns recNotFnd, check the abResult field to verify that
the LAPRead has been completed and determine its outcome.

Result codes

1/31/85 Hacker-Anders

noErr
readQErr

recNotFnd

No error
Invalid protocol type or
protocol type not found in table
ABRecord not found in queue

/NET/ATALK.P~l

24 AppleTalk Manager Programmer's Guide

Example

This example sends a LAP packet synchronously and waits asynchronously
for a response. Assume that both nodes are using a known protocol type
(in this case, 73) to receive packets, and that the destination node
has a node ID of 4.

VAR myABRecord: ABRecHandle;
myBuffer: PACKED ARRAY[0 •• 599] OF CHAR; {buffer for both send and }

{ receive}'
myLAPType: Byte;
errCode,index,dataLen: INTEGER;
someText: Str255;
async: BOOLEAN;

BEGIN
errCode := MPPOpen;
IF errCode <> noErr

THEN
WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by AppleTalk}

ELSE
BEGIN
{Call Memory Manager to allocate ABusRecord}
myABRecord := ABRecHandle,(NewHandle(lapSize»;
myLAPType := 73;
{Enter myLAPType into protocol handler table and install default }
{ handler to service_frames of that LAP type. No packets of }
{ that LAP type will be received until we call LAPRead.}
errCode := LAPOpenProtocol(myLAPType,NIL);
IF errCode <> noErr

THEN
I

WRITELN('Error while opening the protocol type')
{Have we opened too many protocol types? Remember that DDP }
{ uses two of .them.}

ELSE
BEGIN
{Prepare data to be sent}
someText := 'This data will be in the LAP data area';
{The .MPP implementation requires that the first two bytes}
{ of the LAP data field contain the length of the data, }
{ including the length bytes themselves.}
dataLen .:= LENGTH(someText)+2;
buffer[0] := CHR(dataLen DIV 256); {high byte of data length}
buffer[l] := CHR(dataLen MOD 256); {low byte of data length}
FOR index := 1 TO dataLen-2 DO {stuff buffer with packet data}

buffer [index+1] : = someText [index] ;
async := FALSE;
WITH myABRecord AA DO

BEGIN
{fill parameters in the ABusRecord}

lapAddress.lapProtType := myLAPType;
lapAddress.dstNodeID := 4;
lapReqCount := dataLen;

1/31/85 Hacker-Anders /NET/ATALK.P.l

END;
END.

CALLING THE APPLETALK MANAGER FROM PASCAL 25

lapDataPtr := @buffer;
END;

{Send the frame}
errCode := LAPWrite(myABRecord,async);
{In the case of a sync call, errCode and the abResult }
{ field of the myABRecord will contain the same result }
{code. We can also reuse myABRecord, since we know}
{ whether the call has completed.}
IF errCode <> noErr

THEN
WRITELN('Error while writing out the packet')
{Maybe the receiving node wasn't on-line}

ELSE
BEGIN

END;

{We have sent out the packet and are now waiting for a }
{response. We issue an async LAPRead call so that we }
{ don't "hang" waiting for a response that may not come.}
async := TRUE;
WITH myABRecord AA DO

BEGIN
lapAddress.lapProtType := myLAPType; {LAP type we want}

{ to receive}
lapReqCount := 600; {our buffer is maximum size}
lapDataPtr := @buffer;
END;

errCode := LAPRead(my~BRecord,async); {wait for a packet}
IF errCode <> noErr

THEN
WRITELN('Error while trying to queue up a LAPRead')
{Was the protocol handler installed correctly?}

ELSE
BEGIN

END;

{We can either sit here in a loop and poll the abResult }
{ field or just exit our code and use the event }
{ mechanism to flag us when the packet arrives.}
CheckForMyEvent; {your procedure for checking for a }

{ network event}
errCode := LAPCloseProtocol(myLAPType);
IF errCode <> noErr

THEN
WRITELN('Error while closing the protocol type');

END;

1/31/85 Hacker-Anders /NET/ATALK.P.1

26 AppleTalk Manager Programmer's Guide

(

Datagram Delivery Protocol

Data Structures

DDP calls use the following ABusRecord fields:

ddpProto:
(ddpType:
ddpSocket:
ddpAddress:
ddpReqCount:

Byte;
Byte;
AddrBlock;
INTEGER;

ddpActCount: INTEGER;
ddpDataPtr: Ptr;
ddpNodeID: Byte);

{DDP protocol type}
{source or listening socket number}
{destination or source socket address}
{length of datagram data or }
{ buffer size in bytes}
{number of bytes actually rece{ved}
{potnter to buffer}
{original destination node ID}

When a DDP datagram is sent, ddpReqCount indicates the size of the
datag'ram data in bytes and ddpDataPtr points to a buffer containing the
datagram data~ DDPSocket specifies the socket from which the datagram
should be sent. DDPAddress is the internet address of the socket to
which the datagram should be sent:

(note)

TYPE AddrBlock PACKED RECORD
aNet: INTEGER; {network number}
aNode: Byte; {node ID}
aSocket: Byte {socket number}

END;

The network number you specify in ddpAddress.aNet tells
.MPP whether to create a long header (for an internet) or
a short header (for a local network only). A short DDP
header will be sent if ddpAddress.aNet is 0 or equal to
the network number of the local network.

When a DDP datagram is received, ddpDataPtr points to a buffer in which
the incoming data can be stored and ddpReqCount indicates the size of
the buffer in bytes. The number of bytes actually sent or received is
returned in the'ddpActCount field. DDPAddress is the internet address
of the socket from which the datagram was sent.

DDPType is the DDP protocol type of the datagram, and ddpSocket
specifies the socket that will receive the datagram.

(warning)
DDP protocol types 1 through 15 and DDP socket numb~rs 1
through 63 are reserved by Apple for internal use.
Socket numbers 64 through 127 are available for
experimental use. Use of these experimental sockets
isn't recommended for commercial products, since there's
no mechanism for eliminating conflicting usage by

1/31/85 Hacker-Anders /NET/ATALK.P.l

CALLING THE APPLETALK MANAGER FROM PASCAL 27

different developers.

Using DDP

Before it can use a socket, the program must call DDPOpenSocket, which
adds a socket and its socket listener to the socket table. When a
program is finished using a socket, call DDPCloseSocket, which removes
the socket's entry from the socket table. To send a datagram via DDP,
call DDPWrite. To receive datagrams, you have two choices:

- Call DDPOpenSocket with NIL for sktListener (see below); this
installs the default socket listener provided by the AppleTalk
Manager. Then call DDPRead to receive datagrams.

- Write your own socket listener and call DDPOpenSocket to install
it. DDP wil!' call your socket listener for every incoming
datagram for that socket; in this case, you shouldn't call

·DDPRead., For information on how to write a socket listener, see
the section "Protocol Handlers and Socket Listeners".

To cancel a previously issued DDPRead call (provided it's still in the
queue), call DDPRdCancel.

DDP Routines

FUNCTION DDPOpenSocket (VAR theSocket: Byte; sktListener: Ptr)
[Not in ROM]

OSErr;

DDPOpenSocket adds a socket and its socket listener to the socket
table. If theSocket is nonzero (it must be in the range of 64 to 127),
it specifies the socket's number. If theSocket is 0, DDPOpenSocket
dynamically assigns a socket number in the range 128 to 254, and
returns it in theSocket. SktListener contains a pointer to the socket
listener; if it's NIL, the default listener will be used.

If you're using the default socket listener, you must then call DDPRead
to receive a datagram (in order to specify buffer space for the default
socket listener). If, however, you've written your own socket listener
and sktListener points to it, your listener will provide buffers for
receiving datagrams and you shouldn't use DDPRead calls.

DDPOpenSocket will return ddpSktErr if you pass the number of an
already opened socket, if you pass a socket number greater than 127, or
if the socket table is full.

(note)
The range of static socket numbers 1 through 63 is
reserved for use by AppleTalk. Socket numbers 64 through
127 are available for unrestricted experimental dse.

1/31/85 Hacker-Anders /NET/ATALK.P.1

28 AppleTalk Manager Programmer's Guide

Result codes noErr
ddpSktErr

No error
Socket error

FUNCTION DDPCloseSocket (theSocket: Byte) : OSErr; [Not in ROM]

DDPCloseSocket removes the entry of the specified socket from the
socket table and cancels all pending DDPRead calls that have been made
for that socket. If you pass a socket number of ~, or if you attempt
to close a socket that isn't open, DDPCloseSocket will return
ddpSktErr.

Result codes noErr
ddpSktErr

No error
Socket error

FUNCTION DDPWrite (abRecord: ABRecHan~le; doChecksum: BOOLEAN; async:
BOOLEAN) : OSErr; [Not in ROM]

ABusRecord
~-- abOpcode
~-- abResult
--7 abUserReference
--7 ddpType
--7 ddpSocket'
--7 ddpAddress
--7 ddpReqCount
--7 ddpDataPtr

{always tDDPWrite}
{result code i}

{for your use}
{DDP protocol type} /
{source socket number}
{destination socket address}
{length of datagram data}
{pointer to buffer}

DDPW~ite sends a dat~gram to another socket. DDPReqCount and
~dpDataPtr specify the length and location of the data to send-. The
ddpType field indicates the DDP protocol type of the frame, and
ddpAddress is the complete internet address of the socket to which the
datagram should be sent. DDPSocket specifies the socket from which the
datagram should be sent. Datagrams sent over the internet to a node on
an AppleTalk network different from the sending node's network have an
optional software checksum to detect errors that might occur inside the
intermediate bridges. If doChecksum is TRUE, DDPWrite will compute
this checksum; if it's FALSE, this software checksum feature is
ignored.

(note)
The destination socket can't be in the same node as the
program making the DDPWrite call.

Result codes noErr
ddpLenErr
ddpSktErr

No error
.Datagram length too big
Source socket not open

1/31/85 Hacker-Anders /NET/ATALK.P.l

CALLING THE APPLETALK MANAGER FROM PASCAL 29

FUNCTION DDPRead (abRecord: ABRecHandle; retCksumErrs: BOOLEAN; 'async:
BOOLEAN) : OSErr; [Not in ROM]

ABusRecord
~-
~-
--7
~-
--7
~-

--7
~-
--7
~--

abOpcode
abResult
abUserReference
ddpType
ddpSocket
ddpAddress
ddpReqCount
ddpActCount
ddpDataPtr
ddpNodeID

{always tDDPRead}
{result code}
{for your used
{DDP protocol type}
{listening socket number}
{source socket address}
{buffer size in bytes}
{number of bytes actually received}
{pointer to buffer}
{original destination node ID}I

DDPRead receives a datagram from another socket. The length and
location of the buffer that will receive the data are specified by
ddpReqCount and ddpDataPtr, respectively. If the buffer isn't large
enough to hold all of the incoming frame data, the extra bytes will be
discarded and.buf2SmallErr will be returned. The number of bytes
actually received is returned in ddpActCount. DDPSocket specifies ~the
socket to receive the datagram ,(the "listening" socket). The node to
which the packet was sent is returned in ddpNodeID; if the packet was
broadcast ddpNodeID will contai~ 255. The address of the socket that
sent the packet is returned in ddpAddress. If retCksumErrs is FALSE,
DDPRead will discard any packets received with an invalid checksum and
inform the caller of the error. ~f retCksumErrs is TRUE, DDPRead will
deliver all packets, regardless of whether the checksum is valid or
not; it will also notify the caller when there's a checksum error.

(note)

(note)

The sender of the datagram must be in a different node
from the receiver. You should issue DDPRead calls only
for receiving datagrams for sockets opened with the
default socket listener; see the description of
DDPOpenSocket.

If DDPRead returns buf2Small,Err, it will deliver packets
even if retCksumErrs is FALSE.

Result codes noErr
buf2SmallErr
cksumErr
ddpLenErr
ddpSktErr
readQErr

No error
Datagram too large for buffer
Checksum error
Datagram length too big
Socket error
Invalid socket or
socket not found in table

1/31/85 Hacker-Anders /NET/ATALK.P.l

30 AppleTalk Manager Programmer's Guide

FUNCTION DDPRdCancel (abRecord: ABRecHandle) : OSErr; [Not in ROM]

Given the handle to the ABusRecord of a previously made DDPRead call,
DDPRdCancel dequeues the DDPRead call, provided that a packet
satisfyi'ng the DDPRead hasn't already arrived. DDPRdCancel returns
noErr if the DDPRead call is successfully removed from the queue. If
DDPRdCancel returns recNotFnd, check the abResult field of abRecord to
verify that the DDPRead has been completed and determine its outcome.

Result codes noErr
readQErr-

No error
Invalid socket-or

recNotFnd
socket not found in table
ABRecord not found in queue

Example

This example sends a DDP packet synchronously and waits asynchronously
for a response. Assume that both nodes are using a known socket number
(in this case 30) to receive packets. Normally, you would want to use
NBP to look up your destination's socket address.

VAR myABRecord: ABRecHandle;
myBuffer: PACKED ARRAY[~ •• 599] OF CHAR; {buffer for both send }

{ and receive}
mySocket: Byte;
errCode,index,dataLen: INTEGER;
someText: Str255;
async,retCksumErrs,doChecksum: BOOLEAN;

BEGIN
errCode .- MPPOpen;
IF errCode <> noErr

THEN
WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by AppleTalk}

ELSE.
BEGIN
{Call Memory Manager to allocate ABusRecord}
myABRecord := ABRecHandle(NewHandle(ddpSize));
mySocket := 3~;
{Add mySocket to socket table and install default socket }
{ listener to service datagrams addressed to that socket. }
{ No packets addressed to mySocket will be received until}
{ we call DDPRead.}
errCode := DDPOpenSocket(mySocket,NIL);
IF errCode <> noErr

THEN
WRITELN('Error while opening the socket') _
{Have we opened too many socket listeners? Remember that }
{ DDP uses two of them.}

ELSE
BEGIN

1/31/85 Hacker-Anders /NET/ATALK.P.l

CALLING THE APPLETALK MANAGER FROM PASCAL 31

{Prepare data to be sent}
someText := 'This is a sample datagram';
dataLen := LENGTH(someText);
FOR index := 0 TO dataLen-1 DO {stuff buffer with packet data}

myBuffer[index] .- someText[index+1];
async := FALSE;
WITH myABRecord AA DO {fill the parameters in the ABusRecord}

BEGIN
ddpType := 5;
ddpAddress.aNet := 0; {send on "our" network}
ddpAddress.aNode := 34; /'
ddpAddress.aSocket := mySocket;
ddpReqCount := dataLen;
ddpDataPtr := @myBuffer;
END;

doChecksum := FALSE;
{If packet contains a DDP long header, compute checksum and}
{ insert it into the header.}
errCode := DDPWrite(myABRecord,doChecksum,async); {send packet}
lIn the case of a sync call, errCode ~nd the abResult field of }
{ myABRecord will contain the same result code. We can also }
{ reuse myABRecord, since we know whether the call has completed.}
IF errCode <> noErr

THEN
WRITELN('Error ~hile writing out the packet')
{Maybe the receiving node wasn't on-line}

ELSE
BEGIN
{We have sent out the packet and are now waiting for a }
{ response. \ We issue an async DDPRead call so that we }
{ don't IIhang" waiting for a response that may not}
{come. To cancel the async read call, we must close}
{ the socket associated with the call or call DDPRdCancel.}
async := TRUE;
retCksumErrs := TRUE; {return packets even if they}

{ have a checksum error}
WITH myABRecord AA DO

BEGIN
ddpType := 5; {DDP type we want to receive}
ddpSocket := mySocket;
ddpReqCount := 600; {our reception buffer is max size}
ddpDataPtr := @myBuffer;
END;

{Wait for a packet asynchronously}
errCode := DDPRead(myABRecord,retCksumErrs,async);
IF errCode <> noErr

THEN
WRITELN('Error while trying to queue up a DDPRead')
{Was the socket listener installed correctly?}

ELSE
BEGIN
{We can either sit here in i loop and poll the abResult }
{ field or just exit our code and use the event }
{ mechanism to flag us when the packet arrives.}

1/31/85 Ha~ker-Anders /NET/ATALK.P.l

32 AppleTalk Manager Programmer's Guide

END;
END;

END;
END.

CheckForMyEvent; {your procedure for checking for}
{ a network event}

{If there were no errors, a packet is inside the array}
{ mybuffer, the length is in ddpActCount, and the}
{ address of the sending socket is in ddpAddress~ }
{ Process the packet received here and report any }
{ errors.} .
errCode := DDPCloseSocket(mySocket); {we're done with it}
IF errCode <> noErr

THEN
WRITELN('Error while closing the socket');

END;

AppleTalk Transaction Protocol

Data Structures

ATP calls use the following ABusRecord fields:

atpProto:
(atpSocket:

atpAddress:

atpReqCount:

atpOataPtr:
atpRspBDSPtr:
atpBitMap:
atpTransID:
atpActCount:

atpUserData:
atpXO:
atpEOM:
atpTimeOut:
atpRetries:
atpNumBufs~

atpNumRsp:

atpBOSSize:

atpRspUOata:

1/31/85 Hacker-Anders

Byte;

AddrBlock;

INTEGER;

Ptr;
BDSPtr;
BitMapType;
INTEGER;
INTEGER;

LONGINT;
BOOLEAN;
BOOLEAN;
Byte;
Byte;
Byte;

Byte;

Byte;

LONGINT;

{listening or responding socket }
{ number}
{destination or source socket}
{ address}
{request size or buffer size}
{ in bytes}
{pointer to buffer}
{pointer to response BOS}
{transaction bit map}
{transaction ID}
{number of bytes actually }
{ received}
{user bytes}
{exactly-once flag}
{end-of-message flag}
{retry timeout interval in seconds} /
{maximum number of retries}
{number of elements in response BDS }
{ or number of response packets sent}
{number of response packets }
{ received or sequence number}
{number of elements in response }
{ BOS}
{user bytes sent or received }
{ in transaction response}

/NET/ATALK.P.2

atpRspBuf:

atpRspSize:

CALLING THE APPLETALK MANAGER FROM PASCAL 33

Ptr;

INTEGER);

{pointer to response message }
{ buffer}
{size of response message buffer}

The socket receiving tbe request or sending the response is identified
by atpSocket. ATPAddress is the address of either the destination or
the source socket of a transaction, depending on whether the call is
sending or receiving data, respectively. ATPDataPtr and atpReqCount
specify the location and length of a buffer that either contains a
request or will receive a request. The number of bytes actually
receLved in a request is returned in atpActCount. ATPTransID specifies
the transa~tion ID. The transaction bit map is contained in atpBitMap,
in the form:

TYPE BitMapType = PACKED ARRAY[~ •• 7] OF BOOLEAN;

Each bit in the bit map corre~ponds to one of the eight possible
packets in a response. For example, when a request is made for which
five response packets are expected, the bit map sent is binary ~~~11111
or decimal 31. If the second packet in the response is lost, the
requesting socket will retransmit the request with a bit map of binary
0~0~0~10 or- decimal 2.

ATPUserData contains the user bytes of an ATP header. ATPXO is TRUE if
the transaction is to be made with exactly-once service. ATPEOM is
TRUE if the response packet is the last packet of a transaction. If
the number of responses is less than the number that were requested,
then ATPEOM must also be TRUE. ATPNumRsp contains either the number of
responses received or the sequence number of a response.

~

The timeout interval in seconds and the maximum number of times that a
request should be made are indicated by atpTimeOut and atpRetries,
respectively.

(note)
Setting atpRetries to 255 will cause the request to be
retransmitted indefinitely, until a full response is
received or the call is cancelled.

ATP provides a data structure, known as a response buffer data
structure (response -BDS) , for allocating buffer space to receive the
datagram(s) of the response. A responseBDS is an array of one to
eight elements. Each BDS element defines the size and location of a
buffer for receiving one response datagram; they're numbered 0 to 7 to
correspond to the sequence numbers of the response datagrams.

\ '

ATP needs a separate buffer for each response datagram expected, since
packets may not arrive in the proper sequence. It does not, however,
require you to set up and use the BDS data structure to-describe the
response buffers; if you don't, ATP will do it for you. Two sets of
calls are provided for _both requests and responses; one set requires
you to allocate a response BDS and the other doesn't.

1/31/85 Hacker-Anders /NET/ATALK.P.2

34 AppleTalk Manager Programmer's Guide

Assembly-language note: 'The two calls that don't require you to
define a BDS data structure (ATPRequest and ATPResponse) are
available in Pascal only.

The number of BDS elements allocated (in other words, the maximum
number of datagrams that the ~esponder can send) is indicated in the
TReq by an eight-bit bit map. The bits of this bit map are numbered ~
to 7 (the least significant bit being number ~); each bit corresponds
to the response datagram with the respective sequence number.

ATPRspBDSPtr and atpBDSSize indicate the location and number of
elements in the response BDS, which has the following structure:

TYPE BDSElement = RECORD
buff Size: INTEGER; {buffer size in,bytes}
buffPtr: Ptr; {pointer to buffer}
dataSize: INTEGER; {packet size}
userBytes-: LONGINT {user bytes}

END;

BDSType = ARRAY[~ •• 7] OF BDSElement; {response BDS}
BDSPtr = ABDSType;

ATPNumBufs indicates the number of elements in the response BDS that
contain information. In most cases, you can allocate space for your
variables of BDSType statically with a VAR declaration. However, you
can allocate only the minimum space required by your ATP calls by doing
the following:,

(note)

VAR myBDSPtr: BDSPtr;

BEGIN
numOfBDS .- 3; {number of elements needed}
myBDSPtr := BDSPtr(NewPtr(SIZEOF(BDSElement) * numOfBDS»;

END;

The userBytes field of the BDSElement and the atpUserData
field of the aBusRecord represent the same information in
the datagram. Depending on the ATP call made, one or
both of these fields will be used.

1/31/85 Hacker-Anders /NET/ATALK.P.2

CALLING THE APPLETALK MANAGER FROM PASCAL 35

Using ATP

Before you can use ATP on a Macintosh 128K, the .ATP driver must be
read from the system resource file via an ATPLoad call. The .ATP
driver loads itself into the application heap and installs a task into
the vertical .retrace queue.

(warning)
When another application is started up, the applicatio~
heap is reinitialized; on a Macintosh 128K, this means
that the ATP code is lost and must be relQaded by the
next application.

When you're through using ATP on a Macintosh 128K, call ATPUnload--the
system will be returned to the state it was in before the .ATP driver
was opened.

On a Macintosh 512K or ~L, the .ATP driver will have been loaded into
the system heap either at system startup or upon execution of MPPOpen
or ATPLoad. ATPUnioad has no effect on a Macintosh 512K or XL.

To send a transaction request, call ATPSndRequest or ATPRequest. The
.ATP driver will automatically select and open a socket through which
the request datagram will be sent, and through which the response
datagrams will be received. The transaction requester can't specify
the number of this socket./ However, the requester must specify the
full network address (network number, node ID, and socket number)-of
the socket to which the request is to be sent. This socket is known as
the responding socket, and its address must be known in advance by the
requester.

(note)
The requesting and responding sockets can't be in the
same node.

At the responder's end, before a transaction request can be received, a
responding socket must be opened, and the appropriate calls be made, to
receive a request. To do this, the responder first makes an
ATPOpenSocket call which allows the responder to specify the address
(or part of it) of the requesters from whom it~s willing to accept
transaction requests. Then it issues an ATPGetRequest call to prov~de
ATP with a buffer for receiving a request; when a request is received,
ATPGetRequest is completed. The responder can queue up several
ATPGetRequest calls, each of which will be completed as requests are
received.

Upon receiving a request, the responder performs the requested
operation, and then pr'epares the information to be returned to the
requester. It then calls ATPSndRsp (or ATPResponse) to send the
response. Actually, the responder can issue the ATPSndRsp call with
only part (or none) of the response specified. Additional portions of
the response can be sent later by calling ATPAddRsp.

1/31/85 Hacker-Anders /NET/ATALK.P.2

36 AppleTalk Manager Programmer's Guide

The ATPSndRsp and ATPAddRsp calls provide flexibility in the design
(and range of types) of transaction responders~ For instance, the
responder may, for some reason, be forced to send the responses out of
sequence. Also, there might be memory constraints that force sending
the complete transaction response in parts. Even though eight response
datagrams might need to be sent, the responder might have only enough
memory to build one datagram at a time. In this case, it would build
the first response datagram and call ATPSndRsp to send it. It would
then build the second response datagram in the same buffer and call
ATPAddRsp to send it; and so on, for the third through eighth response
datagrams.

A responder can close a responding socket by calling ATPCloseSocket.
This call cancels all pending ATP calls for that socket, such as
ATPGetRequest, ATPSndRsp, and ATPResponse.

For exactly-once transactions, the ATPSndRsp and ATPAddRsp calls don't
terminate until the entire. transaction has completed (that is, the
responding end receives a release packet, or the release timer has
'expired) •

To cancel a pending, asynchronous ATPSndRequest or ATPRequest call,
call ATPReqCancel. To cancel a pending, asynchronous ATPSndRsp or
ATPResponse call, call ATPRspCancel. Pending asynchronous
ATPGetRequest calls can be cancelled only by issuing the ATPCloseSocket
call, but that will cancel all outstanding calls for that socket.

(warning)
You cannot reuse a variable of type ABusRecord pa'ssed to
an ATP routine until the entire transaction has either
been completed or cancelled.

ATP Routines

FUNCTION ATPLoad : OSErr; [Not in ROM]

ATPLoad first verifies that the .MPP driver is loaded and running. If
it isn't, ATPLoad verifies that port B is configured for AppleTalk, and
is not in use, and then loads MPP into the system heap.

ATPLoad then loads the .ATP driver, unless it's already in memory. On
a Macintosh I28K, ATPLoad reads the .ATP driver from the system
resource file into the application heap; on a Macintosh SI2K or XL, ATP
is read into the system heap.

(note)
On a Macintosh SI2K or XL, ATPLoad and MPPOpenperform
essentially the same function.

Result codes noErr
portlnUse

No error
Port B is already in use

1/31/8SHacker-Anders /NET/ATALK.P.i

CALLING THE APPLETALK MANAGER FROM PASCAL 37

portNotCf Port B not configured for
AppleTalk

FUNCTION ATPUnioad : OSErr; [Not in ROM]

ATPUnload makes the .ATP driver purgeable; the space isn't actually
released by the Memory Manager until necessary.

(note)
This call applies only to a Macintosh 128K; on a
Macintosh 512K or Macintosh XL, ATPUnioad has no effect.

Result codes noErr No error

FUNCTION ATPOpenSocket (addrRcvd: AddrBlock; VAR atpSocket: Byte)
OSErr; [Not in ROM]

ATPOpenSocketopens a socket for the purpose of recelvlng requests.
ATPSocket contains the socket number of the socket to ope'n; if it's (;1,
a number is dynamically assigned and returned in atpSocket. AddrRcvd
contains a filter of the sockets from which requests will be accepted.
A (;1 in the network number, node ID, or socket number field of the
addrRcvd record acts as a "wild card"; for instance, a (;1 in the socket
number field means that requests will be accepted from all sockets in
the node(s) specified by the network and node fields.

(note)

Result codes noErr
tooManySkts
noDataArea

No error
Socket table full
Too many outstanding ATP calls

If you're only going to send requests and receive
responses to these requests, you don't need to open an
ATP socket. When you make the ATPSndRequest or
ATPRequest call, ATP automatically opens a dynamically
assigned socket for that purpose.

FUNCTION ATPCloseSocket (atpSocket: Byte) OSErr; [Not in ROM]

ATPCloseSocket closes the responding socket whose number is specified
by atpSocket. It releases the data structures associated with all
pending, asynchronous calls involving that socket; these 'pending calls
are completed immediately and return the result code sktClosed.

Result codes

1/31/85 Hacker-Anders

noErr
noDataArea

No error
Too many outstanding ATP calls

/NET/ATALK.P.2

38 AppleTalk Manager Programmer's Guide

FUNCTION ATPSndRequest (abRecord: ABRecHandle; async: BOOLEAN)
[Not in ROM]

OSErr;

ABusRecord
~-- abOpcode
~-- abResult
--~ abUserReference
--~ atpAddress
--~ atpReqCount
--~. atpDataPtr
--~ atpRspBDSPtr
--~ atpUserData
--~ atpXO,
~-- atpEOM
--~ atpTimeOut
--7 atpRetries
--~ atpNumBufs
~-- atpNumRsp

{always tATPSndRequest}
{result code}
{for your use}
{destination socket address}
{request size in bytes}
{pointer to buffer}
{pointer to response BDS}
{user bytes}
{exactly-once flag}
{end-of-message flag}
{retry timeout interval in seconds}
{maximum number of retries}
{number of elements in response BDS}
{number of response packets actually }
{ received}

ATPSndRequest sends a request to another s'ocket. ATPAddress is the
internet address of the socket to which the request should be sent.
ATPDataPtr and atpReqCount specify the location and size of a buffer
that contains the request information to be sent. ATPUserData contains
the user bytes for the ATP header.

ATPSndRequest requires you to allocate a response BDS. ATPRspBDSPtr is
a pointer to the response BDS; atpNumBufs indicates the number of BDS
elements in the BDS (this is also the maximum number of response
datagrams that will be accepted). The number of response datagrams
actually received is returned in atpNumRsp; if a nonzero value is
returned, you can examine the response BDS to determine which packets
of the transaction were actually received. If the number returned is
less than requested, one of the following is true:

- Some of the packets have been lost and the retry count has been
exceeded.

- ATPEOM is TRUE; this means that the response consisted of fewer
packets than were expected, but that all packets sent were
received (the last packet came with the atpEOM flag set).

ATPTimeOut indicates the length of time that ATPSndRequest should wait
for 'a response before retransmitting the request. ATPRetries indicates
the maximum number of retries ATPSndRequest should attempt. ATPXO
should be TRUE if you want the request to be part of an exactly-once
transaction.

ATPSndRequest completes when either the transaction is completed or the
retry count is exceeded.

1/31/85 Hacker-Anders /NET/ATALK.P.2

CALLING THE APPLETALK MANAGER FROM PASCAL 39

Result codes noErr
reqFailed
tooManyReqs
noDataArea

No error
Retry count exceeded
Too many concurrent requests
Too many outstanding ATP calls

FUNCTION ATPRequest (abRecord: ABRecHandle; async: BOOLEAN)
[Not in ROM]

OSErr;

ABusRecord
~-- abOpcode
~-- abResult
--7 abUserReference
--7 atpAddress
--7 atpReqCount
--7 atpDataPtr
~-- atpActCount
--7 atpUserData
--7 atpXO
~-- atpEOM
--7 atpTimeOut
--7 atpRetries
~-- atpRspUData

--7 atpRspBuf
--7 atpRspSize

{always tATPRequest}
{result code}
{for your use}
{destination socket address}
{request size in bytes}
{pointer to buffer}
{number of bytes actually received}
{user bytes}
{exactly-once flag}
{end-of-message flag}
{retry timeout interval in seconds}
{maximum number of retries}
{user bytes received in transaction }
{ response}
{pointer to response message buffer}
{size of response message buffer}

ATPRequest is functionally analogous to ATPSndRequest. It 'sends a
request to another socket, but doesn't require the caller to set up and
use the BDS data structure to describe the response buffers.
ATPAddress indicates the socket to which the request should be sent.
ATPDataPtr and atpReqCount specify the location and size of a buffer
that contains the request information to be sent. ATPUserData contains
the user bytes to be sent in the request's ATP header. ATPTimeOut
indicat·es the length of time that ATPRequest should wait for a response
before retransmitting the request. ATPRetries indicates the maximum
number of retries ATPRequest should attempt.

To use this call, you must have an area of contiguous buffer space
that's large enough to receive ~ll expected datagrams. The various
datagrams will be assembled in this buffer and returned to you as a
complete message upon-completion of the transaction. The address and
size of this buffer are pass~d in atpRspBuf and atpRspSize,
respectively. Upon completion of the call, the size of the received
response message is returned in atpActCount. The user bytes received
in the ATP header of the first response packet are returned in
atpRspUData. ATPXO should be TRUE if you want the request to be part
of an exactly-once transaction.

Although you don't provide a BDS, ATPRequest in fact creates one and
calls the .ATP driver (as in an ATPSndRequest call). For this reason,
the abRecord fields atpRspBDSPtr and atpNumBufs are used by ATPRequest;

1/31/85 Hacker-Anders /NET/ATALK.P.2

40 AppleTalk Manager Programmer's Guide

you should not expect' these fields to remain unaltered during or after
the function's execution.

For ATPRequest to receive and correctly deliver the response as a
single message, the responding end must, upon receiving the request
(with an ATPGetRequest call), generate the complete response as a
complete message in a s,ingle buffer and then call ATPResponse.

(note)
The responding end could also use ATPSndRsp and ATPAddRsp
provided that each response packet (except the last one)
contains exactly 578 ATP data bytes; the last packet in
the response can contain less than 578 ATP data bytes.
Also, if this .method is used, only the ATP user bytes of
the first response packet will'be delivered to the
requester; any information in the user bytes of the
remaining response packets will not be delivered.

ATPRequest completes when either the transaction is completed or the
retry count is' exceeded.

Result codes noErr
, reqFailed
tooManyReqs
sktClosed
noDataArea

No error
Retry count exceeded
Too many concurrent requests
Socket closed by a cancel call
Too many outstanding ATP calls

FUNCTION ATPReqCancel,(abRecord: ABRecHandle; async: BOOLEAN)
[Not in ROM]

OSErr;

'. Given the handle to the ABusRecord of a previously made ATPSndRequest
or ATPRequest call, ATPReqCancel dequeues the ATPSndRequest or
ATPRequest call, provided that the call hasn't already completed.
ATPReqCancel returns noErr if the ATPSndRequest or ATPRequest call is
successfully removed from the queue. If it returns cbNotFound, check
the abResult field of abRecord to verify that the ATPSndRequest or
ATPRequest call has been completed and determine its outcome.

Result codes

1/31/85 Hacker-Anders

noErr
cbNotFound

No error
ATP control block not found

/NET/ATALK.P.2

CALLING THE APPLETALK MANAGER FROM PASCAL 41

FUNCTION ATPGetRequest (abRecord: ABRecHandle; async: BOOLEAN)
OSErr; [Not in ROM]

ABusRecord
~-- abOpcode
~-- abResult
--~ abUserReference
--~ atpSocket
~-- atpAddress
--~ atpReqCount
--~ atpDataPtr
~-- atpBitMap
~-- atpTransID
~-- atpActCount
~-- atpUserData
~-- atpXO

{always tATPGetRequest}
{result code}
{for your use}
{listening socket number}
{source socket address}
{buffer size in bytes}
{pointer to buffer}
{transaction bit map}
{transaction ID}
{number of bytes actually received}
{user bytes}
{exactly-once flag}

ATPGetRequest sets up the mechanism to receive a request sent by either
an ATPSndRequest or an ATPRequest call. ATPSocket contains the socket
number of the socket that should listen for a request; this socket must
already have been opened by calling ATPOpenSocket. The address of the
socket from which the request was sent is returned in atpAddress.
ATPDataPtr specifies a buffer to store the incoming request;
atpReqCount indicates the size of the buffer in bytes. The number of
bytes actually received in the request is returned in atpActCount.
ATPUserData, contains the user bytes from the ATP header. The
transaction bit map is ,returned in atpBitMap. The transaction ID is
returned in atpTransID. ATPXO will be TRUE if the request is part of
an exactly-once transaction.

ATPGetRequest completes when a request is received. To cancel ,an
asynchronous ATPGetRequest call, you must call ATPCloseSocket, but this
cancels all pending calls involving that socket.

Result codes

1/31/85 Hacker-Anders

noErr
badATPSkt
sktClosed

No error
Bad responding socket
Socket closed by a cancel call

/NET/ATALK.P.2

42 AppleTalk Manager Prog~ammer's Guide

FUNCTION ATPSndRsp (abRecord: ABRecHandle; async: BOOLEAN)
[Not in ROM]

OSErr;

ABusRecord
~-- abOpcode
~-- abResult
--~ abUserReference
--~ atpSocket
--~ atpAddress
--~ atpRspBDSPtr
--~ atpTrans ID .
--~ atpEOM
--) atpNumBufs

--~ atpBDSSize

{always tATPSndRsp}
{result code}
{for your use}
{responding socket number} ,
{destination socket address}
{pointer to response BDS}
{transaction ID}
{end-of-message flag}
{number of response packets being }
{ sent}
{number of elements in response BDS}

ATPSndRsp sends a response to another socket. ATPSocket contains the
socket number from which the response should be sent and atpAddress
contains the internet address of the socket to which the response
should be sent. ATPTransID must contain the transaction ID. ATPEOM is
TRUE if the response BDS contains th~ final packet in a transaction
composed of a group of packets and the number of packets in the
response is· less than expected,. ATPRspBDSPtr points to the buffer data
structure containing the responses to be sent. ATPBDSSize indicates
the number of elements in the response BDS, and must be in the range 1
to 8. ATPNumBufs indicates the number of response packets being sent
with this call, and must be in the range 0 to 8 •.

(note)
In some situations, you may want to send only part (or
possibly none) of your response message back immediately.'
For instance, you might be requested to send back seven
disk blocks, but have only enough internal memory to,
store one block. In this case, set atpBDSSize to 7
(total number of response packets), atpNumBufs to 0
(number of response packets currently be~ng sent), and
call ATPSndRsp. Then as you read in one block at a time,
call ATPAddRsp until all seven response datagrams have
been sent.

During exactly-once transactions, ATPSndRsp won't complete until the
release packet is received or the release timer expires.

Result codes

1/31/85 Hacker-Anders

noErr
badATPSkt
noRelErr
sktClosed
noDataArea

No error
Bad responding socket
No release received
Socket closed by a cancel call
Too many outstanding ATP calls

/NET/ATALK.P.2

CALLING THE APPLETALK MANAGER FROM PASCAL 43

FUNCTION ATPAddRsp (abRecord: ABRecHandle) OSErr; [Not in ROM]

ABusRecord
~-
~-

--7
--7
--7
--7
--,7
--7
--7
--7
--)

abOpcode
abResult
a bUserRef erence
atpSocket
atpAddress
atpReqCount
atpDataPtr
atpTransID
atpUserData
atpEOM
atpNumRsp

{always tATPAddRsp}
{result code}
{for your use}
{responding socket number}
{destination socket address}
{buffer size in bytes}
{pointer to buffer}
{transaction ID}
{user bytes}
{end-of-message flag}
{sequence number}

ATPAddRsp sends one additional response packet to a socket that has
already been sent the initial part of a response via ATPSndRsp.
ATPSocket contains the socket number from which the response should be
sent and atpAddress contains the internet address of the socket to
which the response should be sent. ATPTransID must contain the
transaction ID. ATPDataPtr and atpReqCount specify the location and
size of a buffer that contains the information to send; atpNumRsp is
the sequence number of the response. ATPEOM is TRUE if this response
datagram is the final packet in a transaction composed of a group of
packets. ATPUserData contains the user bytes to be sent in this
response datagram's ATP header.

(note)
.. No BDS is needed with ATPAddRsp because all pertinent

information is passed within the record.

Result codes

1/31/85 Hacker-Anders

noErr
badATPSkt
badBuffNum
noSendResp
noDataArea

No error
Bad responding socket
Bad sequence number
ATPAddRsp issued before ATPSndRsp
Too many outstanding ATP calls

/NET/ATALK.P.2

44 AppleTalk Manager Programmer's Guide

FUNCTION ATPResponse (abRecord: ABRecHand·le; async: BOOLEAN)
[Not in ROM] ,

ABusRecord
~-- abOpcode
~-- abResult
--~ abUserReference
--~ atpSocket
--7 atpAddress
--7 atpRspUData

{always tATPResponse}
{result code}
{for your use}
{responding socket number}
{destination socket address}
{user bytes to be sent in }
{ transaction response}

OSErr;

--~ atpRspBuf
--7 atpRspSize

{pointer to response message buffer}
{size of response message buffer}

ATPResponse is functionally analogous to ATPSndRsp. It sends a
response to a socket, but doesn't require the caller to provide a BDS.
ATPAddress must contain the complete network address of the socket to
which the response should be sent (taken from the data provided by an
ATPGetRequest call). ATPSocket indicates the socket from which the
response should be sent (the socket on which the corresponding
ATPGetRequest was issued). ATPRspBuf points to the buffer containing
the response message; the size of this buffer must be passed in
atpRspSize. The four user .bytes to be sent in the ATP header of the
first response packet are passed in atpRspUData. The last packet of
the transaction response is sent with the EOM flag set.

Although you don't provide a BDS, ATPResponse in fact creates one and
calls the .ATP driver (as in an ATPSndRsp call). For this reason, the
abRRecord fields atpRspBDSPtr and atpNumBufs are used by ATPResponse;
you should not expect these fields to remain unaltered during or after
the function's execution.

During exactly-once transactions ATPResponse won't complete until the
release packet is received or the release timer expires.

(warning)
The maximum permissible size of the response message is
4624 bytes.

Result codes No error
Bad responding socket
No release received
Response too big

noErr ~.

badATPSkt
noRelErr
atpLenErr
sktClosed
noDataArea

Socket closed by a cancel call
Too many outstanding ATP calls

FUNCTION ATPRspCancel (abRecord: ABRecHandle; async: BOOLEAN)
[Not in ROM]

\

OSErr;

Given the handle to the ABusRecord of a previously made ATPSndRsp or
ATPResponse call, ATPRspCancel dequeues the ATPSndRsp or ATPResponse

1/31/85 Hacker-Anders /NET/ATALK.P.2

CALLING THE APPLETALK MANAGER FROM PASCAL 45

call, provided that the call hasn't already completed. ATPRspCancel
returns noErr if the ATPSndRsp or ATPResponse call is successfully
removed from the queue. If it returns cbNotFound, check the abResult
field of abRecord to verify that the ATPSndRsp or ATPResponse call has
been completed and determine its outcome.

No error Result codes . noErr
cbNotFound
noDataArea

ATP control block not found
Too many outstanding ATP calls

Example

This example shows the requesting side of an ATP transaction that asks
for a 512-byte disk block from the responding end. The block number of
the file is a byte and is contained in myBuffer[~].

VAR myABRecord: ABRecHandle;
myBDSPtr: BDSPtr;
myBuffer: PACKED ARRAY[~ •• 511] OF CHAR;
errCode: INTEGER;
async: BOOLEAN;

BEGIN
errCode := ATPLoad;
IF errCode <> noErr

THEN
WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by AppleTalk}

ELSE
BEGIN
{Prepare the BDS; allocate space for a one-element BDS}
myBDSP~r := BDSPtr(NewPtr(SIZEOF(BDSElement»);
WITH myBDSPtrA[~] DO

BEGIN
buff Size := 512;
buffPtr := @myBuffer;
END;

{Prepare the ABusRecord}

{size of our buffer used in reception}
{pointer to the buffer}

myBuffer[~] := CHR(l); {requesting disk block number I}
myABRecord := ABRecHandle(NewHandle(atpSize»;
WITH myABRecord AA DO

BEGIN
atpAddress.aNet := ~;
atpAddress.aNode := 3~; {we probably got this from an NBP call}
atpAddress.aSocket := 15; {socket to send request to}
atpReqCount := 1; {sIze of request data field (disk. block II)}
atpDataPtr := @myBuffer; {ptr to request to be sent}
atpRspBDSPtr := @myBDSPtr;
atpUserData :=~; {for your use}
atpXO := FALSE; {at-least-once service}
atpTimeOut .- 5; {5-second timeout}
atpRetries := 3; {3 retries; request will be sent 4 times max}

1/31/85 Hacker-Anders /NET/ATALK.P.2

46 AppleTalk Manager Programmer's Guide

atpNumBufs := 1; {we're only expecting 1 block to be returned}
END;

async := FALSE;
{Send the request and wait for the response} ,
errCode := ATPSndRequest(myABRecord,async);
IF errCode <> noErr

THEN
WRITELN('An error occurred in the ATPSndRequest call')

ELSE
BEGIN
{The disk block request~d is now in myBuffer. We can verify }
{ that atpNumRsp contains 1, meaning one response received.}

END;
END;

END.

Name-Binding Protocol

Data Structures

NBP calls use the following fields:

nbpPr'oto:
(nbpEntityPtr:
nbpBufPtr:
nbpBufSize:
nbpDataField:

EntityPtr;
Ptr;
INTEGER;
INTEGER;

nbpAddress: AddrBlock;
nbpRetransmitInfo: RetransType);

{pointer to entity name}
{pointer to buffer}
{buffer size in bytes}
{number of addresses }
{ or socket number}
{socket address}
{retransmission }
{ information}

When data is sent via NBP, nbpBufSize indicates the size of the data in
bytes and nbpBufPtr points to a buffer containing the data. When data
is received via NBP, nbpBufPtr points to a buffer in which the incoming
data can be stored and nbpBufSize indicates the size of the buffer in
bytes. NBPAddress is used in some calls to give the internet address
of a named entity. The AddrBlock data type is described above under
"Datagram Delivery Protocol".

1/31/85 Hacker-Anders /NET/ATALK.P.3

CALLING THE APPLETALK MANAGER FROM PASCAL 47

NBPEntityPtr points to a variable of type EntityName, which has the
following data structure:

TYPE EntityName = RECORD
objStr: Str32; {object}
typeStr: Str32; {type}
zoneStr: Str32 {zone}

END;

EntityPtr = -EntityName;

Str32 = STRING[32];

NBPRetransmitInfo contains information about the number of times a
packet should be transmitted and the interval between retransmissions:

TYPE RetransType =

Using NBP

PACKED RECORD
retransInterval: Byte;
retransCount: Byte

END;

{retransmit interval in 8-tick ,units}
{number of attempts}

On a Macintosh 128K, the AppleTalk Manager's NBP code is read into the
application heap when anyone of the NBP (Pascal) routines is called;
you can call the NBPLoad function yourself if you want to load the NBP
code explicitly. ~len you're finished with the NBP code and want to
reclaim the space it occupies, call NBPUnload. On a Macintosh 512K or
XL, the NBP code is read in when the .MPP driver is loaded.

When an entity wants to communicate via an AppleTalk network, it should
call NBPRegister to place its name and internet address in the names
table. When an entity no longer wants to communicate on the network,
or is being shut down, it should call NBPRemove to remove its entry
from the names table.

To determine the address of an en~ity you know only by name, call
NBPLookup, which 'returns a list of all entities with the name 'you
specify. Call NBPExtract to extract entity names' from the list.

If you already know the address of an entity, and want only to confirm
that it still exists, call NBPConfirm. NBPConfirm is more efficient
than NBPLookup in terms of network traffic.

1/31/85 Hacker-Anders /NET/ATALK.P.3

48 AppleTalk Manager Programmer's Guide

NBP Routines

FUNCTION NBPRegister (abRecord: ABRecHandle; async: BOOLEAN)
[Not ·in ROM]

OSErr;

ABusRecord
~-- abOpcode
~-- abResult
--~ abUserReference
--~ nbpEntityPtr
--~ nbpBufPtr
--7 nbpBufSize
--~ ,nbpAddress.aSocket
--~ nbpRet rans'mi t Info

{always tNBPRegister}
{result code}
{for your use}
{pointer to entity name}
{pointer to buffer}
{buffer size in bytes}
{socket address}
{retransmission information}

NBPRegister adds the name and address of an entity to the node's names
table. NBPEntityPtr points to a variable of type EntityName containing
the entity's name. ·If the name is already registered, NBPRegister
returns the result code nbpDuplicate. NBPAddress indicates the socket
for which the name should be registered. NBPBufPtr and nbpBufSize
specify the location and size of a buffer for NBP to use internally.
·The buffer must contain at least 12 bytes plus the length of the entity
name.

(warning)
This buffer must not be altered or released until the
name is removed from the names table via an NBPRemove
call. If you allocate the buffer through a NewHandle
call, the handle must be locked as long as the name is
registered~

Result codes noErr
nbpDuplicate

No error
Duplicate name already exists

-'

1/31/85 Hacker-Anders /NET/ATALK.P.3

CALLING THE APPLETALK MANAGER FROM PASCAL 49

FUNCTION NBPLookup (abRecord: ABRecHandle; async: BOOLEAN)
[Not in ROM]

OSErr;

ABusRecord
~-- abOpcode
~-- abResult
--7 abUserReference
--7 nbpEntityPtr
--7 nbpBufPt.r
--7 nbpBufSize
~-7 nbpDataField
--7 nbpRetransmitInfo

{always tNBPLookup}
{result code}
{for your use}
{pointer to entity name}
{pointer to buffer}
{buffer size in bytes}
{number of addresses received}
{retransmission information}

NBPLookup returns the addresses of all entities with a specified name.
NBPEntityPtr points to a variable of type EntityName containing the
name of the entity whose address should be returned. (Meta-characters
are allowed in the entity name.) NBPBufPtr and NBPBufSize contain the
location and size of an area of memory in which the entities' addresses
should be returned. NBPDataField indicates the maximum number of
matching names to find addresses for; the actual number of addresses
found is returned in NBPDataField. NBPRetransmitInfo contains the
retry interval and the retry count.

Result codes noErr
nbpBuffOvr

No error
Buffer overflow

FUNCTION NBPExtract (theBuffer: Ptr; numInBuf: INTEGER; whichOne:
INTEGER; VAR abEntity: EntityName; VAR address: AddrBlock)
: OSErr; [Not in ROM]

NBPExtract returns one address from the list of addresses returned by
NBPLookup. TheBuffer and numInBuf indicate the location and number of
tuples in the buffer. WhichOne specifies which one of the tuples in
the buffer should be returned in the abEntity and address parameters.

Result codes

1/31/85 Hacker-Anders

noErr
extractErr

No error
Can't find tuple in buffer

/NET/ATALK.P.3

50 AppleTalk Manager Programmer's Guide

FUNCTION NBPConfirm (abRecord: ABRecHandle; async: BOOLEAN)
[Not in ROM]

OSErrj

ABusRecord
~-- abOpcode
~-- abResult
--~ abUserReference
--~ nbpEntityPtr
~-- nbpDataField
--~ nbpAddress
--~, nbpRetransmitlnfo

{always tNBPConfirm}
{result code}
{for your use}
{pointer to entity' name}
{socket number}
{socket address}
{retransmission information}

NBPConfirm confirms that an entity known by name and address still
exists (is still entered in the names directory). NBPEntityPtr points
to a variable of type EntityName that contains the name to confirm, and
nbpAddress specifies the address to be confirmed. (No meta-characters
are allowed in the entity name.) N.BPRetransmitInfo contains the retry
interval and the retry count. The correct socket number of the entity
is returned in nbpDataField. NBPConfirmis more efficient than
NBPLookup in terms of network traffic.

Result codes noErr
nbpConfDiff
nbpNoConfirm

No error
Name confirmed for different socket
Name not confirmed

FUNCTION NBPRemove (abEntity: EntityPtr) : OSErr; [Not in ROM]

NBPRemove removes an entity name from the names table of the caller's
node.

Result codes noErr
nbpNotFound

FUNCTION NBPLoad : OSErr; [Not in ROM]

No error,
Name not found

On a Macintosh I28K, NBPLoad reads the AppleTalk Manager's NBP code
from the system resource file into the application heap. On a
Macintosh 5I2K or XL, NBPLoad has no effect since the NBP code should
have already been loaded when the .MPP driver w~s opened. Normally
you'll never need to call NBPLoad because the AppleTalk Manager calls
it when necessary.

Result codes noErr No error

1/3.1/85 Hacker-Anders /NET/ATALK.P.3

CALLING THE APPLETALK ~~NAGER FROM PASCAL 51

FUNCTION NBPUnload : OSErr; [Not in ROM]

NBPUnioad makes the NBP code purgeable; the space isn't actually
released by the Memory Manager until necessary.

(note)
This call applies only to a Macintosh 128K; on a
Macintosh 512K or Macintosh XL, NBPUnload has no effect.

Result codes noErr No error

Example

This example of NBP registers our node as a print spooler, searches for
any print spoolers registered on the network, and then extracts the
information for the first one found.

CONST nbpNameBufSize.= 33;
mySocket = 2~;

VAR myABRecord: ABRecHandle;
myEntity: EqtityName;
enti tyAddr: AddrBlock;
nbpNamePtr: Ptr;
myBuffer: PACKED ARRAY[~ •• 999] OF CHAR;
errCode: INTEGER;
async: BOOLEAN;

BEGIN
errCode .- MPPOpen;
IF errCode <> noErr

THEN
WRITELN('Error in opening AppleTalk')
{Maybe serial port B isn't available for use by AppleTalk}

'ELSE
BEGIN
{Call Memory Manager to allocate ABusRecord}
myABRecord := ABRecHandle(NewHandle(nbpSize));
{Set up our entity name to register}
WITH myEnti~y DO

BEGIN
objStr := 'Gene Station';
typeStr .- 'PrintSpooler';
zoneStr := '*';

{we are called 'Gene ~tation' }
{ and are of type 'PrintSpooler'}

END;
{Allocate data space for the entity name (used by
nbpNamePtr ~= NewPtr(nbpNameBufSize);
{Set,up the ABusRecord for the NBPRegister call}
WITH myABRecord AA DO

BEGIN
nbpEntityPtr .- @myEntity;

NBP) }

nbpBufPtr := nbpNamePtr; {buffer used by NBP internally}

1/31/85 Hacker-Anders /NET/ATALK.P.3

52 AppleTalk Manager Programmer's Guide

END.

nbpBufSize := nbpNameBu'fSize;
nbpAddress.aSocket := mySocket; {socket to register us on}
nbpRetransmitInfo.retransInterval := 8; {retransmit every 64 }
nbpRetransmitInfo.retransCount := 3; { ticks and try 3 times}
END;

async := FALSE;
errCode := NBPRegister(myABRecord,async);
IF errCode <> noErr

THEN
WRITEL~('Error occurred in the NBPRegister call')
{Maybe the name is already registered somewhere else }
{ on the network.}

ELSE
BEGIN

END;

{Now that we've registered our name, find others of }
{ type 'PrintSpooler'}
WITH myABRecord~~ DO

BEGIN
nbpEntityPtr := @myEntitYj
nbpBufPtr := @myBuffer; {buffer to place responses in}
nbpBufSize := SIZEOF(myBuffer);
{The field nbpDataField, before the NBPLookup call, }
{ represents an approximate numb~r of responses. }
{ After the call, nbpDataField contains the actual}
{ number of responses received.}
nbpDataField := 100; {we want about 100 responses back}
END;

errCode := NBPLookUp(myABRecord,async); {make sync call}
IF errCode <> noErr

THEN
WRITELN('An error occurred in the NBPLookup')
{Did the buffer overflow?}

ELSE
BEGIN

END;

{Get the first reply}
errCode := NBPExtract(@mybuffer,myABRecord~~.nbpDataField.,1,

myEntity,entityAddr);
{The socket address and name of the entity are returned }
{here. If we want all of them, we'll have to loop}
{ for each one in the buffer.}
IF' errCode <> noErr

THEN
WRITELN('Error in NBPExtract');
{Maybe the one we wanted wasn't in the buffer}

END;

1/31/85 Hacker-An~ers /NET/ATALK.P.3

CALLING THE APPLETALK MANAGER FROM PASCAL 53

Miscellaneous Routines

FUNCTION GetNodeAddress (VAR myNode,myNet: INTEGER)
ROM]

OSErr; [Not in

GetNodeAddress returns the current node ID and network number of the
caller. If the .MPP driver isn't installed, it returns noMPPErr. If
myNet contains ~, this means that a bridge hasn't yet been found.

Result codes No error noErr
noHPPErr MPP driver not installed

FUNCTION IsMPPOpen : BOOLEAN; [Not in ROM]

IsMPPOpen returns TRUE if the .MPP driver is loaded and running.

FUNCTION IsATPOpen : BOOLEAN; [Not in ROM]

IsATPOpen returns TRUE if ~he .ATP driver is loaded and running.

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE

This section discusses how to use the AppleTalk Manager from assembly
language. Equivalent Pascal information is given in the preceding
section.

All routines make Device Manager CQntrol calls; the description for
each routine includes a list of the fields needed. Some of these
fields are part of the parameter block described in the Device Manager
manual; additional fields are provided for the AppleTalk Manager.

~he number next to each field name indicates the byte offset of the
field from the start of the parameter block pointed to by A~. An arrow

.next to each parameter name indicates whether it's an input, output, or
input/output parameter:

Arrow
--~

~-
~-~

·Meaning
Parameter must be passed to the routine
Parameter will be returned by the routine
Parameter must be passed to and will be returned
by the routine

All Device Manager Control calls 'return a result code of type OSErr in
the ioResult field. Each routine description lists all of the
applicable result codes generated by the AppleTalk Manager, along with
a short description of what the result code means. Lengthier

1/31/85 Hacker-Anders /NET2/ATALK.A.l

54 App1eTa1k Manager Programmer's Guide

explanations of all the result codes can be found in the summary at the
end of this manual. Result codes from other parts of the Operating
System may also be returned. (See the Operating System Utilities
manual for a list'of all result codes.)

Opening App1eTa1k

The .MPP driver is opened at system startup. Two tests to determine
whether serial port B is configured for AppleTalk and is not being
used. If either of these tests fail, (indicating that port B isn't
available), the Device Manager Open call will fail. It's the
application's responsibility to test the availability of port B before
opening AppleTa1k. Assembly-language programmers can use the Pascal
calls MPPOpen and ATPLoad to open the .NPP and ,.ATP drivers.

A byte in parameter RAM is used for configuring the serial ports; it's
copied into the global variable SPConfig. The low-order four bits of
this variable contain the current configuration of port B. The I

following use types are provided as global constants for testlng or
setting the configuration of port B:

useFree
useATalk
useAsync

.EQU

.EQU

.EQU

Qj
1
2

;unconfigured
;configured for AppleTalk
;configured for the Serial Driver

The application shouldn't attempt to open App1eTalk unless SPConfig is
equal to either useFree or useATalk.

A second test involves the global variable PortBUse; the low-order four
bits of this variable are used to monitor the current use of port B.
If PortBUse is negative, the program is free to open App1eTa1k. If
PortBUse is positive, the program should test to see if port B is
already being used by App1eTalk; if it is, the low-order four bits of
PortBUse will be equal to the use type useATalk.

The .MPP driver sets this byte to the correct value (useATa1k) when
it's opened and resets it to $FF when it's closed. ATP uses bit 4 from
the driver-specific bits to indicate whether i't's currently opened:

atpLoadedBit .EQU 4 ;set if ATP is opened

Example

The following code illustrates the use of the SPConfig and PortBUse
variables.

MOVE #-(ATPUnitNum+1),ATPRefNum(A0) ;save known ATP

OpenAbus SUB
NOVE.L
CLR.B

lIioQElSize,SP
SP,M/J
ioPermssn(A0)

1/31/85 Hacker-Anders

; refnum in case ATP not opened
;allocate queue element
;A0 -) queue element
;make sure permission's clear

/NET2/ATALK.A.1

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE. 55

MOVE.B
BPL.S
MOVEQ

MOVE.B
AND.B
SUBQ.B

BGT.S
LEA
MOVE.L
_Open
BNE.S
BRA.S

@l~ MOVEQ
AND.B
SUBQ.B
BNE.S

@2~ MOVEQ
BTST
BNE.S
LEA
MOVE.L
_Open

@3~ ADD
RTS

MPPName • BYTE
.ASCI[

ATPName • BYTE
.ASCII

PortBUse,Dl
@10
IIportNotCf,D~

SPConfig,Dl
1I$~F,Dl
lIuseATalk,Dl

@3~
MPPName,Al
Al,ioFileName(A~)

jis port B in use?
;if so, make sure by AppleTalk
jassume port not configured for
; AppleTalk
jget configuration data
;mask it to low 4 bits
junconfigured or configured for
; AppleTalk
jif not, return error
jAl = address of driver name
;set in queue element
jopen MPP

@3~ ;return error, if it can't load it
@20 jotherwise, go check ATP
IIportInUse,D0 ;assume port in use error
1I$0F,Dl ;clear all· but use bits
lIuseATalk,Dl ;is AppleTalk using it?
@30 ;if not, then error
1I~,D0 jassume no error
#atpLoadedBit,PortBUse ;ATP already open?
@30 ;just return if' so
ATPName,Al jAl = address of driver name
A1,ioFileName(A0) jset in queue element

IlioQElSize, SP .

4
, .MPP'
4
, .ATP'

jopen ATP
jdeallocate queue element
;and return
;length of .MPP driver name
jname of .MPP driver
jlength of .ATP driver name
;name of .ATP driver

AppleTalk Link Access Protocol

Data Structures

An ALAP frame is composed of a 3-byte header, up to 600 bytes of data,
and a 2-byte frame check ~equence (Figure 5). You can use the
following global constants ,to access the contents of an ALAP header:

lapDstAdr
lapSrcAdr
lapType
lapHdSz

.EQU

.EQU

.EQU

.EQU

1/31/85 Hacker-Anders

o
1
2
3

;destination node ID
jsource node ID
;LAP protocol type
;ALAP header size

/NET2/ATALK.A.l

56 App1eTaik Manager Programmer's Guide

.
dest i nat i on node 10 (byte)

source node 10 (byte) frame header

I LAP protoco I type (byte)
.

>' dete (0 to 600 byte,) 7

frame check sequence (word)

ALAP frame

Figure 5. ALAP Frame

Two of the protocol handlers in every node are used by DDP. These
protocol handlers service frames with LAP protocol types equal to the
following global constants:

shortDDP
longDDP

.EQU 1

.EQU 2
;short DDP header
;long DDP header

When you call ALAP to send a frame, you pass it information about the
frame in a write data structure, which has the format shown in Figure
6.

length of first entry (word) " destination node 10 (byte)

I
,

po inter to first entry used internally. (byte)
"'

"'~ ",7 LAP protocol type (byte)

length of la~Jt entry (word) date (any length)

pointer to last entry

I o (word) " dete (any\ length) ,

Figure 6. Write Data Structure for ALAP

If you specify a destination node ID of 255, ,the (frame will be
broadcast to all nodes. The byte that's "used internally" is used by
the App1eTa1k Manager to store the address of the node sending the
frame.

1/31/85 Hacker'-Anders /NET2/ATALK.A.1

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 57

Using ALAP

Most. programs will never need to call ALAP, because higher-level
protocols will automatically call ALAP as necessary. If you do want to
send a frame directly via ALAP, call the WriteLAP function. There's no
ReadLAP function in assembly language; if you want to read ALAP frames,
you must call AttachPH to add your protocol handler to the node's
protocol handler table. The ALAP module will examine every incoming
frame and call your protocol handler for each frame received with the
correct LAP protocol. 'When your program no longer wants to receive
frames with a particular LAP protocol type value, it can call DetachPH
to remove the corresponding protocol handler from the protocol handler
table.

See the "Protocol Handlers and Socket Listeners" section for
information on how to write a protocol handler.

ALAP. Routines

Write LAP function

Parameter block
--7 26 csCode
~-7 30 wdsPointer

word
pointer

;always writeLAP
;write data structure

WriteLAP sends a frame to another node. The frame data and destination
of the frame are described by a write data structure~ointed to by
wdsPointer. The first two data bytes of an ALAP frame sent to another
computer using the AppleTalk Manager must indicate the length of the
frame in bytes.

Result codes

1/31/85 Hacker-Anders

noErr
excessCollsns
ddpLengthErr

No error
No eTS received after 32 RTS's
Packet length exceeds maximum

/NET2/ATALK.A.l

58 AppleTalk Manager Programmer's Guide

AttachPH function

Parameter block
--~ 26
--~ 28
--~ 30

csCode
protType
handler

word
byte
po.inter

;always attachPH
;LAP protocol type
;protocol handler

" AttachPH adds the protocol handler pointed to by handler to the node's
protocol table. ProtType specifies what kind of frame the protocol
handler can service. After AttachPH is called, "the protocol handler is
called for each incoming frame whose LAP protocol type equals protType.

Result codes No error noErr
lapProtErr Er~or attaching protocol type

DetachPH function

Parameter block
--~ 26 csCode
--~ 28 protType

word
byte

;always detachPH
;LAP protocol type

DetachPH removes from the node's protocol table the specified LAP
protocol type and corresponding proto~ol hand~er.

Result codes No error noErr
lapProt;Err Error detaching protocol type

Datagram Delivery Protocol

Data Structures

A DDP datagram consists of a header followed by up to 586 bytes of
.actual data (Fig~re 5). The headers can be of two different lengths;
they're identified by the following LAP protocol types:

shortDDP
longDDP

.EQU 1
• EQU '2

1/31/85 Hacker-Anders

;short DDP header
;long DDP header '/

)

/NET2/ATALK.A.l

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 59

+00(----- bvte -----~)

LAP frame header (3 bytes)

not I' hop
J used coynt

datagram length (1 0 bits)

checksum (word)

destination network number (word)

long header only

source network number (word)

DDP
datagram header dest i nat i on node 10 (byte)

source node 10 (byte)

destination socket number (byte)

source socket number (byte)

DDP protoco I type (byte)

" deta (0 to 586 bytes) 1
Figure 7. DDP Datagram

Long DDP headers (13 byt~s) are used for sending datagrams between two
or more different AppleTalk networks. You can use the following global

, constants to access the contents of a long DDP ~eader:'

1/31/85 Hacker-Anders /NET2/ATALK.A.1

60 AppleTalk Manager Programmer's Guide

ddpHopCnt .EQU 0 ;hop count (4 bits)
ddpLength .EQU 0 ;datagram length (10 bits)
ddpChecksum .EQU 2 ; checksum
ddpDstNet .EQU 4 ;destination network number
ddpSrcNet .EQU 6- ;source network number
ddpDstNode .EQU 8 ;destination node ID
ddpSrcNode .EQU 9 ;source node ID
'ddpDstSkt .EQU 10 ;destination socket number
ddpSrcSkt .EQU 11 ;source socket number
ddpType .EQU 12 ;DDP protocol type

The length of a DDP long header is given by the following constant:

ddpHSzLong .EQU ddpType+l ;length of DDP long header

The short headers (five bytes) are used for datagrams sent to sockets
within the same network as the source socket. You can use the
following global constants to access the contents of a short DDP
header:

ddpLength .EQU 0 ;datagram length
sDDPDstSkt .EQU ddpChecksum ;destination socket number
sDDPSrcSkt .EQU sDDPDstSkt+l ;source socket number
sDDPType .EQU sDDPSrcSkt+l ;DDP protocol type

The length of a DDP short header is given by the following constant:

ddpHSzShort .EQU sDDPType+l ;length of DDP short header

The datagram length is a 10-bit field. You can use the following
global constant as a mask for these bits:

lengthMask .EQU $03FF ;mask for datagram length

The following constant indicates the maximum length of a DDP datagram:-

ddpMaxData .EQU 586 ;maximum length of DDP data

When you call DDP to send a datagram, you pass it information about the
datagram in a· write data structure 'with the format shown in Figure 8.

1/31/85 Hacker-Anders /NET2/ ATALK. A. 1

~

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 61

(odd address)

. not used (word) "- used internally (7 bytes) ,

pointer to first entry destination n~twork number (word)
I

7 used internally (worp) ~

length of last entry (word) dest i nat i on node 10 (byte)

pointer to last entry used internally (byte)

o (word) destination socket number (byte)

used internally (byte)

DDP type (byte)

"- data (any length) ,

Figure 8. Write Data Structure for DDP

The first seven bytes are used internally for the ALAP header and the
DDP datagram length and checksum. The other bytes used internally
store the network number, node ID, and socket number of the socket
client sending the datagram.

(warning)
The first entry in a DDP write data structure must begin
at an odd address.

If you specify a node number of 255, the datagram will be broadcast to
all nodes within the destination network. A network number of 0 means
the local network to which.the node is connected.

(warning)
DDP always destroys the high-order byte of the
destination network number when it sends a datag~am with
a short header. Therefore, if you want to reuse the
first entry of a DDP write data structure entry, you must
restore the destination network number.

Using DDP

Before it can use a socket, the program must call OpenSkt, which adds a
socket and its socket listener to the socket table. When a client is
finished using a socket, call CloseSkt, which removes the socket's
entry from the socket table. To send a datagram _via DDP, call
WriteDDP. If you want to read DDP datagrams, you must write your own

1/31/85 Hacker-Anders /NET2/ATALK.A.l

62 AppleTalk Manager Programmer's Guide

socket listener. DDP will send every incoming datagram for that socket
to your socket listener.

See the "Protocol Handlers and Socket Listeners" section for
information on how to write a socket list~ner.

DDP Routines

OpenSkt function

Parameter block
--7 26 csCode
~-~ 28 socket
--~ 3~ listener

word
byte
pointer

;always openSkt
;socket number
;socket listener

OpenSkt adds a socket and its socket listener to the socket table. If
the socket parameter is nonzero, it specifies the socket's number (in
the range 1 to 127); if socket is 0, OpenSkt opens a socket with a
socket number in the range 128 to 254, and returns it in the socket
parameter. Listener contains a pointer to the socket listener.

OpenSkt will return ddpSktErr if you pass the number of an already
opened socket, if you pass a socket number greater than 127, or if the
socket table is full (the socket table can hold a maximum of 12 .
sockets).

Result codes

CloseSkt function

Parameter block

noErr
ddpSktErr

--7 26 csCode
--7 28 socket

No error
Socket error

word
byte

;always closeSk1=
;socket number

CloseSkt removes the entry of the specified socket from the socket
table. If you pass a socket number of 0, or if you attempt to close a
socket that isn't open, CloseSkt will return ddpSktErr.

Result codes

1/31/85 Hacker-Anders

noErr
ddpSktErr

No error
Socket error

/NET2/ATALK.A.t

j CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE

WriteODP function

Parameter
--7
--7
--)

--7

block
26 csCode
28
29
30

socket
checksumFlag
wdsPointer

word
byte
byte
pointer

;always writeDDP
;socket number
;checksum flag
;write data structure

WriteDDP sends a datagram to another socket. WDSPointer contains a
pointer to a write data structure containing the datagram and the
address of the destination socket~ If checksumFlag is TRUE, WriteDDP
will compute the checksum for all datagrams requiring long headers.

Result codes noErr
ddpLenErr
ddpSktErr
noBridgeErr

No error
Datagram length too big
Socket error
No bridge found.

AppleTalk Transaction Protocol

Data Structures

An ATP packet consists of an ALAP header, DDP header, and ATP header,
followed by actual data (Figure 9). You can use the following global
constants to access the contents of an ATP header:

atpControl .EQU 0 ;contro1 information
atpBitMap .EQU 1 ,;bit map
atpRespNo .EQU 1 ;sequence number
atpTransID .EQU 2 ;transaction ID
atpUserData .EQU· 4 ;user bytes

The length of an ATP header is given by the following constant:

atpHdSz .EQU 8 ;ATP header size

63

1/31/85 Hacker-Anders /NET2/ATALK.A.2

64 AppleTalk Manager Programmer's Guide

+-(----- byte)

LAP frame header (3 bytes)

DDP datagram header
(5 or 13 bytes)

fu~g~~onl XO IEOMISlSI not ~sed

transaction bit map or
sequence number (byte)

transact ion 10 (word)

AlP header

user data (long)

" data (0 to 578 bytes) 1
Figure 9. ATP Packet

ATP packets are ident~fied by the following bDP protocol type:

atp .EQU 3 ;DDP protocol type for ATP packets

The control information contains a function code and various control
\

bits.' The function code identifies either a TReq, TResp, or TRel
packet with one of the following global constants:

atpReqCode
atpRspCode
atpRelCode

.EQU

.EQU

.EQU

$4~
$8~
$C~

;TReq packet
;TResp packet
;TRel packet

The send-transmission-status, end-of-message, and exactly-once bits in
the control information are accessed via the following global
constants:

atpSTSBit
atpEOMBit
atpXOBit

.EQU 3

.EQU 4

.EQU 5

;send-transmission-status bit
;end-of-message bit
;exactly-once bit

Many ATP calls require a field called atpFlags (Figure 10), which
contains the above three bits plus the following two bits:

1/31/85 Hacker-Anders /NET2/ ATAI.i. A. 2

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 65

sendChk .EQU ~ ;checksum bit
tidValid .EQU 1 ;transaction ID validity

7 0

xo 1 EOM 1 STS I· TID ICHK 1

Figure 1~. ATPFlags Field .

The maximum number of response packets in an ATP transaction is given
by the following global constant:

atpMaxNum .EQU 8 ;maximum number of response packets

When you call ATP to send responses, you pass the responses in a
response BDS, which is a list of up to eight elements, each of which
contains the following:

bdsBuffSz
bdsBuffAddr
bdsUserData

.EQU
.EQU
.EQU

~
2
8

;length of data to send
;pointer to data
;user bytes

When you call ATP to receive responses, you pass it a response BDS with
up to eight elements, each in the following format:

bdsBuffSz .EQU (6 ;buffer size iu bytes
bdsBuffAddr .EQU 2 ;pointer to buffer
bdsDataSz .EQU 6 ;number of bytes actually received
bdsUserData .EQU 8 ;user bytes

The length of BDS element is given by the following constant:

bdsEntrySz .EQU 12 ; response BDS element size

ATP clients are identified by internet addresses in the form shown in
Figure 11.

network number (word)

node. 10 (byte)

socket number (byte)

Figure 11. Internet Address

1/31/85 Hacker-Anders /NET2/ATALK.A.2

66 AppleTalk Manager Programmer's Guide

Using ATP

Before you can use ATP on a Macintosh 128K, the .ATPdriver must be
read from the system resource file via a Device Manager Open call. The
name of the .ATP driver is. '.ATP' and its reference number is -11.
When the .ATP driver is opened, it reads its A~P code into the
application heap and installs a task into the vertical retrace queue.

(warning)
When another application is started up, the application
heap is reinitialized; on a Macintosh 128K, this means
that the ATP code is lost.

When you're through using ATP on a Macintosh 128K, call the Device
Manager Close routine--the system will be returned to the state it was
in before the .ATP driver was opened.

On a Macintosh 512K or XL, the .ATP driver will have been loaded into
the system heap either at system startup or upon execution of a Device
Manager Open call loading MPP.- You shouldn't close the .ATP driver on
a Macintosh 512K or XL; AppleTalk expects it to remain on these
systems.

To iend a request to another socket and get a response, call
SendRequest. The call terminates when either 'an entire response is
received or a specified retry timeout interval elapses. To open a
socket for the purpose of responding to requests, call OpenATPSkt.
Then call GetRequest to receive a request; when a request is received,
the call is completed. After receiving and servicing a request, call
Send Response to return response information. If you' cannot or do not
want to send the entire response all at once, make a SendResponse call
to send some of the response, and then call AddResponse later to send
the remainder of the response. To close a socket opened for the
purpose of sending responses, call CloseATPSkt.

During exactly-once transactions, SendResponse doesn't terminate until
the transaction is completed via a TRel packet, or the retry count is
exceeded.

(warning)
Don't modify the parameter block passed to an ATP call
until the call is completed.

1/31/85 Hacker-Anders /NET2/ ATAI:.K.A'. 2

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 67

ATP Routines

OpenATPSkt function

Parameter block
--7 26
-E-~ 28
--~ 30

csCode
atpSocket
addrBlock

word
byte
long word

;always openATPSkt
;socket number
;socket specification
; for requests

OpenATPSkt opens a socket for the purpose of rece1v1ng requests.
ATPSocket contains the socket number of the socket to open. If it's 0,
a number is dynamically assigned and returned in atpSocket. AddrBlock
contains a specification of the socket addresses from which requests
will be accepted. A 0 in the network number, node ID, or socket number
fi~ld of addrBlock means that requests will be accepted from every
network, node, or socket, respectively.

Result codes

CloseATPSkt function.

Parameter block
--~ 26
--~ 28

noErr
tooManySkts
noDataArea

csCode
atpSocket

word
byte

No error
Too many responding sockets
Too many outstanding ATP calls

jalways closeATPSkt
;socket number

CloseATPSkt closes the socket whose number is specified by atpSocket,
for the purpose of receiving requests.

Result codes

1/31/85 Hacker-Anders

noErr
noDataArea

No error
Too many outstanding ATP calls

/NET2/ATALK.A.2

68 AppleTalk Manager Programmer's Guide

SendRequest function

Parameter block
~-- 16 reqTID word ; transaction ID used

r ;in request
--~ 18 userData long word ;user bytes
--~ 26 csCode word ;always sendRequest
~-- 28 currBitMap byte ;transaction bit map

;of responses
; received so far

~-~ 29 atpFlags byte ;control information
--~ 30 addrBlock long word ;destination socket

; address
--~ 34 reqLength word ;request size in bytes
--~ 36 reqPointer pointer ;pointer to request

; data
--~ 40 bdsPointer pointer ;pointer to response

; BDS
--~ 44 numOfBuffs byte ;number of responses

; expected
--~ 45 timeOutVal byte ;timeout interval
~-- 46 numOfResps byte ;number of responses

; received
~-~ 47 retryCount byte ;number of ret ries

SendRequest sends a request to another socket and waits for a response.
,UserData contains the four user bytes. AddrBlock indicates the socket
to which the request should be sent. ReqLength and reqPointer contain
the length and location of the request to send. BDSPointer points to a
response BDS where the responses are to be returned; numOfBuffs
indicates the number of responses requested. The number of responses
received is returned in numOfResps. If a nonzero value is returned in,
numOfResps, you can examine currBitMap to! determine which packets of
the transaction were actually received and to detect pieces for
higher-level recovery, if desired.

TimeOutVal indicates the number of seconds that SenclRequest should wait
for a response before resending the request. RetryCount indicates the
maximum number of retries SendRequest should attempt. The end-of
message flag of atpFlags will be set if the EOM bit is set in the last
packet received in a ~alid response sequence. The exactly-once flag
should be set if you want the request to be part of an exactly-once
transaction.

To cancel a SendRequest call, you need the transaction ID; it's
returned in reqTID. You can examine reqTID prior to the completion of
the call, but its contents are valid only after the tidValid bit of
AT~Flags has been set.

SendRequest completes when either an entire response is received or the
retry count is exceeded.

1/31/85 Hacker-Anders /NET2/ATALK.A.2

(note)

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 69

The value provided in retryCount will be modified during
SendRequest if any retries are made. This field is used
to monitor the number of retries; for each retry, it's
decremented by 1.

Result codes noErr
reqFailed
tooManyReqs
noOataArea
reqAborted

No error
Retry count exceeded
Too many concurrent requests
Too many outstanding ATP calls
Request canceled by user

GetRequest function

Parameter block
~-- 18 userData long word ;user bytes
--7 26 csCode word ;always getRequest
--7 28 atpSocket byte ;socket number
~-- 29 atpFlags byte ;control information
~-- 30 addrBlock long word ;source of request
~-7 34 reqLength word ;request buffer size

; 'bytes
--7 36 reqPointer pointer ;pointer to request

; buffer
~-- 44 bitMap byte ;bit map
~-- 46 transIO word ; transaction 10

GetRequest sets up the mechanism to receive a request sent by a
SendRequest call. UserOata returns the four user bytes from the
request. ATPSocket contains the socket number of the socket that
should listen for a request. The internet address of the socket from
which the request was sent is returned in addrBlock. ReqLength and
reqPointer indicate the size and location of a buffer to store the
incoming request. The actual size of the request is returned in
reqLength. The transaction bit map and transaction 10 will be returned
in bitMap and transID. The exactly-once flag in atpFlags will be set
if the request is part of an exactly-once transaction.

GetRequest completes when a request is received.

Result codes

1/31/85 Hacker-Anders

noErr
badATPSkt

No error
Bad responding socket

/NET2/ATALK.A.2

in

70 AppleTalk Manager Programmer's 'Guide

SendResponse function

Parameter block
~-- 18 userData
--7 ' 26 csCode
--) 28 atpSocket
--7 29 atpFlags
--~ 30 addrBlock
--7 40 bdsPointer
--~ 44 numOfBuffs

--~ 45 bdsSize
--~ 46 transID

long word
word
byte
byte
long word
pointer
byte

byte
word

\

;user bytes from TRel
;always sendResponse
;socket number
;control information
;response destination
;pointer to BOS
;number of packets
; being sent
;BOS size in elements
;transaction 10

SendResponse sends a response to a socket. If the response was part of
an exactly-once transaction, userOata will contain the user bytes from
the TRel packet. ATPSocket contains the socket number from which the
response should be sent. The end-of-message flag in atpFlags should be
set if the response contains the final packet in a transaction composed
of a group of packets and the number of responses is less than
requested. AddrBlock indicates the address of the socket to which the
response should be sent. BOSPointer points to a response BOS
containing room for the maximum number of responses to be sent; bdsSize
contains this maximum number. NumOfBuffs contains the number of
response packets to be sent in this call; you may wish to make
AddResponse calls to complete the response. TransID indicates the
transaction ID of the associated request.

To cancel a SendResponse call, you n~ed the transaction 10; it's
returned in reqTID. Y9u can examine reqTIO prior to the completion of
the call, but its contents are valid only after the tidValid bit of
ATPFlags has been set.

During exactly-once transactions, SendResponse doesn't complete until
either a TRel packet is received from the socket that made the request,
or the retry count is exceeded.

Result codes

1/31/85 Hacker-Anders

noErr
badATPSkt
noRelErr
noOataArea
badBuffNum

No error
Bad responding socket
No release received
Too many outstanding ATP calls
Sequence number out of range

/NET2/ATALK.A.2

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 7.1

AddResponse function

Parameter block
--7 18 userData long word ;user bytes
--7 26 csCode word ;always addResponse
--7 28 atpSocket byte ;socket number
--7 29 atpFlags byte ;control information
--) 30 addrBlock long word ;response destination
--7 34 reqLength word ;response size in

; bytes
--7 36 reqPointer pointer ;pointer to response
--) 44 rspNum byte ;sequence number
--7 46 translD word ;transaction ID

AddResponse sends an additional response packet to a socket that has
already been sent the initial part of a r~sponse via SendResponse.
UserData contains the four user bytes. ATPSocket contains the socket
number from which the response should be sent. The end-of-message flag
in atpFlags should be set if this response packet is the final packet.
in a transaction composed of a group of ,packets and the number of
responses is less than requested. AddrBlock indicates the socket to,
which the response should be sent. ReqLength and reqPointer contain
the length and location of the response to send; rspNum indicates the
s~quence number of the response (in the range 0 through 7). TransID
must contain the transaction ID.

(warning)
If the transaction is part of an exactly-once
transaction, the buffer used in the AddResponse call must
not be altered or released until the corresponding
SendResponse call has completed.

Result codes

RelTCB function

Parameter' block
--7 26
--7 30
~-- 46

noErr
badATPSkt
noSendResp

badBuffNum
noDataArea

csCode
addrBlock
translD

--

word

No error
Bad responding socket
Add Response issued before
SendResponse
Sequence number out of range
Too many outstanding ATP calls

long word
word

;always relTCB
;dest~nation of request
;transaction ID of request

RelTCB dequeues the specified SendRequest call and returns the result
code reqAborted for the aborted call. The transac~ion ID can be
obtained from the reqTID field of the SendRequest queue element; see
the description of SendRequest for details.

1/31/85 Hacker-Anders /NET2/ATALK.A.2

72 AppleTalk Manager Programmer's Guide

Result codes

RelRspCB functi'on

Parameter block
--7 26
--7 28

--7 3~
~-- 46·

noErr
cbNotFound

csCode
atpSocket

addrBlock
transID

No error
ATP control block not found

word
byte

long word
word

;always relRspCB
;socket number that
;was received on
;source of request
jtransaction ID of

request

request

In an exactly-once transaction, RelRspCB cancels the specified
SendResponse, without waiting for the release timer to expire or a TRel
packet to be received. No error is returned for the SendResponse call;
the cal.! is' said to have completed successfully. When called to cancel
a transaction that isn't using exactly-once service, RelRspCB returns
cbNotFound. The transaction ID can be obtained from the reqTID field
of the SendResponse queue element; see the description of SendResponse
for details.

Result codes No error noErr
cbNotFound ATP control block not found

Name-Binding Protocol

Data Structures

The first two bytes in the NBP header (Figure 12) indicate the type of
the packet, the number of tuples in the packet, and an NBP packet
identifier. You can use the following global constants to access these
bytes:

nbpControl
nbpTCount
nbpID
nbpTuple

.EQU
.EQU
.EQU
.EQU

1/31/85 Hacker-Anders

o
o
1
2

jpacket type
;tuple count
;NBP packet identifier
;start of first tuple

/NET2/ATALK.A.2

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 73

+-(----- byte -----I)

LAP frame header (3 byte,)

DDP datagram header
(5 or , 3 bytes)

packet type I tuple count

NBP packet i dent i f i er (byte)

first tuple (variabl,e) .

,i,7 ~7

last tuple (variable)
} lookup reply only

Figure 12. NBP Packet

NBP packets are identified by the following DDP protocol type:

nbp .EQU 2 ;DDP protocol type for NBP packets

NBP uses the following global constants in the nbpControl field to
identify NBP packets:

brRq .EQU 1 ;broadcast request
lkUp .EQU 2 ;lookup request
lkUpReply .EQU 3 ;lookup reply

NBP entities are identified by internet address in the form shown in
Figure 13. Entities are also identified by tuples, which include both
an internet address and an entity name. You can ~se the following
global constants to access information in tuples:

tupleNet .EQU ~ ;network number
tupleNode .EQU 2 ;node ID
tupleSkt .EQU 3 ;socket number
tupleEnum .EQU 4 ;used internally
tupleName .EQU 5 ;entity name

The meta-characters in an entity name can be identified with the
following global constants:.

equals
star

.EQU

.EQU
'=' ;"wild-card" meta-character
I * I ; "this zone" meta-character

The maximum number of tuples in an NBP packet is given by the following
global constant:

tupleMax .EQU 15 ;number of tuples in a lookup reply

1/31/85 Hacker-Anders /NET2/ATALK.A.2

74 AppleTalk Manager Programmer's Guide

Entity names are mapped to sockets via the names table. Each entry in
the names table has the structure shown in Figure 13.

pointer to next entry

network number (word)

node 10 (byte)
i nternet 8ddre~s

~ocket number (byte)

u~ed i nternall y (byte)

I ength of obj ect (byte)

object (ASCII ch8r8cter~)

I ength of type (byte)
entity nerne

type (ASCII characters)

I ength of zone (byte)

zone (ASCII characters)

Figure 13. Names Table Entry

You can use the following global constants to access some of the
elements of a names table entry:

ntLink
ntTuple
ntSocket
ntEntrity

.EQU

.EQU

.EQU

.EQU

~
ntLink+4
ntTuple+tupleSkt
ntTuple+tupleName

;pointer to next entry
;tuple
;socket number
;entity name

The socket number of the names Jinf~rmation socket is given by the
following global constant:

nis .EQU 2 ;names information socket number

I

Using NBP

On a Macintosh 128K, before calling any other NBP routines, call the
LoadNBP function, which reads the NBP code from the system resource
file into the application heap. (The ,NBP code is part of the .MPP
driver, which has a driver reference number of -1~.) When you're
finished with NBP and want to reclaim the space its code occupies, call
UnloadNBP. On a Macintosh 512K or XL, there shouldn't be any need to
load or unload the NBP code.

1/31/85 Hacker-Anders /NET2/ATALK.A.2

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 75

(warning)
When an application is started up, the application heap
is reinitialized; on a Macintosh 128K the NBP code is
lost.

When an entity wants to communicate via AppleTalk, it should call
RegisterName to place its name and internet address in the~names table.
When an entity no l~nger wants to communicate on the network, or is
being shut" down, it should call RemoveName to remove its entry from the
names table.

To determine the address of an entity you know only by name, call
LookupName, which returns a list of all entities with the name you
specify. If you already know the address of an entity, and want only
to confirm that it still exists, call ConfirmName. ConfirmName is more
efficient than LookupName in terms of network traffic.

NBP Routines

RegisterName function

Parameter
--7
--7
~-7
--7

--7

block
26 csCode

interval 28
, 29
30

count
ntQElPtr

34 verifyFlag

word
byte
byte
pointer

byte

;always registerName
;retry interval
; retry count ,
;names table element
; pointer
;set if, verify needed

RegisterName adds the name and address of an entity to the node's names
table. NTQEIPtr points to a names table entry containing the entity's
name and socket number (of the' form shown in Figure 13). Meta
characters aren't allowed in the entity name. If verifyFlag is TRUE,
RegisterName checks on the network to see if the name is already in
use, and returns a result code of nbpDuplicate if so. Interval and
count contain the retry interval in 8-tick units and the retry count.
When a retry is made, the count field is modified.

(warning)
The names table entry passed to RegisterName remains the
property of NBP until removed from the names table.
Don't attempt to remove or modify it. If youI've
allocated memory using the NewHandle call, you must lock
it as long as the name is registered.

(warning)
'VerifyFlag should normally be set before calling
RegisterName.

1/31/85 Hacker-Anders /NET2/ATALK.A.2

76 AppleTalk Manager Programmer's Guide

Result codes noErr
nbpDuplicate
nbpNISErr

No error
Duplicate name already exists
Error opening names information
socket

LookupName function

Parameter block
--~ 26 csCode
--~ 28 interval
~-~ 29 count
--~ 30 entityPtr
~-~ 34 retBuffPtr
--7 38 retBuffSize
--~ 40 maxToGet
~-- 42 numGotten

word
byte
byte
pointer
pointer
word
word
word

;always lookupName
;retry interval
;retry count
;entity name
;pointer to buffer
;buffer size in bytes
;matches to get
;matches found

LookupName returns the aadresses of all entities with a specified name.
EntityPtr points to the entity's name (stored in the form shown in the
bottom half of Figure 13 above). Meta-characters are allowed in the
entity name. RetBuffPtr and RetBuffSize contain the location and size
·of an area of memory in which the tuples describing the entity's
address should be returned. MaxToGet indicates the maximum number of
matching names to find addresses for; the actual number of addresses
found is returned in numG.otten. Interval and count contain the retry
interva~ and the retry count. LookupName completes when either. the
number of matches is equal to or greater than maxToGet, or the retry
count has been exceeded. The count field is decremented for each
retransmission.

(note)
NumGotten is first set to 0 and then incremented with
each match found. You can test the value in this field,
and can start examining the received addresses in the
buffer while the lookup continues.

Result codes noErr
nbpBuffOvr

No error
Buffer overflow

1/31/85 Hacker-Anders /NET2/ATALK.A.2

CALLING THE APPLETALK MANAGER FROM ASSEMBLY LANGUAGE 77

ConfirmName function

Parameter
--7
--7
~-7

--7
--7
~--

block
26 csCode

interval 28
29
30
34
38

count
entityPtr
confirmAddr-
newSocket

word
byte
byte
pointer
long word
byte

;always confirmName
;retry interval
;retry count
;entity name
;entity address
;socket number

ConfirmName confirms that an entity known by name and address still
exists (is still entered in the names directory). EntityPtr points to

, the entity's name (stored in the form shown in the bottom half of
Figure 13 above). ConfirmAddr specifies the address to confirmed. No
meta-characters are allowed in the entity name. Interval and count
contain the retry interval and the retry count. The socket number of
the entity is returned in newSocket. ConfirmName is more efficient
than LookupName in terms of network traffic.

Result codes

RemoveName function

Parameter block

noErr
nbpConfDiff
nbpNoConfirm

--7 26 csCode
--7 30 entityPtr

No error
Name confirmed for different socket
Name not confirmed

word
pointer

;always removeName
;entity name

RemoveName removes an- entity name from the names table of the given
entity's node.

Result codes

LoadNBP function

Parameter block

noErr
nbpNotFound

--7 26 csCode

No error
Name not found

word ;always loadNBP

On a Macintosh 128K, LoadNBP reads the NBP code from the system
resource file into memory; on a Macintosh 512K or XL it has no effect.

Result codes noErr No error

1/31/85 Hacker-Anders, /NET2/ATALK.A.2

78 App1eTaik Manager Programmer's Guide

Un10adNBP function

Parameter block
--~ 26 csCode word ;a1ways un10adNBP

On a Macintosh 128K, Un10adNBP makes the NBP code purgeable; the space
isn't actually released by the Memory Manager until necessary. On a
Macintosh 512K or XL, Un10adNBP has no effect.

Result codes noErr No error

PROTOCOL HANDLERS AND SOCKET LISTENERS

This section describe~ how to write your own protocol handlers and
socket listeners. If you're only interested in using the default
protocol han41ers and socket listeners provided by the Pascal
interface, skip ahead to the summary. Protocol handlers and socket
listeners must be written in assembly language because they will be
called by the ~ MPP d river wi th paramete rs in various r.egis ters not
directly accessible from Pascal.

The .MPP and .ATP drivers have been designed to maX1m1ze overall
throughput while minimizing code size. Two principal sources of, loss
of throughput are unnecessary buffer copying and inefficient mechanisms
for dispatching (routing) packets between the various layers of the
network protocol architecture. The AppleTa1k Manager completely
eliminates buffer cppying by using simple, efficient dispatching
mechanisms at two important points of the data reception path:
protocol handlers and socket listeners. To write your own you should
understand the flow of control in this path.

Data Reception in the AppleTa1k Manager

When the SCC detects a LAP frame addressed to the particular node (or a
broadcast frame), it interrupts the Macintosh's M~68000. An interrupt
handler built into the .MPP driver gets control and begins servicing
the interrupt. Meanwhile, the frame's LAP header bytes are coming into
the SCC's data reception buffer; this is a 3-byte FIFO buffer. The
interrupt handler must remove these bytes from the SCC's buffer to make
room for the bytes right behind; for this purpose, MPP has an internal
buffer', known as the Read Header Area (RHA), into which it places these
three bytes.

The third byte of the frame contains the LAP protocol type field. If
the most significant bit of this field is set (that is, LAP protocol
types 128 through 255), the frame is a LAP control frame. Since LAP
control frames are only three bytes long (plus two CRC bytes), for such
frames the interrupt handler simply confirms that the CRe bytes
indicate an error-free frame and then performs the specified action.

1/31/85 Hacker-Anders /NET2/ATALK.D

PROTOCOL HANDLERS AND SOCKET LISTENERS 79

If, however, the frame being received is a data frame (that is, LAP
protocol types 1 through 127), intended for a higher layer of the
protocol architecture implemented on that Macintosh, this means that
additional data bytes are coming right behind. The interrupt handler
must immediately pass control to the protocol handler corresponding to
the protocol type specified in the third byte of the LAP frame for
continued reception of the frame. To allow for such a dispatching
mechanism, the LAP code in MPP·maintains a protocol table. This
consists of a list of currently used LAP protocol types with the memory
addresses of their corresponding protocol handlers. To allow MPP to
transfer control to a protocol handler you've written, you must make an
appropriate entry in the protocol table with a valid LAP protocol type
and the memory address of your code module.

To enter your protocol handler into the protocol table, issue the
LAPOpenProtocol call from Pascal or an AttachPH call from assembly
language. Thereafter, whenever a LAP header with your LAP protocol
type is received, MPP will call your protocol handler. When you no
longer wish to receive packets of that LAP protocol type, call
LAPCloseProtocol from Pascal or DetachPH from assembly language.

(warning)
Remember that LAP protocol types 1 and 2 are reserved by
DDP for the default protocol handler and that types 128
through 255 are used by ALAP for its control frames.

A protocol handler is a piece of assembly-language code that controls
the reception of AppleTalk packets of a given LAP protocol type. More
specifically, a protocol handler must carry out the reception of the
rest of the frame following the LAP header. The nature of a particular
protocol'handler depends on the characteristics of the protocol for
which it was written. In the simplest case, the protocol handler
simply reads the entire packet into an internal buffer. A more
sophisticated protocol handler might read in the header of its
protocol, and on the basis of information contained therein, decide
where to put the rest of the packet's data. In certain cases, the
protocol handler might, after examining the header corresponding to its
own protocol, in turn transfer control to a similar piece of code at
the next-higher level of the protocol architecture (for example, in the
case of DDP, its protocol handler must call the socket listener of the
datagram's destination socket).

In this way, protocol handlers are used to allow "on the fly" decisions
as to the intended recipient of the packets's data, and thus avoid
buffer copying. Using protocol handlers and theii counterparts in
higher layers (~or instance, socket listeners), data sent over the
AppleTalk netwofk is read directly from the network into the
destination's buffer.

1/31/85 Hacker-Anders /NET2/ATALK.D

80 AppleTalk Manager Programmer's Guide

Writing Protocol Handlers

When the .MPP driver calls your protocol handler, it has already read
the first five bytes of the packet into the RHA. These are the three
byte LAP header and the next two bytes of the packet. The two bytes
following the header must contain the length in bytes of the data in
the packet, including these two bytes themselves, but excluding the LAP
header.

(note)
Since LAP packets can have at most 6~~ data bytes, only
the lower ten bits of this length value are significant.

After determining how many bytes to read and where to put them, the
protocol handler must call one or both of two routines that perform all
the low-level manipulation of the SCC required to read bytes from the
network. ReadPacket can ~e called repeatedly to read in the packet
piecemeal or ReadRest can be called to read the rest of the packet.
Any number of ReadPacket calls can be used, as long as a ReadRest call
is made to read the final piece of the packet. This is necessary
because ReadRest restores state information and verifies that the
hardware-generated CRC is correct. An, error will be returned if the
protocol handler attempts to use ReadPacket to read more bytes than
remain in the packet.

When MPP passes control to your protocol handler; it passes various
parameters and pointers in the processor's registers:

Register(s)
A0-A1
A2

A3
A4
D1 (word)

Contents
SCC addresses used by MPP
Pointer to MPP's local variables (discussed
below)
Pointer to next free byte in RHA
Pointer to ReadPacket and ReadRest jump table
Number of bytes left to read in packet

These regisiers, with the exception of A3, must be preserved until
ReadRest is called. A3 is used as an input parameter to ReadPacket and
ReadRest, so its contents may be changed. ' D0, D2, and D3 are free for
your use. In addition, register AS has been saved by MPP and may be
used by the protocol handler until ReadRest is called. When control
returns to the protocol handler from ReadRest, MPP no longer needs the
data in these registers. At that point, standard interrupt routine
conventions apply and the protocol handler can freely use A~-A3 and
D~-D3 (they are restored by the interrupt handler).

D1 contains the number of bytes left to be read in the packet as
derived from the packet's length field. A transmission error could
corrupt the length field or some bytes in the packet might be lost, but
this won't be discovered until the end of the packet is reached and the
eRC checked.

1/31/85 Hacker-Anders /NET2/ATALK.D

PROTOCOL HANDLERS AND SOCKET LISTENERS 81

When the protocol handler is first called, the first five bytes of the
packet (LAP destination node ID, source number, LAP protocol type, and
length) can be read from the RHA. Since A3 is pointing to the next
free position in the RHA, these bytes can be read using negative
offsets from A3. For instance, the LAP source node ID is at -4(A3),
the packet's data length (given in Dl) is also pointed to by -2(A3),
and so on. Alternatively, they can be accessed as positive offsets
from the top of the RHA. The effective address of the top of the RHA
is toRHA(A2), so the following code could be used to obtain the LAP
type field:

LEA
MOVE.B

toRHA(A2) ,A5
lapType(A5),D2

;AS points to top of RHA
;load D2 with type field

These methods are valid only as long as SCC interrupts remain locked
out (which they are when the protocol handler is first called). If the
protocol handler lowers the interrupt level, another packet could
arrive over the network and invalidate the contents of the RHA.

You can call ReadPacket by jumping through the jump table in the
following way:

JSR (A4)

On entry

On exit ---

D3: number of bytes to be read (word)
A3: pointer to a buffer to hold the bytes

D0: modified
Dl: number of bites left to read in packet (word)
02: preserved
D3: = 0 if requested number of bytes .were read

<>0 if error
A0-A2: preserved
A3: pointer to one byte past the last byte read

ReadPacket reads the number of bytes specified in 03 into the buffer
pointed to by A3. The number of bytes remaining to be read in the
packet is returned in 01. A3 points to the byte following the last
byte read.

1/31/85 Hacker-Anders /NET2/ATALK.D

82 AppleTalk Manager Programmer's Guide

You can call ReadRest by jumping through the jump table in the
following way:

JSR 2(A4)

On entry

On exit

A3: pointer to a buffer to hold the bytes
D3: size of the buffer (word)

D0-D1: modified
D2: preserved
D3: 0 if packet was exactly the size of the buffer

< 0 if packet was (-D3) bytes too large to fit
in buffer and was truncated

> 0 if D3 bytes weren't read (packet is'smailer
than buffer)

A0-A2: preserved
·A3: pointer to one byte past the last byte read

ReadRest reads the remaining bytes of the packet into the buffer whose
size is given in D3 and whose location is pointed to by A3. The result
of the operation is returned in D3.

Read~est can be called with D3 set to a buffer size greater than the
packet size; ReadPacket may not (and will return an error if it is).

(warning)
Remember to always call ReadRest to read the last part of
a packet; otherwise the system will eventually crash.

If at any point before it has read the last byte of a packet, the
protocol handler wants to discard the remaining data, it should
terminate by calling ReadRest as follows:

MOVEQ
JSR
RTS

Or, equivalently:

MOVEQ
JMP

110, D3
2(A4)

110, D3
2(A4)

;byte count of zero
;call ReadRest

;byte count of zero
;JMP to ReadRest, not JSR

In all other cases, the protocol handler should end with an RTS, even
if errors were detected. If MPP returns an error from a ReadPacket
call, the protocol handler must quit via an RTS without calling
ReadRest at all (in this case it has already been called by MPP).

The Zero bit of the condition codes is set upon return from these
routines to indicate the presence of errors (CRC, overrun, and so on).
Zero bit set means no error was detected; a nonzero condition code
implies an error of ~ome kind.

Up to 24 bytes of, temporary storage are av~ilable in MPP's RHA. When
the protocol handler is called, 19 of these bytes are free for its use.

1/31/85 Hacker-Anders /NET2/ATALK.D

PROTOCOL HANDLERS AND SOCKET LISTENERS 83

It may read several bytes (at least four are suggested) into this area
to empty the SCC's buffer and buy some time for further processing.

MPP's globals include some variables that you may find useful. They're
allocated as a block of memory pointed to by the contents of the global
variable ABusVars, but a protocol handler can access them by offsets
from A2:'

Name
sysLAPAddr
toRHA
sysABridge
sysNetNum
vSCCEnable

(warning)

Contents
This node's node ID (byte)
Top of the Read Header Area (24 bytes)
Node ID of a bridge (byte)
This node's network number (word)
Status Register (SR) value to re-enable SCC
interrupts (word)

Under no circumstances should your protocol handler
modify these variables. Your protocol handler can read
them to find the node's ID, network number, and the node
ID of a bridge on the AppleTalk internet.

If, after reading the entire packet from the network and using the data
in the RHA, the protocol handler needs to do extensive post-processing,
it can load the value in vSCCEnable into the SR to enable interrupts.
To allow your programs to ru~ transparently on any Macintosh, use the
value in vSCCEnable rather than directly manipulating the interrupt
level by changing specific bits in the SR.

Additional information, such as the driver's~ version number or
reference number and a pointer (or handle) to the driver itself, may be
obtained from MPP's d~vice control entry. This can be found by
dereferencing the handle iri the unit table's entry corresponding to
unit number 9; for more information, see the section "The Structure of
a Device Driver" in the Device Manager manual.

Timing Considerations

Once it's been called by MPP, your protocol handler has complete
responsibility for receiving the rest of the packet. The operation of
your protocol handler is time-critical. Since it's called just after
MPP has emptied the SCC's 3~byte buffer, the protocol handler has
approximately 95 microseconds (best case) before it must call
ReadPacket or ReadRest. Failure to do so will result in an overrun of
the SCC's buffer and loss of packet information. If, within that time,
the protocol handler can't determine where to put the entire incoming
packet, it should call ReadPacket to read at least four bytes into some
private buffer (possibly the RHA). Doing this will again empty the
sec's buffer and buy another 95 microseconds. You can do this as often
as necessary, as long as the processing time between successive calls
to ReadPacket doesn't exceed 95 microseconds.

1/31/85 Hacker-Anders /NET2/ATALK.D

,84 AppleTalk Manager Programmer,' s Guide

Writing Socket Listeners

A socket listener is a piece of assembly-language code that receives
datagrams delivered by the DDP built-in protocol handler and delivers
them to the client owning that socket.

When a datagram (a packet with LAP protocol type 1 or 2) is received by
the LAP, DDP's built-in protocol handler is called. This handler reads
the DDP header into the RHA, examines the destination socket number,
and determines if this socket is open by searching DDP's socket table.
This table lists the socket number and corresponding socket listener
address for each open socket. If an entry is found matching the
destination socket, the protocol handler immediately transfers contr"cil
to the appropriate socket listener. (To allow DDP to recognize and
branch to a socket listener you've written, call DDPOpenSocket from
Pascal or OpenSkt from assembly language.)

At this point, the registers are set up as follows:

Register(s)
A0-A1
A2

A3
A4
D0
D1

Contents
SCC addresses used by MPP
Pointer to MPP's local variables (discussed
above)
Pointer to next free byte in RHA
Pointer to ReadPacket and ReadRest jump table
This packet's destination socket number
Number of bytes left to read in packet (word)

The entire LAP and DDP headers are in the RHA; these are the only bytes
of the packet that have'been read in from the SCC's buffer. The socket
listener can get the destination socket number from D0 to select a
buffer into which the packet can be read. The listener then calls
ReadPacket and ReadRest as described in the "section "Wri~ing Protocol
Handlers" above. The timing considerations discussed in that section
apply as well, as do the issues related to accessing the MPP local
variables.

The socket listener may examine the LAP and DDP headers to extract the
various fields relevant to its particular client's needs. To do so, it
must first examine the LAP protocol type field (three bytes from the
beginning of the RHA) to decide whether a short (LAP protocol type=l)
or long (LAP protocol type=2) header has been received.

A long DDP header containing a nonzero checksum field implies that the
datagram was checksummed at the source. In this case, the listener can
recalculate the checksum using the received datagram, and compare it
with the checksum value. The following subroutine can be used for this
purpose:

1/31/85 Hacker-Anders /NET2/ATALK.D

DoChkSum

Loop

(note)

PROTOCOL HANDLERS AND SOCKET LISTENERS 85

01 (word) = number of bytes to checksum
03 (word) = current, checksum
Al points to the bytes to checksum

CLR.W
SUBQ.W
MOVE.B
ADD.W
ROL.W
DBRA
RTS

D0
/ll,Dl
(Al)+,D0
D0,D3
111 ,D3
Dl,Loop

;clear high byte
;decrement count for DBRA
;read a byte into D0
;accumulate checksum
jrotate left one bit
jloop if more bytes

D0 is modified by OoChkSum.

The checksum must be computed for all bytes starting with the OOP
header byte following the checksum-field up to the last data byte (not
including the CRC bytes). The socket listener must start by first
computing the checksum for the DDP header fields in the RHA. This is
done as follows:

CLR.W
MOVEQ

LEA

JSR
03

03 ;set checksum to 0
/lddpHSzLong-ddpDstNet,Dl

;length of header part'
; to checksum

toRHA+lapHdSz+ddpDstNet(A2),A1
;point to destination
; network number

OoChkSum
accumulated checksum of DOP header part

The socket listener must now continue to set up 01 and Al for each
subsequent portion of the datagram, and call DoChkSum for each. It
must not alter' the value in 03.

The situation of the calculated checksum being equal to 0 requires
special attention. For s~ch packets, the source sends a value of -1 to
distinguish them from unchecksummed packets. At the end of its
checksum computation, the socket listener must examine the value in D3
to see if it's 0. If so, it's converted to -1 and compared with the
received checksum to determine if there was a checksum error:

@1

1/31/85 Hacker-Anders

TST.W
BNE.S
SUBQ.W
CMP.W
BNE

03 ;is calculated value zero?
@1 ,;no -- go and use it
#1,03 ;it is zero; make it -1
toRHA+lapHdSz+ddpCheckSum(A2) ,03
ChkSumError

/NET2/ATALK.D

86 AppleTalk Manager Programmer's Guide

SUMMARY OF THE APPLE TALK MANAGER

Constants

CONST lapSize = 2~; {ABus-Record size for ALAP}
ddpSize 26; {ABusRecord size for DDP}
nbpSize 26; {ABusRecord size for NBP}
atpSize 56; {ABusRecord size for ATP}

Data Types

TYPE ABProtoType = (lapProto,ddpProto,nbpProto,atpProto);

ABRecHandle AABRecPtr;
ABRecPtr AABusRecord;
ABusRecord

RECORD
abOpcode:
abResult:
abUserReference:
CASE ABProtoType

lapProto:
(lapAddress:
lapReqCount:

lapActCount:

lapDataPtr:

ddpProto:
(ddpType:
ddpSocket:

ddpAddress:

ddpReqCount:

ddpActCount:

ddpDataPtr:
ddpNodeID:

'nbpProto:
(nbpEntityPtr:
nbpBufPtr:
nbpBufSize:
nbpDataField:

1/31/85 Hacker-Anders

ABCaiIType; {type of call}
INTEGER; {result code}
LONGINT; {for your use}
OF

LAPAdrBlock;
INTEGER;

INTEGER;

Ptr) ;

Byte;
Byte;

AddrBlock;

INTEGER;

INTEGER;

Ptr;
-Byte) ;

{destination or source node
{length of frame data or }
{ buffer size in bytes}
{number of frame data bytes}
{ actually received}
{pointer to frame data or }
{ pointer to buffer}

{DDP protocol type}

ID}

{source or listening socket }
{ number}
{destination or source }
{ socket address}
{length of datagram data or }
{ buffer size in bytes}
{number of bytes actually }
{ received}
{pointer to buffer}
{original destination node ID}

EntityPtr;
Ptr;
INTEGER;
INTEGER;

{pointer to entity name}
{pointer to buffer}
{buffer -size in byte~}
{number of addresses }
{ or s0cket number}

/NET2/ ATALK". S

SUMMARY OF THE APPLETALK MANAGER 87

nbpAddress: AddrBlock;
nbpRetransmitlnfo: RetransType);

{socket address}
{retransmission}
{ information}

atpProto:
(atpSocket: Byte; {listening or responding socket }

{ number}

END;

atpAddress:

atpReqCount:

atpDataPtr:
atpRspBDSPtr:
atpBitMap:
atpTransID:
atpActCount:

atpUserData:
atpXO:
atpEOM:
atpTimeOut:
atpRetries:
atpNumBufs:

atpNumRsp:

atpBDSSize:

atpRspUData:

atpRspBuf:

atpRspSize:

AddrBlock;

INTEGER;

Ptr;
BDSPtr;
BitMapType;
INTEGER;
INTEGER;

LONGINT;
BOOLEAN;
BOOLEAN;
Byte;
Byte;
Byte;

Byte;

Byte;

LONGINT;

Ptr;

INTEGER) ;

{destination or source }
{ socket address}
{request size or buffer }
{ size in bytes}
{pointer to request buffer}

'{pointer to response BDS}
{transaction bit map}
{transaction ID}
{number of bytes actually }
{ received}
{user bytes}
{exactly-once flag}
{end-of-message flag}
{retry timeout interval in seconds}
{number of retries}
{number of elements in response }
{ BDS or number of response }
{ packets sent}
{number of response packets }
{ received or sequence number}
{number of elements in }
{ response BDS}
{user bytes sent or received }
{ in transaction response}
{pointer to response message }
{ buffer}
{size in bytes of response }
{ message buffer}

ABCallType = (tLAPRead,tLAPWrite,tDDPRead,tDDPWrite,
tNBPLookup,tNBPConfirm,tNBPRegister,

- tATPSndRequest,tATPGetRequest,tATPSndRsp,
tATPAddRsp,tATPRequest,tATPResponse);

LAPAdrBlock PACKED RECORD
dstNodeID: Byte;
srcNodeID: Byte;
LAPProtType: ABByte

END;

ABByte = 1 •• 127; {LAP protocol type}

AddrBlock = PACKED RECORD

{destination node ID}
{source node ID}
{LAP protocol type}

aNet: INTEGER; {network number}
aNode: Byte; {node ID}
aSock~t: Byte {socket number}

END;

1/31/85 Hacker-Anders /NET2/ATALK.S

88 AppleTalk Manager Programmer's Guide

BDSPtr
BDSType
BDSElement

"'BDSType;
ARRAY[0 •• 7] OF_ BDSElement; {response BDS}
RECORD

buff Size: INTEGER; {buffer size in bytes}
buffPtr: Ptr; {pointer to buffer}

BitMapType

EntityPtr
EntityName

dataSize: INTEGER; {packet size}
userBytes: LONGINT {user bytes}

END;

PACKED ARRAY[0 •• 7~ OF BOOLEAN;

"'EntityName;
RECORD

objStr: Str32; {object}
typeStr: Str32; {type}
zoneStr: Str32 {zone}

END;

Str32 = STRING[32];

RetransType = PACKED RECORD
retransInterval: Byte; {retransmit interval}

{ in 8-tick units}
retransCount: Byte {number of attempts}

END;

Routines [Not in ROM] --

Opening and Closing AppleTalk

FUNCTION MPPOpen: OSErr;
FUNCTION MPPClose : OSErr;

AppleTalk Link Access Protocol

FUNCTION LAPOpenProtocol (theLAPType: ABByte; protoPtr: Ptr)
OSErr;

FUNCTION LAPCloseProtocol (theLAPType: ABByte) OSErr;
/

FUNCTION
~-
~-- .

LAPWrite (abRecord:
abOpcode

ABRecHandle; async: BOOLEAN)

--7
--7
--7
--7
--7

abResult
abUserReference
lapAddress.dstNodeID
lapAddress.lapProtType
lapReqCount
lapDataPtr

1/31/85-Hacker-Anders

{always tLapWrite}
{result code}
{for your use}
{destination node ID}
{LAP protocol type}
{length of frame data}
{pointer to frame data}

OSErr;

/NET2/ATALK.S

SUMMARY OF THE APPLETALK MANAGER 89

FUNCTION
~-

~-
--~
~-
~--

LAPRead (abRecord:
abOpcode
abResult

ABRecHandle; async: BOOLEAN)
{always tLapRead}
{result code}

OSErr;

--~
--~
~--

--~

abUserReference
lapAddress.dstNodeID
lapAddress.srcNodeID
lapAddress.lapProtType
lapReqCount
lapActCount

lapDataPtr

{for your use}
{destination node ID}
{source node ID}
{LAP protocol type}.
{buffer size in bytes}
{number of frame data bytes
{ received}
{pointer to buffer}

FUNCTION LAPRdCancel (abRecord: ABRecHandle) : OSErr;

Datagram Delivery Protocol

FUNCTION DDPOpenSocket (VAR theSocket: Byte; sktListener: Ptr)
OSErr;

FUNCTION DDP~loseSocket (theSocket: Byte) : OSErr;

FUNCTION DDPWrite (abRecord: ABRecHandle; doChecksum: BOOLEAN;
async: BOOLEAN) : OSErr;

~-- abOpcod~ {always tDDPWrite}
~-- abResult {result code}
--7 abUserReference {for your use}
--~ ddpType {DDP protocol type}
--7 ddpSocket {source socket number}
--~ ddpAddress {destination socket address}
--7 ddpReqCount {length of datagram data}
--~ ddpDataPtr {pointer to buffer}

FUNCTION DDPRead (abRecord: ABRecHandle; retCksumErrs: BOOLEAN;
async: BOOLEAN) : OSErr;

~-- abOpcode {always tDDPRead}
~-- abResult {result code}
--7 abUserReference {for your u~e}
--~ ddpType {DDP protocol type}
--7 ddpSocket {listening socket number}
~-- ddpAddress {source socket address}
--7 ddpReqCount {buffer size in bytes}
~-- ddpActCoun~ {number of bytes actually received}
--~ ddpDataPtr {pointer to buffer}
~-- ddpNodeID {original destination node ID}

FUNCTION DDPRdCancel (abRecord: ABRecHandle) : OSErr;

AppleTalk Transaction Protocol

FUNCTION ATPLoad : OSErr;
OSErr;

actually }

FUNCTION ATPUnload
FUNCTION ATPOpenSocket (addrRcvd: AddrBlock; VAR atpSocket: Byte)

OSErr;

1/31/85 Hacker-Anders /NET2/ATALK.S

90 AppleTalk Manager Programmer's Guide

FUNCTION ATPCloseSocket (atpSocket: Byte) : OSErr;

FUNCTION ATPSndRequest (abRecord: ABRecHandle; async: BOOLEA~)

~-
~-

--7
--7
--)-

--)

--)-

--)

--)

~-
--7
--)

--)-

~--

FUNCTION
~~- .
~-
--)

~-)

--7
--)

~-
--)

--)

~-

--7
--)

~--

--7
--)

OSErr;
abOpcode
abResult
abUserReference
atpAddress
atpReqCount
atpDataPtr
atpRspBDSPtr
atpUserData
atpXO
atpEOM .
atpTimeOut
atpRetries
atpNumBufs
atpNumRsp

{always tATPSndRequest}
{result code}
{for your use}
{destination socket address}
{request size in bytes}
{pointer to buffer}
{pointer to response BDS}
{user bytes}
{exactly-once flag}
{end-of-message flag}
{retry timeout interval in seconds}
{maximum number of retries}
{number of elements in response BDS}
{number of response packets actually }
{ received}

ATPRequest
abOpcode
abResult

(abRecord: ABRecHandle; async: BOOLEAN) OSErr;

abUserReference
atpAddress
atpReqCount
atpDataPtr
atpActCount
atpUserData
atpXO
atpEOM
atpTimeOut
atpRetries
atpRspUData

atpRspBuf
atpRspSize

{always tATPRequest}
{result code}
{for your use}
{destination socket address}
{request size in bytes}
{pointer to buffer}
{number of bytes actually received }
{user bytes}
{exactly-once flag}
{end-of-message flag}
{retry timeout interval in seconds}
{maximum number of retries}
{user bytes received in transaction }
{ response}
{pointer to response message buffer}
{size of response message buffer}

FUNCTION ATPReqCancel (abRecord: ABRecHandle; async: BOOLEAN)
OSErr;

FUNCTION ATPGetRequest (abRecord: ABRecHandle; async: BOOLEAN)
OSErr;

~-
~-

--7
--7
~-
--)

--)-

~-
~-

~-

~--

abOpcode
abResult
abUserReference
atpSocket
atpAddress
atpReqCount
atpDataPtr
atpBitMap
atpTransID
atpActCount
atpUserData

1/31/85 Hacker-Anders

{always tATPGetRequest}
{result code}
{for your use}
{listening socket number}
{source socket address}
{buffer size in bytes}
{pointer to buffer}
{transaction bit map}
{transaction ID}
{number of bytes actually received}
{user bytes}

/NET2/ATALK.S

SUMMARY OF THE APPLETALK MANAGER 91

~-- atpXO {exactly-once flag}

FUNCTION ATPSndRsp (abRecord: ABRecHandle; async: BOOLEAN)
OSErr;

~-
~--

--7
--7
--7
--?
--7
--7

{always tATPSnd'Rsp}
{result code}
{for your use}
{responding socket number} .
{destination socket address}
{pointer to response,BDS}
{transaction IO}
{end-of-message flag}

--7
--?

abOpcode
abResult
abUserReference
atpSocket
atpAddress
atpRspBDSPtr
atpTransID
atpEOM
atpNumBufs
atpBDSSize

{number of response packets being sent}
{number. of eiements in response BDS}

FUNCTION
~-
~-
--?
--7
--?
--7
--7
--7
--7
--7
--7

ATPAddRsp
abOpcode
abResult

(abRecord: ABRecHandle) : OSErr;

abUserReference
atpSocket
atpAddress
atpReqCount
atpDataPtr
atpTransID
atpUserData
atpEOM
atpNumRsp

{always tATPAddRsp}
{result code}
{for your use}
{responding socket number}
{destination socket address}
{buffer size in bytes}
{pointer to buffer}
{transaction ID}
{user bytes}
{end-of-message flag}
{sequence number}

FUNCTION ATPResponse (abRecord: ABRecHandle; async: BOOLEAN)

~-
~-
--7
--?
--7
--?

abOpcode
abResult

OSErr;

abUserReference
atpSocket
atpAddress
atpRspUOat~

{always tATPResponse}
{result code}
{for your use}
{responding socket number}
{destination socket address}
{user bytes sent in transaction }
{ response}

--?
--7

atpRspBuf
atpRspSize

{pointer to response message buffer}
{s~ze of response message buffer}

FUNCTION ATPRspCancel (abRecord: ABRecHandle; async: BOOLEAN)
OSErr;

Name-Binding Protocol

FUNCTION
~-
~-
--7

NBPRegister
, abOpcode

(abRecord: ABRecHandle; async: BOOLEAN)

--7
--7
--7
-:-?

abResult
abUserReference
nbpEntityPtr
nbpBufPtr
nbpBufSize
nbpAddress.aSocket

{always tNBPRegister}
{result code}
{for your use}
{pointer to entity name}
{pointer to buffer}
{buffer size in bytes}
{socket address}

OSErr;

1/31/85 Hacker-Anders /NET2/ATALK.S

92 AppleTalk Manager Programmer's Guide

--~ nbpRetransmitInfo {retransmission information}

FUNCTION
~-

~-
--~

NBPLookup (abRecord:
abOpcode

ABRecHandle; async: BOOLEAN) : OSErr;
{always tNBPLookup}

--~
--~
--~

~-~
--~

abResult
abUserReference .
nbpEntityPtr
nbpBufPtr
nbpBufSize
nbpDataField
nbpRetransmitInfo

{result code}
{for your use}
{pointer to entity name} (
{pointer to buffer}
{buffer size in bytes}
{number of addresses received}
{retransmission information}

FUNCTION NBPExtract (theBuffer: Ptr; numInBuf: INTEGER; whichOne:
INTEGER; VAR a~Entity: EntityName; VAR address:
AddrBlock) : OSErr;

FUNCTION
~-
~-
--~
:--~
~-
--~

NBPConfirm
abOpcode
abResult

(abRecord: ABRecHandle; async: BOOLEAN)
{always tNBPConfirm}
{result code}
{for your use}
{pointer to entity name}
{socket number}

--~

abUserReference
nbpEntityPtr
nbpDataField
nbpAddress
nbpRetransmitInfo

{socket address}
{retransmission information}

FUNCTION NBPRemove (abEntity: EntityPtr) : OSErr;
FUNCTION NBPLoad: OSErr;
FUNCTION NBPUnload : OSErr;

c..

Miscellaneous Routines

FUNCTION GetNodeAddress (VAR myNode,myNet: INTEGER)
FUNCTION IsMPPOpen BOOLEAN;
FUNCTION IsATPOpen BOOLEAN;

Assembly-Language Information

Constants

; Serial port use types

use Free .EQU 0 ;use undefined
useATalk .EQU 1 ;AppleTalk
useASync .EQU 2 ;async

. Bit in PortBUse for .ATP driver status ,

atpLoadedBit .EQU 4 ;set if .ATP driver is opened

OSErr;

OSErr;

1/31/85 Hacker-Anders /NET2/ A'rALK. S

SUMMARY OF THE APPLETALK MANAGER 93

; CsCode values for Control calls (MPP)

write LAP .EQU 242
detachPH .EQU 243
attachPH .EQU 245
writeDDP .EQU 246
closeSkt .EQU 247
openSkt .EQU 248
loadNBP .EQU 249
confirmName .EQU 25flJ
lookupName .EQU 251
remove Name .EQU 252
registerName .EQU 253
killNBP .EQU 254
unloadNBP .EQU 255

; CsCode values for Control calls (ATP)

relRspCB .EQU 249
closeATPSkt .EQU 25flJ
addResponse .EQU 251
sendResponse .EQU 252
getRequest .EQU 253
openATPSkt .EQU .254
sendRequest .EQU 255
relTCB '.EQU 256

; ALAP header

lapDstAdr .EQU flJ ;destination node ID
lapSrcAdr .EQU 1 ;source node ID
lapType .EQU 2 ;LAP protocol type

; ALAP header size

lapHdSz .EQU 3

; LAP protocol type values

shortDDP
longDDP

; Long DDP

ddpHopCnt
ddpLength
ddpChecksum
ddpDstNet
ddpSrcNet
ddpDstNode
ddpSrcNode
ddpDstSkt
ddpSrcSkt
ddpType

.EQU 1

.EQU I 2

header

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU
.EQU
.EQU
.EQU

1/31/85 Hacker-Anders

;short DDP header
;long, DDPheader

flJ
flJ
2
4
6
8
9
IflJ
11
12

;hop count (4 bits)
;datagram length (lflJ bits)
; checksum
;destination network number
;source network number
;destination node ID
;source node ID
;destination socket number
;source socket number
;DDP protocol type

/NET2/ ATALK. S .

94 AppleTalk Manager Programmer's Guide

; DDP long header size

ddpHSzLong .EQU ddpType+l

; Short DDP header

ddpLength
sDDPDstSkt
sDDPSrcSkt
sDDPType

.EQU

.EQU

.EQU

.EQU

~
ddpChecksum
sDDPDstSkt+l
sDDPSrcSkt+l

;datagram length
;destination socket number
;source socket number
;DDP protocol type

;DD~ short header size

ddpHSzShort .EQU sDDPType+l

; Mask for datagram length

lengthMask .EQU $~3FF

; Maximum size of DDP data

ddpMaxData .EQU 586

; ATP header

atpControl .EQU 0' ;control information
atpBitMap .EQU 1 ;bit map
atpRespNo .EQU 1 ;sequence number
atpTrans1D .EQU 2 ;transaction 1D
atpUserData .EQU 4 ;user bytes

; ATP header size

atpHdSz .EQU 8

; DDP protocol type for ATP packets

atp .EQU

; ATP function code

atpReqCode
atpRspCode
atpRelCode

.EQU

.EQU

.EQU

3

$4~
$80
$c0

;TReq packet
;TResp pack~t
;TRel packet

; ATPFlags control information bits

sendChk .EQU 0 ; send-checksum bit
tidValid .EQU 1 ;transaction 1D validity bit
atpSTSBit .EQU 3 ;send-transmission-status bit
atpEOMBit .EQU 4 ;EOM bit of control information
atpXOBit .EQU 5 ;exactly-once bit

1/31/85 Hacker-Anders /NET2/ATALK.S

SUMMARY OF THE APPLETALK MANAGER 95

; Maximum number of ATP request packets

, atpMaxNum .EQU 8

; ATP buffer data structure

bdsBuffSz
bdsBuffAddr
bdsDataSz
bdsUserData

; BDS element

bdsE~trySz

; NBP packet.

nbpControl
nbpTCount
nbpID
nbpTuple '

.EQU
.EQU
.EQU
.EQU

size

.EQU

.EQU

.EQU

.EQU

.EQU

o
o
1
2

0
2
6
8

12

;length of data to send or buffer
;pointer to data or buffer
;number of bytes actually received
;for your use

;NBP call
j"tuple count
jpacket identifier
;start of first tuple

j DDP protocol type for NBP packet

nbp .EQU 2 ;DDP protocol type for NBP packets

; NBP packet types

brRq
IkUp
IkUpReply

; NBP tuple

tupleNet
tupleNode
tupleSkt
tupleEnum
~upleName

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

1
2
3

0
2
3
4
5

;broadcast request
;lookup request
;lookup reply

;network number
;node ID
;socket number
;enumerator
;entity name

jMaximum number of tuples in NBP packet

tuple Max .EQU

; NBP meta-characters

equals
star

.EQU

.EQU
'= '
'*'

15

;"wild-card" meta-character
;"this zone" meta-character

size

1/31/85 Hacker-Anders /NET2.j ATALK. S

96 AppleTalk Manager Programmer's Guide

; NBP names table entry

ntLink
ntTuple
ntSocket
ntEntity

.EQU

.EQU

.EQU

.EQU

o
ntLink+4
ntTuple+tupleSkt
ntTuple+tupleName

; NBP names information socket

;pointer to next entry
;tuple
;socket number
;entity name

nis .EQU2 ;names information socket number

Routines

Link Access Protocol

WriteLAP function
--7 26 csCode word ;always writeLAP
-~7 30 wdsPointer pointer ;write data structure

AttachPH function
--~ 26 csCode word ;always attachPH
--7 28 protType pyte ;LAP protocol type
--~ 30 handler pointer ;protocol handler

DetachPH function
--~ 26 csCode word ; always detachPH
--7 28 protType byte ;LAP protocol type

Datagram Delivery Protocol

OpenSkt function
--7 26 csCode word ; always openSkt
~-7 28 socket byte ;socket number
--~ 30 listener pointer ;socket listener

CloseSkt function
--7 26 csCode word ; always closeSkt· .
\-7 28 socket byte ;socket number

WriteDDP function
--~ 26 csCode word ;always writeDDP
--7 28 socket byte ;socket number
--7 29 checksumFlag byte ;checksum flag
--7 30 wdsPointer pointer ;write data structure

1/31/85 Hacker-Anders /NET2/ATALK.S

SUMMARY OF THE APPLETALK MANAGER 97

AppleTalk Transaction Protocol

OpenATPSocket function
--~ 26 csCode
~-~ 28 atpSocket
--~ 30 addrBlock

CloseATPSocket function
--~ 26 csCode
--~ 28 atpSocket

SendRequest function
--~ 18 userData
--? 26 csCode
~-- 28 currBitMap
~-? 29 atpFlags
--~ 30 addrBlock
--? 36 reqLength
--~ 36 reqPointer
~-? 40 bdsPointer
--~ 44 numOfBuffs

--?
~--

--~

45
46

47

timeOutVal
numOfResps

retryCount

GetRequest function
~-- 18 user Data
--? 26 csCode
--~ 28 atpSocket
~-- 29 atpFlags
~-- 30 addrBlock
~-? 34 reqLength

--? 36
~-- 44
~-- 46

SendResponse
~-- 18
--~ 26
--? 28
--? 29
--~ 30
--? 40
--~ 44
--? 45
--~ 46

reqPointer
bitMap
transID

function
userData
csCode
atpSocket
atpFlags
addrBlock
bdsPointer
numOfBuffs
bdsSize
transID

1/31/85 Hacker-Anders

word ;always openATPSocket
byte ;socket number
long word ;socket request specification

word
byte

;always closeATPSocket
;socket number

long word
word
byte
byte
long word
word
pointer
pointer
byte

byte
byte

byte

long word
word
byte
byte
long word
word

pointer
byte
word

long word
word
byte
byte
long word
pointer
byte
byte
word

;user bytes
;always sendRequest
;bit map
;control information
;destination socket address
;request size in bytes,
;pointer to request data
;response BDS
;number of responses
; expected
;timeout interval
;number of responses
; actually received
;number of retries

;user bytes
;always getRequest
;socket number
;control information
;source of request
;request buffer size in
; bytes
;pointer to request buffer
;bit map
;transaction ID

;user bytes from TRel
;always sendResponse
;socket number
;control information
;response destination
;pointer to response BDS
;number of responses~
;BDS size in elements
;transaction ID

/NET2/ATALK.S

98 AppleTalk Manager Programmer's Guide

AddResponse function
--7 18 userData
--7 26 csCode
--7 28 atpSocket
--7 29 atpFlags
--7 30 addrBlock
--7 36 reqLength
--7 36 reqPointer
--7 44 rspNum
--7 46 transID

Name~Binding Protocol

RegisterName
--7 26
--7 28
--7 29
--7 30

function
csCode
interval
count
ntQEIPtr

verifyFlag

LookupName function
--7 26 csCode'
--7 28 interval
--7 29 count
--7 30 entityPtr
--7 34 retBuffPtr
~-- 38 retBuffSize
--7 40 maxToGet
~-- 42 numGotten

ConfirmName function
--7 26 csCode
--7 28 interval
--7 29 count
--7 30 entityPtr
--7 34 confirmAddr
~-- 38 newSocket

RemoveName function
--7 26 csCode
--7 30 entityPtr

LoadNBP function
--7 26 csCode

UnloadNBP function
--7 26 csCode

1/3.1/85 Hacker-Anders

long word
word
byte
byte
long word
word
pointer
byte
word

word
byte
byte
pointer

byte

word
byte
byte
pointer
pointer
word
word
word

word
byte
byte
pointer
pointer
byte

word
pointer

word

word

;user bytes
;always addResponse
;socket number
;control information
;response destination
;response size in bytes
;pointer to response
;sequence number
;transaction ID

;always registerName
;retry interval
;retry count
;names table element
; pointer
; set ·if verify

;always lookupName
;retry interval
;retry count
;entity name
;pointer to buffer
;buffer size in bytes
;matches to get
;matches found

;always confirmName
;retry interval
;retry count
;entity name
;entity address
;socket number

;always remove Name
;entity pointer

;always loadNBP

;always unloadNBP

/NET2/ATALK.S

Variables

SPConfig

PortBUse

ABusVars

Result Codes

Name
atpBadRsp
atpLenErr
badATPSkt
badBuffNum
buf2SmallErr

cbNotFound
ckSumErr
ddpLenErr
ddpSktErr

excessCollsns

extractErr
lapProtErr

nbpBuffOvr
nbpConfDiff
nbpDuplicate
nbpNISErr
nbpNoConfirm
nbpNotFound
noBridgeErr
noDataArea
noErr
noMPPError
noRelErr
noSendResp
portlnUse
portNotCf

readQErr

SUMMARY OF THE APPLETALK MANAGER 99

Configuration of serial ports (byte)
(bits 0-3: current configuration of serial port B
bits 4-6: current configuration of serial port A)

Current availability of serial port B (byte)
(bit 7: 1=not in use, 0=in use
bits 0-3: current use of port
bits 4-6: driver-specific)

Pointer to AppleTalk variables

Value
-3107
-3106
-1099
-1100
-3101

-1102
-3103

-92
-91

-95

-3104
-94

-1024
-1026
-1027
-1029
-1025
-1028

-93
-1104

0
-3102
-1101
.-1103

-97
-98

-3105

Meaning
Bad response from ATPRequest
ATP response message too large
ATP bad responding socket
ATP bad sequence number
ALAP frame too large for buffer
PDP datagram too large for buffer
ATP control block not found
DDP bad checksum
DDP datagram or LAP data length too big
DDP socket error: socket already active;
not a well-known socket; socket table full;
all dynamic socket numbers in use
ALAP no CTS received after 32 RTS's, or
line sensed in use 32 times (not
necessarily caused by collisions)
NBP can't find tuple in buffer
ALAP error attaching/detaching LAP protocol
type: attach error when LAP protocol type is
negative, already in table, or when table is
full; detach error when LAP protocol type
isn't in table
NBP buffer overflow
NBP name confirmed for different socket
NBP duplicate name already exists
NBP names information socket error
NBP name not confirmed
NBP name not found
No bridge found
Too many outstanding ATP calls
No error
MPP driver not installed
ATP no release received
ATPAddRsp issued before ATPSndRsp
Driver Open error, port already in use
Driver Open error, port not configured
for this connection
Socket or protocol type invalid or not
found in table

1/31/85 Hacker-Anders /NET2/ATALK.S

100 AppleTalk Manager Programmer's Guide

recNotFnd
reqAborted
reqFailed
sktClosedErr

tooManyReqs
tooManySkts

-31~8
-1105
-1~96
-3109

-1097
-1098

1/31/85 Hacker-Anders

ABRecord not found
Request aborted
ATPSndRequest failed: retry count exceeded
Asynchronous call aborted because socket
was·closed before call was completed
ATP too many concurrent requests
ATP too many responding sockets

/NET2/ ATALK •. S

GLOSSARY 101

GLOSSARY

ALAP: '" See AppleTalk Link Access Protocol.

ALAP frame: A packet of data transmitted and received by ALAP.

alias: A different name for the same entity.

AppleTalk address: A socket's number and its node ID number.

AppleTalk Link Access Protocol (ALAP): The lowest-level protocol in
the AppleTalk architecture, managing node-to-node delivery of frames on
a single AppleTalk network.

AppleTalk Transaction Protocol (ATP): An AppleTalk protocol that's a
DDP client. It allows one ATP client to request another ATP client to
perform some activity and report the activity's result as a response to
the requesting socket with guaranteed delivery.

at-least-once transaction: An ATP transaction in which the requested
operation is performed at least once, and possibly several times.

ATP: See AppleTalk Transaction Protocol.

bridge: An intelligent link between two or more Appl€Talk networks.

broadcast service: An ALAP service wherein a frame is sent to all
nodes on an AppleTalk network.

datagram: A packet of data transmitted by DDP.

Datagram Delivery Protocol (DDP): An AppleTalk protocol that is an
ALAP client, managing socket-to-socket delivery of datagrams over
AppleTalk internets.

DDP: See Datagram Delivery Protocol.

entity name: An identifier for an entity, of the form
object:type@zone.

exactly-once transaction: An ATP transaction in which the requested
operation is performed only once.

frame check sequence: Part of an ALAP frame trailer used by the
AppleTalk header to check for transmission errors.

frame header: Information at the beginning of a packet.

frame trailer: Information at the end of an ALAP frame.

internet: An interconnected group of AppleTalk" networks.

1/31/85 ~acker-Anders /NET2/ABUS.G

102 AppleTalk Manager Programmer's Guide

internet address: The AppleTalk address and network number of a
socket.

LAP protocol type: An identifier used to match particular kinds of
packets with a particular protocol handler.

Name-Binding Protocol (NBP): An AppleTalk protocol that's a DDP
client, used to convert entity names to their internet socket
addresses.

name lookup: An NBP operation that allows clients to obtain the
internet addresses of entities from their names.

names directory: The union of all name tables in an internet.

names information socket: The socket in a node used to implement NBP
(always socket number 2).

names table: A list of each entity's name and internet address in a
node.

NBP: See Name-Binding Proto,col.

NBP tuple: An entity name ~nd an internet address. \

network number: An identifier for an AppleTalk network.

network-visible entity: A named socket client on an internet.

node: A device that's attached to and communicates via an AppleTalk
network.

node ID: A number, dynamically assigned, that identifies a node .•

protocol: A well-defined set of communications rules.

protocol handler: A software process in a node that recognizes
different kinds of frames by their ALAP type and services them.

protocol handler table: A list of the protocol handlers for a node.

release timer: A timer for determining when an exactly-once (XO)
response buffer can be released.

response BDS: A data structure used td pass response information to
the ATP module.

retry count: The maximum number of retransmissions for an NBP or ATP
packet.

retry interval: The time between retransmissions of a packet by NBP or
ATP.

1/31/85 Hacker-Anders /NET2/ABUS.G

GLOSSARY 103

routing table: A table in a bridge that contains routing information.

Routing Table ~1aintenance Protocol (RTMP): An AppleTalk protocol that
is used internally by AppleTalk to maintain tables for routing
datagrams through an internet.

RTMP: See Routing Table Maintenance Protocol.

RTMP socket: The socket in a node used to implement RTMP.

RTMP stub: The RTMP code in a nonbridge node.

sequence number: A number from 0 to 7, assigned to an ATP response
datagram to indicate its ordering within the response.

socket: A logical entity within the node of a network~

socket client: A software process in a node that owns a socket.

socket listener: The portion of a socket client that receives and
services datagrams addressed to that socket.

socket.number: An identifier for a socket.
~

socket table: A listing of all the socket listeners for each active
socket in a node.

transaction: A request-response communication between two ATP clients
(see transaction request, transaction response).

transaction ID: An identifier assigned to a transaction.

transaction request: The initial part of a transaction in which one
socket client asks another to perform an operation and return a
response.

transaction response: The concluding part of a transaction in which
one socket client returns requested information or simply confirms that
a requested operation was performed.

user bytes: Four bytes in an ATP header provided for use by ATP's
clients. .

write data structure (WDS): A data structure used to pass information
to the ALAP or DDP modules.

zone: An arbitrary subset of AppleTalk networks in an internet.

1131/B5 Hacker-Anders /NET2/ABUS.G

MACINTOSH USER EDUCATION

The Vertical Retrace Manager: A_Programmer's Guide

See Also: The Macintosh User Interface Guidelines
The Memory Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
The 'Device Manager: A Programmer's Guide
The Event Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
Inside Macintosh: A Road Map

/VRMGR/TASK

Programming Macintosh Applications in Assembly Language

Modification History: First Draft (ROM 7) Bradley Hacker 6/15/84

ABSTRACT

This manual describes the Vertical Retrace ,Manager, the part of the
Macintosh Operating System that schedules and performs recurrent tasks
during vertical retrace interrupts. It'describes how your application
can install and remove its own recurrent tasks.

2 Vertical Retrace Manager Programmer's Guide

TABLE OF CONTENTS

3 About, This Manual
3 About the Vertical Retrace Manager
5 Using the Vertical Retrace Manager
6 Vertical Retrace Manager Routines
8 Summary of the Vertical Retrace Manager
10 Glossary

Copyright (c) 1984 Apple Computert Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Vertical Retrace Manager, the part of the'
Macintosh Operating System that schedules and performs recurrent tasks
during vertical retrace interrupts. It describes how your application
can install and remove its own recurrent tasks. *** Eventually it will
become part of the comprehensive Inside Macintosh manual. ***

Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal. You should also be familiar with the
following:

- the Macintosh Operating System's Memory Manager

- interrupts, as described in the Macintosh Operating System's
Device Manager manual

- queues, as described in the Operating System Utilities manual ***
not yet; for now, see the appendix of the ~File Manager manual.

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language
programmers only is isolated and labeled so that Pascal programmers can
conveniently skip it.

The manual begins with an introduction to the Vertical Retrace Manager
and what you can do with it. It then introduces the routines of the
Vertical Retrace Manager and tells how they fit into the flow of your
application. This is followed by detailed descriptions of the routines
themselves.

Finally, there's a summary of the Vertical Retrace Manager, for quick
reference, followed by a glossary of terms used in this manual.

ABOUT THE VERTICAL RETRACE MANAGER

The Macintosh video circuitry generates a vertical retrace interrupt
(also known as the vertical blanking or VBL interrupt)_60 times a
second while the beam of the display tube returns from the bottom of
the screen to the top to display the next frame. The Operating System

J

uses this interrupt as a convenient time to perform the following
sequence of recurrent tasks:

1'. Increment the number of ticks since system startup' (every
interrupt). (You can get this number by calling the Toolbox Event
Manager function TickCount.)

2.' Check whether the stack and heap have collided (every interrupt).

6/15/84. Hacker /VFJ1.GR/TASK.2

4 Vertical Retrace Manager Programmer's Guide

3. Handle cursor movement (every inter.rupt).

4. Post a mouse event if the state of the mouse button changed from
its previous state and then remained 'unchanged for four interrupts
(every other interrupt).

5. Post a disk inserted event if a disk has been inserted (every 30
interrupts).

These tasks must execute at regular intervals based on the "heartbeat"
of the Macintosh~ and shouldn't be changed.

An application can add any number of its own tasks for the Vertical
Retrace Manager to execute. Application tasks can perform any desired
actions as long as memory is neither allocated nor released" and can be
set to execute at any frequency (up to once per vertical retrace
interrupt). For example, a task within an electronic-mail application
might check every tenth of a second to see if it has received any
messages.

(note)
Application tasks longer than about one-sixtieth of a
second will affect other interrupt-driven parts of the
Macintosh, such as the mouse,position.

Information describing each application task is contained in the
vertical retrace'queue. The vertical retrace queue is a standard
Macintosh Operating System queue~ as described in the Operating System
Utilities manual *** doesn't yet exist; for now, see the File Manager
manual's appendix ***. Each entry in the vertical retrace queue has
the following structure:

TYPE VBLTask = RECORD
qLink:
qType:
vblAddr:
vblCount:
vblPhase:

END;

QElemPtr;
INTEGER;
ProcPtr;
INTEGER;
INTEGER

{next queue entry}
{queue type}
{task address}
{task frequency} .
{task phase}

As in all Operating System queue entries, qLink points to the next
entry in the queue, and qType indicates the queue type. QType should
always be ORD(vType) in the ~ertical retrace queue.

VBLAddr contains the address of the task. VBLCount specifies 'the
, number of ticks between successive calls to the task. This value is

decremented each sixtieth of a second until it reaches 0, at which
point the task is called. The task must then reset vblCount, or its
entry will be removed from the queue after it has been executed.
YBLPhase contains an integer (smaller than vblCount) used to modify
vblCount when the task is first added to the queue. This ensures that
two or more routines added to the queue at the same time with the same
vblCount value will be out of phase with each other~ and won't be
called during the same inte'rrupt.

6/15/84 Hacker /VRMGR/TASK.2

/

ABOUT THE VERTICAL RETRACE MANAGER 5

Assembly-Ianguage~: The Vertical Retrace Manager sets bit 6
of the queue flags whenever a task is being executed; assembly
programmers can use the global constant inVBL to test this bit.

USING THE VERTICAL RETRACE MANAGER

This section discusses how the Vertical Retrace Manager routines fit
into the general flow of an application program. The routines
themselves are described in detail in the next section.

The "Vertical Retrace Manager is automatically initialized each time the
system is started up. To add an application task to 'the vertical
retrace queue, call VInstall. When your application no longer wants a
task to be executed, it can remove the task from the vertical retrace
queue by calling VRemove. An application task shouldn't call VRemove
to remove its entry from the queue--either the application should call
VRemove, or the task should simply not reset the vblCount field of the
queue entry.

An application task cannot call routines that cause memory to be
allocated or released. This severely limits the actions of tasks, so
you might prefer using the Desk Manager I procedure SystemTask to perform
periodic actions. Or, since the- very first thing the Vertical Retrace
Manager does during a vertical retrace interrupt is increment the tick
count, your application could call the Toolbox Event Manager function
TickCount repeatedly and perform periodic actions whenever a specific
number of ticks have elapsed.

Assembly-Ianguage~: Application tasks may use registers D0
through D3 and A0 through A3, and must s~ve and restore any
additional registers used. They must exit with an RTS
instruction.

If you'd like to manipulate the contents of the vertical retrace queue
directly, you can get a pointer to the vertical retrace queue by
calling GetVBLQHdr.

6/15/84 Hacker /VRMGR/TASK.2

6 Vertical Retrace Manager Programmer's Guide

VERTICAL RETRACE MANAGER ROUTINES

This section describes the Vertical Retrace Manager routines. Each
routine is presented in its Pascal form; where applicable, it's
followed by a box containing information needed to use the routine from
assembly language. For general information on using the Vertical
Retrace Manager from assembly language, see the manual Programming
Macintosh Applications in Assembly Language.

FUNCTION VInstall (vblTaskPtr: QElemPtr) OSErr; .

Trap macro VInstall

On entry A0: vblTaskPtr (pointer)

On exit D0: result code (integer) ---

VInstall adds the task described by vblTaskPtr to the vertical retrace
queue. Your application must fill in all fields of the task except
qLink. VInstall returns one of the result codes listed below.

Result codes noErr
vTypErr

No error
QType field isn't ORD(vType)

FUNCTION VRemove (vblTaskPtr: QElemPtr) OSErr;

Trap macro VRemove

On entry A0: vblTaskPtr (pointer)

On exit D0: result code (integer)

VRemove removes the task described by vblTaskPtr from the vertical
retrace queue. It returns one of the result codes listed below.

Result codes

6/15/84 Hacker

noErr
vTypErr
qErr

No error
QType field isn't ORD(vType)
Task entry isn't in the queue

/VRMGR/TASK.2

VERTICAL RETRACE MANAGER ROUTINES 7

FUNCTION GetVBLQHdr : QHdrPtr; [Pascal only]

GetVBLQHdr returns a pointer to the vertical retrace queue.

Assembly-language~: To access the contents of the vertical
retrace queue from assembly language, assembly-language
programmers can use offsets from the address of the global
variable vblQueue.

6/15/84 Hacker /VRMGR/TASK.2

8 Vertical Retrace Manager Programmer's Guide

SUMMARY OF THE VERTICAL ,RETRACE MANAGER

Constants

CONST { Result codes }

noErr
qErr
vTypErr

Data Types

TYPE VBLTask

Routines

0; {no error}
= -1; {task entry isn't in the queue}

-2; {qType field isn't ORD(vType}}

RECORD
qLink: QElemPtr;
qType: INTEGER;
vblAddr: ProcPtr;
vblCount: INTEGER;
vblPhase: INTEGER

END;

{next queue entry}
{queue type}
{task address}
{task frequency}
{task phase}

FUNCTION VInstall (vblTaskPtr: QElemPtr) : OSErr;
FUNCTION VRemove (vblTaskPtr: QElemPtr) : OSErr;
FUNCTION GetVBLQHdr : QHdrPtr; [Pascal only]

Assembly-Language Information

Constants

inVBL .EQU 6 ;set if Vertical Retrace Manager
; is executing

; Result codes

qErr .EQU
vTypErr .EQU

Vertical Retrace

qLink
qType
vblAddr
vblCount
vblPhase

6/15/84 Hacker

-1
-2

Queue Entry

Pointer to
Queue type

;task entry isn't in the queue
;qType field isn't vType

next queue entry

Task address
Task frequency
Task phase

/VRMGR/TASK.2

Variables

Name "
vblQueue

)

6/15/84 Hacker

Size
4 bytes

SUMMARY OF THE VERTICAL RETRACE MANAGER- 9

Contents
Vertical retrace queue

/VRMGR/TASK.2

10 Vertical Retrace Manager Programmer's Guide

GLOSSARY

vertical retrace interrupt: The interrupt that occurs 60 times a
second while the beam of the display tube returns from the bottom of
the screen to the top to display the next frame.

vertical retrace queue: A list of the application tasks to be executed
during the vertical retrace inter~upt.

6/15/84 Hacker /VRMGR/TASK.2

MACINTOSH USER EDUCATION

The System Error Handler: A Programmer's Guide /ERAOR/SYS

See Also: Inside Macintosh: A Road Map
Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
QuickDraw: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Package Manager: A Programmer's Guide
The Pi Ie Manager: . A Programmer's Guide
The Segment Loader: A Programmer's Guide
The Memory Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide
The Resource Manager: A Programmer's Guide

Modification, History: First Draft Bradley Hacker 9/26/84

ABSTRACT

The System Error Handler is the part of the Macintosh Operating System
that assumes control when a fatal error (such as running out of memory)
occurs. This manual introduces you to the System Error Handler and
describes how your application can recover from system errors.

2 System Error Handler Programmer's Guide

TABLE OF CONTENTS

3 About This Manual
3 About the System Error Handler
5 Recovering From System Errors
6 System Error Handler Alert Tabl~s l' System Error Handler Ioutine

12 Summary of the System Error Handler
15 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT TH I S MANUAL 3

ABOUT THIS MANUAL

The System Error Handler is the part of the Macintosh Operating System
that assumes control when a fatal error occurs. This manual introduces
you to the System Error ' Handler and describes how your application can
recover from system errors. **. Eventually this will become, part of
the comprehensive Inside Macintosh manual. .**
Like all Operating System documentation, this manual ·assumes you're
familiar with Lisa Pascal and the information in the following manuals:

- Inside Macintosh: ! Road Map

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications ~ Assembly Language, if you're
using assembly language

You'll also need to be somewhat familiar with most of the User
Interface Toolbox and the rest of the Operating System.

ABOUT THE SYSTEM ERROR ~~LER

The System Error Handler assumes control when a fatal system error
occurs. Its main function is to display an alert box with a diagnostic
error message (called a system error alert) and provide a mechanism for
the application to resume execution.

Because a system error usually indicates that a very low-level part of
the system has failed, the System Error Handler performs its duties by
using as little of the'system as possible. It requires only the
following:

- The trap dispatcher is operative.

- The Font Hanager's InitFonts procedure has been called (it's
called when the 'system starts up).

- Register A7 must point to a reasonable place in memory (for
example, not to" the main screen buffer).

- A few important system data structures aren't too badly damaged •.

The Sys.tem Error Handler doesn't require the Memory Manager to be
operative.

The content of the alert box displayed is determined by a system error
alert table, a resource stored in the system resource file. There are
three different system error alert tables: a system startup alert
table used when the systEm starts up, a user alert table used to infor~
the Macintosh user of system errors, and a programmer alert table used

9/26/84 Hacker /ERROR/SYS.2

:)

4 System Error Handler Programmer's Guide

by programmers when debugging.

The system startup alerts include the "Welcome to Macintosh" box
(Figure 1). It's displayed by the System Error Handler instead of the
Dialog Manager because the System Error Handler needs very little of
the system to operate~

Welcome to Macintosh.

Figure 1. System Startup Alert

Only one of the system startup alerts actu'ally interrupts execution:
if the system can't find a disk with which to start up the system, a
system startup alert containing an Eject and a Restart button will
appear. ,The bad disk will be ej'ected if the user clicks the Eject
button, and the Macintosh will attempt to restart if the user clicks
the Restart button. The summary of this manual contains a complete
list of the alert messages that can appear during system startup.

The user alerts (Figure 2) are used to notify the user of system errors
in a friendly manner. The bottom right corner of a user alert contains
a system error ID that identifies the error. Usually the ,message
"Sorry, a system error occurred.", a Restart button, and a Resume
button are also shown. If the Finder can't be found on a disk, the
message "Can't load the finder" and a Restart button will be shown.
The Macintosh will attempt to restart if the user clicks the Restart
button, and the application will attempt -to resume execution 1f the
user clicks the Resume button.

Sorry, a system error occurred. .
J'

(Restart) (Resume)
10 = 12

Figure 2. User Alert

9/26/84 Hacker /ERROR/SYS.2

ABOUT THE SYSTEM ERROR HANDLER 5

The "Please insert the disk:" alert displayed by the File Manager is
alao • uaer alert.

The programmer alerts (Figure 3) are used to provide programmers with
information to diagnose the ~ause of system errors. They include all
the alerts aeen by users, but aome of the alerts als~ display the
contents of all registers ~ In addition to the Restart and Res.ume
buttons, programmer alerts contain a Finder button, which if pressed
launches the Finder. The aummary contains • complete list of the
programmer ale~t messages that can appear.

Unimplemented core routine
00004DR4 00017F74 FrFFFrfE
00000001" OOOOOBFF OOOOFFff
2F002FOI 000040R4 98F60000
00004090 00018588 00011858
00408f54

(Restart) (Resume)

Figure 3. Programmer Alert

rFFFOOOO
00000000
00004090
00011858

10 = 12

Programmer alerts have been supplanted by user alerts (which provide
the system error ID) and debuggers (which provides access to the
contents of registers). Consequently, programmer alerts aren't
normally part of the sys tem •.

RECOVERING FROM SYSTEM ERRORS

An application recovers from a system error by means of a resume
procedure. You can pass a pointer to your resume procedure when you
call the Dialog Manager procedure InitDialogs (if you don't have a
resume procedure, you'll pass NIL). When the user clicks the Resume
button in a system error alert, the System Error Handler attempts to
restore the state of the system and then jumps to your resume
procedure.

Assembly-language~: The System Error Handler actually
restores the value of registe~_A5 to what it was before the
system error occurred, places the stack pointer at the bottom of
the stack (throwing away the stack), and then jumps to your
resume procedure.

9/26/84 Hacker /ERROR/ SYS. 2

6 System Error Handler Programmer's Guide

SYSTEM ERROR HANDLER ALERT TABLES

This section describes the data structures that define the alert boxes
displayed by the System Error Handler. Most. programmers won't need to
know this background. information; it pertains to the exact steps that
the System Error Handler takes to generate a system error.

In the system resource file, the system error alerts have the following
resource types and IDs:

Table
System startup alert table
Programmer alert table
User alert table

Resource type
'DSAT'
'INIT'
'INIT'

Resource ID
e
1
2

Assembly-language~: The global variable DSAlertTab contains
a pointer to the current system error alert table. DSAlertTab
points to the system startup alert table when the system 1s
starting up. After that, DSA!ertTab is changed to point to one
of the other system error alert tables.

The format of a system error alert table is shown in Figure 4. It
consists of a word indicating the length of "the table, followed by
alert, text, icon. button, and procedure definitions, all of which are
explained below~

number of entries (word)

alert definitions

text definitions

icon definitions

button definitions

procedure def in it ions

Figure 4. System Error Alert Table

The definitions within the alert table needn't be in the order shown,
and definitions of one type needn't all be grouped together as shown.
The first two words in every definition are used for the same purpose:
the first contains an ID identifying the definition, and the second
specifies the length of the definition.

9/26/84 Backer /ERROR/SYS.2

SYSTEM ERROR HANDLER ALERT TABLES 7

An alert definition specifies the appearance and operation of the alert
box that will be drawn when a particular .ystem error occurs (Figure
5). The first word in an alert de.finition specifies which .ystem error
the alert pertains to.

system error 10 (word)

length of rest of definition (word)

primary text definition 10 (word)

secondary text definition 10 (word)

icon def init ion 10 (word)

procedure definition 10 (word)

button definition 10 (word)

Figure S. Alert Definition

The first alert de'finition in a system error alert table applies to all
system errors that don't have their own alert definition.

A text definition specifies the text that will be drawn in a particular
system error alert (Figure 6). The first word in the definition
indicates the system error ID to which the text pertains. Note that
each alert definition refers to two text definitions. The location (in
global coordinates) where the text should be drawn is given as a point.
The actual characters that comprise the text are suffixed by one NUL
character.

text definition 10 (word)

- length of rest of definition (word)

location (point)

text (ASCII characters>

NUL character (byte)

Figure 6. Text Definition

An icon definition specifies the icon that wil~ be drawn in a
particular system error alert (Figure 7). The lirst word in,the
definition indicates the system error ID to which the icon pertains.
The location (in global coordinates) where the icon should be drawn is
given as a rectangle. The 128 bytes that comprise the icon complete
the definition.

9/26/84 Hacker /ERROR/SYS.2

8 System Error E.~nd ler Programmer's Guide

icon definition 10 (word)

length of rest of definition (word)

locetion (rectengle)

icon dete (128 bytes)

Figure 7. Icon Definition

A procedure definition specifies the procedure that will be executed
whenever a particular system error alert box is drawn (Figure 8). The
first word in the definition indicates the system error ID to which the
procedure pertains. Most of a procedure definition is simply the code
comprising the procedure.

procedure definition' 10 (word)

length of rest of definition (word)
.-.------~------------------~

procedure code

Figure 8. Procedure Definition

A button definition specifies the button{s) that will be drawn in a
particular system error alert (Figure 9). The first word in the
definition indicates the system error ID to which the button(s)
pertain. The next word indicates the number of buttons that will be
drawn. The rest of the button definition is composed of eight-word
groups, each of which specifies the text, location, and' operation of a
button.

9/26/84 Hacker /ERTlOR/ SY S. 2

SY STEM ERROR RANDLER ALERT TABLES 9

bu,ton definition 10 (word)

length of rest of definition (word)

runber of buttons (word)

str iog 10 (word)

button location (rectangle) first button

procedure definition 10 (word)
,

./ .- -

str ing 10 (word)

button location (rectangle) lest button

procedure definition 10 (word)

Figure 9. Button Definition

The first word contains a string ID (explained below). specifying the
text that will be drawn inside the button. The location (in global
coordinates) where the button should be drawn is given as a rectangle.
The last word contains a procedure definition ID, identifying the code
to be executed when the button is clicked.

The text that will be drawn inside each button is specified by the data
structure shown in Figure 10. The first word contains a string ID -
number identifying the string, and the second indicates the length of
the string in bytes. The actual characters of the string follow.

string fO (word)

length of string (word)

text (ASe II characters)

Figure Ie. Strings Drawn in Buttons

(warning)
If a resume procedure was specified by a call to the'
Dialog Manager's InitDialogs procedure, the System Error
Handler automatically adds I to the button definition ID
in the alert definition. For this reason, button
definitions must always occur in pairs, and the button
definition IDs must differ by 1.

9/26/84 Hacker /ERROR/ Sf S. 2

10 System Error Handler Programmer's Guide

(note)
Every definition within a system error alert table must
be word-aligned and have a unique ID.

SYSTEM ERROR HANDLER ROUTINE

The System Error Handler has only Qne routine, SysError, described in
this section. Most application programs won't have any reason to call
it. The system itself calls SysError whenever a system error occurs,
and most applications need only be concerned with recovering from the
error and resuming execution.

PROCEDURE SysError (errorCode: INTEGER):

Trap macro _SysError

.Q!!. entry »0: errorCode (integer)

On exit -- a1l'registers changed

SysError generates a system error with the ID specified by the
errorCode parameter.

It does the following precise steps:

1. Saves all registers and the stack pointer.

Assembly-Ianguage~: Actually, the following instructions
are executed:

MOVEM.L A0-A7/D0-D7,$7FC80
MOVE .• L (SP) ,$7FCC0

Note that $7FC80 is address $lFC80 on a 128K Macintosh.

2. Stores the system error ID in a global variable (named DSErrCode).

3. Checks to see whether there's a system error alert table in memory
(by testing whether the global variable DSAlertTab is 0). If
there's no system error alert table, it draws the unhappy

9/26/84 Hacker /ERROR/SYS.2

SY STEM ERROR HANDLER ROUTINE 11

Macintosh icon with a 16-bit number and a 32-bit number. The
16-bit number is always $'F for system errors. and the 32-bit
Dumber is the system error ID.

4. Allocates memory for QuickDraw globals on the stack. initializes
QuickDraw. and initializes a grafPort in which the alert box will
be drawn.

s. Checks the system error ID. If the system error ID is negative,
the alert box isn't redrawn (this is uled for system startup
alerts. which can display a sequence of consecutive ~ssages in
the same box). If the system error ID doesn't correspond to an
entry in the system error alert table. the system error alert will
display the message "Sorry. a system error has occurred

6. Draws an alert box (in the rectangle specified by the global
variable DSAlertRect).

7. If the text definition IDs aren't ,. it 'draws both strings.

8. If the icon definition ID 'isn't " it draws the icon.'

9. If' the button definition ID iF f, it returns control to the
procedure that called it (this is used during the disk-switch
alert to return control to the File Manager after the "Please
insert the disk:" message .has been displayed).

1'. If'there's a resume procedure, it increments the button definition
ID by 1.

11. Draws the buttons.

12. Hit-tests the buttons and calls the corresponding proced~re code
when a button is pressed. If there's no procedure code, it
returns to the procedure that called it (normally this shouldn't
happen).

9/26/84 Backer' /ERROR/SYS.2

12 System Error Handler Programmer's Guide

SUMMARY OF THE SYSTEM ERROR HANDLER

Programmer and. User Alerts

ID ,.
2

3

4

5

6

7

8
9

10
11
12

13

14

15

16

17-24

25
26

27

28
,30

32-53
41

100

Explanation
Bus error: Never happens on a Macintosh
Address error: Word or long-word reference made to an odd
address
Illegal instruction: The 68000 received an in8truction it
didn't recognize.
Zero divide: Signed Divide (DIVS) or Unsigned Divide (DIVU)
instruction with a divisor of 0 was executed.
Check exception: Check Register Against Bounds (CHK)
instruction was· executed and failed.
TrapV exception: Trap On Overflow (TRAPV) instruction was
executed and failed.
Privilege violation: Macintosh always runs in privilege mode;
perhaps an erroneous RTE instruction was executed.
Trace exception: The trace bit in the status register is set.
Line 1010 e.xception: The 1010 t"rap dispatcher. is broken. -,
Line 1111 exception: Usually a breakpoint
Miscellaneous exception: All other 68000 exceptioDs
Unimplemented core routine: An unimplemented trap. Dumber was
encountered.
Spurious interrupt: The interrupt vector table entry for a
particular level of interrupt is NIL; usually occurs with level
4, 5, 6, or 7 interrupts.
I/O system error: The File Manager is attempting to dequeue an
element from the 1/0 request queue that has a bad queue type
field; perhaps the qu~ue ele.ent is unlocked. Or, the
dCt.lQRead field was NIL during a Fetch or Stash call. Or, a
needed device control entry has been purged.
Segment Loader error: A GetResource call to read a segment
into memory failed.
Floating point error: The halt bit in the floating-point
environment word was set.
Can't load package: A GetResource call to read a package into
memory failed.
Out of memory!
Segment Loader error: A GetResource call to read segment' into
memory failed; usually indicates a nonexecutable file.
File map trashed: A logical block number was found that is
greater than the number of the last logical block on the volume
or less than the logical block number of the first allocation
block on the volume.
Stack overflow error: The stack and heap have collided.
"Please insert the disk:" File Manager alert
r~mory Manager error
The file named "Finder" can't be found on the disk
Can't mount system startup volume. The system couldn't
read the system resource file into .emory.

9/26/84 Hacker /EUOR/SYS.S

.-{

SUMl~~RY OF THE SY STEM ERROR HANDLER 13

32767 Sorry, a system error has occurred: Undifferentiated error

System Startup Alerts

ID Explanation
-12 RAM-based Operating System installed
-11 Disassembler installed
-10 MacsBug installed

40 ''Welcome to Macintosh" box
42 Can't mount system startup volume: An attempt to mount the

volume in the internal drive failed, or the system couldn't
read the system resource file into memory

43 ''Warning--this startup disk is not usable"

,-
Routines

PROCEDURE SysError (errorCode: INTEGER);

Assembly-Language Information

Constants

. System error IDs ,

dsBusErr .EQU 1 iBus Error
dsAddressErr .EOU 2 iAddress Error
dsIIIInstErr .EOU 3 ;Illegal Instruction
dsZeroDivErr .EOU 4 iZero Divide
dsChkErr .EOU 5 jCheck Exception
dsOvflowErr .EQU 6 iTrapV Exception
dsPrivErr .EOU 7 jPrivilege Violation
dsTraceErr .EOU 8 jTrace Exception
dsLineAErr .EOU 9 'iLine 1010 Exception
dsLineFErr .EOU 10 ;Line 1111 Exception
dsMiscErr .EOU 11 iMiscellaneous Exception
dsCoreErr .EOU 12 ;Unimplemented Core Routine
dsIrqErr .EOU 13 iSpurious Interrupt
dsIOCoreErr .EOU 14 jl/O System Error
dsLoadErr .EOU 15 ;Segment Loader Error
dsFPErr .EOU 16 .; Floating Point Error
dsNoPacltErr .EOU 17 jCan't load package 0
dsNoPkI .EOU 18 iCan't load package 1
dsNoPk2 .EQU 19 iCan't load package 2
dsNoPk3 .EOU 20 ·Can't load package 3 'i
dsNoPk4 .EQU 21 iCan't load package 4
dsNoPk5 • E'JU 22 jCan't load package 5
dsNoPk6 .EQU 23 jCan't load package 6
dsNoPk7 .. EOU 24 ;Can't load package 7
dsMemFullErr .EQU 25 jOut of memory!

9/26/84 Hacker /ERROR/SYS. S

14 System Error Handler Prl'~~ra1DlDer 's Guidi.

dsBadLaunch
d.rSErr
dsStkNBeap
dsleinsert
daMotThel
aeaTrbBase
dsSysErr

Routines

_SysError

On entry

On exit --
Variables

Name
DSErrCode
DSAlertTab
DSAlertRect

9/26/84 Hacker

.EOU
• IOU
.EOU
.EOU
.EQU
• IOU
.EOU

26
27
28
3~
31
32

32767

iSegment Loader Error
iFile Map t~ashed
;Stack overflow error
iPlease insert the disk
; This is not the ,.correct disk
;Memory Manager failed
; Sys tem Error

De: errorCode (integer)

all registers changed

Size
2 bytes
4 bytes
8 bytes

Contents
Current system error ID
Address of syst~m error alert table in use
Location of system error alert

/ERROR/ SYS. S

GLOSSARY 15

GLOSSARY

resume procedure: A procedure within an ,application that allows the
application to recover from system errors.

,system error alert: An alert box displayed by the System Error
Handler.

system error alert table: A resource that determines the appearance
and function of system error alerts~

system error ID: An ID number that appears in a system error alert to
identify the error.

9/26/84 Hacker /ERROR/SYS.G

MACINTOSH USER EDUCATION

The Operating System Utilities: A Programmer's Guide /OSUTIL/UTIL

See Also: Inside Macintosh: A Road Map
Macintosh Memory Management: An Introduction

. \

Programming Macintosh Applications in Assembly Language
Macintosh Packages: A Programmer's Guide
The Structure of a Macintosh Application
The Font Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide
The Serial Drivers: A Programmer's G~ide
Index to Technical Documentation

Modification History: First Draft Brent Davis & Caroline Rose 8/7/84
Second Draft Caroline Rose 1/11/85

ABSTRACT

This manual describes the Operating System Utilities, a set of routines
and data types in the Operating System that perform generally useful
operations such as manipulating pointers and handles, comparing
strings, and reading the date and time.

Summary of significant changes and additons since last draft:

- Corrections have been made to the descriptions of EqualString
(page 12), UprString (page 13), and SysBeep (page 23).

~ The description of Date2Secs has been expanded (page 15).

- An appendix has been added that lists all result codes, in
numerical order (31).

- The appendix containing the system traps has been expanded to
include a numerically ordered list (page 34).

2 Operating System Utilities Programmer's Guide

TABLE. OF. CONTENTS

3 About This Manual
3 Parameter RAM
7 Operating System Queues
8 General Operating System Data Types
9 Operating System Utility Routines
9 Pointer and Handle Uanipulation

12 String Comparison
13 Date and Time Operations
17 Parameter RAM Operations
19 Queue Manipulation
20 Trap Dispatch Table Utilities
22 Miscellaneous Utilities
24 Summary of the Operating System Utilities
30 Glossary
31 Appendix A: Result Codes
34 Appendix B: System Traps

Copyright (c) 1985 Apple Computer Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the Operating System Utilities, a set of routines
and data types in the Operating System that perform generally useful
operations such as manipulating pointers and handles, comparing
strings, and reading the date and time. *** Eventually it will become
part of the compre~ensive Inside Macintosh manual. ***
Like all Operating System documentation, this manual assumes you're
familiar with Lisa Pascal and the information in the following manuals:

- Inside Macintosh: A Road Map

- Macintosh Memory Management: An Introduction

- Programming Macintosh Applications -in Assembly Language, if you're
using assembly language

Depending on which Operating System Utilities you're interested in
using, you may also need to be familiar with other parts of the Toolbox
or Operating System; where that's necessary, you're referred to the
appropriate manuals.

PARAMETER RAM

Various settings, such as those specified by the user by means of the
Control Panel desk accessory, need to be preserved when the Macintosh
is off so they will still be present at the next system 'startup. This
information is kept in parameter RAM, 2~ bytes that are stored in the
clock chip together with the current settings for the date and time.
The clock chip is powered by a battery when the system is off, thereby
preserving all the settings stored in it.

You may find it necessary to read the values in parameter RAM or even
change them (for example, if you create a desk accessory like the
Control Panel). Since the clock chip itself is difficult to access,
its contents are copied into low memory at system startup. ,You read
and change parameter RAM through this low-memory,copy.

(no1te)
Certain values from parameter RAM are used so frequently
that special routines 'have been designed to return them
(for example, the Toolbox Event Manager function
GetDblTime). These routines are discussed in other
manuals where appropr.iate.

Assembly-language note: The low-memory copy of parameter RAM
begins at the address SysParam; the various portions of the copy
can be accessed through individual global variables, listed in

1/11/85 Rose /OSUTIL/UTIL.2

\

4 Operating System Utilities Programmer's Guide

the summary at the end of this manual. Some of these are copied
into other global variables at system startup for even easier
access: for example, the auto-key threshold and rate, which are
contained in the variable SPKbd in the copy of parameter RAM,
are copied into the variables KeyThresh and KeyRepThresh. Each
such variable is discussed in its appropriate manual.

The date and time is also copied at system startup from the clock chip
into its own low-memory location. It's stored as a number of seconds
since midnight, January 1, 1904, and is updated every second. The
maximum valu'e, $FFFFFFFF, corresponds to 6: 28: 15 AM, February 6, 2040;
after that, it wraps around to midnight, January 1, 1904.

Assembly-language note: The low-memory location containing' the
date and time is the global variable Time.

The structure of parameter RAM is represented by the following data
type:

TYPE SysParmType =
RECORD

valid: LONGINT;
portA: INTEGER;
portB: INTEGER;
alarm: LONGINT;
font: INTEGER;
kbdPrint: INTEGER;

volClik: INTEGER;

misc: INTEGER

END;

SysPPtr = ASysParmType;

{validity status}
{modem port configuration}
{printer port configuration}
{alarm setting} ,
{default application font number minus I}
{auto-key threshold and rate, printer}
{ connection}
{speaker volume, double-click and caret- }
{ blink times}
{mouse scaling, system startup disk, menu}
{ blink}

Only the high-order byte of the valid field is used (Figure 1). It
contains the validity status of the clock chip:, whenever you
successfully write to the clock chip, $A8 is stored in this byte.

31 24 23
reserved for future use

val idity status

Figure 1. The Valid Field

1/11/85 Rose /OSUTIL/UTIL.2

PARAMETER RAM· 5

The validity status is examined when the clock chip is read at system
startup. It won't be $A8 if a hardware problem prevented the values
from being written; in this case, the low-memory copy of parameter RAM
is set to the default values shown in the table below, and these values
are then written to the clock chip itself. (The meanings of the
parameters are explained in the descriptions of the various fields~
following the table.)

Parameter
Validity status
Modem port configuration

Printer port configuration
Alarm setting
Default application font - 1
Auto-key threshold
Auto-key rate
Printer connection
Speaker volume
Double-click time
Caret-blink time
Mouse scaling
Preferred system startup disk
Menu blink

(warning)

Default value
$AB
9600 baud, 8 data bits, 2 stop
bits, no parity
Same as for modem port
o (midnight, January 1, 1904)
2 (Geneva)
6 (24 ticks)
3 (6 ticks)
o (printer port)
3 (medium)
B (32 ticks)
B (32 ticks)
1 (on)
o (internal drive)
3

Your program must not use bits indicated as "reserved for
future use" in parameter RAM, since future Macintosh
software features will use them.

The portA and portB fields contain the baud rates, data bits, stop
bits, and parity for the device drivers using the modem port ("port A")
and printer port ("port B"). An explanation of these terms and the
exact format of the information are given in the Serial Drivers manual.

The alarm field contains the alarm setting in seconds since midnight,
January 1, 1904.

The font field contains 1 less than the number of the default
application font. A list of font numbers can be found in the Font
Manager manual.

Bit 0 of the kbdPrint field (Figure 2) designates whether the printer
(if any) is connected to the printer port (0) or the modem port (1).
Bits 8 through 11 of this field contain the auto-key rate, the rate of
the repeat when a character key is held down; this value is stored in
two-tick units (where one tick is a sixtieth of a second). Bits 12
through 15 contain the auto-key threshold, the length of time the key
must be held down before it begins to repeat; it's stored in four-tick
units.

1/11/85 Rose /OSUTIL/UTIL.2

6 Operating System Utilities Programmer's Guide

15 12 11 8 7 0

I reserved for future use I

I
auto-key thresho I d
(in four-tick units) pr inter connect i on

auto-key rate
(in two-tick units)

Figure 2. The KbdPrint Field

Bits 0 through 3 of the volClik field (Figure 3) contain the caret
blink time, and bits 4 through 7 contain the double-click time; both
values are stored in four-tick units. The caret-blink time is the
interval between blinks of the caret that marks an insertion point.
The double-click time is the greatest interval between a mouse-up and
mouse-down event that would qualify two mouse clicks as a double-click.
Bits 8 through 10 of the volClick field contain the speaker volume,
which has eight settings from silent (0) to loud (7).

15 11 10 8 7 4 3 o
*

speaker va I ume 'caret-bl ink time
(in four-tick units)

* reserved for
future use.

Figure 3.

double-click time
(in 'four-t ick units)

The VolClik Field

Bits 2 and 3 of the misc field (Figure 4) contain a value from 0 to 3
designating how many times a menu item will blink when it's chosen.
Bit 4 of this field indicates whether the preferred disk to use to
start up the system is in the internal (0) or the external (1) drive;
if there's any problem using the disk in the specified drive, the other
drive will be used.

1/11/85 Rose /OSUTIL/UTIL.2

15

*

* re~erved for future use

Figure 4.

PARAMETER RAM 7

7 6 5 4 3 2 1 o
* I

I lmenu blink

Lsystem startup disk
L...------mouse scaling

The Mise Field

Finally, bit 6 of the mise field designates whether mouse scaling is on
(1) or off (0). If mouse scaling is on, the system looks every
sixtieth of a second at whether the mouse has moved; if in that time
the sum of the mouse's horizontal and vertical changes in position is
greater than the mouse-scaling threshold (normally six pixels), then
the cur·sor will move twice as far horizontally and vertically as it
would if mouse scaling were off.

Assembly-language note: The mouse-scaling threshold is
contained in the global variable CrsrThresh.

OPERATING SYSTEM QUEUES

Some of tpe information used by the Operating System is stored in data
structures called queues. A queue is a list of identically structured
entries linked together by pointers. Queues are used to keep track of
vertical retrace tasks, I/O requests, events, mounted volumes, and disk
drives (or other block-formatted devices).

A standard Operating System queue has a header with the following
structure:

TYPE QHdr = RECORD
qFlags: INTEGER; {queue flags}
qHead: QElemPtr; {first queue entry}
qTail: QElemPtr. {last queue entry}

END;

QHdrPtr = QHdr;

QFlags contains information (usually flags) that's different for. each
queue type. QHead points ,to the first entry in the queue, and qTail
points to th~ last entry in the queue. The entries within each type of

1/11/85 Rose /OSUTIL/UTIL.2

8 Operating System Utilities Programmer's Guide

queue are different; the Opera~ing System uses the following variant
record to access them:

TYPE QTypes

QElem

= (dummyType,
vType,
ioQType,
drvQType,
evType,
fsQType);

{vertical retrace queue type}
{file I/O or driver I/O queue type}
{drive queue type}
{event queue type}
{volume-control-block queue type}

= RECORD
CASE QTypes

vType:
ioQType:
drvQType:
evType:
fsQType:

END;

OF
(vbIQElem:
(ioQElem:
(drvQElem:
(evQElem:
(vcbQElem:

VBLTask) ;
Param~lockRec) ;
DrvQEI);
EvQEI) ;
VCB)

QElemPtr = AQElem;

The exact structure of the entries in each type of Operating System
queue is described in the manual that discusses that queue in detail;
for more information, look up the corresponding data type in the index
*** currently the manual Index ~ Technical Documentation ***. All
entries in queues, regardless of the queue type, begin with a pointer
to the next queue entry and an integer designating the queue type (for
example, ORD(evType) for the event queue).

Assembly-language note: The queue types are available to
assembly-language programmers as global constants.

GENERAL OPERATING SYSTEM DATA TYPES

This section describes two data types of interest to users of the
Operating System.

There are several plac~s in the Operating System where you specify a
four-character sequence for something, such as for file types and
application signatures (as described in The Structure of a Macintosh
Application). The Pascal data type for such sequences-rs-

TYPE OSType = PACKED ARRAY[1 •• 4] OF CHAR;

Another data type that's used frequently in the Operating System is

1/11/85 Rose /OSUTIL/UTIL.2

GENERAL OPERATING SYSTEM DATA TYPES 9

TYPE OSErr = INTEGER;

This is the data type for a result code, which many Operating System
routines (including those described-rn-this manual) return in addition
to their normal results. A result code is an integer indicating
whether the routine completed its task successfully or was prevented by
some error condition (or other special condition, such as reaching the
end of a file). In the normal case that no error is detected, the
result code is

CONST noErr = 0; {no error}

A nonzero result code (usually negative) signals an error. A list of
all result codes is provided in Appendix A.

OPERATING SYSTEM UTILITY ROUTINES

Pointer and Handle Manipulation

*** The notation "[No trap macro]" (formerly "[Pascal only]") has been
changed to "[Not in ROM]" ***

These functions would be easy to duplicate with" Memory Manager calls;
they're included in the Operating System Utilities as a convenience
because the operations they perform are so common.,

FUNCTION HandToHand (VAR theHndl: Handle) OSErr;

Trap macro

On entry

On exit ---

HandToHand

A0: theHndl (handle)

A0: theHndl (handle)
D0: result code (word)

HandToHand copies the information to which theHndl is a handle and
returns a new handle to the copy in theHndl. Since HandToHand replaces
the input parameter'with a new handle, you should retain the original
value of the input parameter somewhere else, or you won't be able to
access it. For example:

1/11/85 Rose /OSUTIL/UTIL.R

\

10 Operating System Utilities Programmer's Guide

VAR xty: Handle;
err: OSErr;

y := X;
err := HandToHand(y)

The original handle remains in x while y becomes a different handle to
identical data.

Result codes noErr
memFullErr
nilHandleErr
memWZErr

No error
Not enough room in heap
NIL master pointer
Attempt to operate on a free block

FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle; size: LONGINT)
OSErr;

Trap macro

On entry

On exit

PtrToHand

A0: srcPtr (pointer)
D0: size (long word)

A0: dstHndl (handle)
D0: result code (word)

PtrToHand returns in ~stHndl a newly created hand~e to a copy of the
number of bytes specified by the size parameter t beginning at the
location specified by srcPtr.

Result codes noErr
memFullErr

No error
Not enough room' in heap

FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LONGINT)
OSErr;

-Trap macro

On entry

On exit

1/11/85 Rose

PtrToXHand

A0: srcPtr (pointer)
AI: dstHndl (handle)
D0: size (long word)

AI: dstHndl (handle)
D0: result code (word)

/OSUTIL/UTIL.R

OPERATING SYSTEM UTILITY ROUTINES 11

PtrToXHand takes the existing handle specified by dstHndl and makes it
a' handle to a copy of the number of bytes specified by the size
parameter, beginning at the location specified by srcPtr.

Result codes noErr
memFullErr'
nilHandleErr
memWZErr

No error
Not enough room in heap
NIL master pointer
Attempt to operate on a free block

FUNCTION HandAndHand (aHndl,bHndl: Handle) OSErr;

Trap macro

On entry

On exit

Hand AndHand

A0: aHndl (handle)
AI: bHndl (handle)

AI: bHndl (handle)
D0: result code (word)

HandAndHand concatenates the information to which aHndl is a handle
onto the end of the information to which bHndl is a handle.

Result codes noErr
me~FullErr
nilHandleErr
memWZErr

No error
, Not enough room in heap

NIL master pointer
Attempt to operate on a free block'

FUNCTION PtrAndHand (pntr: Ptr; hndl-: Handle; size: LONGINT) OSErr;

Trap macro PtrAndHand

On entry A0: pntr (pointer)
AI: hndl (han~le)
D0: size (long word)

On exit AI: hndl (handle) --- D0: result code (word)

PtrAndHand takes the number of bytes specified by the size parameter,
beginning at the location specified by pntr, and concatenates them onto
the end of the information to which hndl is a handle.

1/11/85 . Rose /OSUTIL/UTIL.R

)

12 Operating System Utilities Programmer's Guide

Result codes

String Comparison

noErr
memFullErr
nilHandleErr
memWZErr

No error
Not enough room in heap
NIL mast~r pointer
Attempt to operate on a free block

Assembly-Ianguage~: The trap macros for these utility
routines have optional arguments corresponding to the Pascal
flags associated with the routines. 'When present, such an
argument sets a certain'bit of the routine trap word; this is
equivalent to setting the corresponding Pascal flag to either
TRUE or FALSE, depending on the flag. The trap macros for these
routines are listed below, together with all the possible
permutations of arguments. Whichever permutation you use, you
must type it exactly as shown.

FUNCTION EqualString (aStr, bStr: Str25,S; caseSens ,diacSens: BOOLEAN)
BOOLEAN;

Trap macro

On entry

On exit ---

_CmpString
_CmpString ,MARKS

_CmpString ,CASE

_CmpString ,MARKS ,CASE

(sets bit 9, for
diacSens=FALSE)

(sets bit 10, for
caseSens=TRUE)

(sets bits 9 and 10)

A0: pointer to first character of first string
AI: pointer to first character of second string
D0: high-order word: length of first string

low-order word: length of second string

D0: 0 if strings equal, 1 if strings not equal
(long word)

EqualString compares the two given strings for equality on the
their ASCII values. If caseSens is TRUE, uppercase characters
distinguished from the corresponding

l
lowercase characters. If

is FALSE, diacritical marks are ignored during the comparison.
function returns TRUE if the strings are equal.

basis of
are
diacSens

The

1/11/85 Rose /OSUTIL/UTIL.R

(note)

OPERATING SYSTEM UTILITY ROUTINES 13

See also the International Utilities Package function
IUEqualString, as described in the Macintosh Packages
manual.

PROCEDURE UprString (VAR theString :-- Str255; diacSens: BOOLEAN);

Trap macro _UprString
_UprString ,MARKS (sets bit 9, for

diacSens=FALSE)

On entry A~: pointer to first character of string
D~: length of string (word)

On exit A~: pointer to first character of string ---

UprString converts any lowercase letters in the given string to
uppercase, returning the converted string in theString. In addition,
diacritical marks are stripped from the string if diacSens~is FALSE.

Date and Time Operations

The following utilities are for reading and setting the date and time
stored in the clock chip. Reading the date and time is a fairly common
operation; setting it is somewhat rarer, but could be. necessary for
implementing a desk accessory like the Control Panel.

The date and time is stored as an unsigned number of seconds since
midnight, January 1, 19~4; you can use a utility routine to convert
this to a date/time record. Date/time records are defined .as follows:

TYPE DateTimeRec
RECORD

year: INTEGER; {1904 to 204~}
month: ' INTEGER; {I to 12 for January to December}
day: INTEGER; {I to 31}
hour: INTEGER; {~ to 23}
minute: INTEGER; {~ to 59}
second·: INTEGER; {0 to 59}
dayOfWeek: INTEGER {I to 7 for Sunday to Saturday}

END;

1/11/85 Rose /OSUTIL/UTIL.R
/

14 Operating System Utilities Programmer's Guide

FUNCTION ReadDateTime (VAR secs: LONGINT) OSErr;

Trap macro

On entry

On exit ---

ReadDateTime

A~: pointer to long word secs

A~: pointer to long word secs
D0: result code (word)

ReadDateTime copies the date and time stored in the clock chip to a'low
memory location and returns it in the secs parameter. This routine is
called at system startup; you'll probably never need to call it
yourself. Instead you'll call GetDateTime (see below).

Assembly-language note: The low-memory location to which
ReadDateTime copies the date and time is the global variable
Time.

Result codes noErr
clkRdErr

No error
Unable to read clock

PROCEDURE GetDateTime (VAR secs: LON~INT); [Not in ROM]

GetDateTime returns in the secs parameter the contents of the low
memory location in which the date and time is stored; if the date and
time is properly set, secs will contain the number of seconds between
midnight, January 1, 1904 and the time that the function' was called.

(note)
If your application disables interrupts for longer than a
second, the number of seconds returned will not be exact.

Assembly-language note: Assembly-language programmers can just
access the global variable Time.

If you wish, you can convert the value returned by GetDateTime to a
date/time record by calling the Secs2Date procedure.

1/11/85 Rose /OSUTIL/UTIL.R

"

(note)

OPERATING SYSTEM UTILITY ROUTINES 15

Passing the value returned by GetDateTime to the
International Utilities Package procedure IUDateString or
IUTimeString will yield a string representing,the
corresponding date or time of day, respectively.

FUNCTION SetDateTime (secs: LONGINT) OSErr;

Trap macro SetDateTime

On entry D~: secs (long word)

On exit D~: result code (word) ---

SetDateTime takes a number of seconds since midnight, January 1, 19~4
as specified by the secs parameter and writes it to the clock chip as
the current date and time. It then attempts to read the value just
written and verify it by comparing it to ~he secs parameter.

Assembly-language note:, SetDateTime updates the global variable
Time to the value of the secs parameter.

Result codes noErr
clkWrErr
cl'kRdErr

No error
Time written did not verify

, Unable to read clock

PROCEDURE Date2Secs (date: DateTimeRec; VAR secs: LONGINT);

Trap macro Date2Secs

On entry A~: pointer to date/time record

On exit D~: secs (long word)

Date2Secs takes the given date/time record, converts it to the
corresponding number of seconds elapsed since midnight, January 1,
19~4, and returns the result in the secs parameter. The dayOfWeek
field of the date/time record is ignored. The values passed in the
year and month fields should be within their allowable ranges, or

1/11/85 Rose /OSUTIL/UTIL.R

16 Operating System Utilities Programmer's Guide

unpredictable results may occur; The remaining four fields of the
date/time record may contain any value. For example, September 35 will
be interpreted as October 4, and you could specify the 300th day of the
year as January 300.

PROCEDURE Secs2Date (secs: LONGINT; VAR date: DateTimeRec);

-
Trap macro Secs2Date

On entry D0: secs (long word)

On exit A0: pointer to date/time record

Secs2Date takes a number of seconds elapsed since midnight, January 1,
1904 as specified by the secs parameter, converts it to the
corresponding date and time, and returns the corresponding date/time
record in the date parameter.

PROCEDURE GetTime (VAR date: DateTimeRec); [Not in ROM]

GetTime takes the number of seconds elapsed since midnight, January 1,
1904 (obtained by calling GetDateTime), converts that value into a date
and time (by calling Secs2Date), and returns the result in the date
parameter.

Assembly-Ianguage~: From assembly language, you can pass
the value of the global variable Time to Secs2Date.

PROCEDURE SetTime (date: DateTimeRec); [Not in ROM]

SetTime takes 'the date and time specified by the date parameter,
converts it into the corresponding number of seconds elapsed since
midnight, January 1, 1904 (by calling Date2Secs), and then writes that
value to the clock chip as the current date and time (by calling
SetDateTime) •

1/11/85 Rose /OSUTIL/UTIL.R

\
'I

/

OPERATING SYSTEM UTILITY ROUTINES 17

Assembly-language note: From assembly language, you can just
call Date2Secs and SetDateTime directly.

Parameter RAM Operations

The following three utilities are used for reading from and writing to .
parameter RAM. Figure 5 illustrates the function of these three
utilities; further details are given below and earlier in the
"Parameter RAM" section.

FUNCTION InitUtil

Trap macro

On exit

Clock chip

GetSysPPtr returns e po inter
to here

"'~---.

InitUtil

WritePerem
(

)

20-byte

section of

low memory

Figure 5; Parameter RAM Routines

OSErrj

InitUtil

D~: result code (word)

InitUtil copies the contents of parameter RAM into 20 bytes of low
memory and copies the date and time from the clock chip into its own
low-memory location. This routine is called at system startup; you'll
probably never need to call it yourself.

1/11/85 Rose /OSUTIL/UTIL.R

18 Operating System Utilities Programmer's Guide

Assembly-language note: InitUtil copies parameter RAM into 20
bytes starting at the address SysParam and copies the date and
time into the global variable Time.

If the validity status in parameter RAM is not $A8 when InitUtil is
called, an error is returned as the result code, and the default values
(given earlier in the "Parameter RAM" section) are read into the low
memory copy of parameter RAM; these values are then written to the
clock chip itself.

Result codes noErr
prInitErr,

No error
Validity status not $A8

FUNCTION GetSysPPtr : SysPPtr;, [Not in ROM]

GetSysPPtr returns a pointer to the low-memory copy of parameter RAM.
You can examine the values stored in its various fields, or to change
them before calling WriteParam (below).

Assembly-language note: Assembly-language programmers can
simply access the global variables corresponding to the low
memory copy of parameter RAM. These variables, which begin at
the address SysParam, are listed in the summary.

FUNCTION WriteParam

Trap macro

On entry

On exit

OSErr;

WriteParam

A~: SysParam (pointer)
D~: MinusOne (long word)

(You have to pass the values of these global
variables for historical reasons.)

D~: result code (word)

WriteParam writes the low-memory copy of parameter RAM to the clock
chip. You should previously have called GetSysPPtr and changed
selected values as desired.

1/11/85 Rose !OSUTIL/UTIL.R

OPERATING SYSTEM UTILITY ROUTINES 19

WriteParam also attempts to verify the values written by reading them
back in and comparing them to the values in the low-memory copy.

(note)
If you've accidentally write incorrect values into
parameter RAM, the system may not be able to start up.
If this happens, you can reset parameter RAM by removing
the battery, letting the Macintosh sit turned off for
about five minutes, and then putting the battery back in.

Result codes noErr
prWrErr

No error
Parameter RAM written did not
verify

Queue Manipulation

This section describes utilities that advanced programmers may want to
use for adding entries to or deleting entries from an Operating System
queue. Normally you won't need to use these utilities, since queues
are manipulated for you as necessary by routines that need to deal with
them.

PROCEDURE Enqueue (qElement: QElemPtr; theQueue: QHdrPtr);

Trap macro _Enqueue

On entry A0: qElement (pointer)
AI: the Queue (pointer)

On exit AI: theQueue (pointer)

Enqueue adds the queue entry pointed to by qElement to the end of the
queue specified by theQueue.

(note)
Interrupts are disabled for a short time while the queue
is updated.

1/11/85 Rose /OSUTIL/UTIL.R

20 Operating Sys'tem Utili ties Programmer's Guide

FUNCTION Dequeue (qElement: QElemPtr; theQueue: QHdrPtr) OSErr;

Trap macro

On entry

On exit

_Dequeue

A0: qElement (pointer)
AI: theQueue (pointer)

AI: the Queue (pointer)
D0: result code (word)

Dequeue removes the queue entry pointed to by qElement from the queue
specified by the Queue (without deallocating the entry) and adjusts
other entries in the queue accordingly.

(note)

(note)

The note under Enqueue above also applies here. In this
case, the amount of time interrupts are disabled depends
on the length of the queue and the position of the entry
in the queue.

To remove all entries from a queue, you can just clear
all the fields of the queue's header.

Result codes noErr
qErr

No error
Entry not in specified queue

Trap Dispatch Table Utilities

The Operating System Utilities include two routines for manipulating
the trap dispatch table, which is described in detail-in the manual
Programming Macintosh Applications in Assembly Language. Using these
routines, you can inte~cept calls to an Operating System or Toolbox
routine and do some pre- or post-processing of your own: call
GetTrapAddress to get the address of 'the original routine, save that
address for later use, and call SetTrapAddress to install your own
version of the routine in the dispatch table. Before or after its own
processing, the new version of the routine can use the saved address to
call the original version.

(warning)
You can replace as well as intercept existing routines;
in any case, you should be absolutely sure you know what
you're doing. Remember that some calls that aren't in
the ROM do some processing of their own before invoking a
trap macro (for example, FSOpen eventually invokes Open,
and IUCompString invokes the macro for IUMagString)~
Also, a number of ROM routines have been patched with
corrected versions in RAM; if you intercept a patched

1/11/85 ,Rose /OSUTIL/UTIL.R

OPERATING SYSTEM UTILITY ROUTINES 21

routine, be sure to preserve the registers and the stack,
or the system will not work properly.

Assembly-Ianguage~: You can tell whether a routine is
patched by comparing its address to the global variable ROMBase;
if the address is less than.ROMBase, the routine is patched.

In addition, you can use GetTrapAddress to save time in critical
sections of your program by calling an Operating System or Toolbox
routine directly, avoiding the overhead of a normal trap dispatch.

FUNCTION GetTrapAddress (trapNum: INTEGER) LONGINT;

Trap macro _GetTrapAddress

. On entry D0: trapNum (word)

On exit A0: address of routine

GetTrapAddress returns the address of a routine currently installed in
the trap dispatch table under the trap number designated by trapNum.
To find out the trap number for a particular routine, see Appendix B.

Assembly-language note: When you use tQis technique to bypass
the trap dispatcher, you don't get the extra level of register
saving. The, routine itself will follow Lisa Pascal conventions
and preserve A2-A6 and D3-D7, but if you want any other
registers preserved across the call you have to save and restore
them yourself. '

1/11/85 Rose /OSUTIL/UTIL.R

22 Operating System Utilities Programmer's Guide

PROCEDURE SetTrapAddress (trapAddr: LONGINT; trapNum: INTEGER);

Trap macro

On entry

..:,..SetTrapAddress

A0: trapAddr (address)
D0: trapNum (word)

SetTrapAddress installs in the trap dispatch table a routine whose
. address is trapAddr; this routine is installed under the trap number
designated by trapNum.

(note)
Remember, the trap dispatch table can address locations
within a range of 64K bytes from the base address of ROM
or RAM.

Miscellaneous Utilities

PROCEDURE Delay (numTicks: LONGINT; VAR finalTicks: LONGINT);

Trap macro _Delay

On entry A0: numTicks (long word)

On exit D0: finalTicks (long word)

'Delay causes the system to wait for the number of ticks (sixtieths of a
second) specified by numTicks, and returns in finalTicks the total
number of ticks from system startup to the end of the delay.

(warning)
Do not rely on the duration of the delay being exact; it
will usually be accurate within one tick, but may be off
more than that. The Delay procedure enables all
interrupts and checks the tick count that's incremented
during the vertical retra.ce interrupt; however, it's
possible for this interrupt to be disa~led by other
interrupts, in which case the duration of the delay will
not be exactly what you requested.

1/11/85 Rose /OSUTIL/UTIL.R

OPERATING SYSTEM UTILITY ROUTINES 23

Assembly-language note: On exit from this procedure, register
D0 contains the value of the global variable Ticks as measured
at the end of the delay.

PROCEDURE SysBeep (duration: INTEGER);

SysBeep causes the system to beep for approximately the number of ticks
specified by the duration parameter. The sound decays from loud to
soft; after about five seconds it's inaudible. The initial volume of
the beep depends on the current speaker volume setting) which the user
can adjust with the Control Panel desk accessory. If the speaker
volume has been set t~ 0 (silent), SysBeep instead causes the menu bar
to blink once.

Assembly-language~: Unlike all other Operating System
Utilities, this procedure is stack-based.

1/11/85 Rose /OSUTIL/UTIL.R

24 Operating System Utilities Programmer's Guide

SUMMARY OF THE OPERATING SYSTEM UTILITIES

Constants

CONST { Result codes }

clkRdErr = -85; {unable to read clock}
clkWrErr = -86; {time written did not verify}
memFullErr = -108; {not enough room in heap}
memWZErr -111; {attempt to operate on a free block}
nilHandleErr -109; {NIL master pointer}
noErr = 0; {no error}
prInitErr -88; {validity status is not $A8}
prWrErr = -87; {parameter RAM written did not verify}
qErr = -1; {entry not in specified que,ue}

Data Types

TYPE OSType = PkCKED ARRAY[1 •• 4] OF CHAR;

OSErr = INTEGER;

SysPPtr = SysParmTyp~; ,
SysParmType =

RECORD
valid:
portA:
portB:
alarm:
font:
kbdPrint:

volClik:

misc:

END;

LONGINT;
INTEGER;
INTEGER;
LONGINT;
INTEGER;
INTEGER";

INTEGER;

INTEGER

QHdrPtr
QHdr

= QHdr;

{validity status}
{modem port configuration}
{printer port configuration}
{alarm setting}
{default application font number minus l}
{auto-key threshold and rate, printer}
{ connection}
{speaker volume, double-click and caret~ }
{ blink times} ,
{mouse scaling, system startup disk, menu }
{ blink}

RECORD
qFlags:
qHead:
qTail:

INTEGER; {queue flags}
QElemPtr; {first queue entry}
QElemPtr {last queue entry}

END;

1/11/85 Rose /OSUTIL/UTIL.S

SUMMARY OF THE OPERATING SYSTEM UTILITIES 25

QTypes = (dummyType,
vType,
ioQType,
drvQType,
evType,
fsQType);

{vertical retrace queue type}
{file I/O or driver I/O queue type}
{drive queue type}
{event queue type}
{volume-control-block queue type}

QElemPtr
QElem

= QElem;
= RECORD

CASE QTypes
vType:
ioQType:
drvQType:
evType:
fsQType:

END;

OF
(vblQElem:
(ioQElem:
(drvQElem:
(evQElem:
(vcbQElem:

VBLTask) ;
ParamBlockRec)j
DrvQEl) ;
EvQEl) ;
VCB)

DateTimeRec =
RECORD

year:
month:
day:
hour:
minute:
second:
dayOfWeek:

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER

{19~4 to 2~4~}
{1 to 12 for January to December}
{1 to 31}
{~ to 23}
{~ to 59}
{0 to 59}
{1 to 7 for Sunday' to Saturday}

END;

Routines

Pointer and Handle Manipulation

FUNCTION
FUNCTION

FUNCTION

FUNCTION
FUNCTION

HandToHand (VAR theHndl: Handle) : .0SErr;
PtrToHand . (srcPtr: Ptr; VAR dstHndl: Handle; size:

LONGINT) : OSErr;
PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LONGINT)

OSErr;
HandAndHand (aHndl,bHndl: Handle) : OSErr;
PtrAndHand (pntr: Ptr; hndl: Handle; size: LONGINT) OSErrj

String Comparison

FUNCTION EqualString (aStr,bStr: Str255; caseSens,d!acSens: BOOLEAN)
BOOLEAN;

PROCEDURE UprString (VAR theString: Str255;' diacSens: BOOLEAN)j

1/11/85 Rose /OSUTIL/UTIL.S

26 Operating System Utilities Programmer's Guide

Date and Time Operations

FUNCTION ReadDateTime (VAR secs: LONGINT) : OSErr;
PROCEDURE GetDateTime (VAR secs: LONGINT); [Not in ROM]
FUNCTION SetDateTime (secs: LONGINT) : OSErr;
PROCEDURE Date2Secs (date: DateTimeRec; VAR secs: LONGINT);
PROCEDURE Secs2Date (secs: LONGINT; VAR date: DateTimeRec);
PROCEDURE GetTime (VAR date: DateTimeRec); [Not in ROM]
PROCEDURE SetTime (date: DateTimeRec); [Not in ROM]

Parameter RAM Operations

FUNCTION InitUtil :
FUNCTION GetSysPPtr
FUNCTION WriteParam

Queue Manipulation

OSErr;
SysPPtrj [Not in ROM]
OSErr;

PROCEDURE Enqueue (qElement: QElemPtr; theQueue: QHdrPtr);
FUNCTION Dequeue (qElement: QElemPtr; theQueue: QHdrPtr) : OSErr;

Trap Dispatch Table Utilities

PROCEDURE SetTrapAddress (trapAddr: LONGINT; trapNum: INTEGER);
FUNCTION GetTrapAddress (trapNum: INTEGER) : LONGINT;

Miscellaneous Utilities

PROCEDURE Delay (numTicks: LONGINTj VAR finalTicks: LONGINT);
PROCEDURE SysBeep (duration: INTEGER);

1/11/85 Rose /OSUTIL/UTIL.S

SUMMARY OF THE OPERATING SYSTEM UTILITIES 27

Default Parameter RAM Values

Parameter
Validity status
Modem por~ con~iguration

Printer port configuration
Alarm setting

Default value
$A8
9600 baud, 8 data bits, 2 stop
bits, no parity
Same as for modem port

Default application font - 1
Auto-key threshold

o (midnight, January 1, 1904)
2 (Geneva)
6 (24 ticks)
3 (6 ticks) Auto-key rate

Printer connection
Speaker volume
Double-click time
Caret-blink time
Mouse scaling

o (printer port)
3 (medium)
8 (32 ticks)
8 (32 ticks)
1 (on)

Preferred system startup disk
Menu blink

o (internal drive)
3

Assembly-Language Information

Constants

j Result codes

clkRdErr .EQU
clkWrErr .EQU
memFullErr .EQU
memWZErr .EQU
nilHandleErr .EQU
noErr .EQU
prlnitErr .EQU
prWrErr .EQU
qErr .EQU

j Queue types

vType .EQU
ioQType .EQU
drvQType .EQU
evType .EQU
fsQType .EQU

-85
-86
-108
-111
-109

0
-88
-87
-1

1
2
3
4
5

junable to read clock
jtime written did not verify
jnot enough room in·heap
;attempt to operate on a free block
;NIL master pointer
jno error
;validity status is not $A8
jparameter RAM written did not verify
;entry not in specified queue

;vertical retrace queue type
;file I/O or driver I/O queue type
jdrive queue type
;event queue type
;volume-control-block queue type

Queue Data Structure

qFlags
qHead
qTail

1/11/85 Rose

Queue flags (word)
Pointer to fi~st queue entry
Pointer to last queue entry

/OSUTIL/UTIL.S

28 Operating System Utilities Programmer's Guide

Date/Time Record Data Structure

dtYear
dtMonth
dtDay
dtHour
dtMinute
dtSecond
dtOayOfWeek

Routines

Name
HandToHand

PtrToHand

PtrToXHand

HandAndHand

PtrAndHand

CmpString

UprString-

ReadOateTime

SetDateTime
Date2Secs

Secs2Date

1/11/85 Rose

1904 to 2040 (word)
1 to 12 for January to December (word)
1 to 31 (word)
0 to 23 (word)
0 to 59 (word)
0 to 59 (word)
1 to 7 for Sunday to Saturday (word)

On entry
A0: theHndl (handle)

A0: srcPtr (ptr)
D0: size (long),
A0: srcPtr (ptr)
A1: dstHndl (handle)
D0: size (long)
A0: aHndl (handle)
A1: bHndl (handle)
A0: pntr (ptr)
A1: hndl (handle)
00: size (long)

On exit
A0: theHndl (handle)
D0: result code (word)
A0: dstHndl (handle)
D0: result code (word)
AI: dstHndl (handle)
D0: result code (word)

AI: bHndl (handle)
D0: result code (word)
AI: hndl (handle)
D0: result code (word)

_CmpString
_CmpString
_CmpString

,MARKS sets bit 9, for diacSens=FALSE
,CASE sets bit 10, for caseSens=TRUE
,MARKS,CASE sets bits 9 and 10

A0: ptr ~o first string
AI: ptr to second string
D0: high word: length of

first string
low word: length of

second string

D0: 0 if equal, 1 if
not equal (long)

_UprString ,MARKS sets bit 9, for diacSens=FALSE

A0: ptr to string
D0: length of string (word)

"
Af/J: ptr to long word

secs

Df/J: secs (long)
Af/J: ptr to date/time

record
00: secs (long)
Df/J: secs (long)

A0: ptr to string

A0: ptr to long word
secs

D0: result code (word)
D0: result code (word)

A0: ptr to date/time
record

/OSUTIL/UTIL.S

InitUtil
WriteParam

Enqueue
Dequeue

GetTrapAddress
SetTrapAddress

Delay
SysBeep

Variables

SysParam
SPValid
SPPortA
SPPortB
SPAlarm
SPFont
SPKbd
SPPrint
SPVolCtl
SPClikCaret
SPMisc2
CrsrThresh
Time

1/11/85 Rose

SUMMARY OF THE OPERATING SYSTEM UTILITIES 29

D0: result code (word)
A0 : SysParam (ptr)
D0: MinusOne (long)

A0: qElement (ptr)
A0: qElement (ptr)
AI: the Queue (ptr)

D0: trapNum (word)
A0: trapAddr (address)
D0: trapNum (word)

A0: numTi~ks (long)
Push duration (word) onto
stack

D0: result code (word)

AI: theQueue (ptr)
A1: theQueue (ptr)
D0: result code (word)

D0: address of routine

D0: finalTicks (long)

Low-memory copy of parameter RAM (20 bytes)
Validity status (byte)
Modem port configuration (word)
Printer port configuration (word)
Alarm setting (long) .
Default application font number minus 1 (word)
Auto-key threshold and rate (byte)
Printer connection (byte)
Speaker volume (byte) ,
Double-click and caret-blink times (byte)
Mouse scaling, system startup disk, menu blink (byte)

.Mouse-scaling threshold (word)
Seconds since midnight, January 1, 1904 (long)

/OSUTIL/UTIL.S

30 Operating System Utilities Programmer's Guide

GLOSSARY

auto-key rate: The rate at which a key repeats after it's begun to do '
so.

auto-key threshold: The length of time a key must be held down before
it begins to repeat.

caret-blink time: The interval between blinks of the caret that marks
an insertion point.

clock chip: A special chip in which are stored parameter RAM and the
current settings for the date and time. This chip runs on a battery
when the system is off, thus preserving the information.

date/time record: An alternate representation of the date and time
(which is stored on the clock chip in seconds since midnight, January
1, 19~4).

double-click time: The greatest interval between a mouse-up and mouse
down event that would qualify two mouse clicks as a double-click.

mouse scaling: A feature that causes the cursor to move twice as far
during a mouse stroke than it would have otherwise, provided the change
in the mouse's position in a sixtieth of a second exceeds the mouse~
scaling threshold.

mouse-scaling threshold: A number of pixels which, if exceeded by the
sum of the horizontal and vertical changes in the mouse position during
a sixtieth of a second, causes mouse scaling to occur (if that feature
is turned on); normally six pixels.

parameter RAM: In the clock chip, 2~ bytes where settings such as
those made with the Control Panel desk accessory are preserved.

queue: A list of identically structured entries linked together by
pointers.

result code: An integer indicating whether a routine completed its
task successfully or was prevented by some error condition.

validity status: A number stored in parameter RAM designating whether
the last attempt to write there was successful. (The number is $AB if
so.)

1/11/85 Rose /OSUTIL/UTIL.G

APPENDIX A: RESULT CODES 31

APPENDIX A: RESULT CODES

This appendix lists all the result codes returned by routines in the
Macintosh Op~rating System, as well as a few that are returned by the
Resource Manager and Scrap Manager of the User Interface Toolbox.
They're ordered by value, for convenience when debugging; the names you
should actually use in your program are also listed.

The result codes are grouped roughly according to the lowest level at
which the error may occur. This doesn't mean that only routines at
that level may cause those errors; higher-level software may yield the
same result codes. For example, an Operating System Utility routine
that calls the Memory Manager may return one of the Memory Manager
result codes. Where a different or more specific meaning is
appropriate in a different context, that meaning is also listed.

Value Name Meaning

noErr 'No error

Operating' System Event Manager Error

1 evtNotEnb

Queuing Errors

-1
-2

Device

-17
-18
-19
-2~
-21

-22

-23

-25
-26
-27
-28'

qErr
vTypErr

Manager Errors

controlErr
statusErr
readErr
writErr
badUnitErr

unitEmptyErr

openErr

dRemovErr
dInstErr
abortErr
notOpenErr

File Manager Errors

-33 dirFulErr
-34 dskFulErr
-35 nsvErr

1/11/85 Rose

Event type not designated in system event mask

Entry not in queue
QType field of entry in vertical retrace queue
isn't vType (in Pascal, ORD(vTyp~»

Driver can't responQ to this Control call
Driver can't respond to this Status call
Driver can't respond to Read calls
Driver can't respond to WrIte calls
Driver reference number doesn't match unit
table
Driver reference number specifies NIL handle
in unit table
Requested read/write permission doesn't match

. driver's open permission
Attempt to open RAM Serial Driver failed
Attempt to remove an open device driver
Couldn't find driver in resource file
I/O request aborted by KillIO
Driver isn't open

File directory full
All allocation blocks on the volume are full
Specified volume doesn't exist

/OSUTIL/UTIL.A

32 Operating System Utilities Programmer's Guide

-36
-37

-38
-39

-40
-41
-42

-43
-44
-45
-46
-47
-48

-49

-50

-51

-52

-53
-54
-5.5

-56

-57

-58

-59
-60

-61

ioErr
bdNamErr

fnOpnErr
eofErr

posErr
mFulErr
tmfoErr

fnfErr
wPrErr
fLckdErr
vLckdErr
fBsyErr
dupFNErr

opWrErr

paramErr

rfNumErr

gfpErr

volOffLinErr
permErr
volOnLinErr

nsDrvErr

noMacDskErr

extFSErr

fsRnErr
badMDBErr

wrPermErr

Low-Level Disk Errors

-64 noDriveErr
-65 offLinErr
-66 noNybErr
-67 noAdrMkErr
-68 dataVerErr
-69 badCkSmErr
-70 badBtSlpErr

1/11/85 Rose

I/O error
Bad file name or volume name (perhaps zero
length)
File not open
Logical end-of-file reached during read
operation
Attempt to position before start of file
Memory full
Too many files open; only 12 files can be
open simultaneously
File not found
Volume is locked by a har-dware setting
File is locked
Volume is locked by a software flag
File is busy; one or more files are open
File with specified name and version number
already exists
The read/write permission of only one
access path to a file can allow writing
Error in parameter list
Parameters don't specify an existing volume,
and there's no default volume (File Manager) ,
Bad positioning information (Disk Driver)
Bad drive number (Disk Initialization Package)'
Path reference number specifies nonexistent
access path
Error during GetFPos *** will be in next
draft of File Manager manual ***
Volume not on-line
Read/write permission doesn't 'allow writing
Specified volume is already mounted and on
line
No such drive; specified drive number doesn't
match any number in the drive queue
Not a Macintosh disk; volume lacks Macintosh
format directory
External file system; file-system identifier
is. nonzero, or path reference number is
greater than 1024
Problem during rename
Bad master directory block; must reinitialize
volume
Read/write permission or open permission
doesn't allow writing

Drive isn't connected
No disk in drive
Disk is probably blank
Can't find an address mark
Read-verify failed
Bad address mark
Bad address mark

/OSUTIL/UTIL.A

-71 noDtaMkErr
-72 badDCksum
-73 badDBtSlp
-75 cantStepErr
-76 tkOBadErr
-77 initIWMErr
-78 twoSideErr

-79 spdAdjErr
-80 seekErr
.,..81 sectNFErr

APPENDIX A: RESULT CODES 33

Can't find a data mark
Bad data mark
Bad data mark
Hardware error
Hardware error.
Hardware error
Tried to read side 2 of a disk in a single
sided drive
Hardware error
Hardware error
Can't find sector

Also, to check for any low-level disk error:

-84 firstDskErr
-64 lastDskErr

Clock Chip Errors

-85 clkRdErr
-86 clkWrErr
-87 prWrErr
-88 prInitErr

Scrap Manager Errors

-100 noScrapErr
-102 noTypeErr

Memory Manager Errors

-108 memFullErr
-109 nilHandleErr
-111 memWZErr
-112 memPurErr

Resource Manager Errors

-192
-193
-194
-195
-196
-197

1/11/85

resNotFound
resFNotFound
addResFailed
add Ref Failed
rmvResFailed
rmvRefFailed

Rose

First of the range of low-level disk errors
Last of the range of low-level disk errors

Unable to read clock
Time wr~tten did nrit verify
Parameter RAM written-did not verify
Validity status i~ not $A8

Desk scrap isn't initialized
No data of the requested type

Not enough room in heap zone
NIL master pointer
Attempt to operate on a free block
Attempt to purge a locked block

Resource not found
Resource file not found
AddResource failed
AddReference failed
RmveResource failed
RmveReference failed

/OSUTIL/UTIL.A

34 Operating System Utilities Programmer's Guide

APPENDIX B: SYSTEM TRAPS

This appendix lists the trap macros for the Toolbox and Operating
System routines and their corresponding trap word values in
hexadecimal. The "Name" column gives the trap macro name (without its
initial underscore character). In those cases where the name of the
equivalent Pascal call is different, the Pascal name appears indented
under the main entry. The routines in Macintosh packages are listed
under the macros they invoke after pushing a routine selector onto the
stack; the routine selector follows the Pascal routine name in
parentheses.

There are two tables: The first is ordered alphabetically by name; the
second is ordered numerically by trap number, for usefulness when
debugging.

(note)
The Operating System Utility routines GetTrapAddress and
SetTrapAddress take a trap number as a parameter, not a
trap word. You can get the trap number from the trap
word as follows: If the trap word begins with A0 or A8,
the last two digits are the trap number; if it begins
with A9, the trap number is 1 followed by the last two
digits of the trap word.

Name TraE Word Name
AddDrive A04E CalcVBehind
AddPt A87E CalcVisBehind
AddReference A9AC CalcVis
AddResMenu A94D CautionAlert
Add Resource A9AB Chain
Alert A98S ChangedResource
Allocate A010 CharWidth

PBAllocate CheckItem
AngleFromSlope A8C4 CheckUpdate
AppendMenu A933 ClearMenuBar
BackColor A863 ClipAbove
BackPat A87C ClipRect
BeginUpdate A922 Close
13itAnd A858 PBClose
BitClr A85F CloseDeskAcc
BitNot A85A CloseDialog
BitOr A85B Closepgon
BitSet A85E ClosePoly
BitShift A85C ClosePicture
BitTst A85D ClosePort
BitXor A859 CloseResFile
BlockMove A02E CloseRgn
BringToFront A920 Cl6seWindow
Button A974 CmpString
CalcMenuSize A948 EqualString

Trap Word
A90A

A909
A988
A9F3
A9AA
A88D
A945
A911
A934
A90B
A87B
A001

A9B7
A982
A8CC

A8F4
A87D
A99A
A8DB
A92D
A03C

1/11/85 Rose /OSUTIL/UTIL.B

ColorBit
CompactMem
Control

PBControl
CopyBits
CopyRgn
CouldAlert
CouldDialog
CountMItems
CountResources
CountTypes
Create

PBCreate
CreateResFile
CurResFile
Date2Secs
Delay
Delete

PBDe'lete
DeleteMenu
DeltaPoint
Dequeue
DetachResource
DialogSelect
DiffRgn
DisableItem
DisposControl

DisposeControl
DisposDialog
DisposHandle
DisposMenu

DisposeMenu
DisposPtr .
DisposRgn

DisposeRgn
DisposWindow

DisposeWindow
DragControl
DragGrayRgn
DragTheRgn
DragWindow
DrawChar
DrawControls
DrawDialog
DrawGrowIcon
DrawMenuBar
DrawNew
DrawPicture
DrawString
DrawText
DrvrInstall

(internal use only)
DrvrRemove

(internal use only)

1/11/B5 Rose

AB64
A04C
A004

ABEC
ABDC
A9B9
A979
A950
A99C
A99E
A00B

A9Bl
A994
A9C7
A03B
A009

A936
A94F
A96E
A992
A9B0
ABE6
A93A
A955

A9B3
A023
A932

A0lF
ABD9

A9l4

A967
A905
A926
A925
ABB3
A969
A9Bl
A904
A937
A90F
ABF6
ABB4
ABB5
A03D

A03E

APPENDIX B: SYSTEM TRAPS 35

Eject
PBEject

EmptyHandle
EmptyRect
EmptyRgn
EnableItem
EndUpdate
Enqueue
EqualPt
EqualRect
EqualRgn
EraseArc
EraseOval
ErasePoly
EraseRect
EraseRgn
EraseRoundRect
ErrorSound
EventAvail
ExitToShell
FillArc
FillOval
FillPoly
FillRect
FillRgn
FillRoundRect
FindControl
FindWindow
FixMul
FixRatio
FixRound
FlashMenuBar
FlushEvents
FlushFile

PBFlushFile
FlushVol

PBFlushVol
FMSwapFont

SwapFont
ForeColor
FrameArc
FrameOval
FramePoly
FrameRect
FrameRgn
FrameRoundRect
FreeAlert
FreeDialog
FreeHem
FrontWindow
GetAppParms
GetClip
GetCRefCon
GetCTitle

A0l7

A02B
ABAE
ABE2

, ,A939
A923
A96F
ABBl
ABA6
ABE3
ABC0
ABB9
ABCB
ABA3
A8D4
ABB2
A98C
A97l
A9F4
ABC2
ABBB
ABCA
A8A5
A8D6
A8B4
A96C
A92C
A86B
AB69
AB6C
A94C
A032
A045

A0l3

A90l

AB62
ABBE
ABB7
ABC6
ABAl
A8D2

, ABB0
A98A
A97A
A0lC
A924
A9F5
AB7A
A95A
A95E

/OSUTIL/UTIL.B

36 Operating System Utilities Programmer's Guide

GetCtlAction A96A GetScrap A9FD
GetCtlValue A960 GetString A9BA
GetCursor A9B9 GetTrapAddress A'/J46
GetDltem A9BD GetVol A'/J14 GetEOF A'/Jil PBGetVol

PBGetEOF GetVollnfo A007 GetFilelnfo A00c PBGetVlnfo
PBGetFlnfo GetWindowPic A92F

GetFName ABFF GetWMgrPort A910 GetFontName GetWRefCon A917 GetFNum A900 GetWTitle A919
GetFontlnfo ABBB GetZone A0lA GetFPos A0lB GlobalToLocal AB71 PBGetFPos GrafDevice AB72 GetHandleSize A025 GrowWindow A92B Getlcon A9BB HandAndHand A9E4 GetlndResource A99D HandleZone A026 Get IndType A99F HandToHand A9EI Getltem A946 HideControl A95B GetIText A990 HideCursor AB52
Getltmlcon A93F HidePen AB96

Getltemlcon HideWindow _ A916
GetltmMark A943 HiliteControl A95D

GetltemMark HiliteMenu A93B
GetltmStyle A94l HiliteWindow A91C

GetltemStyle HiWord AB6A
GetKeys A976 HLock A'/J29
GetMaxCtl A962 HNoPurge A04A

GetCtlMax HomeResFile A9A4
GetMenuBar A93B HPurge A049
GetMHandle A949 HUnlock A02A
GetMinCtl A96(l InfoScrap A9F9

GetCtlMin InitAllPacks A9E6
GetMouse A972 InitApplZone A02C
GetNamedResource A9Al' InitCursor . AB50
GetNewControl A9BE InitDialogs A97B
GetNewDialog A97C InitFonts A8FE
GetNewMBar A9C0 InitGraf AB6E.
GetNewWindow A9BD InitMenus A93'/J
GetNextEvent A97(/J InitPack A9E5
GetOSEvent A031 InitPort AB6D
GetPattern A9BB InitQueue A016
GetPen AB9A FlnitQueue *** File Mgr.
GetPenState AB9B InitQueue routine will
GetPicture A9BC be renamed this *** GetPixel AB65 InitResources A995
GetPort AB74 InitUtil A03F
GetPtrSize A021 InitWindows A912
GetResAttrs A9A6 InitZone A0l9
GetResFileAttrs A9F6 InsertMenu A935
GetReslnfo A9AB InsertResMenu A95l
GetResource A9A(/J InsetRect ABA9
GetRMenu A9BF InsetRgn ABEl

GetMenu InvalRect A92B

1/11/B5 Rose /OSUTIL/UTIL.B

APPENDIX B: SYSTEM TRAPS 37

InvalRgn A927 Offline A03s
InverRect A8A4 PBOffline

InvertRect OffsetPoly A8CE
.InverRgn A8Ds OffsetRect A8A8

InvertRgn OfsetRgn A8E0
InverRoundRect A8B3 OffsetRgn

InvertRoundRect Open A000
InvertArc A8Cl PBOpen
InvertOval A8BA OpenDeskAcc A9B6
InvertPoly A8C9 OpenPicture A8F3
ISDialogEvent A97F OpenPoly A8CB
KillControls A9s,6 OpenPort A86F
KillIO A006 OpenResFtle A997

PBKillIO OpenRF A00A
KillPicture A8Fs PBOpenRF
KillPoly A8CD OpenRgn A8DA

, Launch A9F2 OSEventAvail A030
Line A892 Pack0 (not used) A9E7
LineTo A891 Packl (not used) A9E8
LoadResource , A9A2 Pack2 A9E9
LoadSeg A9F0 DIBadMount (0)
LocalToGlobal A870 DIFormat (6)
LodeScrap A9FB DILoad (2)

LoadScrap DIUnload (4)
LongMul A867 DIVerify (8)
LoWord A86B DIZero (10)
MapPoly A8FC Pack3 A9EA
MapPt A8F9 SFGetFile (2)
MapRect A8FA SFPGetFile (4)
MapRgn A8FB SFPPutFile (3)
MaxMem A01D SFPutFile (1)
MenuKey , A93E Pack4 A9EB
MenuSelect A93D PackS A9EC
ModalDialog A991 Pack6 A9ED
MoreMasters A036 IUDatePString (14)
MountVol A00F IUDateString (0)

PBMountVol IUGetIntl (6)
Move A894 IUMagIDString (12)
MoveControl A9s9 IUMagString (10)
MovePortTo A877 IUMetric (4)
MoveTo A893 IUSetlntl (8)
MoveWindow A91B IUTimePString (16)
Munger A9Ey) IUTimeString (2)
NewControl A9s4 PackT A9EE
NewDialog A97D NumToString (0)
NewHandle A022 StringToNum (1)
NewMenu A931 PackBits A8CF
NewPtr A01E PaintArc A8BF
NeWRgn A8D8 PaintBehind A90D
NewString A906 PaintOne A90c
NewWindow A913 PaintOval A8B8
NoteAlert A987 PaintPoly A8C7
ObscureCursor A8s6 PaintRect A8A2

PaintRgn A8D3

1/11/85 Rose /OSUTIL/UTIL.B

3S Operating System Utilities Programmer's Guide

PaintRoundRect A8B1 SetCRefCon A95B
ParamText A9SB SetCTitle A95F
PenMode AS9C SetCtlAction A96B
PenNormal AS9E SetCtlValue A963
PenPat AS9D SetCursor ASS1
PenSize AS9B SetDateTime A03A
PicComment ASF2 SetDltem A9SE
PinRect A94E SetEmptyRgn ASDD
Plotlcon A94B SetEOF A012
PortSize AS76 PBSetEOF
PostEvent A02F SetFilelnfo A00D
Pt2Rect ASAC PBSetFlnfo
PtlnRect AS AD SetFilLock A041
PtlnRgn ASES PBSetFLock
PtrAndHand A9EF SetFilType A043
PtrToHand A9E3 PBSetFVers
PtrToXHand A9E2 SetFontLock A903
PtrZone A04S SetFPos A044
PtToAngle ASC3 PBSetFPos
PurgeMem A04D SetGrowZone A04B
PutScrap A9FE SetHandleSize A024
Random AS61 Setltem A947
RDrvrlnstall A04F SetIText A9SF
Read A002 Setltmlcon A940

PBRead Setltemlcon
ReadDateTime A039 SetltmMark A944
RealFont A902 SetltemMark
ReallocHandle A027 SetltmStyle A942
RecoverHandle A02S SetltemStyle

RectlnRgn ASE9 SetMaxCtl A96S

RectRgn ASDF SetCtlMax

ReleaseResource A9A3 SetMenuBar A93C

, Rename A00B SetMFlash A94A

PBRename SetMenuFlash

ResError A9AF SetMinCtl A964

ResrvMem A040 SetCtlMin

RmveReference A9AE .SetOrigin AS78

RmveResource A9AD ' . SetPBits AS7S

RsrcZonelnit A996 SetPortBits

RstFilLock A042 SetPenState AS99

PBRstFLock SetPort AS73

SaveOld A90E SetPt AS80
ScalePt ASFS SetPtrSize A020
ScrollRect ASEF SetRecRgn ASDE

Secs2Date A9C& SetRectRgn

SectRect ASAA SetRect ASA7

SectRgn ASE4 SetResAttrs A9A7

SelectWindow A91F SetResFileAttrs A9F7

SelIText A97E SetReslnfo A9A9

Send Behind A921 SetResLoad A99B

SetAppBase A0S7 SetResPurge A993

SetApplBase SetStdProcs ASEA

SetApplLimit A02D SetString A907

SetClip AS79 SetTrapAddress A047

1/11/S5 Rose /OSUTIL/UTIL.B

APPENDIX B: SYSTEM TRAPS 39

SetVol A0l5 ' TEGetText A9CB

PBSetVol TEIdle A9DA

SetWindowPic A92E TEInit A9CC

SetWRefCon A918 TEInsert A9DE
I

SetWTitle A9lA TEKey A9DC

SetZone A0lB TENew A9D2

ShfeldCursor A855 TEPaste A9DB

ShowControl A957 TEScroll A9DD

ShowCursor A853 TESetJust A9DF

ShowHide A908 TESetSelect A9Dl
. ShowPen A897 TESetText A9CF
ShowWindow A9l5 TestControl A966
SizeControl A95C TEUpdate A9D3
SizeRsrc A9A5 TextBox A9CE

SizeResource TextFace A888
SizeWindow A9lD TextFont A887
SlopeFromAngle A8BC TextMode A889
SpaceExtra A88E TextSize A88A
Status A005 TextWidth A886

PBStatus TickCount A975

StdArc A8BD TrackControl A968
StdBits A8EB TrackGoAway A9lE
StdComment A8Fl UnionRect A8AB
StdGetPic A8EE UnionRgn A8E5
StdLine A890 UniqueID A9Cl
StdOval A8B6 UnloadSeg A9Fl
StdPoly A8C5 UnlodeScrap A9FA
StdPutPic A8F0 UnloadScrap
StdRect A8A0 UnmountVol A00E
StdRgn A8Dl PBUnmountVol
StdRRect A8AF UnpackBits A8D0

StdText A882 UpdateResFile A999

StdTxMeas A8ED UprString A054

StillDown A973 UseResFile A998

StopAlert A986 ValidRect A92A

StringWidth A88C ValidRgn A929

Stuff Hex A866 Vlnstall A033 ,

SubPt A87F VRem6ve A034

SysBeep A9C8 WaitMouseUp A977

SysEdit A9C2 Write A003
SystemEdit PBWrite

SysError A9C9 WriteParam A038
SystemClick A9B3 WriteResource A9B0
SystemEvent A9B2 XorRgn A8E7

SystemMenu A9B5 ZeroScrap A9FC

SystemTask A9B4
TEActivate A9D8
TECalText A9D0
TEClick A9D4
TECopy A9D5
TECut A9D6
TEDeactivate A9D9
TEDelete A9D7
TEDispose A9CD

1/11/85 Rose /OSUTIL/UTIL.B

40 Operating System Utilities Programmer's Guide

TraE Word Name TraE Word Name
A000 Open A01B SetZone

PBOpen A01C FreeMem
A001 Close A01D MaxMem

PBClose A01E NewPtr
A002 Read A01F DisposPtr

PBRead A020 SetPtrSize
A003 Wri.te A021 GetPtrSize

PBWrite A022 NewHandle
A004 Control A023 DisposHandle

. PBControl A024 SetHandleSize
A005 Status A025 GetHandleSize

PBStatus A026 HandleZone
A006 KillIO A027 ReallocHandle

PBKillIO 'A028 RecoverHandle
A007 GetVollnfo A029 HLock·

PBGetVlnfo A02A HUnlock
A008 Create A02B EmptyHandle

PBCreate A02C InitApplZone
A009 Delete A02D SetApplLimit

PBDelete A02E BlockMove
A00A OpenRF A02F PostEvent

PBOpenRF A030 O"SEventAvail
A00B Rename A031 GetOSEvent

PBRename A032 FlushEvents
A00c GetFilelnfo A033 Vlnstall

PBGetlnfo A034 VRemove
A00D SetFilelnfo A035 Offline

PBSetFlnfo PBOffline
A00E UnmountVol A036 MoreMasters

PBUnmountVol A038 WriteParam
A00F MountVol A039 ReadDateTime

PBMountVol A03A SetDateTime
A010 Allocate A03B Delay

PBAllocate A03C CmpString"
A011 GetEOF EqualString

PBGetEOF A03D Drvrlnstall
A012 SetEOF (internal use only)

PBSetEOF A03E DrvrRemove
A013 FlushVol (internal use only)

PBFlushVol' A03F InitUtil
A014 GetVol A040 ResrvMem

PBGetVol A041 SetFilLock
A01S SetVol PBSetFLock

PBSetVol A042 RstFilLock
A016 InitQueue PBRstFLock

FlnitQueue *** File Mgr. A043 SetFilType
InitQueue routine will PBSetFVers
be renamed this *** A044 SetFPos

A017 Eject PBSetFPos
PBEject A045 FlushF.ile

A018 GetFPos PBFlushFile
PBGetFPos A046 GetTrapAddress

A019 InitZone A047 SetTrapAddress
A01A Get.Zone A048 PtrZone .,. \~ :

1/11/85 Rose /OSUTIL/UTIL.B

APPENDIX B: 'SYSTEM TRAPS 41

A87E AddPt
A049 HPurge A87F SubPt
ArtJ4A HNoPurge

A880 SetPt
ArtJ4B SetGrowZone A881 EqualPt
A04C CompactMem A882 StdText
A04D PurgeMem A883 DrawChar"
A04E AddDrive A884 DrawString
A04F RDrvrlnstall A885 DrawText
A054 UprString A886 ·TextWidth
A057 SetAppBase A887 TextFont

SetApplBase A888 TextFace
A850 InitCursor A889 TextMode
A851 SetCursor A88A TextSize
A852 HideCursor A88B GetFontlnfo
A853 ShowCursor A88C StringWidth
A855 ShieldCursor A88D CharWidth
A856 ObscureCursor A88E SpaceExtra
A858 ' BitAnd A89'/) StdLine
A859 BitXor A891 LineTo
A85A BitNot A892 Line
A85B BitOr A893 MoveTo
A85C BitShift A894 Move
A85D BitTst A899 HidePen
A85E BitSet A897 ShowPen
A85F BitClr A898 GetPenState
A861 Random A899 SetPenState
A862 ForeColor A89A GetPen
A863 BackColor A89B PenSize
A864 ColorBit A89C PenMode
A865 GetPixel A89D PenPat
A866 Stuff Hex A89E PenNormal
A867 LongMul A8A'/) St.dRect
A868 FixMul A8Al FrameRect
A869 FixRatio A8A2 PaintRect
A86A HiWord A8A3 EraseRect
A86B LoWord A8A4 InverRect
A86C FixRound InvertRect
A86D InitPort A8A5 FillRect
A86E InitGraf A8A6 EqualRect
A86F OpenPort A8A7 SetRect
A87'/) LocalToGlobal A8A8 OffsetRect
A871 GlobalToLocal A8A9 InsetRect
A872 GrafDevice A8AA SectRect
A873 SetPort A8AB UnionRect
A874 GetPort A8AC Pt2Rect
A875 SetPBits A8AD PtlnRect

SetPortBits A8AE EmptyRect
A876 Port Size A8AF StdRRect
A877 MovePortTo A8B'/) FrameRoundRect
A878 SetOrigin A8Bl PaintRoundRect
A879 SetClip A8B2 EraseRoundRect
A87A GetClip A8B3 InverRoundRect
A87B ClipRect InvertRoundRect
A87C BackPat A8B4 FillRoundRect
A87D ClosePort

1/11/85 Rose /OSUTIL/UTIL.B

42 Operating System Utilities Programmer's Guide

A8B6 StdOval A8E8 PtlnRgn
A8B7 FrameOval A8E9 RectlnRgn
A8B8 PaintOval A8EA SetStdProcs
A8B9 EraseOval A8EB Std~its

A8BA InvertOval A8EC CopyBits
A8BB FillOval A8ED StdTxMeas

A8EE StdGetPic A8BC SlopeFromAngle
A8EF ScrollRect A8BD StdArc

A8BE FrameArc A8F'/J StdPutPic
A8Fl StdComment A8BF PaintArc
A8F2 PicComment A8C'/J EraseArc
A8F3 OpenPicture A8Cl InvertArc
A8F4 ClosePlcture A8C2 FillArc
A8Fs KillPicture A8C3 PtToAngle
A8F6 DrawPicture A8C4 AngleFromSlope
A8F8 ScalePt A8Cs StdPoly
A8F9 MapPt A8C6 FramePoly
A8FA MapRect A8C7 PaintPoly
A8FB MapRgn A8C8 ErasePoly
A8FC MapPoly A8C9 InvertPoly
A8FE InitFonts ABCA FillPoly
A8FF GetFName A8CB OpenPoly

GetFontName A8'CC ClosePgon
A9'/J'/J GetFNum ClosePoly
A9'/Jl FMSwapFont A8CD KillPoly

Swal'Font A8CE OffsetPoly
A9'/J2 RealFont A8CF PackBits
A9'/J3 SetFontLock A8D'/J UnpackBits
A9'/J4 DrawGrowlcon A8Dl StdRgn
A9'/Js DragGrayRgn A8D2 FrameRgn
A9'/J6 NewString A8D3 PaintRgn
A907 SetString A8D4 EraseRgn
A9'/J8 ShowHide A8D5 InverRgn
A9'/J9 .CalcVis InvertRgn
A90A CalcVBehind A8D6 FillRgn

CalcVisBehind A8D8 NewRgn
A90B ClipAbove A8D9 DisposRgn
A90c PaintOne DisposeRgn
A90D PaintBehind A8DA OpenRgn
A9'/JE SaveOld A8DB CloseRgn
A90F DrawNew A8DC CopyRgn
A91'/J GetWMgrPort A8DD SetEmptyRgn
A9ll CheckUpdate A8DE SetRecRgn
A9l2 InitWindows SetRectRgn
A913 NewWindow A8DF RectRgn
A914 DisposWindow A8E'/J OfsetRgn

DisposeWindow OffsetRgn
A915 ShowWindow A8El InsetRgn
A916 HideWindow A8E2 ErnptyRgn
A9l7 GetWRefCon A8E3 EqualRgn
A9l8 SetWRefCon A8E4 SectRgn
A9l9 ' GetWTitle ABEs UnionRgn
A9lA SetWTitle A8E6 DiffRgn
A9lB MoveWindow A8E7 XorRgn

1/11/85 Rose /OSUTIL(UTIL.B

APPENDIX B: SYSTEM TRAPS 43

A91C HiliteWindow A94A SetMFlash

A91D SizeWindow SetMenuFlash

A91E TrackGoAway A94B Plotlcon

A91F SelectWindow A94C FlashMenuBar

A920 BringToFront A94D AddResMenu

A921 SendBehind A94E PinRect

A922 BeginUpdate A94F DeltaPoint

A923 EndUpdate A950 CountMltems

A924 FrontWindow A951 InsertResMenu

A925 DragWindow A954 NewControl

A926 DragTheRgn A955 DisposControl

A927 InvalRgn
DisposeControl

A928 InvalRect
A956 KillControls

A929 ValidRgn
A957 ShowControl

A92A ValidRect
A958 HideControl

A92B GrowWindow
A959 MoveControl

A92C FindWindow
A95A GetCRefCon

A92D CloseWindow
A95B SetCRefCon

A92E SetWindowPic
A95C SizeControl

A92F GetWindowPic
A95D HiliteControl

A930 InitMenus
A95E GetCTitle.

A931 NewMenu
A95F SetCTitle

A932 DisposMenu A960 GetCtlValue

DisposeMenu A961 GetMinCtl

A933 AppendMenu GetCtlMin

A934 ClearMenuBar A962 GetMaxCtl

A935 'InsertMenu GetCtlMax

A936 DeleteMenu A963 SetCtlValue

A937 DrawMenuBar A964 SetMinCtl

A938 HiliteMenu SetCtlMin

A939 Enableltem A965 SetMaxCil

A93A Disableltem SetCtlMax

A93B GetMenuBar A966 TestControl

A93C SetMenuBar A967 DragControl

A93D MenuSelect A968 TrackControl

A93E MenuKey A969 DrawControls

A93F Ge t 1'; t·mlcon A96A GetCtlAction

Getltemlcon A96B SetCtlAction

A940 Setltmlcon A96C FindControl

Setltemlcon A96E Dequeue

A941 Get ItmStyle' A96F Enqueue

GetltemStyle A970 GetNextEvent

A942 SetltmStyle A971 E.ventAvail

SetltemStyle A972 GetMouse

A943 GetltmMark
A973 StillDown

GetItemMark A974 Button

A944 SetltmMark
A975 TickCount

SetltemMark A976 GetKeys

A945 Checkltem
A977 WaitMouseUp

A946 Getltem
A979 CouldDialog

A947 Setltem A97A FreeDialog

. A948 CalcMenuSize A97B InitDialogs

A949 GetMHandle A97C GetNewDialog
A97D NewDialog

1/11/85 Rose /OSUTIL/UTIL.B

44 Operating System Utilities Programmer's Guide

A97E SelIText A9B4 SystemTask
A97F IsDialogEvent A9BS SystemMenu
A980 DialogSelect A9B6 OpenDeskAcc
A98l DrawDialog A9B7 CloseDeskAcc
A982 CloseDialog A9B8 GetPattern
A983 DisposDialog A9B91 GetCursor
A98S Alert A9BA GetString
A986 StopAlert A9BB GetIcon
A987 NoteAlert A9BC GetPicture
A988 CautionAlert A9BD GetNewWindow
A989 CouldAlert A9BE GetNewControl
A98A FreeAlert. A9BF GetRMenu
A98B ParamText GetMenu
A98C ErrorSound A9C0 GetNewMBar '.

A98D GetDltem A9Cl UniqueID
A98E SetDltem A9C2 SysEdit
A98F SetIText SystemEdit
A990 GetIText A9C6 Secs2Date
A99l ModalDialog A9C7 Date2Secs
A992 DetachResource A9C8 SysBeep
A993 SetResPurge A9C9 SysError
A994 CurResFile A9CB TEGetText
A99S InitResources A9CC TEInit
A996 RsrcZoneInit A9CD TEDispose
A997 OpenResFile A9CE TextBox
A998 UseResFile A9CF TESetText
A999 UpdateResFile A9D0 TECalText
A99A CloseResFile A9Dl TESetSelect
A99B SetResT.Joad A9D2 TENew
A99C CountResources A9D3 TEUpdate
A99D GetIndResource A9D4 TEClick
A99E CountTypes A9l)S TECopy
A99F GetIndType A9D6 TECut
A9A0 GetResource A9D7 TEDelete
A9Al GetNamedResource A9D8 TEActivate
A9A2 LoadResource A909 TEDeactivate
A9A3 ReleaseR~source A9DA TEIdle
A9A4 HomeResFile A9DB TEPaste
A9AS SizeRsrc A9DC TEKEiy

SizeResource A900 TEScroll
A9A6 GetResAttrs A9DE· TEInsert
A9A7 SetResAttrs A9DF TESetJust
A9A8 GetResInfo A9E0 Munger
A9A9 SetResInfo A9El HandToHand
A9AA ChangedResource A9E2 PtrToXHand
A9AB AddResource A9E3 PtrToHand
A9AC Add Reference A9E4 HandAndHand
A9AD RmveResource A9ES InitPack
A9AE RmveReference A9E6 InitAllPacks
A9AF ResError A9E7 Pack0
A9B0 WriteResource A9E8 Packl
A9Bl CreateResFile
A9B2 SystemEvent
A9B3 SystemClick

1/11/85 Rose /OSUTIL/UTIL.B

APPENDIX B: SYSTEM TRAPS 45

A9E9 Pack2
DIBadMount (0)
DILoad (2)
DIUnload (4)
DIFormat (6)
DIVerify (8)
DIZero (10)

A9EA Pack3
SFPutFile (1)
SFGetFile (2)
SFPPutFile (3)
SFPGetFile (4)

A9EB Pack4
A9EC PackS
A9ED Pack6

IUDateString (0)
IUTimeString (2)
IUMetric (4)
IUDGetIntl (6)
IUSetIntl (8)
IUMagString (10)
IUMagIDString (12)
IUDatePString (14)
IUTimePString (16)

A9EE Pack7
NumToString (0)
StringToNum (1)

A9EF PtrAndHand
A9F0 LoadSeg
A9Fl UnloadSeg
A9F2 Launch
A9F3 Chain
A9F4 ExitToShell
A9Fs GetAppParms
A9F6 GetResFileAttrs
A9F7 SetResFileAttrs
A9F9 InfoScrap
A9FA UnlodeScrap

UnloadScrap
A9FB LodeScrap

LoadScrap
A~FC ZeroScrap
A9FD GetScrap
A9FE PutScrap

'1/11/85 Rose /OSUTIL/UTIL.B

MACINTOSH USER EDUCATION

The Structure of a Macintosh Application

See Also: Macintosh User Interface Guidelines
Inside Macintosh: A Road Map
The Segment Loader: A Programmer's Guide
Putting Together a Macintosh Application

/STRUCTURE/STRUCT

Modification History: First Draft (ROM 7) Caroline Rose 2/8/84

ABSTRACT

This manual describes the overall structure of a Macintosh application
program t including its interface with the Finder.

2 Structure of a Macintosh Application

TABLE OF CONTENTS

3 About This Manual
3 Signatures and File Types
4 Finder-Related Resources
5 Version Data
5 Icons and File References
6 Bundles
7 An Example
8 Formats of Finder-Related Resources
8 Opening and Printing Documents from the Finder
11 Glossary

Copyright (c) 1984 Apple Computer, Inc. All rights reserved.

ABOUT THIS MANUAL 3

ABOUT THIS MANUAL

This manual describes the overall structure of a Macintosh application
program, including its interface with the Finder. *** Right now it
describes only the Finder interface; the rest will be filled in later.
Eventually it will become part of a comprehensive manual describing the
entire Toolbox and Operating System. ***

(hand)
This information in this manual applies to version 7 of
the Macintosh ROM and version 1.0 of the Finder.

You should already be familiar with the following:

'- The details of the User Interface Toolbox, the Macintosh Operating
System, and the other routines that your application program may
call. For a list of all the technical documentation that provides
these details, ,see Inside Macintosh: A Road Map.

- The Finder, which is described in the Macintosh owner's guide.

This manual doesn't cover the steps necessary to create an
application's resources or to compile, link, and execute the
application program. These are discussed in the manual Putting
Together ~ Macintosh Application.

The'manual begins with sections that describe the Finder in~erface:
signatures and file types, used for identification purposes;
application resources that provide icon and file information to the
Finder; and the mechanism that" allows documents to be opened or printed
from the Finder.'

*** more to come ***

Fi~ally, there's a glossary of terms used in this-manual.

SIGNATURES AND FILE TYPES

Every application must have a unique signature by which the Finder can
identify it. The signature can be any four-character sequence not
being used for another application on any currentiy mounted volume
(except that it can't be one of the standard resour~e types). To
ensure uniqueness on all volumes~ your application's signature must be
assigned by Macintosh Technical Support.

Signatures work together with file types to enable the user to open or
print a document (any file created by an application) f~om the Finder.
When the application creates a file, it sets the file~s creator and
file type. Normally it sets the creator to its signature and the file
type to a four-character sequence that identifies files of that type.
When the user asks the Finder to open or print the file, the Finder

2/8//84 Rose /STRUCTURE/STRUCT.2

4 Structure of a Macintosh Application

starts up the application whose signature is the file's creator and
passes the file type to the application along with other identifying
information, such as the file name. (More 'information about this
process is given below under "Opening and Printing Documents from the
Finder".)

An application may create .its own special type or types of files. Like
signatures, file .types must be assigned by Macintosh Technical Support
to ensure uniqueness. When the user chooses Open from an application's
File menu, the applic,ation will display (via the Standard" File Package)
the names of all files of a given type or types, regardless of which
application created the files. Having a unique file type for your
application's special files ensures that only the names of those files
will be displayed for opening. .

(hand)
Signatures and file types may be strange, unreadable
combinations of characters; they're never seen by end
users of Macintosh.

Applications may also create existing types of files. There might, for
example, be one that merges two MacWrite documents into a single
document. In such cases, the application should use the same file type
as the original application uses for those files. It should also
specify the original applicaiion's signature as the file's creator;
that way, when the user asks the Finder to open or print the file, the
Finder will calIon the original application to perform the operation.
To learn th~ signatures and file types used by existing applications,
,check with Macintosh Technical Support.

Files that consist only of text--a stream of characters, with Return
characters at the ends of paragraphs or short lines--should be given
the file type 'TEXT'. This is the type that MacWrite gives to·
text-only files it creates, for example. If your application uses this
file type, its files will be accepted by MacWrite and it in turn will
accept MacWrite text-only files (likewise for any other application
that deals with 'TEXT' files). Your application can give its own
signature as the file's creator if it wants to be called to open or
print the file when the user requests this from the Finder.

For files that aren't to be opened or printed from the Find~r, as may
be the case for certain data files created by the application, the
signature should be set to '1111' (and the file type to whatever is
appropriate) •

FINDER-RELATED RESOURCES

To establish the proper interface with the 'Finder, every applicationt~
resource file must specify the signature of the application along with

t

data that provides version information. In addition, there may be
resources that provide information about icons and files related to the
application. All of these Finder-related resources are described

2/8//84 Rose /STRUCTURE/STRUCT.2

FINDER-RELATED RESOURCES 5

below, followed by a comprehensive example and (for interested
programmers) the exact formats of the resources.

Version Data

Your application's resource file must contain a special resource that
has the signature of the application as its resource type. This
resource is called the version data of the application. The version
data is typically a string that gives the name, version number, and
date of the application, but it can in fact be any data at all. The
resource ID of the version data is 0 by convention.

As described in detail in Putting Together ~ Macintosh Application,
part of the process of installing an application on the Macintosh is to
set the creator of the file that contains the application. You set the
creator to the application's signature, and the Finder copies the
corresponding version data into a resource file named Desktop. (The
Finder doesn't display this file on the Macintosh desktop, to ensure
that the user won't tamper with it.)

(hand)
Additional, related resources may be copied into the
Desktop file; see "Bundles" below for more information.
The Desktop file also contains folder resources, one for
each folder on the volume.

Icons and File References

For each application, the Finder needs to know:

- The icon to be displayed for the application on the desktop, if
different from the Finder's default icon for applications (see
Figure 1).

- If the application creates any files, the icon to be displayed for
each type of file it creates, if different from t-he Finder's
default icon for documents.

- What files, if any, must accompany the application when it's
transferred to another volume.

~ D
.A.pp I i cat ion Document

Figure 1. Th~ Finder's Default Icons

The Finder learns this information from resources called file
references in the application's resource file. Each file reference
contains a file type and an ID number, called a local ID, that

2/8//84 Rose /STRUCTURE/STRUCT.2

6 Structure of a Macintosh Application

id~ntifies the icon to be displayed for that type of file. (The local
ID is mapped to an actual resource ID as -described under "Bundles"
below.) Any file reference may also include the name of -a file that
must accompany the application when it's transferred to another volume.

The file type for the application itself is 'APPL'. This is the file
type in the file reference that designates the application's icon. You
also specify it as the application's file type at the same time that -
you specify its creator--the first time you install the application on
the Macintosh.

The ID number in a file reference corresponds not to a single icon but
to an icon list in the application's resource file. The icon list
consists of two icons: the actual icon to be displayed on the desktopt
and a mask consisting of that icon's outline filled with black (see

, Figure 2). *** For existing types of files, there's currently no way
to direct the Finder to use the original application's icon for that
file type. ***

Mask

Figure 2. Icon and Mask

Bundles

A bundle in the application's resource file groups together all the
Finder-relate~ resources. It specifies the following:

- Th,e application's signature and the resource ID of its version
data

- A mapping between the local IDs for icon lists (as specified in
file references) and the actual resource IDs of the icon lists in
the resource file

- Local IDs for the file references themselves and a mapping to
their actual resource IDs

The first time you install the application on the Macintosh, you set
its "bundle bit", and the Finder copies the version data, bundle, icon;
lists, and file references from the application's resource file intd
the Desktop file. *** (The setting of the bundle bit ,will be cover'ed
in the next version of Putting Together ~ Macintosh Application.) ;
*** If there are any resource ID conflicts between the icon lists and
file references in the application's resource file and those in
Desktop, the Finder will change those resource IDs in Desktop. The
Finder does this same resource copying and ID conflict resolution when
you transfer an application to another volume.

2/8//84 Rose / STRUCTURE/ STRtiCT~\i

FINDER-RELATED RESOURCES 7

(hand)
The local IDs are needed only for use by the Finder.

An Example

Suppose you've written an application named SampWriter. The user can
create a unique type of document from itt and you want a distinctive
icon for both the application and its documents. The application's
signature t as assigned by Macintosh Technical Supportt is 'S~fP'; the
file type assigned for its documents is 'SAMF'~ Furthermore t a file
named 'TgFil' should accompany the application when it's transferred to
another volume. You would include the following resources in the
application's resource file:

Resource Resource ID
Version data with 0

resource type 'SAMP'
Icon list 128

Icon list 129

File reference 128

File reference 129

Bundle 128

(hand)

Contents
The string 'SampWriter Version 1

2/1/84'
The icon for the application
The i.con' s mask
The icon for documents
The icon's mask
File type 'APPL'
Local ID 0 for the icon list
File type 'SAMF'
Local ID 1 for the icon list
File name 'TgFil"
Signature 'SAMP'
Resource ID 0 for the version data
For icon lists t the mapping:

local ID 0 --) resource ID 128
local ID 1 --) resource ID 129

For file references, the mapping:

local ID 0 --) resource ID 128
local ID 1 --) resource ID 129

See the manual Putting Together ~ Macintosh Application
for information about how to include these resources in a
resource file.

The,file references in this example happen to have the same local IDs
and resource IDs as the icon lists, but any of these numbers can be
different. Different resource IDs can be given to the file references,
and the local IDs specified in the mapping for file references can be
whatever desired.

2/8//84 Rose /STRUCTURE/STRUCT.2

)

8 Structure of a Macintosh Application

Formats of Finder-Related Resources

The 'resource type for an application's version data is the signature of
the application, and the resource ID is ~ by convention. The resource
data can be anything at all; typically it's a string giving the name,
version number, and date of the application.

The resource type for an icon list is 'ICND'. The resource data simply
consists of the icons, 128 bytes each •.

The resource type for a file reference is 'FREF'. The resource data
has the format shown below.

Number of bytes
4 bytes
2 bytes

Contents
File type
Local ID for icon list

1. byte Length of following file name in bytes;
~ if none

n bytes Optional file ~ame

The resource type for a bundle is 'BNDL'. The resource data has the
format shown below. The format is more general than needed for
Finder-related purposes because bundles will be used in other ways in
the future.

Number of bytes Contents
4 bytes Signature of the application
2 bytes Resource ID of version data
2 bytes Number of resource types in bundle minus 1
For each resource type:

4 bytes Resource type
2 bytes Number of resources of this type minus 1
For each resource:

2 bytes Local ID
2 bytes Actual resource ID

A bundle used for establishing the Finder interface contains the two
resource types 'ICND' and 'FREF'.

OPENING AND PRINTING DOCUMENTS FROM THE FINDER

When the user selects a document and tries to open or print it from the
Finder, the Finder starts up the application whose signature is the
document file's creator. An application may be select~d along with one
or more documents for opening (but not printing); in this case, the
Finder starts up that application. If the user selects more than one
document for opening without selecting an application, the files must
have the same creator. If more than one document is selected for
printing, the Finder starts up the application'whose signature is the
first file's creator (that is, the first one selected if the~ were
selected by Shift-clicking, or the top left one if they were selec~ed

2/8//84 Rose /STRUCTURE/STRUCT.2

OPENING AND PRINTING DOCUMENTS FRO~f THE FINDER 9

by dragging a rectangle around them).

Any time the Finder starts up an application, it passes along
.information via the "Finder information handle" in the application
parameter area (as described in the Segment Loader manual). Pascal
programmers can call the Segment Loader procedure GetAppParms to get
the Finder information handle. For example, if applParam is declared
as type Handle, the call

GetAppParms(applName, applRefNum, applParam)

returns the Finder information handle in applParam. The Finder
information has the following format:

Number of bytes
2 bytes
2 bytes
For each file:

2 bytes

4 bytes
,.1 byte
1 byte
1 byte
n bytes

Contents
o if open, 1 if print
Number of files to open or print (0 if none)

Volume reference number of volume containing
the file
File type
File's version number (typically 0)
Ignored
Length of following file name in byt~s
Characters of file name (if n is even, add
an extra byte)

The files are listed in order of- the appearance of their icons on the
desktop, from left to right and top to bottom. The file names don't
include a volume prefix. An extra byte is added to any name of even
length so that the entry for the next name will 'begin on a word
boundary.

Every application that opens or prints documents should look at this
information to determine what to do when· the Finder starts it up. If
the number of files is 0, the application should start up with an
untitled document on the desktop.· If a file or files are specifi~d-for
opening, it should start up with those documents on the desktop. If
only one document can be open at a time but more than one file is
specified, the application should open the first one and ignore the
rest. If the application doesn't recognize a file's type (which can
happen if the user selected the application along with another
application's document), it may want to open the file anyway and check
its internal structure to see if it's a compatible type. The response
to an unacceptable type of file should be an alert box that shows the
file name and says that the document can't be opened.

If a file or files are specified for printing, the application should
print them in turn, preferably without doing its entire start-up
sequence. For example, it may not be necessary to show the menu bar or
a document window, and reading the desk scrap into memory is definitely
not required. After successfully printing a document, the application
should set the file type in the Finder information to 0. Upon return
from the application,- the Finder will start up other applications as

2/8//84 Rose /STRUCTURE/STRUCT.2

10 Structure of a Macintosh Application

necessary to print any remaining files whose type was not· set to 0.
*** The Finder'doesn't currently do this, but it may in the future.

2/8//84 Rose /STRUCTURE/STRUCT.2

GLOSSARY. 11

GLOSSARY

bundle: A resource that maps local IDs of resources to their actual
resource IDs; used to provide mappings for file references and icon
lists needed by the Finder.

Desktop file: A resource file in which the Finder stores folder
resources and the version data) bundle) icons, and file references for
each application on the volume.

file reference: A resource that provides'~he Finder with file and icon
information about an'application.

file type: A four-character sequence, specified when a file is
created, the identifies the type of file.

icon list: A resource consisting of a list of icons.

local ID: A number that refers to an icon list or file reference in an
application's resource file and is mapped to an actual resource ID by a
bundle.

signature: A four-character sequence that uniquely identifies an
application to the Finder.

version data: In an application's resource file, a resource that has
the application's signature as its resource type; typically a string
that gives the name, versi~n number) and date of the application.

2/8/84 Rose /STRUCTURE/STRUCT.G

Apple

030-0247-A

Apple Numerics Manual
Part I: The Standard Apple Numeric
Environment

Part II: The 6502 Assembly-Language
SANE Engine

Part III: The 68000 Assembly-Language
SANE Engine

--0 ~

The Apple Numerics. Manual is included

here for your convenience. It will not be a
/

part of the final Inside Macintosh manual,

but will be available separately.

Part I: The Standard Apple Numeric Environment

Table of Contents

21 Table of Contents

• Chapter 1 Introduction 8

• Chapter 2 Data Types 10
12 Choosing a Data Type
13 Values Represented
14 Range and Precision of SANE Types
15 Formats
16 Single
16 Double
17 Comp
17 Extended

• Chapter 3 Arithmetic Operations 18
20 Remainder
21 Round to Integral Value'

Table of Contents ,13

• Chapter 4 Conversions 22
24 Conversions Between Extended and Single or

Double
24 Conversions to Comp and Other Integral Formats
25 Conversions Between Binary and Decimal
25 Conversions From Decimal Strings to SANE

Types
26 Decform Records and Co~versions From

SANE Types to Decimal Strings
27 The Decimal Record Type
28 Conversions From Decimal Records to SANE

Types
29 Conversions' From SANE Types to Decimal

Records
30 Conversions Between Decimal Formats
30 Conversion From Decimal Strings to Decimal

Records
31 Conversion From Decimal Records to Decimal

Strings

• Chapter 5- Expression Evaluation 32
33 Using Extended Temporaries
34 Extended-Precision Expression Evaluation
35 Extended-Precision Expression Evaluation and

the IEEE Standard

• Chapter 6 Comp~risons 36

• Chapter 7 Infinities, NaNs, and 40
Denormalized Numbers

41 Infinities
42 NaNs
43 Denormalized Numbers
44 Why Denormalized Numbers?
45 Inquiries: Class and Sign

41 Part I: The Standard Apple Numeric Environment

• Chapter 8 Environmental Control
47 Rounding Direction
48 . Rounding Precision
48' Exception -Flags and Halts
49 Exceptions
50 Managing Environmental Settings

• Chapter 9 Auxiliary Procedures
55 Sign Manipulation
56 Next-After Functions
56 Special Cases for Next-After Functions
57 Binary Scale and Log Functions
57 Special Cases for Logb

• Chapter 10 Elementary Functions
59 Logarithm Functions
60 Special Cases for Logarithm Functions
60· Exponential Functions
60 Special Cases for 2x, eX, exp 1 (x)
61 Special Cases for Xl

61 Special Cases for xY

62 Financial Functions
62 Compound
63 Annuity
63 Special Cases for compound(r,n)
63 Special Cases for annuity(r,n)
64 Trigonometric Functions
64 Special Cases for sin(x), cos (x)
64 Special Cases for tan (x)
64 Special Cases for arctan(x)
65 Random Number Generator

Table of Contents

46

54

58

• Appendix A Other Elementary Functions

•
•

67 Exception Handling
68 Functions
,68 Secant
68 CoSecant
68 Co Tangent
68 ArcSine
68 ArcCosine
68 Sinh
68 Cosh
69 Tanh

,69 ArcSinh
69 ArcCosh
69 ArcTanh

.·Glossary

Annotated Bibliography

51 Part I: The Standard Apple Numeric Environment

66

70

74

Chapter 1

Introduction

81 Part I: The Standard Apple Numeric Environment

This manual describes the Standard Apple Numeric Environment
(SANE). Apple supports SANE on several current products and
plans to support SANE on future products. SANE gives you
access to numeric facilities unavailable on almost any computer of
the early 1980's-from microcomputers to extremely fast,
extremely expensive supercomputers. The core features of SANE

. are not exclusive to Apple; rather they are taken from Draft 10.0 of
Standard 754 for Binary Floating-Point Arithmetic [10] as proposed
to the Institute of Electrical and Electronics Engineers (IEEE).
Thus SANE is one of the first widely available products with the
arithmetic capabilities destined to be found on the computers of
the mid-1980's and beyond.

The IEEE Standard specifies standardized data types, arithmetic,
and conversions, along with tools for handling limitations and
exceptions, that are sufficient for numeric applications. SANE
supports all requirements of the IEEE Standard. SANE goes
beyond the specifications of the Standard by including a data type
designed for accounting applications and by including several
high-quality library functions for financial and scientific calculations.

IEEE arithmetic was specifically designed to provide advanced
features for numerical analysts without imposing an extra burden
on casual users. (This is an admirable but rarely attainable goal:
text editors and word processors, for example, typically suffer
increased complexity with added features, meaning more hurdles
for the novice to clear before completing even the simplest tasks.)
The independence of elementary and advanced features of the
IEEE arithmetic was carried over to SANE.

Throughout this manual, references in brackets are to the
annotated bibliography in Part I. Words printed in bold type are
defined in the glossary in Part I.

Chapter 1: Introduction

Chapter 2

Data Types

101 Part I: The .Standard Apple Numeric Environment

SANE provides three application data types (single, double, and
camp) and the arithmetic type (extended). Single, double, and
extended store floating-point values and comp stores integral
values.

The' extended type is called the arithmetic type because, to make
expression evaluation simpler and more accurate, SANE performs
all arithmetic operations in extended precision and delivers
arithmetic results to the extended type. Single, double, and
comp can be thought of as space-saving storage types for the
extended-precision arithmetic. (In this manual, we shall use the
te~m extended precision to denote both the extended precision
and the extended range of the extended type.)

All values representable in single, double, and camp (as well as
1S-bit and 32-bit integers) can be represented exactly in extended.
Thus values can be moved from any of these types to the
extended type and back without any loss of information.

Chapter 2: Data Types

• Choosing a Data Type

Typically, picking a data type requires that you determine the
trade-offs between

• fixed- or floating-point form

• precision

• range

• memory usage

• speed.

The precision, range, and memory usage for each SANE data type
are shown in Table 2-1. Effects of the data types on performance
(speed) vary among the implementations of SANE. (See Chapter 4
for information on conversion problems relating to precision.)

Most accounting applications require a counting type that counts
things (pennies, dollars, widgets) exactly. Accounting applications
can be implemented by representing money values as integral
numbers of cents or mils, which can be stored exactly in the
storage .format of the comp (for computational) type. The sum,
difference, or product of any two comp values is exact if the
magnitude of the result does not exceed 263

- 1 (that
is, 9,223,372,036,854,775,807). This number is larger than the
U.S. national debt expressed in Argentine pesos. In addition, comp
values (such as the results of accounting computations) can be
mixed with extended values in floating-point computations (such as
. compound interest).

12l Part I: The Standard Apple Numeric Environment

r

Arithmetic with comp-type variables, like all SANE arithmetic, is
done internally using extended-precision arithmetic. There is no
loss of precision, as conversion from comp to extended is always
exact. Space can be saved by storing numbers in the comp type,
which is 20 percent shorter than extended. Non-accounting
applications will normally be better served by the floating-point
data formats.

• Values Represented

The floating-point storage formats (single, double, and extended)
provide binary encodings of a sign (+ or -), an exponent, and a
slgnltlcand. A represented number has the value

±significand * 2expon~nt

where the significand has a single bit to the left of the binary point
(that is, 0 s significand < 2). .

Chapter 2: Data Types

• Range and Precision: of SANE Types

This table describes the range and precision of the numeric data
types supported by SANE. Decimal ranges are expressed as
chopped two-digit decimal representations of the exact binary
values.

Table 2-1.SANE Types

Type class Application Arithmetic

Type identifier Single Double Comp Extended

Size (bytes:bits) 4:32 8:64 8:64 10:80

Binary exponent
range
Minimum -126 -1022 -16383
Maximum 127 1023 16383

Significand precision
Bits 24 53 63 64
Decimal digits 7-8 15-16 18-19 19-20

Decimal range
(approximate)
Min negative -3.4E+38 -1.7E+308 S!-9.2E18 -'.1E +4932
Max neg norm -1.2E-38 -2.3E-308 -1.7E-4932
Max neg denormt -1.5E-45 -S.OE-324 -1.9E-4951

Min pas denormt 1.SE-45 S.OE-324 1.9E-4951
Min pas norm 1.2E-38 2.3E-308 1.7E-4932
Max poSitive 3.4E+38 1.7E +308 6!9.2E18 1.1E+4932

Infinitiest Yes Yes No Yes

NaNst Yes Yes • Yes Yes

tDenorms (denormallzed numbers), NaNs (Not-a-Number),
and infinities are defined in Chapter 7.

Usually numbers are stored in a normalized form, to afford
maximum precision for a given significand width. Maximum
precision is achieved if the high order bit in the significand is 1
(that is, 1 s significand < 2).

141 Part I: The Standard Apple Numeric Environment

• Formats

Example
In Single, the largest representable number has

significand = 2 - 2-23

= 1.111111111111111111111112

exponent = 127

value = (2 - 2-23) * 2127

e: 3.403 * 1038

the smallest representable positive normalized number has

significand = 1

= 1.000000000000000000000002

exponent = -126

value = 1 * 2-126

ae 1.175 * 1 0-38

and the smallest representable positive denormalized number (see
Chapter 7) has

significand = 2-23

= 0.000000000000000000000012

exponent = -126

value = 2-23 * 2-126

ae 1.401 * 10-4t5

This section shows the formats of the four SANE numeric data
types. These are pictorial representations and may not reflect the
actual byte order in any particular implementation.

Chapter 2: Data Types

Single
A 32-bit single format number is divided into three fields as shown
below.

1 B 23
Is I e f

msb Isb msb Isb
The value v of the number is determined by these fields as
follows: .'

If 0 < e < 255,

If e = 0 and f ~ 0,

If e = 0 and f = 0,

If e = 255 and f = 0,

If e = 255 and f ~ 0,

then v = (_1)5 * 2(e-127) * (1.f).

then v = (_1)5 * 2(-126) * (O.f).

then v = (_1)5 * O.

then v = (_1)5 * (XI.

then v is a NaN.

See Chapter 7 for information on the contents of the f field for
NaNs.

Double
A 64-bit double format number is divided into three fields as
shown below.

, 11 52

Is I e
msb Isb msb Isb

The value v of the number is determined by these fields as
follows:

If 0 < e < 2047,

If e = 0 and f ~ 0,

If e = 0 and f .= 0,

If e = 2047 and f = 0,

If e = 2047 and f ~ 0,

then v = (_1)5 * 2(e-1023) * (1.f).

then v = (_1)5 * 2(-1022) * (O.f).

then v = (_1)5 * O.

then v = (_1)5 * (XI.

then v is a' NaN.

161 Part I: The Standard Apple Numeric Environment

1

Comp
A 64-bit comp format number is divided into two fields as shown
below.

63
I s I d

msb Isb
The value v of the number is determined by these fields as
follows:

If s = 1 and d = 0,
Otherwise.

Extended

then v is the unique comp NaN.
v is the two's-complement value of
the 64-bit representation.

An aO-bit extended format number is divided into four fields as
shown below.

1 15 1 63

lsi e Iii f

msb Isb msb Isb
The value v of the number is determined by these fields as ""\
follows:

If a < = e <' 3276Z,

If e = 32767 and f = 0,

If e = 32767 and f ,. 0,

Chapter 2: Data Types

then v = (_1)S * 2(e-16383) * (i.f).

then v = (_1)S * (I), regardless of i.

then v is a NaN, regardless of i.

Chapter 3

Arithmetic Operations

r

181 Part I: The Standard Apple Numeric Environment

SANE provides these basic arithmetic operations for the SANE
data types:

• add

• subtract

• multiply

• divide

• square root

• remainder

• round to integral value

(See Chapters 9 and 10 for auxiliary operations and higher-level
functions supported by SANE.)

All the basic arithmetic operations produce the best possible
result: the mathematically exact result coerced to the precision
and range of the extended type. The coercions honor the
user-selectable rounding direction and handle all exceptions
according to the requirements of the IEEE Standard (see
Chapter 8).

Chapter 3: Arithmetic Operations

• Remainder

Generally, remainder (and mod) functions are defined by the
expression

x rem y = x - y * n

where n is some integral approximation to the quotient x/y. This
expression can be found even in the conventional integer-division
algorithm:

n
(divisor) y)x

y * n

(integral quotient approximation)
(dividend)

x - y * n (remainder)

SANE supports the remainder function specified in the IEEE
Standard:

When y ¢ 0, the remainder r = x rem y is defined
regardless of the rounding direction by the mathematical
relation r = x - y * n, where n is the integral value nearest
the exact value x/y; whenever In - x/yl = 1/2, n is even.
The remainder is always exact. If r = 0, its sign is that
of x.

Example 1
Find 5 rem 3 . Here x = 5 and y = 3. Since 1 < 5/3 < 2 and
since 5/3 = 1 ~66666 ... is closer to 2 than to 1, n is taken to be 2,
so

5 rem 3 = r = 5 - 3 * 2 = -1

Example 2
Find 7.0 rem 0.4 . Since 17 < 7.010.4 < 18 and since
7.010.4 =' 17.5 is equally close to both 17 and 18, n is taken to be
the even quotient, 18. Hence,

7.0 rem 0.4 = r = 7.0 - 0.4 * 18 = -0.2

The IEEE remainder function differs from other commonly used
remainder and mod functions. It returns a remainder of the
smallest possible magnitude, and it always returns an exact
remainder. All the other remainder functions can be constructed
from the IEEE remainder.

20 I Part I: The Standard Apple Numeric Environment

• R,?und to Integral Value

An input argument is rounded according to the current rounding
direction to an integral value and delivered to the extended format.
For example, 12345678.875 rounds to 12345678.0 or 12345679.0.
(The rounding direction, which can be set by the user, is explained
fully in Chapter 8.)

Note that, in each floating-point format, all values of sufficiently
great magnitude are integral. For example, in single, numbers
whose magnitudes are at least 223 are integral.

Chapter 3: . Arithmetic Operations

Chapter 4

, Conversions

221 Part I: The Standard Apple Numeric Environment

SANE provides conversions between the extended type and each
of the other SANE types (single, double, and comp). A particular
SANE implementation will provide conversions between extended
and those numeric types supported in its particular larger
environment. For example, a Pascal implementation will have
conversions between extended and the Pascal integer type.

single system -speci f ic

double .- ~ extended ~ --.. integral --
camp types

SANE implementations also provide either conversions between
decimal strings and SANE types, or conversions between a
decimal record type and SANE types, or both. Conversions
between decimal records and decimal strings may be included too.

single

double

comp
extended -------...

Chapter 4: Conversions

.• 'Conversions Between Extended and Single or
Double

A conversion to extended is always exact. A conversion from
extended to single or, double moves a value to a storage type with
less range and precision, and sets the overflow, underflow, and
ine>tact exception flags as appropriate. (See Chapter 8 for a
discussion of exception flags.)

• Conversions to Camp and Other Integral Formats

Conversions to integral formats are done by first rounding to' an
integral value (honoring the current rounding direction) and then, if
possible, delivering this value to the destination format. If the
source operand of a conversion from extended to comp is a NaN,
an infinity, or out-of-range for the comp format, then the result is
the comp NaN and for infinities and values out-of-range, the i"nvalid
exception is signaled. If the source operand of a conversion to a
system-specific integer type is a NaN, infinity, or out-of-range for
that format, then invalid is signaled (unless the type has an
appropriate representation for the exceptional result). NaNs,
infinities, and out-of-range values are stored in a
two's-complement integer format as the extreme negative value
(for example, in the 16-bit integer format, as -32768). '

Note that IEEE rounding into integral formats differs fro~ most
common rounding functions on halfway cases. With the default
rounding direction (to nearest), conversions to comp or to a
system-specific integer type witt round 0.5 to 0, 1.5 to 2, 2.5 to 2,
and 3.5 ,to 4" rounding to even on halfway cases. (Rounding is
discussed in detail in Chapter 8.)

.-Formats

This section shows the formats of the four SANE numeric data
types. These are pictorial representations and may not reflect the
actual byte or~er in any particular implementation.

241 Part I: The Standard Apple Numeric Environment

• Conversions Between Binary and Decimal

The IEEE Standard for binary floating-point arithmetic specifies the
set of numerical values representable within each floating-point
format. It is important to recognize that binary storage formats can
exactly represent the fractional part of decimal numbers in qnly a
few cases; in all other cases, the representation will be
approximate. For example, 0.510 , or 1/210 , can be represented
exactly as 0.12' On the other hand, 0.110, or 1/1010 , is a repeating
fraction in binary: 0.00011001100 2 . Its closest representation in
single is 0.00011 001 ~ 0011 0011 0011 0011 01 2 , which is closer
to 0.1000000014910 than to 0.1000000000010 ,

As binary storage formats generally provide only close
approximations to decimal values, it is important that conversions
between the two types be as accurate as possible. Given a
rounding direction, for every decimal value there is a best
(correctly rounded) binary value for each binary format.
Conversely, for any rounding direction, each binary value has a
corresponding best decimal representation for a given decimal
format. Ideally, binary-decimal conversions should obtain this best
value to reduce accumulated errors. Conversion routines in SANE
implementations meet or exceed the stringent error bounds

, specified by the IEEE Standard. This means that although in
extreme cases the conversions do not deliver the correctly
rounded result, the result delivered is very nearly as good as the
correctly rounded result. (See the IEEE Standard [10] for a more
detailed description of error bounds.)

Conversions From Decimal Strings to SANE Types

Routines may be provided to convert numeric decimal strings to
the SANE data types. These routines are provided for the
convenience of those who do not wish to write their own parsers
and scanners. Examples of acceptable input are

123,

-INF

123.4E-12 -123.

Inf NAN(12)

.456

-NaNO

3e9 -0

nan

The 12 in NAN(12) is a NaN cod~ (see' Chapter 8).

The accepted syntax is formally defined, using Backus-Naur form,
in Table 4-1.

Chapter 4: Conversions

Table 4-1. Syntax for String Conversions

< decimal number> .. - [{space 1 tab}] < left decimal>
< left decimal> .. - [+ 1-] < unsigned decimal>
< unsigned decimal> .. - < finite numb'er> 1 < infinity> 1

<NAN>
< finite number> = < significand > [< exponent>]
< significand > = < integer> 1 < mixed>
<integer> = <digits> [.]
<digits> = {O 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9}
<mixed> = [< digits>] . < digits>
<exponent> - E [+ 1-] <digits>
<infinity> = INF
<NAN> = NAN[([<digits>])]

(Note: In the table, square brackets enclose optional items, braces
(curly brackets) enclose elements to be repeated at least once,
and vertical bars separate alternative elements; letters that appear
literally, like the IE' marking the exponent field, may be either
upper or lower case.)

Decform Records and Conversions From SANE
Types to Decimal Strings
Each conversion to a decimal 'string is controlled by a decform
record, which contains two, fields:

style -- 1S-: bit word (Pascal 0 .. 1)
digits -- 16- bit integ~r

Style equals 0 for floating and 1 for fixed. Following the Lisa Pasc~1
convention, the value of style is stored in the high- order byte on
68000 systems. Following the Apple II Pascal convention, the
value of style is stored as a 16- bit integer on 6502 systems. Digits
gives the number of significant digits for the floating style and the
number of digits to the right of the decimal point for the fixed style
(digits may be negative if the style is fixed). Decimal strings resulting
from these conversions are always acceptable input for conversions
from decimal strings to SANE types. Further forrnatting details are
implementation-dependent.

261 Part I: The Standard Apple Numeric Environment

(

The Decimal Record Type

The decimal record type provides an intermediate unpacked form
for programmers who wish to do their own parsing of numeric
input or formatting of numeric output. The decimal record format
has three fields:

sgn
exp
sig

16-bit word (Pascal 0 .. 1)
16-bit integer
string (maximum length is
implementation-dependent)

The value represent~d is

(-1)sgn * sig * 10exp

when the length of sig is 18 or less. (Some implementations allow
additional information in characters past the eighteenth.) Following
the Lisa Pascal convention, the value of sgn is stored in the
high- order byte on 68000 systems. Following the Apple II Pascal
convention, the value of sgn is stored as a 16- bit integer on 6502
systems. Sig contains the internal decimal significand: the initial byte
of sig (sig[O]) is the length byte, which gives the length of the ASCII
string that is left-justified in the remaining bytes. Sgn is 0 for + and 1
for -. For example, if sgn = 1, exp = - 3, and sig = '85' (sig[O] = 2, n01
shown), then the number represented is - 0.085.

Chapter 4: Conversions

'Conversions From Decimal Records to SANE Types
Conversions from the decimal record type handle any sig
digit-string of length 18 or less (with an implicit decimal point at
the right end). The following special cases apply:

• If sig[1] = '0' (zero), the decimal record is converted to zero.
For example, a decimal record with sig = '0913' is converted
to zero.

• If sig[1] = 'N', the decimal record is converted to a NaN.
Except when the destination is of type comp (which has a
unique NaN), the succeeding characters of sig are interpreted
as a hex representation of the result significand: if fewer than 4
characters follow 'N' then they are right justified in the
high-order 15 bits of the field f illustrated in the section
"Formats" in Chapter 2; if 4 or more characters follow 'N' then
they are left justified in the result's significand; if no characters,
or only eo's, follow N, then the result NaN code is set to
nanzero = 15 (hex).

• If sig[1] = 'I' and the destination is not of comp type, the
decimal record is converted to an infinity. If the destination is of
comp type, the decimal record is converted to a NaN and -
invalid is signaled.

• Other special cases produce undefined results.

281 Part I: The Standard Apple Numeric Environment

Conversions From SANE Types to Decimal Records
Each conversion to a decimal record is controlled by a decform
record (see above). All implementations allow at least 18 digits to
be returned in sig. The implied decimal point is at the right end of
sig, with exp set accordingly.

Zeroes, infinities, and NaNs are converted to decimal records with
sig parts '0' (zero), 'I', and strings beginning with 'N', while exp is
undefined. For NaNs, 'N' may be followed by a hex representation
of the input significand. The third and forth hex digits following 'N'
give the NaN code. For example, 'N0021000000000000' has NaN
code 21 (hex).

When the number of digits specified in a decform record exceeds
an implementation maximum (which is at least 18), the result is
undefined. -

A number may be too large to represent in a chosen fixed style.
For instance, if the implementation's maximum length for sig is 18,
then 1015 (which requires 16 digits to the left of the point in
fixed-style representations) is too large for a fixed-style '
representation specifying more than 2 digits to the right of the
point. If a number is too large for a chosen fixed style, then
(depending on the SANE implementation) one of two results is
returned: an implementation may return the most significant digits
of the number in sig and set exp so that the decimal record
contains a valid floating-style representation of the number;
alternatively, an implementation may simply set the string sig
to '1'. Note that in any implementation, the test

(-exp < > decform digits) or (sig[1] = '1')

determines whether a nonzero finite number is too large for the
chosen fixed style.

Chapter 4: Conversions

• Conversions Between Decimal Formats

SANE implementations may provide conversions between decimal
strings and decimal records.

Conversion From Decimal Strings to Decimal
Records
This conversion routine is intended as an aid to programmers
doing their own scanning. The routine is designed for use either
with fixed strings or with strings being received (interactively)
character by character. An integer argument on input gives the
starting index into the string, and on output is one greater than the
index of the last character in the numeric substring just parsed.
The longest possible numeric substring is parsed; if no numeric
substring is recognized, then the i~ndex remains unchanged. Also,
a Boolean argument is returned indicating that the input string,
beginning at the input index, is a valid numeric string or a valid
prefix of a numeric string. The accepted input for this conversion
is the same as for conversions from decimal strings to SANE
types (see above). Output is the same as for conversions from
SANE types to decimal records (also above).

30 I Part I: The Standard Apple Numeric Environment

Examples

Input String Index Output Value Valid-Prefix
In Out

12 1 3 12 TRUE
12E 1 3 12 TRUE
12E- 1 3 12 TRUE
12E-3 1 6 12E-3 TRUE
12E-x 1 3 12 FALSE
12E-3x 1 6 12E-3 FALSE
x12E-3 2 7 12E-3 TRUE
IN 1 - 1 UNDEFINED TRUE
INF 1 4 INF TRUE

Conversion From Decimal Records ·to Decimal
Strings
This conversion is controlled by the style field of a decform record
(the digits field is ig~ored). Input is the same as for conversions
from decimal records to SANE types, and output formatting is the
same as for conversions from SANE types to decimal strings. This
conversion, actually a .formatting operation, is exact and signals no
exception.

Chapter 4: Conversions

Chapter 5

Expression Evaluation -

321 Part I: The Standard Apple Numeric Environment

SANE arithmetic is extended-based. Arithmetic operations produce
results with extended precision and extended range. For minimal
loss of accuracy in more complicated computations, you should
use extended temporary variables to store intermediate results .

• Using Extended Temporaries

XS := 0;

A programmer may use extended temporaries deliberately to
reduce the effects of round-off error, overflow, and underflow on
the final result.

Example 1

To compute the single-precision sum

S = X[1] * Y[1] + X[2] * Y[2] .+ ' ... + X[N] * Y[N]

where X and Yare arrays of type single, declare an extended
variable XS and compute

FOR I ~= 1 TO N DO
XS := XS + X[I] * Y[I];

5 := XS;
{extended-precision arithmetic}

{deliver final result to single.}

Chapter 5: Expression Evaluation

Even when input and output values have only single precision, it
may be very difficult to prove that single-precision arithmetic i~
sufficient for a given calculation. Using extended-precision
arithmetic for intermediate values will often improve the accuracy
of single-precision results more than virtuoso algorithms would.
Likewise, using the extra range of the extended type for
intermediate results may yield correct final results in the single
type in cases when using the single type for intermediate results
would cause an overflow or a catastrophic underflow.
Extended-precision arithmetic is also useful for calculations
involving double or comp variables: see Example 2.

Extended-Precision Expression Evaluation

High-level languages that support SANE evaluate all non-integer
numeric expressions to extended precision, regardless of the
types of the operands.

Example 2
If C is 6f type comp and MAXCOMP is the largest comp value,
then the right-hand side of

C : = (MAXCOMP + MAXCOMP) / 2

would be evaluated in extended to the exact result
C = MAXCOMP, even though the intermediate result
MAXCOMP + MAXCOMP exceeds the largest possible comp
value.

34\ Part I: The Standard Apple Numeric Environment

• Extended-Precision Expression Evaluation and the
IEEE Standard

The IEEE Standard encourages extended-precision expression
evaluation. Extended evaluation will on rare occasions produce
results slightly different from those produced by other IEEE
implementations that lack extended evaluation. Thus in a
single-only IEEE implementation,

z:=x+y

with x, y, and z all single, is evaluated in one single-precision
operation, with at most one rounding error. Under extended
evaluation, however, the addition x + y is performed in extended,
then the result is coerced to the single precision of z, with at most
two rounding errors. Both implementations conform to the
standard. .

The effect Of a single- or double-only IEEE implementation can be
obtained under SANE with rounding precision control, as
described in Chapter 8.

Chapter 5: Expression Evaluation

Chapter 6

Comparisons

3s1 Part I: The Standard Apple Numeric Environment

SANE supports, the usual numeric comparisons: less,
less-or-equal, greater, greater-or-equal, equal, and not-equal. For
real numbers, these comparisons behave according to the familiar
ordering of real numbers.

SANE comparisons handle NaNs and infinities as well as real '-.J

numbers. The usual trichotomy for real numbers is extended so
that, for any SANE values a and b, exactly one of the following is
true:

a < b
a > b
.a = b
a and b are unordered

Determination is made by the following rule: If x or y is a NaN,
the'n x and yare unordered; otherwise, x and yare less, equal, or
greater according to the ordering of the real numbers, with the
understanding that + 0 = -0 = real 0, and .
-CD < each real number < + CD.

(Note that a NaN always compares unordered -even with itself.)

The meaning of high-level language relational operators is a
natural extension of their old meaning based on trichotomy. For
example, the Pascal or BASIC expression x < = Y is true if x is
less than y or if x equals y, and is false if x is greater than y or if x
and yare unordered. Note that the SANE not-equal relation means
less, greater, or unordered-even if not-equal is written < >, as in
Pascal and BASIC. High-level languages supporting SANE ~
supplement the usual comparison operators with a function that
takes two numeric arguments and returns the appropriate relation
(less, equal, greater, or unordered). This function can be used to
determine whether two numeric representations satisfy any
combination of less, equal, greater, .and unordered.

Chapter 6: Comparisons

A high-level language comparison that involves a relational
operator containing less or greater, but not unordered, signals
invalid if the operands are unordered (that is, if either operand is a
NaN). For example, in Pascal or BASIC if x or y is a quiet NaN
then x < y, x < = y, x > = y, and x > y signal invalid, but x = y
and x < > y (recall that < > contains unordered) do not. If a
comparison operand is a signaling NaN, then invalid is always
signaled, just as in arithmetic operations.

38\ Part I: The Standard Apple Numeric Environment

Chapter 7

Infinities, NaNs, and Denormalized Numbers

40 I Part I: The Standard Apple Numeric Environment

In addition to the normalized numbers supported by most
floating-point packages, IEEE floating-point arithmetic also
supports infinities, NaNs, and denormalized numbers .

• Infinities

An Infinity is a special bit pattern that can arise in one of two
ways:

1. When a SANE operation should produce an exact
mathematical infinity (such as 1/0), the result is an infinity bit
pattern.

2. When a SANE operation attempts to produce a numb~r with
magnitude too great for the number's intended floating-point
storage format, the result may (depending on the current
rounding direction) be an infinity bit pattern.

These bit patterns (as well as NaNs, introduced next) are
recognized in subsequent operations and produce predictable
results. The infinities, one positive (+ INF) and one negative (-INF),
generally behave as suggested by the theory of limits. For
example, 1 added to + INF yields + INF; -1 divided by + 0 yields
-INF; and 1 divided by -INF yields -0.

Each of the storage types single, double, and extended provides
unique representations for + INF and -INF. The comp type has no
representations for infinities. (An infinity moved to the comp type
becomes the comp NaN.)

Chapter 7: Infinities, NaNs, and Denormalized Numbers f41

• NaNs

When a SANE operation cannot produce a meaningful result, the
operation delivers a special bit pattern called a NaN
(Not-a-Number). For example, 0 divided by 0, + INF added to -INF,
and sqrt(-1) yield NaNs. A NaN can occur in any of the SANE
storage types (single, double, extended, and comp); but, generally,
system-specific integer types have no representation for NaNs.
NaNs propagate through arithmetic operations. Thus, the result
of 3.0 added to a NaN is the same NaN (that is, has the same
NaN code). If two operands of an operation are NaNs, the result is
one of the NaNs. NaNs are of two kinds: quiet NaNs, the usual
kind produced by floating-point ope.rations; and signaling NaNs.

When a signaling NaN is encountered as an operand of an
arithmetic operation, the invalid-operation exception is signaled
and, if no halt occurs, a quiet NaN is the delivered result.
Signaling NaNs could be used for uninitialized variables. They are
not created by any SANE operations. The most significant bit of
the field f illustrated in the section "Formats" i'n Chapter 2 is clear
for quiet NaNs and set for signaling NaNs. The unique comp NaN
generally behaves like a quiet NaN. -

,A NaN in a floating-point format has an associated NaN code that
indicates the NaN's origin. (These codes are listed in Table 7-1).
The NaN code is the 8th through 15th most significant bits of the
field f illustrated in Chapter 2. The comp NaN is unique and has
no NaN code.

421 Part I: The Standard Apple Numeric Environment

Table 7-1. SANE NaN 'Codes

Name Dec Hex Meaning

NANSQRT 1 $01 Invalid square root, such as
sqrt(-1)

NANADD 2 $02 Invalid addition, such as
(+ INF) - (+ INF)

NANDIV 4 $04 Invalid division, such as 0/0
NANMUL 8 $08 Invalid multiplication, such as

0* INF
NAN REM 9 $09 Invalid remainder or mod such

as x rem 0
NANASCBIN 17 $11 Attempt to convert invalid ASCII

string
NANCOMP 20 $14 Result of converting comp NaN

to floating
NANZERO 21 $15 Attempt to create a NaN with a

zero code
NANTRIG 33 $21 Invalid argument to trig routine
NANINVTRIG 34 $22 Invalid argument to inverse trig

routine
NAN LOG ' 36 $24 Invalid argument to log routine
NANPOWER 37 $25 Invalid argument to Xi or xY

routine
NANFINAN 38 $26 Invalid argument to financial

function
NANINIT 255 $FF Uninitialized storage (signaling

NaN)

• Denormalized Numbers

Whenever possible, floating-point numbers are normalized to
keep the leading significand bit 1: this maximizes the resolution of
the storage type. When a number is too small for a normalized
representation, leading zeros are placed in the significand to
produce a denormalized representation. A denormalized number
is a nonzero number that is not normalized and whose exponent
is the minimum exponent for the storage type.

;'

Chapt~r 7: Infinities, NaNs, and Denormalized Numbers 143

Ao

Al = Ao/2

A2 = Al/2

A3 = A2/2

Example
The sequence below shows how a single-precision value
becomes progressively denormalized as it is repeatedly divided
by 2, with rounding to nearest. This process is called gradual
underflow.

= 1.100 1100 1100 1100 1100 1101 • 2-126 ~ 0.110.2-122

= 0.110 0110 0110 0110 0110 0110. 2-126 (underflow)

= 0.011 0011 0011 0011 0011 0011 • 2-126

= 0.001 1001 1001 1001 1001 1010 • 2-126 (underflow)

A22 = A21/2 = 0.000 0000 0000 0000 0000 0011 • 2-126

A23 = A22/2 = 0.000 0000 0000 0000 0000 0010 • 2-126 (underflow)

A24 = A23/2 = 0.000 0000 0000 0000 0000 0001 • 2-126

A25 = A24f2 = 0:0 (underflow)

A 1 ••• A24 are denormalized; A24 is the smallest positive denormalized
number in single type.

Why Denormalized Numbers?
The use of de~ormalized numbers makes statements/ like the
following true for all real numbers:

x - y = -0 if and only if x = y

This statement is not true for most older systems of computer
arithmetic, because they exclude denormalized numbers. For
these systems, the smallest nonzero number is a normalized
number with the minimum exponent; when the result of an
operation is smaller than this smallest normalized number, the
system delivers zero as the result. For such flush-to-zero
systems, if x ~ y but x - Y is smaller than the smallest normalized
number, then x - y = o. IEEE systems do not have this defect, as
x - y, al~hough denormalized, is not zero.

(A few old programs that rely on premature flushing to zero may
require modification to work properly under IEEE arithmetic. For
example, some programs may test x - y = 0 to determine whether
x is very near y.)

441 Part I: The Standard Apple Numeric Environment

• Inquiries: Class and Sign

Each valid representation in a SANE data type (single, double,
comp, or extended) belongs to exactly one of these classes:

• signaling NaN

• quiet NaN

• infinite

• zero

• normalized

• denormalized

SANE implementations provide the user with the facility to
determine easily the class and sign of any valid representation.

Chapter 7: Infinities, NaNs, and Denormalized Numbers 145

Chapter 8

Environmental Control .

461 Part I: The Standard Apple Numeric Environment

Environmental controls include the rounding direction, rounding
precision, exception flags, and halt settings.

Rounding Direction

The available rounding directions are

• to-nearest

• upward

• downward

• toward-zero

The rounding direction affects all conversions and arithmetic
operations except comparison and remainder. Except for
conversions between binary and decimal (described in Chapter 4),
all operations are computed as if with infinite precision and range
and then rounded to the destination format according to the
current rounding direction. The rounding direction may be
interrogated and set by the user.

The default rounding direction is to-nearest. In this direction the
representable value nearest to the infinitely precise result is
delivered; if the two nearest representable values are equally near,
the one with least significant bit zero is delivered. Hence, halfway
cases round to even when the destination is the comp or a
system-specific integer type, and when the round-to-integer
operation is used. If the magnitude of the infinitely precise result
exceeds the format's largest value (by at least one half unit in the
last place), then the corresponding signed infinity is delivered.

Chapter 8: Environmental Control

The other rounding directions are upward, downward, and
toward-zero. When rounding upward, the result is the format's
value (possibly INF) closest to and no less than the infinitely
precise result. When rounding downward, the result is the format's
value (possibly -INF) closest to and no greater than the infinitely
precise result. When rounding toward zero, the result is the
format's value closest to and no greater in magnitude than the
infinitely precise result. To truncate a number to an integral value,
use toward-zero rounding either with conversion into an integer
format or with the round-to-integer operation .

• Rounding Precision

Normally, SANE arithmetic computations produce results to
extended precision and range. To facilitate simulations of
arithmetic systems that are not extended-based, the IEEE
Standard requires that the user be able to set the rounding
precision to single or double. If the SANE user sets rounding
precision to single (or double) then all arithmetic operations
produce results that are correctly rounded and that overflow or
underflow as if the destination were single (or double), even
though results are typically delivered to extended formats.
Conversions to double and extended formats are affected if
rounding precision is set to single, and conversions to extended
formats are affected if rounding precision is set to double;
conversions to decimal, comp, and system-specific integer types
are not affected by the rounding precision. Rounding precision can
be interrogated as well as set.

Setting rounding preCision to single or double does not
significantly enhance performance, and in some SANE
implementations may hinder performance .

• Exception Flags and Halts

SANE supports five exception flags with corresponding halt
settings:

• invalid-operation (or invalid, for short)

• underflow

• overflow

481 Part I: The Standard Apple Numeric Environment

• divide-by-zero

• inexact

These exceptions are signaled when detected; and, if the
corresponding halt is enabled, the SANE engine will jump to a
user-specified location. (A high-level language need not pass on to
its user the facility to set this location, but may halt the user's
program). The user's program can examine or set individual
exception flags and halts, and can save and get the entire
environment (rounding direction, rounding precision, exception
flags, and halt settings). Further details of the halt (trap)
mechanism are SANE implementation-specific.

Exceptions
The invalid-operation exception is signaled if an operand is invalid
for the operation to be performed. The result is a quiet NaN,
provided the destination format is single, double, extended, or
compo The invalid conditions are these:

• (addition or subtraction) magnitude subtraction of infinities, for
example, (+ INF) + (-INF);

• (multiplication) 0 * INF;

• (division) DID or INF/INF;

• (remainder) x rem y, where y is zero or x is infinite;

• (square root) if the operand is less than zero;

• (conversion) to the comp format or to a system-specific integer
format when excessive magnitude, infinity, or NaN precludes a
faithful representation in that format (see Chapter 4 for details);

• (comparison) via predicates involving" <" or ">", but not
"unordered", when at least one operand is a NaN;

• any operation on a signaling NaN except sign manipulations
(negate, absolute-value, and copy-sign) and class and sign
inquiries.

The underflow exception is signaled when a floating-point result is
. both tiny and inexact (and therefore is perhaps significantly less
accurate than it would be if the exponent range were unbounded).
A result is considered tiny if, before rounding, its magnitude is
smaller than its format's smallest positive normalized number.

~

Chapter 8: Environmental Control

The divide-by-zero exception is signaled when a finite nonzero
number is divided by zero. It is also signaled, in the more general
case, when an operation on finite operands produces an exact
infinite result: for example, 10gb (0) returns -INF and signals
divide-by-zero. (Overflow, rather than divide-by-zero, flags the
production of an inexact infinite result.)

The overflow exception is signaled when a floating-point
destination format's largest finite number is exceeded in
magnitude by what would have been the rounded floating-point
result were the e~ponent range unbounded. (Invalid, rather than
overflow, flags the production of an out-of-range value for an
integral destination format.)

The inexact exception is signaled if the rounded result of an
operation is not identical to the mathematical (exact) "result. Thus,
inexact is always signaled in conjunction with overflow or
underflow. Valid operations' on infinities are always exact and
therefore signal no exceptions. Invalid operations on infinities are
described above .

• Managing Environmental Settings

The environmental settings in SANE are global and can be
explicitly changed by the user. Thus all routines inherit these
settings and are capable of changing them. Often special
precautions must be taken because a routine requires certain
environmental settings, or because a routine's settings are not
intended to propagate outside the routine. (Examples in this
section use Pascal syntax. SANE implementations in other
languages have operations with equivalent functionality.)

50 I Part I: The Standard Apple Numeric Environment

Example 1
The subroutine below uses to-nearest rounding while not affecting
its caller's rounding direction.

val'" 1"': RoundDil"'; { local stol"'age fol'" I"'ounding dil"'ection }

begin

end;

I'" := GetRound;
SetRound (TONEAREST);

SetRound (I"')

{ save callel""s I"'ounding dil"'ection
{ set to-neal"'est I"'ounding

I"'estol"'e callel""s I"'ounding dil"'ection

Note that, if the subroutine is to be reentrant, then storage for the
caller's environment must be local.

SANE implementations may provide two efficient functions for
managing the environment as a whole: procedure-entry and
procedure-exit.

The procedure-entry function returns the current environment (for
saving in local storage) and sets the default environment: rounding
direction to-nearest, rounding precision extended, and exception
flags and halts clear.

Chapter 8: Environmental Control

Example 2
The following subroutine runs under the default environment while
not affecting its caller's environment.

var e: Environment; { local storage for environment}

begin

end;

e := ProcEntry;

SetEnvironment (e)

{ save caller's env;rnoment and
{ set default environment

restore caller's environment

The procedure-exit function facilitates writing subroutines that
appear to their callers to be atomic,operations (such as addition,
sqrt, and others). Atomic operations pass extra information back to
their callers by signaling exceptions; however, they hide internal
exceptions, which may be irrelevant or misleading. Procedure-exit,
which takes a saved environment as arguments, does the
following:

1. It temporarily saves the exception flags (raised by the
subroutine).

2. It restores the environment received as argument.

3. It Signals the temporarily saved exceptions. (Note that-if
enabled, halts could occur at this step.)

Thus exceptions signaled between procedure-entry and
procedure-exit are hidden from the calling program unless the
exceptions remain raised when the procedure-exit function is
called.

521 Part I: The Standard Apple Numeric Environment

Example 3

The following function signals underflow if its result is denormal,
and overflow if its result is infinite, but hides spurious exceptions
occurring from internal computations.

function compres: double;

var e: Environ;
c: NumClass;

begin {compres}
e '= ProcEntry;

local storage for environment}
for class inquiry }

{ save caller's environment and}
{ set default environment - }
{ now halts disabled }

compres := result; { result to be returned}
c : = C 1 assD (resu 1 t) ; { class i nqu i ry }
ClearXcps; { clear possibly spurious exceptions }

now raise specified exception flags:
if c = INFINITE then SetXcp (OVERFLOW, TRUE)
else if c = DENORMALNUM
ProcExit (e)

end {compres}

then SetXcp (UNDERFLOW, TRUE);
{ restore caller's environment,
{ including any halt enables,
{ then signal exceptions from
{ subroutine

Chapter 8: Environmental Control

}

}

and}
}

}

/

Chapter 9

Auxiliary Procedures

541 Part I: The Standard Apple Numeric Environment

SANE includes a set of special routines that are recommended in
an appendix to the IEEE Standard as aids to programming:

• negate

• absolute value

• copy-sign

• next-after

• scalb

• 10gb

• Sign ManipL!lafion

The sign manipulation operations change only the sign of their
argument. Negate reverses the sign of its argument.
Absolute-value makes the sign of its argument positive. Copy-sign
takes two arguments and copies the sign of one of its arguments
onto the sign of its other argument.

These operations are treated as nonarithmetic in the sense that
they raise no exceptions: even signaling NaNs do not signal the
invalid-operation exception.

Chapter 9: Auxiliary Procedures

• Next-After Functions

The floating-point values representable in single, double, and
extended formats constitute a finite set of real numbers. The
next-after functions (one for each of these formats) generate the
next representable neighbor in the proper format, given an initial
value x and another value y indicating a direction from the initial
value.

Each of the next-after functions takes two arguments, x and y:

nextsingle(x,y) (x and yare single)
nextdouble(x,y) (x and yare double)
nextextended(x,y) (x and yare extended)

As elsewhere, the names of the functions may vary with the
implementation.

Special Cases for Next-After Functions

If the initial value and the direction value are equal, then the result
is the initial value.

If the initial value is finite but the next representable number is
infinite, then overflow and inexact are signaled.

If the next representable number lies strictly between -M and + M,
where M is the smallest positive normalized number for that
format, and if the arguments are not equal, then underflow and
inexact are signaled.

561 Part I: The Standard Apple Numeric Environment

• Binary Scale and Log Functions

The scalb and 10gb functions are provided for manipulating binary
exponents.

Scalb efficiently scales a given number (x) by a given integer
power (n) of 2, returning x * 2n.

Logb returns the binary exponent of its input argument as a signed
integral value. When the input argument is denormalized, the
exponent is determined as if the input argument had first been
normalized.

Special Cases for Logb

If x is infinite, logb(x) returns + INF.

If x = 0, logb(x) returns -INF and signals divide-by-zero.

Chapter 9: Auxiliary Procedures

Chapter 10 -

Elementary Functions

581 Part I: The Standard Apple Numeric Environment

SANE provides a number of basic mathematical functions,
including logarithms, exponentials, two important financial
functions, trigonometric functions, and a random number
generator. These functions are computed using the basic SANE
arithmetic heretofore described.

All of the elementary functions, except the random number
generator, handle NaNs, overflow, and underflow appropriately. All
signal inexact appropriately, except that the general exponential
and the financial functions may conservatively signal inexact when
determining exactness would be too costly. -

Logarithm Funct~ons

SANE provides three logarithm functions:

base-2 logarithm logix)

base-e or natural logarithm In(x)

base-e logarithm of 1 plus In1.(x)
argument

Ln1 (x) accurately computes In(1 + x). If the input argument x is
small, such as an interest rate, the computation 'of In1 (x) is more
accurate than the straightforward computation of In(1 + x) by
adding x to 1 and taking the natural logarithm of the result.

Chapter 10: Elementary Functions

Special Cases for Logarithm Functions
If x = + INF, then logix), In(~), and In1 (x) return + INF. No
exception is signaled.

If x = 0, then logix) and In(x) return -INF and signal
divide-by-zero. Similarly, if x = -1, then In1 (x) returns -INF and
signals divide-by-zero.

If x < 0, then logix) and In(x) return a NaN and signal invalid.
Similarly, if x < -1, then In1 (x) returns a NaN and signals invalid .

• 'Exponential Functions

SANE provides five exponential functions:

base-2 exponential

base-e or natural
exponential

base-e exponential minus 1

integer exponential

exp1 (x)

Xl (i of integer type)

general exponential xY

Exp1 (x) accurately computes eX - 1. If the input argument x is
small, such as an interest rate, then the computation of exp1 (x) is
more accurate than the straightforward computation of eX - 1 by
exponentiation ant! subtraction.

Special Cases for 2~ e~ exp1(x)
If x = + INF, then 2x, eX, and exp1 (x) return + INF. No exception is
signaled.

If x = -INF, then 2x and eX return 0; and exp1(x) returns -1. No
. exception is signaled.

60 I Part I: The Standard Apple Numeric Environment

Speci~I'Cases for x I
If the integer exponent i equals 0 and x is not a NaN, then Xi

returns 1. Note that with the integer exponential, XO = 1 even if x
is zero or infinite.

If x is + 0 and i is neg~tive, then Xl returns + INF and signals
divide-by-zero.

If x is -0 and i is negative, then Xi returns + INF if i is even, or -INF
if i is odd: both cases signal divide-by-zero.

Special Cases for x Y

If x is + 0 and y is negative, then the general exponential xY

returns + INF and signals divide-by-zero.

If x is -0 and y is integral and negative, then xY returns + INF if Y is
even, or -INF if y is odd: 'both cases signal divide-by-zero.

The general exponential xY returns a NaN and signals invalid if

.• both x and y equal 0;

• x is infinite and y equals 0;

• x = 1 and y is infinite; or

• x is -0 or less than 0 and y is nonintegral.

c qhapter 10: Elementary Functions

• Financial Functions

SANE provides two functions, compound and annuity, that can be
used to solve various financial, or time-value-of-money, problems.

Compound
The compound function computes

compound(r,n) = (1 + r)"

where r is the interest rate and n is the number (perhaps
nonintegral) of periods. When the rate r is small, compound gives
a more accurate computation than does the straightforward
computation of (1 + r)" by addition and exponentiation.

Compound is directly applicable to computation of present and
future values:

PV = FV * (1 + r)(-") = PV
compound(r,n)

FV = PV * (1 + r)" = PV * compound(r,n)

621 Part I: The Standard Apple Numeric Environment

Annuity

The annuity function computes

annuity(r,n) = 1 - (1 + r)(on)
r

where r is the interest rate and n is the number of periodsr Annuity
is more accurate than the straightforward computation of the
expression above using basic arithmetic operations and
exponentiation. The annuity function is directly applicable to the
computation of present and future values of ordinary annuities: "

PV = PMT * 1 - (1 + r)(on)
r

= PMT * annuity(r,n)

FV = PMT * (1 + r)" - 1
r

= PMT * (1 + r)n * 1 - (1 + r)(on)
r

= PMT * compound(r,n) * annuity(r,n)

where PMT is the' amount of ,one periodic payment.

Special Cases for compound(r,n)

If r = 0 and n is infinite, or if r = -1, then compound(r,n) returns a
NaN and signals invalid.

If r = -1 and n < 0, then compound(r,n) returns + INF and signals
divide-by-zero.

Special Cases for annuity(r,n)

If r = 0, then annui~(r,n) computes the sum of 1 + 1 + ... +
over n periods, and therefore returns the value n and signals no
exceptions (the value n corresponds to the limit as r
approaches 0).

If r < -1, then annuity(r,n) returns a NaN and signals invalid.

If r = -1 and n > 0, then annuity(r,n) returns -INF and signals
divide-by-zero.

Chapter 10: Elementary Functions

• Trigonometric Functions

SANE provides the basic trigonometric functions

cosine

sine

tangent

cos (x)

sin (x)

tan (x)

arctangent arctan (x)

The arguments for cosine, sine, and tangent and the results of
arctangent are expressed in radians. The cosine, sine, and tangent
functions use an argument reduction based on the remainder
function (see Chapter 3) and the nearest extended-precision
approximation of pi/2. Thus the cosine, sine, and tangent functions
have periods slightly different from their mathematical counterparts
and diverge from their counterparts when their arguments become
large. Number results from arctangent lie between -pi/2 and pi/2.

The remaining trigonometric functions can be easily and efficiently
computed from the elementary functions provided (see
Appendix A).

Special Cases for sin (x), cos(x)
If x is infinite, then cos (x) and sin (x) return a NaN and signal
invalid.

Special Cases for tan(.x) ,
If x is the nearest extended approximation to ±pi/2, then tan (x)
returns ±INF.

If x is infinite, then tan(x) returns a NaN and signals invalid.

Special Case for arctan(x)
If x = ±INF, then arctan(x) returns the nearest extended
approximation to ±pi/2.

641 Part I: The Standard Apple Numeric Environment

• Random Number Generator

SANE provides a pseudorandom number generator, random.
Random has one argument, passed by address. A sequence of
(pseudo) random integral values r in the range

1 S r S 231
- 2

can be generated by initializing an extended variable r to an
integral value (the seed) in the above range and making repeated
calls random(r); each call delivers in r the next random number in .
the sequence. '

Random uses the iteration formula

r <-- (75 * r) mod (231 -1) .

If seed values of rare nonintegral or outside the range

1 S' r S 231 - 2 .

then results are unspecified.

A pseudorandom rectangular distribution on the interval (0,1) can
be obtained by dividing the results from random by

231
_ 1 = scalb (31,,1) - 1 .

Chapter 10: Elementary Functions

Appendix A

Other Elementary Functions

661 Part I: The Standard Apple Numeric Environment I

The Standard Apple Numeric Environment (SANE) provides the
several transcendental functions; from these, you can construct
other high-quality functions, as shown by the pseudocode
examples below. These robust, accurate functions are based on
algorithms developed by Professor William Kahan of the University
of California at Berkeley.

All variables in the pseudocode below are extended. The
constant C is 2-33 = scalb (-33,1). C is chosen to be nearly the
largest value for which 1 - C2 rounds to 1 .

• Exception' Handling

Unlike the SANE elementary functions, these functions do not
provide complete handling of special cases and exceptions. The
most troublesome exceptions can be correctly handled if you

• begin each function with a call to procedure-entry;

• clear the spurious exceptions indicated in the comment;

• end each function with a call to procedure-exit (see Chapter 8).

Appendix A: Other Elementary Functions

• Functions

Secant

sec(x) - 1 I cos(x)

CoSecant

csc(x) - 1 I sin(x)

CoTangent

cot(x) - I tan(x)

ArcSine

y - :x:
If y ~ 0.3 then begin

y - Atan (x/sqrt «1 - x) * (1 + x»)
{spurious divide-by-zero may arise}

end
else if y ~ C then y - Atan (x I (sqrt (1 - x"2))

else y - x
arcsin(x) - y

ArcCosine

arccos(x) - 2 * Atan (sqrt « 1 - x)/(1 + x»)
{spurious divide-by-zero may arise}

Sinh

y - :x:
If y ~ c then begin

y - exp1 (y)
y - 0 . 5 * (y + y/ (1 + y»

end
copy the sign of x onto y
sinh(x) - y

Cosh

y - exp(: x:)
cosh(x) - 0.5 * y + 0.25 I (0.5 * y)

681 Part I: The Standard Apple Numeric Environment

y - Ixl

Tanh

y - Ixl
If y ~ C then begin

y - exp 1 (- 2 * y)

y.- -y/(2 + y)

end

copy the sign of x onto y

tanh(x) - y

ArcSinh

If y ~ C then begin

y - 1n1 (y + y / (1/y + sqrt(1 + (1/y)"'2) »

{spurious underflow may arise}

end

copy the sign of x onto y

asinh(x) - y

ArcCosh

y - Ixl
acosh(x) - 1n1 ((sqrt (y-1» * (sqrt (y-1) + sqrt (y+1»)

ArcTanh

y - Ixl
If y ~ C then y - 1 n 1 (2 * y / (1 - y» / 2

copy the sign of x onto y

atanh(x) - y

Appendix A: Other Elementary Functions

Glossary

70 I Glossary

Application type: A data type used. to store data for applications.

Arithmetic type: A data type used to hold results of calculations
inside the computer. The SANE arithmetic type, extended, has
greater range and precision than the application types, in order to
improve the mathematical properties of the application types.

Binary floating-point number: A string of bits representing a
sign, an exponent, and a significand. Its numerical value, if any, is
the signed product of the significand and two raised to the power
of its exponent.

Comp type: A 64-bit application data type for storing integral
values of up to 18- or 19-decimal-digit precision. It is used for
accounting applications, among others.

Decform record: A data type for specifying the formatting for
decimal results (of conversions). It specifies fixed- or floating-point
form and the number of digits.

Denormallzed number, or denorm: A nonzero binary
floating-point number that is not normalized (that i~, whose
significand has a leading bit of zero) and whose exponent is the
minimum exponent for the number's storage type.

Double type: A 64-bit application data type for storing
floating .. point values of up to 15- or 16-decimal-digit precision. It is
used for statistical and financial applications, among others.

Environmental settings: The rounding direction and rounding
precision, plus the exception flags and their respective halts;

Exceptions: Special cases, specified by the IEEE Standard, in
arithmetic operations. The exceptions are invalid, underflow,
overflow, divide-by-zero, and inexact.

Glossary

Exception flag: Each exception has a flag that can be set,
cleared and tested. It is set when its respective exception occurs
and stays set until explicitly cleared.

Exponent: The part of a binary floating-point number that
indicates the power to which two is raised in determining the value
of the number. The wider the exponent field in a numeric type, the
greater range it will handle.

Extended type: An aO-bit arithmetic data type for· storing
floating-point values of up to 19- or 20-decimal-digit precision.
SANE uses it to hold the results of arithmetic operations.

Flush-to-zero: A system that excludes denormalized numbers.
Results smaller than the smallest normalized number are rounded
to zero.

Gradual underflow: A system that includes denormalized
numbers.

Halt: Each exception has a halt-enable that can be set or cleared.
When an exception is signaled and the corresponding halt is
enabled, the SANE engine will transfer control to the address in a
halt vector. A high-level language need not pass an to its user the
facility to set the halt vector, but may halt the user's program.
Halts remain set until explicitly cleared.

Infinity: A special bit pattern produced when a floating-point
operation attempts to produce a number greater in magnitude than
the largest representable number in a given format. Infinities are
signed.

Integer types:' System types for integral values. Integer types
typically use 16- or 32-bit two's complement "integers. Integer
types are not SANE types but are available to SANE users.

Integral value: A value in a SANE type that is exactly equal to a
mathematical integer: ... , -2, -1, 0, 1, 2,

NaN (Not a Number): A special bit pattern produced when a
floating-point operation cannot produce a meaningful result (for
example, 0/0 produces a NaN). NaNs can also be used for
uninitialized storage. NaNs propagate through arithmetic
operations.

Normalized number: A binary floating-point number in which all
significand bits are significant: that is, the leading bit of the
significand is 1.

721 Part I: The Standard Apple Numeric Environment

Quiet NaN: A NaN that propagates through arithmetic operations
without signaling an exception (and hence without halting a
program).

Rounding direction: When the result of an arithmetic operation
cannot be represented exactly in a SANE type, the computer must
decide how to round the result. Under SANE, the computer
resolves rounding decisions in one of four directions, chosen by
the user: tonearest (the default), upward, downward, and
towardzero.

Sign bit: The bit of a single, double, comp, or extended number
that indicates the number's sign: 0 indicates a positive number; 1,
a negative number.

Signaling NaN: A NaN that signals an invalid exception when the
NaN is an operand of an arithmetic operation. If no halt occurs, a
quiet NaN is produced for the result. No SANE operation creates
signaling NaNs.

Signlficand: The part of a binary floating-point number that
. indicates where the number falls between two successive powers
of two. The wider the significand field in a numeric type, the more
resolution it will have.

Single type: A 32-bit application data type for storing floating-point
values of up to 7- or a-decimal-digit precision. It is used for
engineering applications, among others.

Glossary

Annotated Bibliography

741 Annotated Bibliography

[11 Apple 111 Pascal Programmer's Manual, Volume 2.
"Appendix A: The TRANSCEND and REALMODES Units"
and "Appendix E: Floating-Point Arithmetic." Cupertino,
Calif.: Apple Computer, Inc., 1981.

These appendixes describe the implementation of
single-precision arithmetic in Apple III Pascal, which was
based· upon Draft 8.0 of the proposed Standard.

[2] Apple 111 Pascal Numerics Manual: A Guide to Using the
Apple 111 Pascal SANE and Bems Units. Cupertino, Calif.:
Apple Computer, Inc., 1983.

This manual describes the Apple III Pascal implementation
of the Standard Apple Numeric Environment (SANE)
through procedure calls to the SANE and Elems units. This
was Apple's first full implementation of IEEE arithmetic.

[3] Apple Pascal Numerics Manual: A Guide to Using the Apple"'
Pascal SANE and Bems Units. Cupertino, Calif.: Apple
Computer, Inc., 1983.

This manual, generalized from [2], describes the Apple II
and Apple III Pascal implementation of the Standard Apple
Numeric Environment (SANE) through procedure calls to
the SANE and Elems units.

[4] Cody, W. J. "Analysis of Proposals for the Floating-Point
Standard." IEEE Computer Vol. 14, No.3 (March 1981).

This paper compares the several contending proposals
presented to the Working Group.

[5] Coonen, Jerome T. "Accurate, Yet Economical Binary-Decimal
Conversions." To appear in ACM Transactions on
Mathematical Software ..

Annotated Bibliography

[6] Coonen, Jerome T. "An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic." IEEE Computer
Vol. 13, No.1 (January 1980) ..

This paper is a forerunner to the work on the draft
Standard.

[7] Coonen, Jerome T. "Underflow and the Denormalized
Numbers." IEEE Co~puter Vol. 14, No.3 (March"1981).

[8] Demmel, James. "The Effects of Underflow on Numerical
Qomputation." To appear in SIAM Journal on Scientific and
Statistical Computing.

These papers examine one of the major features of the
proposed Standard, gradual underflow, and show how
problems of bounded exponent range can be handled
through the use of denormalized values.

[9] . Fateman, Richard J. "High-Level Language Implications of the
. Proposed IEEE Floating-Point Standard." ACM Transactions

on Programming Languages and Systems Vol. 4, No.2
(April 1982).

This paper describes the significance to high-level
languages, especially FORTRAN, of various features of the
IEEE proposed Standard.

[10] Floating-Point Working Group 754 of the Microprocessor
Standards Committee, IEEE Computer Society. "A Standard
for Binary Floating-Point Arithmetic." Proposed to IEEE,
345 East 47th Street, New York, NY 1 0017.

The implementation of SANE is based upon the final draft of
this Standard, submitted December 1982.

. [11] Floating-Point Working Group 754 of the Microprocessor
Standards Committee, IEEE Computer Society. "A
Proposed Standard for Binary Floating-Point Arithmetic."
IEEE Computer Vol. 14, No.3 (March 1981).

This is Draft 8.0 of the proposed Standard, which was
offered for public comment. The current Draft 10.0 is
substantially simpler than this draft; for instance, warning
mode and projective mode have been eliminated, and the
definition of underflow has changed. However, the intent of
the Standard is basically the same, and this paper includes
some excellent introductory comments by David Stevenson,
Chairman of the Floa~ing-Point Working Group.

761 Part I: The Standard Apple Numeric Environment

[12] Hough, D. "Applications of the Proposed IEEE 754 Standard
for Floating-Point Arithmetic." IEEE Computer Vol. 14, No.3
(March 1981).

This paper is an excellent introduction to the floating-point
environment provided by the proposed Standard, showing
how it facilitates the implementation of robust numerical
computations.

[13] Kahan, W. "Interval Arithmetic Options in the Proposed IEEE
Floating-Point Arithmetic Standard." In Interval Mathematics
1980, edited by K. E. L. Nickel. New York: Academic Press,
1980.

This paper shows how the proposed Standard facilitates
interval arithmetic.

[14] Kahan, W., and Jerome T. Coonen. "The Near Orthogonality
6f Syntax, Semantics, and Diagnostics in Numerical
Programming Environments." In The Reiptionship between
Numerical Computation and Programming Languages,
edited by J. K. Reid. New York: North Holland, 1982.

This paper describes high-level language issues relating to
the proposed IEEE Standard, including expression
evaluation and environment handling.

Annotated Bibliography

Part II ,of the Apf?le Numerics Manual, which

deals with implementation of SANE on the

6502 microprocessor, has been omitted

from this edition.

Part III: The 68000 Assembly-Language SANE Engine 1185

rounding precision, bits 0060 RR
0000 extended
0020 double
0040 single
0060 UNDEFINED

halts enabled, bits 001 F
0001 invalid I
0002 underflow U
0004 overflow, 0
0008 division-by-zero D
0010 inexact X

'Sits 8000 and 0080 are undefined.

Note that the default environment is represented by the integer
value zero.

2741 Part III: The 68000 Assembly-Language SANE Engine

Index

A

A-line trap 196
A2.AELEM.CODE 130
A2.AFP .CODE 130
A2X.AELEM.CODE 130
A2X.AFP.CODE 130
A2X.BANKSW 131
A2X.FPINIT.CODE 130
A2X.LOADER 131
A3.AELEM.CODE 130,130
A3.AFP.CODE 130, 130
A3.CUSTOM.CODE 130
A3.CUSTOM.LlB 130
absolute value 102, 208
absolute-value 55
access, external 92
accounting applic~tions 12
accuracy

increasing 34, 59, 108, 213
add 100
addition 206'

invalid 49
address, passing by 99,205
annuity 63

calling sequence for 127,
235

Apple II 129, 131
128K 133, 135
Pascal 129, 131
64K 133

Apple lie ROMs, old 145
Apple III 129, 131, 145-149
application 11
approximations 25

276

ArcCosh 69
ArcCosine 68
ArcSine 68
ArcSinh 69
arctangent 64
ArcTanh 69
arithmetic 11

abuse 95, 199
functions 100
operations 206

Assembler, Pascal 129, 133
assembly-language. access

DOS 134,141
Pascal 133, 136, 145
ProDOS 134, 141
SOS 148

atomic operations 52
auxiliary

B

information 101
stack, zero-page, and

language card 138,
141-144, 146, 149

Backus-Naur form 25
base-2

exponential 60
logarithm 59

base-e
exponential minus 1 60
logarithm of 1 plus argument

59
natural 60
or natural logarithm 59

BASIC 37
binary

and decimal 25

Index

formats 105, 211
log 57, 102, 207
operations 126, 194, 205,

234
scale 57, 102, 207

bold type 9
brackets ([]) 9
byte order

c

6502 97
68000 202

C status bit 217
calling sequence 93, 99, 196,

205
one-address 233

class 113, 218
classify operation 113, 218
code, operation 93
coercion 35
comp 11,12,17,97,201

NaN 24,41
comparison(s) 37, 91, 195

invalid 49
operations 111, 217

compound 62, 127, 135
conversion(s) 91, 195

between binary and decimal
25, 107, 108, 212, 213

between binary formats 105,
211

between decimal formats 30
between extended and single

or double 24
from decimal records to

decimal strings 31
from decimal records to

SANE types 28 \
from decimal strings to SANE

types 25
from extended 106, 212
from SANE types to decimal

. records 29
from SANE types to decimal

strings 26
invalid 49 .
to comp and other integral

formats 24
to extended 105, 211

copy-sign 55, 102, 208
CoSecant 68
Cosh 68
cosine 64
CoTangent 68
counting type 12
CUSTOMIZE.DATA 130
customizing files 131

o
DO 196,207

register 205
data types 97, 201
decform record(s) 26,29,91,

107
decimal

and binary, conversions
between 25

formats, conversions between
30

record type 27
reco~s 29,30,31,107
strings 25, 26, 30, 31

denormal 113, 218
. denormalized number 43

destination operand. 90, 194
digit(s)

decform record field 26
significant 213

direction, rounding 221
disk

SANE1 131
SANE2 130-131
SANE3 129-130

I divide 100
divide-by-zero 50
division 206

invalid 49
DOS assembly-language

access 134, 141
double 11, 97, 201

format 16
downward, rounding 48
DST 90, 91, 99, 125, 126, 194,

195,205,223,234

E

elementary functions 59-69,
125-127, 233-235

Elems6502 125
Elems68K 196, 233, 237
entry 225

point 196
point FP6502 92

environment 122, 223
duplicate 133
word 92, 115, 221

environmental settings 50
equal 37,111,217
error(s)

bounds 25
fatal 95, 199

Index

eX 60
exception(s) 49-50

flags 48, 115, 221
to current position 122

exit 225
exp 27
exp1 (x) 60
exponent 13
exponential functions 60
exponentiation 126, 234
extended 11,97,201

conversions from 1 06
conversi6ns to 1 05

extended
and single or double 24
evaluation 35
format 17
precision 11, 34
temporaries 33

external access 92, 196

F

files
customizing 131
on SANE1 disk 131
on SANE2 disk 130-131
on SANE3 disk 130

financial functions 62
fixed-format overflow 107
floating point 13
flush-to-zero systems 44
formats of SANE types 15-17
formatting 26, 27, 107,

212-213
FP6502 129, 133
FP68K 196,237
FPBYTRAP 237

2n

functions
one-argument 125
three-argument 127, 235
two-argument 126, 234

future value 62, 63

G

general exponential 60
GENERIC. MACROS 131 '
get-environment 117,223
get-halt-vector, 122, 228
gradual underflow 44
greater 37, 111, 217
greater-or-equal 37

H

halt(s) 48, 92
conditions for 121, 227
enabled 116, 222
example 123
mechanism 121,228
vector 48, 92, 122

hyperbolic functions 68
o inverse 69

IEEE
arithmetic 9
Standard 9, 35, 87, 191

INCLUDE.EQUS'131
inexact 50
inf 41
infinite 113, 218

result 50
infinity 41

278

inquiries 113, 218
class and sign 45

,integer(s) 1,1,97, 201
exponentiation 60, 126, 234

integral
formats, conversions to comp

24
value 21, 101, 206

interest rate 62, 63
interrupts 145
intrinsic unit 237
invalid

exception, on comparison 38
operation 49

IOSFPLlB.OBJ 237

J,K
Kahan, William 67

L

less 37, 111, 217
less-or-equal 37
linking to FP6502 and

Elems6502 133, 134, 138,
146

Usa 237
In(x) 59
In1 (x) 59
loading FP6502 and Elems6502

133, 135, 137, 142, 149
log

functions 57
binary 102

Index

log2(x) 59
logarithm functions 59
10gb 57, 102, 207
longint 201

M

Macintosh 237
macros 93, 94, 151, 198, 237
MAXCOMP 34
memory map 143
mod 20
multiplication 206

invalid 49
multiply 100

N

N status bit 1.01,111,113,217
NaN(s) 42

codes 42,43
comparison of 37

negate 55, 102, 208
next-after 103, 209

functions 56, 90
nextdouble(x,y) 56
nextextended(x,y) 56
nextsingle(x,y) 56
normal 113, 218
normalized number 43
Not-a-Number See NaN(s)
not-equal 37
numeric comparisons 37

o
object code 237
one-address form 90, 99, 125,

194,205
128K Apple II 129
< op > 90, 99, 125, 194, 205,

233
operand 90, 194

format code(s) 93, 197
passing 99, 205

operation code 93, 197
opword 93, 122, 197
ordinary annuities 63
overflow 50

fixed format 107,213

p

package manager 237
parsing 27, 30
Pascal 23, 37, 129, 131

Assembler 129
assembly-language access

145
payment 63
PDOS.SANEMACROI 131
periods 62,63
precision 14
present value 62, 63
procedure-entry 51, 119, 225
procedure-exit 52, 119, 225
ProDOS 129, 131

Assembler Tools 129
assembly-langl,Jage access

141
pseudorandom number

generator 65
PUSH 93,99

Q

quiet NaNs 42, 113, 218

R

random 65
range 14
records, decimal 29,30,31,

107 ,
rectangular distribution 65
registers 92, 99, 111, 196
< relation> 91, 195
relational operators 37, . 112,

217
remainder 20, 101, 196, 207

invalid 49
result information. 122
round to integral value 21
round-to-integer 101, 206
rounding

S

direction 47-48, 115, 221
errors 35
precision 48, 116, 222
to integral formats 24

SANE 9
data types 14, 15-17,25,28,

201
SANE1 disk 131
SANE2 disk 130-131

Index

SANE3 disk 129-130
SANEMACRO.TEXT 130
scalb 57, 102, 207
scale, binary 1 02
Secant 68
set-environment 117, 223
set-exception 118
set-halt-vector 122, 228
sgn 27
sig 27
sign 13, 113

manipulation 55
signaling NaNs 42, 113, 218

invalid exception from 49
significand 13, 27
significant digits 108, 213

maximum 107,212
sine 64
single 11, 16, 24, 97, 201
single-only IEEE implementation

35
Sinh 68
6502 byte order 99
68000 byte order 202
SOS 129

assembly-language access
148

source operand (SRC) 90, 194
square root 100, 206

invalid 49
SRC 91, 99, 194, 195, 205,

234
SRC2 91,195
stack 138, 141-144, 196,228

pointer 121, 228
Standard Apple Numeric

Environment See SANE

279

status bits 99, 111, 205, 217
flags 92
information record 122

storage format 90, 194
strings, decimal 30
style

decform record field 26
subtract 1 00
subtraction 206

invalid 49
. successor character 108
SYSTEM.APPLE 131
SYSTEM.CHARSET 131
SYSTEM.LlBRARY 131
SYSTEM.MISCINFO 131
SYSTEM.PASCAL 131
SYSTEM.STARTUP 131

T

tangent 64
Tanh 69
temporaries

extended 33
test-exception 118, 224

. three-argument functions 127
TLASM/SANEMACS.TEXT 237
toward zero, rounding 48
trap 49, 121, 227
trichotomy 37
trigonometric functions 64, 68
truncate-to-integer 101, 206
two-address form 90, 99, 126,

194,205
2x 60
type 12

280

U

unary operations 90, 99, 125,
1.94, 205

underflow 49
unordered 37,217

comparison 111
upward, rounding 48

.y

v status bit 111, 217
value, passing by 99, 102, 126

W

warning 133, 145

x
x register(s) 99, 101, 111, 113,

117
X-bytes 146
X status bit 217
Xl 60
xy 60

y
,

y register(s) 99,101,111,113,'
117

z
z status bit 111, 217
zero 113, 21.8 '

page 92, 134, 138, 141-144,
146, 149

Index

/

MACINTOSH USER EDUCATION

Index to Technical Documentation

See Also: Inside Macintosh: A Road Map
Macintosh User Interface Guidelines

/TOOLBOX/INDEX

Macintosh Memory Management: An Introduction
Programming Macintosh Applications in Assembly Language
The Resource Manager: A Programmer's Guide
QuickDraw: A Programmer's Guide
The Font Manager: A Programmer's Guide
The Toolbox Event Hanager: A Programmer's Guide
The Window Manager: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide
TextEdit: A Programmer's Guide
The Dialog Manager: A Programmer's Guide 0

, l
The Desk Manager: A Programmer's Guide
The Scrap Manager: A Programmer's Guide
Toolbox Utilities: A Programmer's Guide
l1acintosh Packages: A Programmer's Guide
The Memory Manager: A Programer's Guide
The Segment Loader: A Programmer's Guide
The Operating System Event Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
Printing from Macintosh Applications
The Device ~lanager: A Programmer's Guide
The Disk Driver: A Programmer's Guide
The Sound Driver: A Programmer's Guide
The Serial Drivers: A Programmer's Guide
The AppleTalk Manager: A Programmer's Guide
The Vertical Retrace Manager: A Programmer's Guide
The System Error Handler: A Programmer's Guide
The Operating System Utilities: A Programmer's Guide
The Structure of a Macintosh Application

Modification History: First Draf<
Updated

Caroline Rose
Caroline Rose

8/5/83
1~/5/83, 1/9/84,
6/5/84, 8/13/84,

1~/5/84, 12/6/84,
2/1/85

ABSTRACT

This is an index to all the documentation listed under "See Also:"
above, as of 2/1/85.

· INDEX 1

INDEX

The page numbers are preceded by a two-letter designation of which
manual the information is in:

AL

AM
eM
DD
DL
OS
DV
EH
EM
FL
FM
l-1I
MM
MN
OE

au
PK
PR
PT
00
RD
RM
SL
SM
SN
SR
ST
TE
TU
ur
VR
WM

Programming Macintosh Applications in Assembly
Language

The AppleTalk Manager: A Programmer's Guide
The Control Manager: A Programmer's Guide
The Disk Driver: A Programmer's Guide
The Dialog Manager: A Programmer's Guide
The Desk Manager: A Programmer's Guide
The Device Manager: A Programmer's Guide
The System Error Handler: A Programmer's Guide
The Toolbox Event Manager: A Programmer's Guide
The File Manager: A Programmer's Guide
The Font Manager: A Programmer's Guide
Macintosh Memory Management: An Introduction
The Memory Manager: A Programmer's Guide
The Menu Manager: A Programmer's Guide,
The Operating System Event Manager: A Programmer's

Guide
The Operating System Utilities: A Programmer's Guide
Macintosh Packages: A Programmer's Guide
Printing from Macintosh Applications
Putting Together a Macintosh Application
OuickDraw: A Programmer's Guide
Inside Macintosh: A Road Map
The Resource Manager: A Programmer's Guide
The Segment Loader: A Programmer's Guide
The Scrap Manager: A Programmer's Guide
The Sound Driver: A Programmer's Guide
The Serial Drivers: A Programmer's Guide
The Structure of a Macintosh Application
TextEdit: A Programmer's Guide
The Toolbox Utilities: A Programmer's Guide
Macintosh User Interface Guidelines
The Vertical Retrace Manager: A Programmer's Gui~e
The Window Manager: A Programmer's Guide

1/22/85
1/31/85
5/30/84
9/18/84
7/6/84

8/22/84
6/15/84
9/26/84

11/19/84
5/21/84
6/11/84
8/20/84
10/9/84
9/24/84

11/19/84
1/11/85
5/7/84

6/15/84
7/10/84
3/2/83

9/10/84
11/28/84
8/24/84
1/31/85

11/15/84
9/28/84

2/8/84
1/14/85

11/13/84
11/30/84
6/15/84
5/3'/1/84

2/1/85 Rose /TOOLBOX/INDEX

2 INDEX

@ operator MI-IO

A
ABByte data type AM-20
ABCallType data type AM-I 7
ABProtoType data type AM-I 7
ABRecHandle data type AM-I 7
ABRecPtr data type AM-17
ABusRecord data type AM-I 7

ALAP parameters AM-I 9
ATP parameters AM-32
DDP parameters AM-26
NBP parameters AM-46

ABusVars global variable AM-83
access path FL-9
access path buffer FL-IO
ACount global variable DL-32
action procedure CM-IO, CM-20, CM-22

in control definition function
CM-30

activate event EM-s, WM-17
event message EM-14

active
control CM-7
window UI-28, WM-4, WM-23

AddPt procedure QD-6s
AddrBlock data type AM-26
Add Reference procedure RM-39
AddResMenu procedure MN~18
Add Resource procedure RM-28
AddResponse function AM-71
address mark DD-3
ALAP See AppleTalk Link Access

Protocol
ALAP frame AM-6
alert DL-s, DL-15

guidelines UI-54
alert box DL-s
Alert function DL-27
alert stages DL-16
alert template DL-8, DL-33

resource format DL-3s
alert window DL-7
AlertTemplate data type DL-33
AlertTHndl data type DL-34
AlertTPtr data type DL-34
alias AM-7
Allocate function

hi~h-level FL-21
low-level FL-44

allocated block MM-4
allocation block FL-4
amplitude of a wave SN-4

2/1/85 Rose

AngleFromSlope function TU-13
ANumber global variable DL-32
ApFontID global variable FM-6
AppendMenu procedure MN-17
AppFile data type SL-8
Apple menu UI-37
AppleTalk address AM-6
AppleTalk Link Access Protocol AM-6

assembly language AM-55
Pascal AM-l 9

AppleTalk Manager RD-Il, AM-4, AM-13
assembly language AM-53
Pascal AM-l 6

AppleTalk Transaction Protocol AM-8,
AM-9

assembly language, AM-63
Pascal AM-32

application font FM-6
applicati~h heap MI-s, MM-4

limit MM-12, MM-28
subdividing MM-49

application parameters SL-4
application space MM-Is
application window WM-4
ApplicZone. function MM-32
ApplLimit global variable MM-29
ApplScratch global variable AL-4
ApplZone global variable MM-16,

MM-32
AppParmHandle global variable SL-6
arrow cursor QD-34 , QD-39
arrow global variable QD-34
ascent FM-17
ASCII codes EM-8
assembly language AL-3
asynchronous communication SR-3
asynchronous execution FL-24 , DV-9,

AM-I8
at-leas,t-once transaction AM-8
ATP See AppleTalk Transaction

Protocol
ATPAddRsp function AM-43
ATPCloseSocket function AM-37
ATPGetRequest function AM-4I
ATPLoad function AM-36
ATPOpenSocket function AM-37
ATPReqCancel function AM-40
ATP~equest function AM-39
ATPResponse function AM-44
ATPRspCancel functlon AM-44
~TPSndRequest function AM-38
ATPSndRsp function AM-42
ATPUnload function ,AM-37
AttachPH function AM-58

/TOOLBOX/INDEX

auto-key event EM-5. EM-7
auto-key rate EM-7. OU-5
auto-key threshold EM-7. OU-5
auto-pop bit AL-8
automatic scrolling U1-30

in TextEdit TE-13

B
BackColor procedure QD-46
background procedure PR-16
BackPat procedure QD-39
band information subrecord PR-16
bands PR-7
base· line FM-16
baud rate SR-4
BDSElement data type AM-34
BDSPtr data type AM-34
BDSType data type AM-34 '
BeginUpdate procedure WM-32
Binary-Decimal Conversion Package

RD-lO, PK-20
bit image QD-12
bit manipulation TU-7
bit map

AppleTalk Manager AM-lO
printing PR-26
QuickDraw QD-13

BitAnd function TU-8
BitClr procedure TU-8
BitMap data type OD-13
'BitMapType data type AM-33
BitNot function TU-8
BitOr function TU-8
BitSet procedure TU-8
BitShift function TU-8
BitTst function TU-7
BitXor function TU-8
black global variable QD-34
block (file) See allocation block
block (memory) MI-4. MM-4
block contents MM-4
block device DV-4
block header MM-4

structure MM-21
block map FL-55
BlockMove procedure MM-47
boot blocks See system startup

information
break SR-4
bridge AM-7
BringToFront procedure WM-25
broadcast service AM-6

2/1/85 Rose

IN1)EX 3

BufPtr global variable MM-16
bundle FL-11, ST-6, ST-8
Button function EM-23
button type of control CM-5, OL-10
Byte data type. MI-9

C
CalcMenuSize procedure MN-26
CalcVBehind procedure WM-37
CalcVis procedure WM-36
CalcVisBehind procedure WM-37
caret TE-7
caret-blink time EM-25 , OU-6
CaretTime global variable EM-25
CautionAlert function OL-29
Chain procedure SL-9
ChangedResource procedure RM-27
character codes EM-8
character device OV-3
character height FM-16
character image FM-16
character keys UI-12, EM-7
character offset FM-18
character origin FM-16
character position TE-6
character rectangle FM-16
character set EM-9
character style QD-23

of menu items MN-12, MN-24
character width QO-44 , FM-17
Chars data type TE-17
CharsHandle data type TE-17
CharsPtr data type TE-17
CharWidth function QO-44
check box CM-5, OL-I0
check mark in a menu MN-12, MN-24
Checkltem procedu~e MN-24
CheckUpdate function WM-35
ClearMenuBar procedure MN-19
click See mouse-down event
click loop routine TE-13
ClipAbove procedure WfoI-36
Clipboard UI-42 See also scrap
ClipRect procedure QD-38
clipRgn of a grafPort QO-19
clock chip OU-3
close box See go-away region
Close command UI-40
Close function

high-level FL-22 t OV-7
low-level FL-45 , DV-14

close routine
of a desk accessory OS-14
of a driver DV-19 , OV-25

/'l'OOLBOX/INDEX

4 INDEX

CloseATPSkt function
closed device driver
closed file FL-9

AM-67
DV-5

CloseDeskAcc procedure DS-8
CloseDialog procedure DL-2I
CloseDriver function DV-7
ClosePicture procedure QD-62
Close Poly procedure QD-63
ClosePort procedure QD-36
CloseResFile procedure RM-18
CloseRgn procedure QD-56
CloseSkt function AM-62
CloseWindow procedure WM-22
ClrAppFiles procedure SL-8
CmpString function OU-12
color drawing QD-30
ColorBit procedure QD-46
Command-key equivalent· See keyboard

equivalent
Command-Shift-number EM-22
commands UI-33 t MN-3
compaction t heap MI-4 t MM-7 t - MM-40·
CompactMem function MM-40
completion routine FL-24, DV-9
ConfirmName function AM-77
content region of a window WM-6
control UI-50, CM-4

defining your own CM-24
in a dialog~alert DL-IO

control definition function CM-8,
CM-26

control definition ID CM-8, CM~24
Control function

high-level DV-8
low-level DV-I7

control information DV-5
control list WM-~O, CM-II
Control Manager RD-9, CM-4

routines CM-15
control record CM-IO
control routine

of a desk accessory DS-14
of a driver DV-19, DV-26

control template CM-9
resource format CM-30

ControlHandle data type CM-12
ControlMessage data type CM-26
ControlPtr data type CM-12
ControlRecord data type CM-I3
coordinate plane QD-6
CopyBits procedure QD-60
CopyRgn procedure QD-55
CouldAlert procedure DL-29
CouldDialog procedure DL-23

2/1/85 Rose

CountAppFiles procedure SL-8
CountMItems function MN-26
CountResources function RM-2I
CountTypes function RM-20
Create function

high-level FL-18
low-level FL-37

CreateResFile procedure RM-I7
creator of a file ST-3
CrsrThresh global variable OU-7
CurActivate global variable WM-18

, CurApName global variable SL-7
CurApRefNum global variable SL-7
CurDeactive global variable WM-18 ,
CurJTQffset global variable SL-13
CurMap global variable RM-19
CurPageOption global variable SL-I0
CurPitch global variable SN-8
current heap zone MM-4, MM-30
current resource file RM-7, RM-19
CurrentA5 global variable AL-I8,

MM-I6
CurResFi1e function RM-19
CursHand1e data type TU-II
cursor QD-I5

QuickDraw routines QD-39
standard cursors TU-II
utility routines TU-Il

Cursor data type QD-16
CursPtr data type TU-II
CurStackBase global variable MM-I6
cut and paste UI-44

D

intelligent UI-47
in TextEdit TE-20

DABeeper global variable DL-I9
DAStrings global array DL-30
data bits SR-4
data buffer FL-9, DV-5
data fork RM-5, FL-6
data mark DD-3
datagram AM-6

loss recovery AM-IO
Datagram Delivery Protocol AM-6

assembly language AM-26
Pascal AM-26

Date2Secs procedure OU-I5
DateForm data type PK-16
date/time record OU-I3
DateTimeRec data type OU-I3
DCtlQueue global variable DV-25
DDP See Datagram Delivery Protocol

/TOOLBOX/INDEX

DDPCloseSocket function AM-28
DDPOpenSocket function AM-27
DDPRdCancel function AM-30
DDPRead function AM-29
DDPWrite function AM-28
default button DL-5, DL-13
default volume FL-5
DefltStack global variable MM-14
DefVCBPtr global variable FL-60
Delay procedure OU-22
Delete function

high-level FL-24
low-level FL-51

DeleteMenu procedure MN-19
DeltaPoint TU-12
Dequeue function OU-20
dereferencing a handle MM-I0, MM-48
descent FM-17
desk accessory DS-3

writing your own DS-ll
Desk Manager RD-9, DS-3

routines DS-7
desk scrap SM-3, SM-13

data types SM-7
format SM-15

DeskHook global variable WM-20,
WM-27

DeskPattern global va~iable WM-20
desktop WM-4
Desktop file ST-5
destination rectangle TE-5
DetachPH function AM-58
DetachResource procedure RM-24
device DV-3
device control entry DV-21
device driver RD-I0, DV-4

for a desk accessory DS-ll
example DV-28
structure DV-18
writing your own DV-25

device driver event EM-5
Device Manager RD-IO, DV-3
Device Manager routines DV-7

high-level DV-7
low-level DV-9
for queue access DV-9
'for writing drivers DV-26

dial CM-6
dialog box UI-52, DL-4
Dialog Manager RD-9, DL-4

routines DL-18
dialog pOint,er DL-14
dialog record DL-8, DL-13

2/1/85 Rose

INDEX 5

dialog template DL-8, DL-33
resource format DL-35

dialog window DL-6
DialogPeek data type DL-14
DialogPtr data type DL-14
DialogRecord data type DL-14
DialogSelect function DL-25
DialogTemplate data type DL-33
DialogTHndl data type DL-33
DialogTPtr data type DL-33
DIBadMount function PK-37
DiffRgn procedure QD-57
DIFormat function PK-39
DILoad procedure PK-37
dimmed

control CM-7
menu item M~-4, MN-5
menu title MN-4

disabled
dialog/alert item DL-Il
menu MN-4, MN-23
menu item MN-13, MN-23

DisableItem procedure MN-23
discontinuous selection UI-20
Disk Driver RD-I0, DD-3

Device Manager calls DD-5
routines DD-7

Disk Initialization Package RD-ll ,
PK-35

routines PK-36
disk-inserted event EM-5

event message Et-l-I4
responding to EM-20

disk-switch dialog FS-5
DiskEject function DD-8
dispatch table See, trap dispatch

table
display rectangle DL-l1
DisposControl procedure CM-16
DisposDialog procedure DL-23
DisposeControl procedure CM-16
DisposeMenu procedure MN-17
DisposeRgn procedure QD-54
DisposeWindow procedure WM-23
DisposHandle procedure MM-33
~DisposMenu procedure MN-17
DisposPtr procedure MI-5, MM-37
DisposWindow procedure WM-23
DIUnload procedure PK-37
DrVerify function PK-39
DIZero function PK-39
dkGray global variable QD-34
DIgCopy procedure DL-27
DlgCut procedure DL-26

/TOOLBOX/INDEX

6 INDEX

DlgDeleteprocedure DL-27
DlgFont global variable OL-19
DlgHook function

SFGetFile PK-33
SFPutFile PK-29

OlgPaste procedure OL-27
document window WM-4
double-click EM-18 , UI-16
double-click time OU-6, EM-24
DoubleTime global variable EM-24
draft printing PR-6
drag region of a window WM-7, WM-28
OragControl procedure CM-21
DragGrayRgn function WM-33
DragHook global variable WM-29
DragPattern global variable WM-3S
OragTheRgn function .WM-3S
DragWindow procedure WM-28
DrawChar procedure QD-44
DrawControls procedure CM-18
DrawDialog procedure DL-27
DrawGrowIcon procedure WM-26
drawing QD-27

'color QD-30
DrawMenuBar procedure MN-19
DrawNew procedure WM-36
DrawPicture procedure QD-62
DrawString procedure QO-44
DrawText procedure QD-44
drive number FL-5
drive queue FL-62
driver See device driver
driver I/O queue DV-9, DV-24
driver name DV-5
driver reference number OV-5
DriveStatus function DD-9
DrvQEl data type FL-62
DrvQHdr global variable FL-63
DrvSts data type DD-9
DSAlertRect global variable EH-11
DSAlertTab global variable EH-6,

EH-IO
DSErrCode glob~l variable EH-IO

E
Edit menu UI-42

and desk accessories DS-9
edit tecord TE-4
Eject function

high-level FL-17
1 OW"" 1 eve 1 FL-36

Elems68K See Transcendental
Functions Package

2/1/85 Rose

empty handle MI-7, MM-8, MM-41
EmptyHandle procedure MM-41
EmptyRect function QD-48
EmptyRgn function 00-58
enabled

dialog/alert item DL-11
menu MN-24
menu item MN-24

EnableItem procedure MN-24
end-of-file

logical FL-7
physical FL-6

end-of-message flag AM-12
EndUpdate procedure WM-32
Enqueue procedure OU-19
entity name AM-7, AM-47
EntityName data type AM-47
EntityPtr data type AM-47
e9ual-tempered scale SN-20
EqualPt function OD-65
EqualRect function OD-48
EqualRgn function OD-58
EqualString function OU-12
EraseArc procedure OD-53
EraseOval procedure OD-50
ErasePoly procedure QO-65
EraseRect procedure QO-49
EraseRgn procedure 00-59
EraseRoundRect procedure OD-51
ErrorSound procedure DL-19
event EM-3

priority EM-6
event code EM-II
Event Manager, Operating System

RD-10, OE-3
,routines OE-4

Event Manager, Toolbox RD-8, EM-3
routines EM-2I

event mask EM-IS
event message EM-12 ~ ,
event queue EM-4

structure OE-7
event record EM-II
event types EM-4
EventAvail function EM-22
EventQueue global variable OE-8
EventRecord data type EM-II
EvQEl data type OE-8
exactly-once transaction AM-8
example program RO-l1
exception DV-30
Exec file for applications PT-12

/TOOLBOX/INDEX

ExitToShell procedure
assembly language SL-ll
Pascal SL-9

extended .selection UI-19
in TextEdit TE-18

external file system FL-63
external reference AL-15
ExtStsDT global variable DV-34

F
FCBSPtr global variable FL-61
Fetch function DV-27
FFSynthPtr data type SN-ll
FFSynthRec data type .SN-ll
file FL-3, FL-6
file control block FL-60
file-control-block buffer FL-60
file creator ST-3
file directory FL-4, FL-55
file icon FL-ll, ST-5
file I/O queue FL-24 , FL-58
File Manager RD-I0, FL-3
File Manager routines

high-level FL-15
low-level FL-24
for queue access FL-58,. FL-60,

FL-63
File menu UI-38
file name FL-6
file number FL-55
file reference ST-5, ST-8
file tags FL-56 , FL-62
file tags buffer DD-4
file type ST-3
fileFilter function PK-31
FillArc procedure QD-54
FillOval procedure QD-50
FillPoly procedure QD-65
FillRect procedure QD-49
FillRgn procedure QD-59
FillRoundRect procedure QD-52
filterProc function DL-24
FindControl function CM-19
Finder information SL-4
Finder interface FL-I0, ST-3
FindWindow function WM-26
FInfo data type FL-ll
Fixed data type MI-II
fixed-point

arithmetic TU-3
numbers MI-il

fixed-width font FM-17
FixMul function TU-4

2/1/85 Rose

INDEX 7

FixRatio function TU-3
FixRound function TU-4
FlashMenuBar procedure MN-27
Floating-Point Arithmetic Package

RD-ll
FlushEvents procedure OE-5
FlushFile function FL-45
FlushVol function

high-level FL-17
low-level FL-34

FMInput data type
FMOutPtr data type
FMOutput data type
FMSwapFont function
folder FL-Il
font FM-3

characters FM-8
format FM-16

FM-12
FM-15
FM-15
FM-ll

resource format FM-24
resource ID FM-25

font characterization table FM-13
Font Manager RD-8, FM-3

communication with QuickDraw FM-ll
routines FM-9
support by Printer Driver PR-28

Font menu UI-45, MM-18
font number FM-4
fo·nt record FM-20
font rectangle FM-17
font scaling FM-7
font size QD-25 , FM-4
FontInfo data type QD-45
FontRec data type FM-22
FontSize menu· UI-45
ForeColor procedure QD-45
fork RM-5, FL-5
four-tone record SN-8
four-tone synthesizer SN-3, SN-8
FP68K See Floating-Point Arithmetic

Package
frame (serial communication) SR-4
frame check sequence j AM-6
frame header AM-6
frame pointer (stack) AL-16
frame trailer AM-6
FrameArc procedure QD-52
FrameOval procedure QD-50
FramePoly procedure QD-64
FrameRect procedure QD-49
FrameRgn procedure QD-58
·FrameRoundRect procedure QD-51
framing error SR-4
free-form synthesizer SN-3, SN-ll
free memory block MM-4

/TOOLBOX/INDEX

8 INDEX

FreeAlert procedure OL-29
FreeDialog procedure DL-23
FreeMem function MM-39
FreeWave data type SN-11
frequency of a wave SN-4
FrontWindow function WM-26
FScaleDisable global variable FM-7
FSClose function FL-22
FSOelete function FL-24
FSOpen function FL-18
FSQHdr global variable FL-58
FSRead function FL-19, OV-8
FSWrite function FL-19, OV-8
FTSndRecPtr data type SN~9

FTSoundRec data type SN-9
FTSynthPtr data type SN-8
FTSynthRec data 'type SN-8
full-duplex communication SR-3

G
GetAlrtStage function OL-32
GetAppFiles procedure SL-8
GetAppParms procedure SL-9, ST-9
GetCaretTime function EM-25
GetClip procedure QD-38
GetCRefCon function CM-24
GetCTitle procedure CM-17
GetCtlAction function CM-24
GetCtlMax function CM-23
GetCtlMin function CM-23
GetCtlValue function CM-23
GetCursor function TU-11
GetOateTime procedure OU-14
GetOblTime function EM-24
GetOCtlQHdr function DV-24
GetDItem procedure OL-30
GetDrvQHdr function FL-63
GetEOF function

high-level FL-20
low-level FL-43

GetEvQHdr function OE-8
GetFilelnfo function

high-level FL-22
low-level FL-46

GetFlnfo function FL-22
GetFName procedure FM-10
GetFNum procedure FM-10
GetFontInfo procedure QD-45
GetFontName procedure FM-10
GetFPos function

high-level FL-20
low-level FL-42

GetFSQHdr function FL-58

2/1/85 Rose

GetHandleSize function MM-33"
Getlcon f~nction TU~10
GetlndPattern procedure TU-10
GetlndResource function RM-21
GetlndString procedure TU-4
GetIndType proce,dure RM-21
GetItem procedure MN-23
Getltemlcon procedure MN-25
GetltemMark procedu~e MN-25
GetltemStyle procedure MN-26
GetITeit procedure DL-31
GetltmIcon procedure MN-25
GetltmMark procedure MN-2S'
GetltmStyle procedure MN-26
GetKeys procedure' EM~24
GetMaxCtl function CM~23

GetMenu function MN-16
GetMenuBar function, MN-20
GetMHandle function MN-27
GetMinCtl function CM-23
GetMouse procedure EM-23
GetNamedResource function RM-22
GetNewControl' function CM-16 ,
GetNewOialog function DL-21
GetNewMBar function MN-20
GetNewWindow function WM-22
GetNextEvent function EM-21
GetNodeAddress function AM-53
GetOSEvent function OE-6
GetPattern function TU-I0
GetPen procedure QD-40
GetPenState procedure QD-41
GetPicture function TU-12
GetPixel function QD-68
GetPort procedure QD-36
GetPtrSize function MM-37
GetRequest function AM-69
GetResAttrs function RM-2S
GetResFileAttrs function RM-32
GetReslnfo procedure 'RM-25
Get Resource function RM-22
GetRMenu function MN-17
GetScrap function SM-12
GetSoundVol procedure SN-15
GetString function TU-4,
Get.SysPPtr function OU-18
GetTime procedure OU~16
GetTrapAddress functiori OU-21
GetVBLQHdr function VR-7
GetVCBQHdr,function FL-60
GetVlnfo function FL-16
GetVol function

high-level FL-16
low-level FL-33

/TOOLBOX/INDEX

GetVolInfo function
high-level FL-16
low-level FL-32

GetWindowPic function WM-33
GetWMgrPort procedure ,WM-21
GetWRefCon function WM-33
GetWTitle procedure WM-23
GetZone function MM-30
GhostWindow global variable WM-26
global coordinates OD-27
GlobalToLocal procedure OD-66
go-away region of a window WM-7,

WM-27
GrafDevice procedure OD-36
grafPort OD-17

routines OD-34
GrafPort data type OD-18
GrafPtr data type OD-18
GrafVerb data type OD-71
gray global variable OD-34
GrayRgn global variable WM-20
grow image of a window' WM-25
grow region of a window WM-7, WM-29
grow zone function MM-I0, MM-44
GrowWindow function WM-29
GZCritical function MM-46
GZMoveHnd global variable MM-47
GZRootHnd global variable MM-47
GZRootPtr global variable MM-47
GZSaveHnd function MM-46

H
handle MI-6, MI-9, MM-6

dereferencing MM-I0
empty MM-41.
manipulation OU-9

Handle data type MI-9
HandleZone function MM-34
HandAndHand function OU-ll
HandToHand function OU-9
hardware overrun error SR-5
heap RD-I0, MI-3, MM-4

compaction MI-4, MM-7, MM-40
creating on the stack MM-51
zone MM~3, MM-17

HeapEnd global variable MM-16
HideControl procedure CM-17
HideCursor procedure 0D-39
HidePen procedure 0D-40
HideWindow procedure WM-23

2/1/85 Rose

highlighted
control CM-6
menu title MN-22
window WH-4

INDEX 9

HiliteControl procedure CM-18
HiliteMenu procedure MN-22
'HiliteWindow procedure WM-25
HiWord function TU-9
HLock procedure MM-42
HNoPurge procedure MM-44
HomeResFile function RM-20
HPurge procedure MM-43
HUnlock procedure MM-43

I
icon

in a dialog/alert DL-I0
for a file FL-l1, ST-5
in a menu MN-Il, MN-25
utility routines TU-I0

icon list ST-6, ST-8
resource format TU-14

icon number MN-ll
image width FM-16
imaging during printing PR-6, PR-7
inactive

control CM-7
.window WM-4

indicator of a dial CM-6
InfoScrap function SM-I0
InitAllPacks procedure PK-5
InitApplZone procedure MM-27
InitCursor procedure OD-39
InitDialogs proce~ure DL-18
InitFonts procedure FM-9
InitGraf procedure OD-34
InitMenus procedure MN-15
InitPack procedure PK-5
InitPort procedure OD-35
InitOueue procedure FL-31
InitResources function RM-16
InitUtil function OU-17
InitWindows procedure WM-20
InitZone procedure MM-28
input driver SR-4
insertion point UI-22 , TE-7
InsertMenu procedure MN-19
InsertResMenu procedure MN-18
InsetRect procedure 0D-47
InsetRgn procedure OD-57
interface routine AL-15
international resources PK-6

/TOOLBOX/INDEX

10 INDEX

International Utilities Package
RD-10, PK-6

routines PK-16
internet AM-7
internet address AM-7
interrupt handler DV-30

writing your own DV-34
interrupt priority level DV-30
interrupt vector DV-30
interrupts DV-30

level-1 (VIA) DV-31
level-2 (SCC) DV-33
level-J DV-30
vertical retrace VR-3

Int64Bit data type TU-9
InvalRect procedure WM-31
InvalRgn procedure WM-32
InvertArc procedure QD-54
InvertOval procedure· QD-50
InvertPoly procedure QD-65
InvertRect procedure {)D-49
InvertRgn procedure QD-59
InvertRoundRect procedure QD-52·
invisible

control CM-10
dialog/alert item DL-12
file icon FL-11
window WM-11

IODone function DV-28
I/O queue See driver I/O queue or

file I/O queue
I/O request FL-24 , DV-9
IsATPOpen function AM-53
IsDialogEvent fun~tion DL-25
IsMPPOpen function AM-53
item

dialog/alert DL-8
menu MN-4

item list DL-8, DL-9, DL-36
item number DL-13

dialog/alert DL-12
menu MN-14

item type DL-9
IUCompString function PK-18
IUDatePString procedure PK-17
IUDateString procedure PK-16
IUEqualString function PK-18
IUGetlntl function PK-17
IUMagIDString function PK-19
IUMagString function PK-18
IUMetric function PK-17
IUSetlntl procedure· PK-18
IUTimePString procedure PK-17
IUTimeString procedure PK-17

2/1/85 Rose

J
jFetch jump vector DV-27
jIODone jump vector DV-28
job dialog PR-ll
job subrecord PR-14
journal code EM-27
journaling mechanism EM-25
jStash jump vector DV-27
jump table SL-l1
jump vector DV-26
justification TE-8

setting TE-21

K
kerning QD-23 , FM-17
key codes EM-12
key-down event EM-5

responding to EM-19
key-up event EM-5, EM-17
keyboard UI-l1
keyboard configuration EM-9
keyboard equivalent MN-5, MN-6

meta-character MN-13
responding to MN-22
standard equivalents UI-36

keyboard event EM-5, EM-7
event message EM-12
responding to EM-19

keyboard touch See auto-key
threshold

KeyMap data type EM-24
keypad UI-14
KeyRepThresh global variable EM-8
KeyThresh global variable EM-8
KillControls procedure CM-17
KillIO function

high-level DV-9
low-level DV-18

KillPicture procedure QD-62
KillPoly procedure QD-63

L
landscape orientation PR-8
LAP protocol type AM-6
LAPAdrBlock data type AM-20
LAPCloseProtocol function AM-21
LAPOpenProtocol function AM-21
LAPRdCancel function AM-23
LAPRead function AM-23
LAPWrite function AM-22

/TOOLBOX/INDEX

Launch procedure SL-I0
leading FM-18
ligatures PK-14

, limit pointer MM-19
line height TE-9
Line procedure QD-42
LineTo procedure QD-42
list separator PK-8
L03Bytes global variable AL-4, MM-23
LoadNBP function AM-77
LoadResource procedure Rt1-23
LoadScrap function SM-l1
LoadSeg procedure SL-l1
local coordinates QD-25
local ID ST-5
local reference RM-37
LocalToGlobal procedure , QD-66
location table FM-20
lock bit MM-22
locked block MI-7, MM-5
locked file FL-I0
locked volume FL-5
locking a block MI-7, MM-42
LodeScrap function SM-l1
logical block FL-52
logical end-of-file FL-7
logical operations TU-8
logical size of a block ~1-20

LongMul procedure TU-9
LookupName function AM-76
LoWord function TU-9
ItGray global variable QD-34
LvllDT global variable DV-32
Lvl2DT global variable DV-33

M
magnitude of a wave SN-4
main 'event loop RD-12
main segment SL-3
MapPoly procedure QD-69
MapPt procedure QD-69
MapRect procedure OD-69
MapRgn procedure QD-69
mark

in a file FL-7
-in a menu MN-12, MN-24

master directory block FL-52
master pointer MI-6, MM-6

allocation MM-19, MM-30
structure MM-22

MaxApplZone procedure MM-30
NaxMem function MM-39

2/1/85 Rose

INDEX 11

MBarEnable global variable MN-22,
DS-15

MemErr data type MM-21
MemError funct ion MM-4'8
Memory Hanager RD-I0, MM-3

routines MM-25
memory organization MM-15
HemTop global variable MM-16, MM-47
menu MN-3

defining your own MN-27
guidelines UI-33
resource format MN-30
standard menus UI-37

menu bar MN-4
resource format MN-31

menu definition procedure MN-7,
MN-28

menu ID MN-8
menu item MN-3

blinking MN-27, OE-6
menu item number MN-14
menu list MN-9
Menu Manager RD-9, MN-3

routines MN-15
menu record MN-8
menu title MN-3
MenuFlash global var.iable MN-27
MenuHandle data type MN-8
MenuHook global variable MN-22
MenuInfo data type MN-8
MenuKey function MN-22
MenuList global variable MN-I0
MenuPtr data type MN-8
MenuSelect function MN-21
meta-characters MN-I0

AppleTalk M'anager, AM-8
Menu Manager MN-I0

~1inStack global variable MM-14
MinusOne global variable AL-4
missing symbol QD-23, FM-7
modal dialog box DL-4, DL-23
ModalDialog procedure DL-23
modeless dialog box DL-5, DL-25
modes UI-5
modifier flags EM-14
modifier keys UI-12, EM-7

flags in event record EM-14
MoreMasters procedure MM-30
mounted volume FL-4
MountVol function FL-31
mouse UI-15
mouse-down event EM-5

responding to EM-18
mouse scaling OU-7

/TOOLBOX/INDEX

12 INDEX

mouse-scaling threshold OU-7
mouse-up event EM-5

responding to EM-I8
Move procedure QD-42
MoveControl procedure CM-21
MovePortTo procedure QD-37
MoveTo procedure QD-42
MoveWindow procedure WM-28
MPP AM";'13
MPPClose function AM-19
MPPOpen function AM-19
Munger function TU-5

N
Name-Binding Protocol AM-7

assembly language AM-72
Pascal AM-46

name lookup AM-8
names directory AM-7
names information socket AM-8
names table AM-7
NBP See Name-Binding Protocol
NBP tuple AM-7
NBPConfirm function AM-50
NBPExtract function AM-49
NBPLoad function AM-50
NBPLookup function AM-49
NBPRegister function AM-48
NBPRemove function AM-50
NBPUnload function AM-51
network event EM-5, AM-18
network number AM-7
network-visible entity AM-7
New command UI-39
NewControl function CM-15
NewDialog function DL-20
NewHandle function MM-32
newline character FL-I0
newline mode FL~IO
NewMenu function MN-I6
NewPtr function MI-5, MM-36
NewRgn function OD-54
NewString function TU-4
N~wWindow function WM-21
node AM-6
node ID AM-6
nonbreaking space TE-4
nonrelocatable block MI-5, MM-5

allocating MM-36
releasing MM-37

NoteAlert function DL-29
null event EM-5
NumToString procedure PK-20

o
ObscureCursor procedure QD-40
off-line volume FL-4
OffLine function FL-35
OffsetPoly p,rocedure QD-63
OffsetRect ~rocedure QD-46
OffsetRgn procedure QD-56
offset/width table FM-20
on-line volume FL-4
OneOne global variable AL-4,
Open command UI-39
open device driver DV-5
open file FL-9
Open function

high-level FL-I8, DV-7
low-level FL-38, DV-14

open permission FL-9
open routine

of a desk accessory DS-13
of a driver DV-19, DV-25

OpenATPSkt function AM-67
OpenDeskAcc function DS-7
OpenDriver function DV-7
OpenPicture function QD-61
OpenPoly function QD-62
OpenPort procedure QD-35
OpenResFile function RM-17
OpenRF function FL-39
OpenRgn procedure QD-55
OpenSkt function AM-62
Operating System RD-6

queues OU-7
Operating System Event Manager

RD-lC) , OE-3
routines ,OE-4

Operating System Utilities RD-ll,
OU-3

routines OU-9
OSErr data type OU-9
OSEventAvail function OE-6
OSType data type OU-8
output driver SR-5
owned resources RM-10

P

Pack2 See Disk Initialization
Package

Pack3 See Standard File Package
Pack4 See Floating-Point Arithmetic

Package

2/1/85 Rose /TOOLBOX/INDEX

Pack5 See Transcendental Functions
Package .

Pack6 See International Utilities
Package

Pack7 See Binary-Decimal Conversion
Package

Package Manager RD-I0, PK-4
packages RD-I0, PK-4
PackBits procedure TU-6
page rectangle PR-12
Page Setup command UI-41
PaintArc procedure OD-53
PaintBehind procedure WM-36
PaintOne procedure WM-36
PaintOval procedure OD-50
Paint Poly procedure OD-64
PaintRect procedure OD-49
PaintRgn procedure OD-59
PaintRoundRect procedure OD-51
PaintWhite global variable WM-17
palette UI-I0
pane UI-31
panel UI-33
paper rectangle PR-13
ParamBlkType data type FL-26, DV-ll
ParamBlockRec data type FL-26, DV-ll

driver I/O queue entry DV-24
file I/O queue entry FL-58

parameter block AL-12, FL-24, DV-I0
parameter RAM OU-3

default values OU-5
routines OU-17

ParamText procedure DL-30
parity 'bit SR-4
parity error SR-4
ParmBlkPtr data type FL-26, DV-l1
part code CM-9
path reference number FL-9
PatHandle data type TU-I0
PatPtr data type· TU-I0
pattern OD-14, TU-I0
Pattern data type OD-14
pattern list TU-I0

resource format TU-14
pattern transfer mode OD-29
PBAllocate function FL-44
PBClose function' FL-45, DV-14
PBControl function DV-17
PBCreate function FL-37
PBDelete function FL-51
PBEject function FL-36
PBFlshFile function FL-45
PBFlshVol function FL-34
PBGetEOF function FL-43

2/1/85 Rose

INDEX 13

PBGetFInfo function FL-46
PBGetFPos function FL-42
PBGetVol function "FL-33
PBGetVolInfo function FL-32
PBKillIO function DV-18
PBMountVol function FL-31
PBOffLine function FL-35
PBOpen function FL-38, DV-14
PBOpenRF function FL-39
PBRead function FL-40, DV-15
PBRename function FL-50
PBRstFLock function FL-48
PBSetEOF function FL-43
PBSetFInfo function FL-47
PBSetFLock function FL-48
PBSetFPos function FL-42
PBSetFVers function FL~49
PBSetVol function FL-33
PBStatus function DV-17
PBUnmountVol function FL-35
PBWrite function FL-41, DV-16
pen characteristics OD-21
PenMode procedure OD-41
PenNorma1 procedure OD-42
PenPat procedure QD-42
PenSize procedure OD-41
period of a wave SN-4
phase of a wave cycle SN-4
physical end-of-file FL-6
physical size of a block MM-21
PicComment procedure OD-62
PicHand1e data type OD-32
~icPtr data type OD-32
picture OD-31

OuickDraw routines OD-61
utility routine TU-12

picture comments OD-32
Picture data type OD-31
picture frame OD-31
PinRect function WM-33
P1otIcon procedure TU-I0
point (coordinate plane) OD-7

routines OD-65
point (font size) OD-25, FM-4
Point data type OD-7
pointer (to memory) MI-5, MI-9, MM-5

manipulation OU-9
type conversion MI-9

pointer (on screen) UI-17 See also
cursor

polygon OD-32
routines OD-62

Polygon data type OD-33
Po1yHand1e data type OD-33

/TOOLBOX/INDEX

14 INDEX

PolyPtr data type QD-33
portBits of a grafPort QD-19
PortBUse global variable AM-54
portrait orientation PR-8
portRect of a grafPort QD-19
PortSize procedure QD-37
post an event EM-4
PostEvent function OE-4
P~Close procedure PR-19
PrCloseDoc procedure PR-22
PrClosePage procedure PR-22
PrCtlCall procedure PR-24
PrDrvrClose procedure PR-·24
PrDrvrDCE function PR-24
PrDrvrOpen procedure PR-24
PrDrvrVers function PR-24
PrError function PR-23
prime routine of a driver DV-19,

DV-26
Print command UI-4I
print dialogs PR-lO
print record PR-I0
PrintDefault procedure PR-20
Printer Driver RD-lI, PR-5, PR-25
printer information subrecord PR-15
Printer program PR-9
printer resource file PR-4
printer status record PR-l7
Printing Manager, RD-ll, PR-4

routines PR-19
printing methods PR-6

low-level PR-26
printing port PR-5
printing resources PR-29
PrJobDialog functIon PR-20
PrJobMerge procedure PR-2I
PrNoPurge procedure PR-25
processor priority DV-3I
ProcPtr data type 'MI-I0
PrOpen procedure PR-l9
PrOpenDoc function PR-2I
PrOpenPage procedure PR-22
proportional font FM-17
protocol AM-4
protocol handler AM-6

writing your own AM-78, AM-80
protocol handler table AM-6
PrPicFile procedure PR-22
PrPurge procedure PR-25
PrSetError procedure PR-23
PrStlDialog function PR-20
PrValidate function PR-20
PScrapStuff data type SM-I0
Pt2Rect procedure QD-47

2/1/85 Rose

PtlnRect function OD-47
PtlnRgn function QD-58
Ptolemy's diatonic scale SN-20
Ptr data type MI-9
PtrAndHand function OU-II
PtrToHand function OU-lO
PtrToXHand function OU-I0
PtrZone function MM-38
PtToAngle procedure QD-48
purge bit MM-22
purge warning procedure MM-20
purgeable block MI-7, MM-5, MM-43
PurgeMem procedure MM-4I
purging a block MI-7, MM-8, MM-4l
PutScrap function SM-14

Q
QDByte data type QD-6
QDHandle data type QD-6
QDProcs data type QD-7I
QDProcsPtr data type QD-71
QDPtr data type QD-6
QElem data type OU-8
QElemPtr data type OU-8
QHdr data type OU-7
QHdrPtr data type OU-7
QTypes data type OU-8
queue OU:...7

drive FL-62
driver I/O DV-9, DV-24
file I/O FL-24, FL-S8
manipulation OU-19
vertical retrace VR-4, VR-7
volume-control-block FL-58

QuickDraw RD-8, QD-4
communication with Font Manager

FM-II
routines

Quit command

R

QD-34
UI-4I

radio button CM-5, DL-lO
RAM Serial Driver RD-I0, SR-4

advanced Control calls SR-14
Device Manager calls SR-6
routines SR-8\

RAMBase global variable AL-6
RAMSDClose procedure SR-9
RAMSDOpen function SR-8
Random function QD-67
randSeed global variable QD-34,

QD-67

/TOOLBOX/INDEX

Read function
high-level FL-19, DV-8
low-level FL-40, DV-15

ReadDateTime function OU-14
ReadPacket AM-8l
ReadRest AM-82
read/write permission FL-9
RealFont function FM-I0
reallocating a block MI-7, MM-8
Reallo~Handle procedure MM-35
RecoverHandle function MM-35
Rect data type OD-9'
rectangle OD-8

routines OD-46
RectlnRgn function OD-58·
RectRgn procedure OD-55
reference number RM-7
reference value

control CM-ll
window WM-11

region OD-9
routines OD-54 !

Region data type OD-I0
register-based routines AL-9, AL-12
register-saving conventions AL-14
RegisterName function AM-75
relative handle MM-21
release timer AM-13
ReleaseResource procedure RM-23
relocatable block MI-6, MM-5

allocating MM-32
releasing MM-33

RelRspCB function AM-72
RelTCB function AM-71
RemoveName function AM-77
Rename function

high-level FL-23
low-level FL-50

ResErr global variable RM-19
ResError function RM-l8
ResErrProc global variable RM-l9
ResetAlrtStage procedure DL-32
ResLoad global variable RM-21
resource RM-3

within a resource RM-32
resource attributes RM-12

getting RM~25

setting RM-27
Resource Compiler PT-7
resource data RM-7
resource file RM-3, RM-5

attributes RM-31
format RM-34 , RM-46

resource fork RM-5, FL-6

2/1/85 Rose

INDEX 15

resource header RM-34
resource 10 RM-9

of fonts FM-25
of owned resources RM-I0

Resource Manager RD-.8, RM-3
routines RM-16

resource map RM-7
Resource Mover program PT~20
resource name RM-ll
resource reference RM-ll
resource specification RM-4, RM-8
resource type RM-8
response BOS AM-33
ResReadOnly global variable RM-31
ResrvMem function MM-40
RestProc global variable DL-19
ResType data type RM-8'
result code RM-18, MM-25, OU-9

assembly language AL-l4
list OU-31

resume procedure EH-5
RetransType data type AM-47
retry count AM-8
retry interval AM-8
Revert to Saved command UI-41
RgnHandle data type OD-I0
RgnPtr data type OD-lO
RMover program PT-20
RmveReference procedure RM-40
RmveResource procedure RM-29
ROM Serial Driver RD-10, SR-4

Device Manager calls SR-6
routines SR-9

ROMBase global variable AL-6, OU-21
routine selector PK-4
routing table AM-7
Routing Tqble Maintenance Protocol

AM-7
row width OD-l2
RsrcZoneInit procedure RM-l6
RstFilLock function

high-level FL-23
low-level FL-48

RstFLock function FL-23
RTMP See Routing Table Maintenance

Protocol
'RTMP socket AM-7
RTMP stub AM-7

S
sample program RD-11
Save As command UI-41
Save command UI-40

/TOOLBOX/INDEX

16 INDEX

SaveOld procedure WM-36
SaveUpdate global variable· WM-17
ScalePt procedure QD-68
scaling factors FM-5
SCC interrupts DV-33
scrap

between applications SM-3
in TextEdit TE-4, TE-23

scrap file SM-4
Scrap Manager RD-9. SM-3
. routines SM-lO.
ScrapCount global variable SM-lO
ScrapHandle global variable SM-IO
ScrapName global variable SM-IO
ScrapSize global variable SM-IO
ScrapS tate global variable SM-IO
ScrapStuff data type SM-I0
Scratch8 global variable AL-4
Scratch20 global variable AL-4
ScrDmpEnb global variable EM-22
screen printing PR-28
screenBits global variable QD-34
ScrnBase global variable MM-I6
scroll bar UI-29, CM-6

updating WM-31
ScrollRect procedure OD-59
SdVolume global variable SN-15
Secs2Date procedure OU-16
sector DD-3
SectRect function QD-47
SectRgn procedure QD-57
Segment Loader RD-10, SL-3'
Segment Loader routines SL-7

assembly language SL-9
Pascal SL-8

segments PT-I7, SL-3
selection range TE-6
SelectWindow procedure WM-23
Se1IText procedure DL-31
SendBehind procedure WM-25
SendRequest function AM-68
SendResponse function AM-70
sequence number AM-8
SerClrBrk function SR-12
SerErrFlag function SR-13
SerGetBuf function SR-12
SerHShake function SR-II
serial communication SR-3
serial data SR-3
Serial Drivers RD-10, SR-4

advanced Control calls SR-14
Device Manager calls SR-6
routines SR-8

. SerRe set function SR-9

2/1/85 Rose

SerSetBrk function SR-12
SerSetBuf function SR-I0
SerShk data type SR-ll
SerStaRec data type SR-13
Set File program PT-21
SetApplBase procedure MM-27
SetApplLimit procedure MM-29
SetClip procedure OD-38
SetCRefCon procedure CM-24
SetCTitle procedure CM-17
SetCtlAction procedure 'CM-24
SetCtlMax procedure CM-23
SetCtlMin procedure CM-23
SetCtlValue procedure CM-22
SetCursor procedure QD-39
SetDAFont procedure DL-19
SetDateTime function OU-15
SetDItemprocedure DL-31
SetEmptyRgn procedure QD-55·
SetEOF function

high-level FL-2l
low-level FL-43

SetEventMask procedure EM-22, OE-7
SetFileInfo function

high-level FL-22
low-level FL-47

SetFilLock function
high-level FL-23
low-level FL-48

SetFilType function FL-49
SetFInfo function FL-22
SetFLock function FL-23
SetFontLock procedure FM-10
SetFPos function

high-level FL-20
low-level FL-42'

SetGrowZo~e procedure MM-44
SetHandleSize procedure MM-34
Setltem procedure MN-23
Setltemlcon procedure MN-25
SetltemMark procedure MN-24
SetltemStyle procedure MN-26
SetIText procedure DL-3I
Setltmlcon procedure MN-25
SetltmMark procedure MN-24
SetltmStyle procedure MN-26
SetMaxCtl procedure CM-23
SetMenuBar procedure MN-20
SetMenuFlash procedure }m-27
SetMFlash procedure MN-27
SetMinCtl procedure CM-23
SetOrigin procedure QD-38
SetPenState procedure QD-4I
Set Port procedure QD-36

/TOOLBOX/INDEX

SetPortBits procedure QD-37
SetPt procedure QD-65
SetPtrSize procedure }~-38
SetRect procedure QD-46
SetRectRgn procedure QD-55
SetResAttrs procedure RM-27
SetResFileAttrs procedure RM-32
SetResInfo procedure RM-26
SetResLoad procedure RM-21
SetResPurge procedure RM-30
SetSoundVol procedure SN-16
SetStdProcs procedure QD-71
SetString procedure TU-4
SetTagBuffer function DD-8
SetTime procedure OU-16
SetTrapAddress procedure OU-22
SetVol function

high-level FL-16
low-level FL-33

SetWindowPic procedure WM-33
SetWRefCon procedure WM-33
SetWTitle procedure WM-23
SetZone procedure MM-31
SEvtEnb global variable EM-22
SFGetFile procedure PK-30
SFPGetFi1e procedure PK-34
SFPPutFile procedure PK-30
SFPutFile procedure PK-26
SFRep1y data type PK-25
SFTypeList data type PK-31
ShieldCursor procedure TU-l1
ShowContro1 procedure CM-I7
ShowCursor procedure QD-39
ShowHide procedure WM-24
ShowPen procedure QD-40
ShowWindow procedure WM-24
signature ST-3
SignedByte data type MI-9
size

of parameters AL-I0
of variables AL-4

size box WM-26 See also grow region
size correction MM-22
Size data type MM-I'5
SizeContro1' procedure CM-22
SizeResource function RM-25
SizeRsrc function RM-25
SizeWindow procedure WM-30
SlopeFromAngle function TU-12
socket AM-6
socket client AM-7
socket listener AM-7

wri t ing your own AM-78, A)f-84
socket number AM-6

2/1/8SRose

INDEX 17

socket table AM-7
software overrun error SR-5
Sound Driver RD-I0, SN-3

hardware SN-16
routines SN-13

sound procedure DL-16
SoundBase global variable SN-12
SoundDone function SN-I5
SoundLevel global variable SN-17
SoundLow global variable MM-16
SoundPtr global variable SN-9
source file for'app1ications

assembly language PT-23
Pascal PT-6

source transfer mode QD-29
SpaceExtra procedure QD-44
SPAlarm global variable See

parameter RAM
SPC1ikCaret global variable See

parameter RAM
SPConfig global varia~le AM-54
speaker volume SN-lS, OU-6
SPFont global variable See parameter

RAM
SPKbd global variable See parameter

RAM
split bar UI-31
SPMisc2 global variable See

parameter RAM
spool file PR-6
'spool printing PR-6
spooling PR-6
SPortSel data type SR-9
SPPortA global variable See

parameter RAM
SPPortB global variable See

parameter RAM
SPPrint global variable See

parameter RAM'
SPValid global variable See

parameter RAM
SPVolCtl global variable See

parameter RAM
square-wave synthesizer SN-3, SN-7
stack MI-3, MM-12
stack-based routines AL-9
stack frame AL-16, MM-12
StageList data type DL-34
stages of an alert DL-16
Standard File Package RD-IO, PK-23

routines PK-25
start bit SR-4
StartSound procedure SN-13
Stash function DV-27

/TOOLBOX/INDEX

18 INOEX

Status function
high-level OV-9
low-level DV-17

status information DV-5
status routine of a driver OV-19,

DV-26
StdArc procedure QD-72
StdBits procedure QD-72
StdComment procedure QD-73
StdGetPic procedure 00-73
StdLine procedure QD-71
StdOval procedure QD-72
StdPoly procedure QO-72
StdPutPic procedure 00-73
StdRect procedure QD-72
StdRgn procedure QD-72
StdRRect procedure QD-72
StdText procedure QD-71
StdTxMeas function OD-73
StillDown function E11-23
stop bit SR-4
StopAlert function DL-28
StopSound procedure SN-15
Str32 data type AM-47
Str255 data type MI-I0
string comparison PK-12, PK-18,

OU-12
string list TU-4

resource format TU-14
string manipulation TU-4
StringHandle data type MI-I0
StringPtr data type MI-I0
StringToNum procedure PK-21
StringWidth function QD-45
.structure region of a window WM-6
Stuff Hex procedure QD-68
Style data type QD-23
style dialog PR-I0
Style menu . UI-46 .
style subrecord PR-13
StyleItem data type QD-23
SubPt procedure QO-65
SwapFont function FM-11
SWSynthPtr data type SN-7
SWSynthRec data type SN-7
synchronous execution FL-24, DV-9,

AM-IS
synthesizer buffer SN-6
SysBeep procedure OU-23
SysEdit function OS-9
SysError procedure EH-IO·
SysEvtMask global variable OE-7
SysMap global variable RM-16
SysMapHndl global variable RM-16

2/1/85 Rose

SysParam global variable OU-3
SysParmType data type OU-4
SysPPtr data type OU-4
SysResName global variable RM-16
system error alert EH-3·
system error alert table EH-3
System Error Handler RO-ll, MM-13,

EH-3
routine ElI-10

system error 10 EH-4
system event mask EM-17, OE-7
system font FM-6
system heap MI-5, MM-4
system reference RM-37
system resource RM-4
system resource file RM-4
system startup information FS-52
system traps OU-34
system window WM-4, DS-5
SystemClick procedure DS-8
SystemEdit function DS-9
SystemEvent function DS-IO
SystemMenu procedure OS-II
SystemTask procedure OS-10
SystemZone function MM-31
SysZone global variable MM-16, MM-31

T
tag byte MM-21
TagBufPtr global variable DO-9
TEActivate procedure TE-19
TECalText procedure TE-25
TEClick procedure TE-18
TECopy procedure TE-20
TECut procedure TE-20
TEOeactivate procedure TE-19
TEOelete procedure TE-21
TEOispose procedure TE-17
TEOoText global variable TE-26
TEFromScrap function 1E-23
TEGetScrapLen function TE-24
TEGetText function TE-17
TEHandle data type TE-5
TEIdle procedure TE-18
TEInit procedure TE-16
TEInsert procedure TE-21
TEKey procedure TE-19
TENew function TE-16
TEPaste procedure TE-20
TEPtr data type TE-5
TERec data type TE-9
TEReCal global variable TE-25
TEScrapHandle function TE-24

/TOOLBOX/INDEX

TEScroll procedure TE-22
TEScrpHandle global variable TE-24
TEScrpLength global variable TE-24
TESetJust procedure TE-21
TESetScrapLen procedure TE-24
TESetSelect procedure TE-19
TESetText procedure TE-17
TestControl function CM-18
TEToScrap function TE-23
TEUpdate procedure TE-22
text characteristics OD-22
text in a dialog/alert DL-10, DL-15
text streaming PR-27
TextBox procedure TE-22
TextEdit RD-9, TE-3

routines TE-16
scrap TE-4, TE-23

TextFace procedure OD-43
TextFont procedure OD-43
TextMode procedure OD-43
TextSize procedure QD-43
TextWidth function OD-45
TFeed data type PR-14
TheMenu global variable MN-23
thePort global variable OD-34 , QD-36
TheZone global variable MM-30
thousands separator PK-8
THPrint data type PR-11
THz data type }1M-18
tick EM-7
TickCount function EM-24
Ticks global variable DV-32, E}f-24
Time global variable DV-32, OU-4,

OU-14
ToExtFS global variable FL-64
toggled command UI-36
Tone data type SN-7
Tones data type SN-7
Toolbox RD-6 .
Toolbox Event Manager RD-8, EM-3

routines EM-21
Toolbox Utilities RD-9, TU-3

routines TU-3
ToolScratch global variable AL-4
TopMapHndl global variable RM-18
TopMem function MM-47
TPPort data type PR-6
TPPrint data type PR-11
TPPrPort data type PR-5
TPrInfo data type PR-12
TPrint data type PR-11
TPrJob data type PR~14

TPrPort data type PR-5
TPrStatu8 data type PR-17

2/1/85 Rose

INDEX 19

TPrStl data type PR-14
TPrXInfo data type PR-16
TPStr80 data type PR-15
track on a disk DD-3
TrackControl function CM-19
TrackGoAway function WM-27
transaction AM-8
transaction ID AM-8
transaction release AM-13
transaction request AM-8
transaction response AM-8
Transcendental Functions Package

RD-11
transfer mode QD-29
trap dispatch table AL-5

routines OU-20
trap dispatcher AL-7
trap macro AL-7, AL-9

list OU-34
trap number AL-8, OU-29
trap word AL-7
TRel See transaction release
TReq See transaction request
TResp See transaction response
TScan data type PR-16
TStr80 data type PR-15
type conversion MI-9
type size See font size

U
Undo command UI-43

-unimplemented instruction AL-7
UnionRect procedure QD-47
UnionRgn procedure OD-57
UniqueID function RM-25
unit number DV-22
unit table DV-22
UnloadNBP function AM-78
UnloadScrap function SM-11
UnloadSeg procedure

assembly language SL-9
Pascal SL-8

unlocked block MI-7, MM-5
unlocking a block MI-7, MM-43
UnlodeScrap function SM-11
unmounted volume FL-4
UnmountVol function

high-level FL-17
low-level FL-35

UnpackBits procedure TU-7
unpurgeable block MI-7, MM-5, ~-44
update event EM-5, WM-15

event message EM-14

/TOOLBOX/INDEX

20 INDEX

update region of a window WM-7
maintenance I WM-31

UpdateResFile procedure RM-29
UprString procedure OU-13
user bytes AM-8
user interface guidelines UI-4
User Interface Toolbox RD-6
UseResFile procedure RM-20
userltem in a dialog DL-10, DL-11

installing DL-31
UTableBase global variable DV-23 '

V
validity status OU-4
ValidRect procedure WM-32
ValidRgn procedure WM-32
variation code WM-30

control CM-24
window WM-37

VBL interrupt See vertical retrace
interrupt

VBLQueue global variable VR-7,
VBLTask data type VR-4
VCB data type FL-59
VCBQHdr global variable FL-60
vector l)V-30
vector table DV-30
version data ST-5
version number FL-4
vertical r~trace interrupt RD-11,

VR-3
Vertical Retrace Manager RD-11, VR-3

routines VR-6
vertical retrace queue VR-4, VR-7
VHSelect data type QD-7
VIA global variable DV-33
VIA interrupts DV-31
view rectangle TE-5
Vlnstall \function VR-6
visible

control CM-10
window WM-1i

visRgn of a grafPort QD-19,
volume FL-4
volu~e allocation block map
volume attributes FL-54
volume buffer FL-4

WM-14

FL-55

volume control block FL-58
volume-control-block queue FL-58
volume index FL-30
volume information FL-53
volume name FL-4
volume reference number FL-4
VRemove function VR-6

2/1/85 Rose

W
WaitMouseUp function EM-23
Wave data type SN-9
waveform SN-4
waveform desc'ription SN-6
wavelength I SN-4
WavePtr data type SN-9
white global variable OD-34
window ,UI-25, Wl-1-4

closing UI-27, WM-22, WM-27
defining your own WM-37
moving UI-28, WM-28
opening UI-27, WM-21
sizing UI-28, WM-29
splitting UI-31

window class WM-10
window definition function WM-8,

WM-38
window definition ID WM-8, WM-37
window frame WM-6
window list WM-l1, WM-13
Window Manager R~-9, WM-4

routines WM-20
Window Manager port WM-6, WM-21
window pointer WM-11
window record WM-10
window template WM-IO

resource format WM-42
WindowList global variable WM-14,

EM-17
WindowMessage data type WM-35
WindowPeek data type WM-12
WindowPtr data type WM-l1
WindowRecord data type WM-12
WMgrPort global variable WM-21
word UI-23

in TextEdit TE-4
word break routine TE-12
word ,wraparound TE-4
write data structure AM-56
Write function

high-level FL-19, DV-8
low-level FL-41, DV-16

WriteDDP function AM-63
WriteLAP function AM-57
WriteParam function OU-18
WriteResource procedure RM-30

X
XorRgn procedure QD-57

/TOOLBOX/INDEX

I.,

y

Z
ZeroS crap function SM-14
zone

AppleTalk Manager AM-7
Memory Manager See heap zone

Zone data type MM-18
zone header MM-17
zone pointer MM-18
zone record MM-18
zone trailer MM-17

INDEX 21

2/1/85 Rose /TOOLBOX/INDEX

COMMEN'"rS?
·Macintosh User Education encourages your comments on this manual ..

- What do you like or dislike about it?
(

- Were you able to find the information you needed?

- Was it complete and accurate?

- Do you have any suggestions for improvement?

Please send your comments to Caroline Rose
at 10460 Bandley Drive MIS 3-G, Cupertino CA 95014.
Mark up a copy of the manual or note your remarks separately.
(We'll return your marked-up copy if you like.)

Thanks for your helpl

The Apple Certified Developer Program
If your primary business is developing software products for commercial markets, we strongly suggest that you
investigate the Apple Certified Developer program, an agressive program designed to help independent software
developers successfully get products to market in a timely manner. Apple Certified Developers receive regular
mailings and can participate in a number of attractive programs.

For information about the Apple Certified Developer program contact:

Developer Relations
Apple Computer, Inc.
20525 Mariani Avenue, Mail Stop 27S
Cupertino, CA 95014
(408) 973-4897

Recolnnlended System Configurations
We recommend the following configurations for Lisa Pascal/Macintosh cross-development and native Macintosh
development.

Lisa Pascal/Macintosh Cross-Development
Macintosh 128K or 512K

Native Macintosh Development
Macintosh 512K & Macintosh 128K

Imagewriter plus Macintosh Accessory Kit
Macintosh External Disk Drive
3 112 inch blank disks
Macintosh XL
Macintosh XL 112 Mbyte RAM Card
Lisa Pascal Workshop
Software Supplement
Macintosh XL Imagewriter Accessory Kit

Imagewriter plus Macintosh Accessory Kit
Macintosh External Disk Drive
Software Supplement
3 112 inch blank disks

Macintosh Developnlent Software List (March 1985)
Company Phone Product
Absoft (313) 549-7111 MacFortran
Apple Computer, Inc. (408) 996-1010 Macintosh 68000 Development System

Macintosh Pascal
Lisa Pascal Workshop

Consul air Corporation (415) 851-3849 Mac C Compiler
Mac C ToolKit

Creative Solutions
Expertelligence
FairCom
Hippopotamus
IQ Software
Kriya Systems, Inc.
Mainstay
Manx Software Systems
MegaMax, Inc.
Micro Focus, Inc.
Microsoft
Modula Corporation
Softech Microsystems

Softworks, Ltd.
Volition Systems

(301) 984-0262
(805) 969-7874
(314) 445-6833
(408) 730-2601
(817) 589-2000
(312) 822-0624
(818) 991-6540
(201) 780-4004
(214) 987-4931
(415) 856-4161
(206) 828-8080
(800) 545-4842
(619) 451-1230

(312) 327-7666
(619) 270-6800

MacForth
ExperLogo
C-Tree ISAM Package
Hippo C
CP/M for Macintosh
Neon (Forth/Smalltalk)
Mac-Asm (Assembler)
Aztec C 68K
MegaMax C
MacCobol
Basic 2.0
Modula-2
P-System
PascaVFortran
Softworks C
Modula-2

Apple Computer, Inc.
2052'; ~1ariani Arenul:
Cupertino, California 9:;0 I~
H08) 996-10 10
TLX n-';-6 \\1 117

	00-00
	00-01
	00-02
	00-03
	00-04
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-186
	06-187
	06-188
	06-189
	06-19
	06-190
	06-191
	06-192
	06-193
	06-194
	06-195
	06-196
	06-197
	06-198
	06-199
	06-20
	06-200
	06-201
	06-202
	06-203
	06-204
	06-205
	06-206
	06-207
	06-208
	06-209
	06-21
	06-210
	06-211
	06-212
	06-213
	06-214
	06-215
	06-216
	06-217
	06-218
	06-219
	06-22
	06-220
	06-221
	06-222
	06-223
	06-224
	06-225
	06-226
	06-227
	06-228
	06-229
	06-23
	06-230
	06-231
	06-232
	06-233
	06-234
	06-235
	06-236
	06-237
	06-238
	06-239
	06-24
	06-240
	06-241
	06-242
	06-243
	06-244
	06-245
	06-246
	06-247
	06-248
	06-249
	06-25
	06-250
	06-251
	06-252
	06-253
	06-254
	06-255
	06-256
	06-257
	06-258
	06-259
	06-26
	06-260
	06-261
	06-262
	06-263
	06-264
	06-265
	06-266
	06-267
	06-268
	06-269
	06-27
	06-270
	06-271
	06-272
	06-273
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	06-81
	06-82
	06-83
	06-84
	06-85
	06-86
	06-87
	06-88
	06-89
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44
	17-45
	17-46
	17-47
	17-48
	17-49
	17-50
	17-51
	17-52
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	18-30
	18-31
	18-32
	18-33
	18-34
	18-35
	18-36
	18-37
	18-38
	18-39
	18-40
	18-41
	18-42
	18-43
	18-44
	18-45
	18-46
	18-47
	18-48
	18-49
	18-50
	18-51
	18-52
	18-53
	18-54
	18-55
	18-56
	18-57
	18-58
	18-59
	18-60
	18-61
	18-62
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	21-19
	21-20
	21-21
	21-22
	21-23
	21-24
	21-25
	21-26
	21-27
	21-28
	21-29
	21-30
	21-31
	21-32
	21-33
	21-34
	21-35
	21-36
	21-37
	21-38
	21-39
	21-40
	21-41
	21-42
	21-43
	21-44
	21-45
	21-46
	21-47
	21-48
	21-49
	21-50
	21-51
	21-52
	21-53
	21-54
	21-55
	21-56
	21-57
	21-58
	21-59
	21-60
	21-61
	21-62
	21-63
	21-64
	21-65
	21-66
	21-67
	21-68
	21-69
	21-70
	21-71
	21-72
	21-73
	21-74
	21-75
	21-76
	21-77
	21-78
	21-79
	21-80
	21-81
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	22-23
	22-24
	22-25
	22-26
	22-27
	22-28
	22-29
	22-30
	22-31
	22-32
	22-33
	22-34
	22-35
	22-36
	22-37
	22-38
	22-39
	22-40
	22-41
	22-42
	22-43
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	23-33
	23-34
	23-35
	23-36
	23-37
	23-38
	23-39
	23-40
	23-41
	23-42
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	25-19
	25-20
	25-21
	25-22
	25-23
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	26-14
	26-15
	26-16
	26-17
	26-18
	26-19
	26-20
	27-001
	27-002
	27-003
	27-004
	27-005
	27-006
	27-007
	27-008
	27-009
	27-010
	27-011
	27-012
	27-013
	27-014
	27-015
	27-016
	27-017
	27-018
	27-019
	27-020
	27-021
	27-022
	27-023
	27-024
	27-025
	27-026
	27-027
	27-028
	27-029
	27-030
	27-031
	27-032
	27-033
	27-034
	27-035
	27-036
	27-037
	27-038
	27-039
	27-040
	27-041
	27-042
	27-043
	27-044
	27-045
	27-046
	27-047
	27-048
	27-049
	27-050
	27-051
	27-052
	27-053
	27-054
	27-055
	27-056
	27-057
	27-058
	27-059
	27-060
	27-061
	27-062
	27-063
	27-064
	27-065
	27-066
	27-067
	27-068
	27-069
	27-070
	27-071
	27-072
	27-073
	27-074
	27-075
	27-076
	27-077
	27-078
	27-079
	27-080
	27-081
	27-082
	27-083
	27-084
	27-085
	27-086
	27-087
	27-088
	27-089
	27-090
	27-091
	27-092
	27-093
	27-094
	27-095
	27-096
	27-097
	27-098
	27-099
	27-100
	27-101
	27-102
	27-103
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	28-09
	28-10
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	29-07
	29-08
	29-09
	29-10
	29-11
	29-12
	29-13
	29-14
	29-15
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	30-09
	30-10
	30-11
	30-12
	30-13
	30-14
	30-15
	30-16
	30-17
	30-18
	30-19
	30-20
	30-21
	30-22
	30-23
	30-24
	30-25
	30-26
	30-27
	30-28
	30-29
	30-30
	30-31
	30-32
	30-33
	30-34
	30-35
	30-36
	30-37
	30-38
	30-39
	30-40
	30-41
	30-42
	30-43
	30-44
	30-45
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	31-09
	31-10
	31-11
	32-0001
	32-0002
	32-001
	32-002
	32-003
	32-004
	32-005
	32-006
	32-007
	32-008
	32-009
	32-010
	32-011
	32-012
	32-013
	32-014
	32-015
	32-016
	32-017
	32-018
	32-019
	32-020
	32-021
	32-022
	32-023
	32-024
	32-025
	32-026
	32-027
	32-028
	32-029
	32-030
	32-031
	32-032
	32-033
	32-034
	32-035
	32-036
	32-037
	32-038
	32-039
	32-040
	32-041
	32-042
	32-043
	32-044
	32-045
	32-046
	32-047
	32-048
	32-049
	32-050
	32-051
	32-052
	32-053
	32-054
	32-055
	32-056
	32-057
	32-058
	32-059
	32-060
	32-061
	32-062
	32-063
	32-064
	32-065
	32-066
	32-067
	32-068
	32-069
	32-070
	32-071
	32-072
	32-073
	32-074
	32-075
	32-076
	32-077
	32-080
	32-185
	32-274
	32-275
	32-276
	32-277
	32-278
	32-279
	32-280
	33-00
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	33-07
	33-08
	33-09
	33-10
	33-11
	33-12
	33-13
	33-14
	33-15
	33-16
	33-17
	33-18
	33-19
	33-20
	33-21
	x-01
	x-02
	z

