
~_TM 

'-•. , 
I 



PAC[ING SLIP 

INSIDE MACINTOSH DOClI1ENTATION 

Th1s set used to cons1st of :5 b1nders. The or1g1nal 
documentation has been rev1sed, and rewritten, and 
now f1ts 1nto 2 b1nders. 

The Pascal Workshop documentatIon and softw~e 15 now 
ava11able from your local Apple Dealer. 
The Apple part number 1s A6D0201 . 

Note - presently there Is no Information behind the 
Introduction, as Utl1tttes, and Other as tabs. Also In the 
-Road Map" section, please disregard any references to 
Core Edit - this does not exist. 

-.-------------------------------.-----------------------------

SOFTWARE SUPPLEMENT 

Note - thIs Installs on the base L 1sa Pascal WorkshOp. 

This supplement lncludes 6 diskettes, with two 
documentatIon pIeces labeled • The Macintosh SUpplement 
to the Workshop • and • MacCom Instructions • . 



THIS SECTION 
INTENTIONALLY 

LEFT BLANK. 

WHEN A V AILABLE. 
IT WILL BE SUPPLIED 

AS PART OF THE 
MA CINTOSH SUPPLEMENT. 



Macintosh User Interface Guidelines 

See Also: 

Modification History: First Draft 
Rearranged and Revised 
Total Redesign 
Second Edition Prerelease 
Second Edition 

MACINTOSH PUBLICATIONS 

USER.INTERFACE/NEWUIDOC 

Hoffman 3/17/82 
Espinosa 5/11/82 
Espinosa 5/21/82 
Espinosa 7/11/82 

Espinosa 10/11/82 

ABSTRACT 

One of the major factors in making a system pleasant and easy to use is 
the system's consistency. This specification's purpose is to set down 
our agreements about the way programs will interact with users t so that 
we have a common method for dealing with interface problems t and so that 
all software written for the Macintosh computer (in-house or by outside 
vendors) will be consistent with respect to the issues discus·sed here. 



2 User Interface Guidelines 

5 
5 
6 
6 

8 
9 

CONTENTS 

Introduction 
Software Developers' Responsibility 
Macintosh's Commitment 
About Modes 

The Graphic Screen 
Icons 

11 Accepting User Input 
11 The Mouse 
12 Mouse Actions 
13 Double-Clicking 
13 Changing Pointer Shapes 
14 The Keyboard 
14 Character Keys 
15 Modifier Keys 
15 The COMMAND Key 
15 Special Keys 
16 Typeahead, Auto-repeat, and Audio Feedback 
16 Versions of the Keyboard 
17 The Numeric Keypad 

18 Conceptual Models: Tools and Documents 
19 Files 
19 Tools 
20 Documents 
21 Resources 

22 The DeskTop Model of Organization 
22 The Desk 

24 Windows 
24 Opening and Closing Windows 
25 The Active Window 
25 Document Windows 
25 Scroll Bars 
27 Multiple Windows 
27 Moving a Window 
28 Changing the Size of a Window 
29 Splitting a Window 
30 Desk Accessories 
31 Who's on Top? 

UIDOC 
COVER 
OUTLINE 
INTRO 

SCREEN 

MOUSE 

KEYBOARD 

MODELS 

DESKTOP 

WINDOWS 

ACCESSORY 
ONTOP 



32 Inside Documents 
32 Structure of Documents 
33 The Visual Structure 
33 Graphics in Documents 
34 Appearance of Text 
35 Typefaces, Typesize and Fonts 
36 Typestyles 
36 Proportional vs. Monospaced Fonts 
37 Standard Fonts 

38 Working with Macintosh 
38 Direct Manipulation: Controls 
38 Buttons 
39 Check-Boxes 
39 Dials 
40 Selecting Information 
40 The Selection 
43 Selection by Command 
43 Automatic Scrolling during Selection 
44 Extending a Selection 
45 Making a Discontiguous Selection 

48 Commands 
48 The Menu Bar 
48 Of Mice and Menus 
49 Notes on General Properties of Menus 
51 The Standard Menus 
51 The Apple Menu 
52 The Edit Menu 
53 The File Menu 
53 Keyboard-Invoked Commands 
55 What Commands Are and Aren't 

Basic Editing Paradigms 
The Selection 
The Scrap 
The Cut and Copy Commands 
Paste 
Undo 
Inserting and Replacing Text 

Backspacing 
Cutting and Pasting Between Documents 

CONTENTS 3 

INSIDE 

CHARACTERS 

WORKING 

SELECTING 

COMMANDS 

EDITING 56 
56 
56 
57 
58 
58 
58 
58 
59 
59 
59 

Between Two Documents with the Same Principal Tool 
Between Two Documents with Different Principal Tools 

61 Special Conditions BOXES 
61 Dialog Boxes 
62 The Alert Mechanism 
63 Alert Boxes 
63 How to Phrase an Alert Message 
64 Appearance of Alert Boxes 



4 User Interface Guidelines 

66 Appendix A. Thou-Shalt-Nots of a 
Friendly User Interface FRIENDLY 

67 Appendix B. Pointer Shapes POINTERS 

68 Appendix c. Hardware Specifications HARDWARE 

70 Appendix D. Keyboard Layouts and LAYOUTS 
Character Assignments 

73 Appendix E. Guide to Icons 

75 Appendix F. Unresolved Issues 

76 Technical Lexicon GLOSSARY 

85 Index INDEX 



INTRODUCTION 5 

INTRODUCTION 

Macintosh is intended to be the first mass-market personal computer. 
It is designed to appeal to an audience of non-programmers, including 
people who have traditionally feared and distrusted computers. To 
achieve this goal, Macintosh must be friendly. The system must, once 
and for all, dispel any notion that computers are difficult to use. 
Two key ingredients combine in making a system easy to use: 
familiarity and consistency. 

Familiarity means that the conceptual underpinnings of a system are 
based on premises or procedures our users already know and employ. 
Most Macintosh applications are oriented towards common tasks: 
writing, graphics and paste-up work, ledger sheet arithmetic, chart and 
graph preparation, and sorting and filing. The actual environment for 
performing these tasks already exists in people's offices and homes; we 
mimic that environment to an extent which makes users comfortable with 
the system. Extensive use of graphics plays an important part in the 
creation of a familiar and intuitive environment. 

Consistency means a uniform way of approaching tasks across 
applications. For example, when users learn how to insert text into a 
document, or how to select a column of figures in one application, they 
should be able to take that knowledge with them into other applications 
and build upon it. Uniformity and consistency in the user interface 
reduces frustration and makes a user more amenable to trying new 
techniques and new software to solve problems. 

Consistency and familiarity are by no means orthogonal concepts. 
Familiar models should be used in a consistent manner to avoid 
confusion, and consistency should not lead to unfamiliar behavior. 

Software Developers'~R_e_s~p_o_n_s~i_b_1_·l_1_·t_y~~~ ____ ~ ____________ ~ __________ --
Preservation of a truly consistent working environment requires some 
deliberate and conscious effort on the part of applications 
programmers. 

If Macintosh is to be successful as a truly mass-market personal 
computer, software developers must maintain consistency throughout 
applications by conforming to a common user interface. 

(hand) 
It is the responsibility of everyone who writes software 
for Macintosh to preserve the integrity of the system. 

Years of software development, testing, and research have gone into the 
definition of the Macintosh user interface. The mechanisms outlined in 
this document have been shown to be well-suited for a variety of 
applications and tasks. If your application requires approaches not 
specified in this document, we urge you to build your schemes on top of 
existing ones and avoid incompatibility at all costs. 

INTRO Espinosa 8/26/82 



6 User Interface Guidelines 

Macintosh's Commitment 
On many other computers, since little or no user interface aids are 
built in, each applications programmer invents a new and original 
interface for each program--which leads to hundreds of different, 
conflicting, and confusing interfaces. 

We hope to avoid this situation on Macintosh by building tools for a 
versatile, well-tested user interface and placing them in ROM to be 
used by all applications programs. There's no strict requirement that 
an applications program must use all or any of the supplied interface 
tools; but programmers who create their own interface do so at the 
expense of their own development time, the user's data space, and the 
entire system's coherency. 

Consistency in the user interface is most important in three areas: 

- Data selection and editing; 

Command invocation; 

- Performance of common system-wide functions. 

These are common to all applications. But each application also has 
its unique requirements, all of which we cannot forsee. To accommodate 
each application's specific needs, most of the features of the user 
interface are extensible: a programmer can "customize" the appearance 
or function of a common interface feature to suit the application. 

Macintosh system software is designed to make the implementation of the 
user interface as simple as possible for the programmer. Most of the 
recommended user interface features outlined below are implemented with 
simple calls to the User Interface ToolBox or the Operating System. 
The substantial documentation available for those packages should serve 
as an introduction to implementing the user interface described in this 
document. 

About Modes 

"A good man will prefer that mode, by which he can produce 
the greatest effect." 

-- Paley, 1794 

We adhere to the principles of modeless hehavior. Larry Tesler defines 
a mode as follows: 

INTRO 

A mode of an interactive computer system is a state 
of the user interface that lasts for a period of time, 
is not associated with any particular object, and 
has no role other than to place an interpretation on 
operator input. 

Espinosa 8/26/82 



INTRODUCTION 7 

Modes are most confusing when you're in the wrong one. Unfortunately, 
this is the most common case. Being in the wrong mode is confusing 
because it makes future actions contingent upon past ones; it changes 
the behavior of familiar objects and commands; and it makes habitual 
actions cause unexpected results. 

We advocate avoidance of modes whenever possible. Of course, 
exceptions must be made, however; there are certain tradeoffs among 
modality, usefulness, and implementability that must be considered. 
There are three cases in which modal behavior is generally tolerated: 

- Long-term modes with a procedural basis: doing word processing 
vs. graphics editing, etc. Each application program in Macintosh 
is a mode. 

Short-term "spring-loaded" modes, in which the user is constantly 
doing something to perpetuate the mode. Holding down a button or 
key is the most common example of this kind of mode. 

Alert modes, where the user must rectify an unusual situation 
before proceeding. Such situations, however, should have been 
avoided in the first place. 

Other modes are acceptable if they meet the following requirements: 

They emulate a familiar real-life model which is itself modal, 
like picking up different-sized paintbrushes in a graphics editor; 
or 

They change only the attributes of something, and not its 
behavior, like the boldface and underline modes of text entry; or 

They block most other normal operations of the system to emphasize 
the modality, as in error conditions incurable through software 
("There's no diskette in the disk drive", for example). 

Whatever the modality entails, it must be visible. There must be a 
clear visual indication of the current mode, and the indication should 
be near the object being most affected by the mode. 

SCREEN Espinosa 10/8/82 



8 User Interface Guidelines 

THE GRAPHIC SCREEN 

Macintosh distinguishes itself from all other personal computers by its 
high-resolution graphic screen. While other computers posess similar 
or greater graphics resolution or ability, no other applies its graphic 
powers as widely and generally as Macintosh. 

Macintosh has a purely graphic display: 
machine at all. Text, to Macintosh, is 
graphics. Problems of mixing text with 
they're really the same thing. 

there is no "text mode" in the 
merely a special kind of 
graphics go away because 

Other computers don't do this because of inherent limitations in their 
processor speed and data path width, and because of a lack of software 
support of graphics. Not only does Macintosh have a Motorola MC68000 
microprocessor (running at a nominal 7 MHz with a 16-bit data path, 
giving it several times the bandwidth of the Apple II's 6502), but it 
also has Bill Atkinson's QUICKDRAW graphics package, revolutionary in 
its speed and ability. 

But far more important than raw graphic power is what the software does 
with it. What Macintosh does can be explained quite simply: 

(hand) 
All commands, features, and parameters of the 
application, and all the user's data, appear as graphic 
objects on the screen. 

Wedfle3dau 
Jll.l'!J lCl) 19~"1. 

·1~41 k'.M. 

Figure 1. Objects on the Screen 

Objects, whenever applicable, resemble the familiar material objects 
they emulate. Objects that act like pushbuttons "light up" when 
pressed; objects that act like tab stops look like their counterparts 

SCREEN Espinosa 10/8/82 



THE GRAPHIC SCREEN 9 

on a typewriter. Dozens of objects, some emulating everyday objects 
and some unique to Macintosh, are defined in the User Interface Tool 
Box. 

Objects are designed to look beautiful on the screen. Using the 
graphic patterns in QuickDraw can give objects a shape and texture 
beyond simple line graphics. Placing a drop-shadow slightly below and 
to the right of an object can give it a three-dimensional appearance. 
The highest aesthetic sensibilities should be used in the design, 
placement, and animation of objects. 

Graphics can distinguish different states of the same object. Many 
objects on the screen have two states: a "normal" state and a 
"special" state. Most objects in their normal state are predominantly 
white, with detail (lettering, symbols, etc.) in black. Inverting the 
polarity of the object, to make it black with white detail, will 
highlight the object to represent its special state. 

Icons 
A fundamental object in Macintosh software is the icon, a small, 
32-by-32 square graphic that can be drawn, edited, and moved easily. 
The Icon Manager has facilities for drawing icons on the screen and 
setting or resetting bits within them. 

Figure 2. Icons 

Icons should be sprinkled liherally over the screen. Wherever an 
explanation or label is needed, first consider using an icon before 
using text as the label or explanation. Icons not only contribute to 
the understandability and attractiveness of the system, they don't need 
to be translated into foreign languages. 

SCREEN Espinosa 10/8/82 



10 User Interface Guidelines 

Icons are by no means unique to the software; thy appear on'the 
Macintosh main unit itself, on the shipping materials, unpacking 
instructions, and in the user manuals. The standard icons used to 
denote various parts of the Macintosh hardware are shown in the 
Appendix on icons. 

MOUSE Espinosa-Hoffman 10/11/82 



ACCEPTING USER INPUT 11 

------------ --ACCEPTING USER INPUT 

All meaningful interaction between a Macintosh and its user takes place 
via a piece of hardware built in or connected to the main unit. The 
principal devices for original input to the Macintosh are the mouse and 
the keyboard; the Macintosh responds to these devices by displaying 
images on the screen or making sounds with its speaker. No other 
action of the Macintosh (such as spinning its disk drive, etc.) 
constitutes a meaningful message to the user. 

The Mouse 
The mouse is a smali device the size of a deck of playing cards, 
connected to the computer by a long, flexible cable. There is a square 
button on the top of the mouse. The user holds the mouse and rolls it 
on a flat, smooth surface. 

,. ..... 

--------.1 

Figure 3. The Mouse and Pointer 

A pointer on the screen follows the motion of the mouse. Simply moving 
the mouse results only in a corresponding movement of the pointer and 
no other action. Most actions take place when the user positions the 
focus of the pointer (which should be intuitive, like the point of an 
arrow or the center of a crosshairs) over an object on the screen and 
presses the mouse button. 

The purpose of the mouse is to allow high-resolution specification of 
elements on a graphic screen. Many researchers, at Apple and 
elsewhere, have conducted extensive experimentation with various 
pointing devices: cursor keys, light pens, graphic tablets, trac 
balls, etc. We chose the mouse for its ease of use, accuracy, size, 
and cost. It is compact and lightweight; it resolves to 200 points per 
inch; it retains its position when not being used; and it requires 
little muscular strain to position it. 

MOUSE Espinosa-Hoffman 10/11/82 



12 User Interface Guidelines 

Mouse Actions 
The three basic mouse actions are: 

- Clicking: Positioning the pointer with the mouse, and briefly 
pressing and releasing the mouse button without moving the mouse; 

Pressing: Positioning the pointer with the mouse, and pressing 
and holding the mouse button without moving the mouse; and 

Dragging: Positioning the pointer with the mouse, pressing and 
holding the mouse button down, moving the mouse to a new position, 
and releasing the button. 

Clicking something with the mouse performs an instantaneous action: 
selecting a location within the user's document or activating an 
object. 

Pressing an object usually has the same effect as clicking it 
repeatedly. For example, clicking a scroll arrow causes a document to 
scroll one line; pressing a scroll arrow causes the document to scroll 
repeatedly until the mouse button is released. 

Dragging can have different effects, depending upon what is under the 
pointer when the button is pressed. Beginning a drag inside the 
document frequently results in selection of data. Beginning a drag 
over an object usually moves that object on the screen. Only certain 
objects are draggable; large draggable objects have a special area with 
which the user drags the entire object. Our tests show that users 
understand dragging an object by a well-marked area rather than by a 
large, general area. 

; Pressing 
, ~ 

, r- ~ 
--"--~} I - --=.I:! I 

CDcking 

~1J 
-,,:C d 
Dragging 

~ l' 
..£_- --.. 

-"'--J --\ 
Figure 4. Clicking, Pressing, and Dragging 

Dragging is also used to choose an item from a menu, as described 
below. 

MOUSE Espinosa-Hoffman 10/11/82 



(hand) 

ACCEPTING USER INPUT 13 

In general, pushing the mouse button indicates intention, 
while releasing the button confirms the action. 

Dragging an object attaches a flickering outline of the object to the 
pointer. The outline follows the pointer around the screen while the 
mouse button is being held down. When the user releases the mouse 
button, the object moves to the position of the flickering outline, and 
the outline vanishes. 

Every object is restricted to certain boundaries. If the user tries to 
drag an object out of its natural boundaries, the flickering outline 
disappears when the pointer travels out of those boundaries. If the 
user moves the pointer back inside the boundaries with the button still 
held down, the outline reappears under the pointer and dragging 
resumes. If, however, the user releases the button while the outline 
is invisible, the object being dragged does not move; in this way the 
user can cancel a drag in progress. 

Double-Clicking 
A variant of clicking involves performing a second click shortly after 
the end of an initial click. If the downstroke of the second click 
follows the upstroke of the first by 700 milliseconds or less, the 
second click should be considered not an independent event, but rather 
an extension of the first: this action is called "double-clicking". 
Its most common use is as an optimized means of performing an action 
that can be performed in another, slower, manner. 

(hand) 
To allow the software to distinguish efficiently between 
single clicks and double-clicks on objects that respond 
to both, a function invoked by double-clicking an object 
must be an enhancement, superset, or extension of the 
feature invoked by single-clicking that object. 

Changing Pointer Shapes 
The pointer may change shape to give feedback on the range of 
activities that make sense in a particular area of the screen, in a 
current mode, or both. 

1. The results of any mouse action depend on the item under the 
pointer when the mouse button is pressed. To emphasize the 
differences among mouse actions, the pointer may assume different 
appearances in different areas to indicate the mouse's behavior in 
each area. 

2. Although modal behavior is generally discouraged in the Macintosh 
user interface, sometimes introducing modes makes it simpler to 
differentiate among the multiplicity of functions of the mouse. 
For example, in the Graphics Editor, the mouse functions both to 
draw graphics and to manipulate graphics already drawn. Thus, in 
this particular application, the mouse is employed in two 

MOUSE Espinosa-Hoffman 10/11/82 



14 User Interface Guidelines 

different modes. To accent the difference in behavior in these 
two modes, the pointer may change shape. 

The facility to change the pointer appearance to convey modal 
information is not a unilateral endorsement of modal behavior; see the 
discussion "About Modes" on page 6 of this document. 

The Keyboard 
Connected to the Macintosh main unit by a six-foot coil cord is a 
compact alphanumeric keyboard. The keyboard is used mainly for text 
and numeric entry. 

The keys on the keyboard are arranged in familiar typewriter fashion; 
there is a utility program with which the user can change the positions 
of the keys or the characters they generate. 

OPTION COMMAND 

Figure 5. The Macintosh Keyboard 

In terms of functionality, the keys are divided into three sets: 
character keys, modifier keys, and special keys. Character keys enter 
characters into the computer; modifier keys, in conjunction with 
character keys, choose among different characters on a key; and special 
keys give special instructions to the computer. 

Character Keys 
The alphabetic, numeric, and symbolic keys, and the space bar, enter 
characters into the computer. Any character key may be associated 
(and/or labeled) with more than one character; the modifier keys choose 
among the different characters on each key. 

The Basic Editing Paradigms (see that section) define the ways in which 
characters are typed into a document. All text, whether it be a 
file name, part of a document, or a search pattern, is typed in and can 
be edited in exactly the same way. 

KEYBOARD Espinosa-Hoffman 10/8/82 



ACCEPTING USER INPUT 15 

The keyboard hardware scans the character keys such that it can 
recognize any two character keys being pressed simultaneously. This 
feature is called "two-key rollover". 

Modifier Keys: SHIFT, CAPS LOCK, OPTION, and COMMAND 
Six keys on the keyboard--two labeled SHIFT, two labeled OPTION, one 
labeled CAPS LOCK, and one labeled COMMAND--change the interpretation 
of keystrokes or other inputs to the computer. When one of these keys 
is held down, the behavior of the other keys (and occasionally that of 
the mouse button) may change. A program can enquire the status of the 
modifier keys at any time. 

The SHIFT and OPTION keys choose among the characters on each character 
key. SHIFT gives the upper character on two-character keys, or the 
uppercase letter on alphabetic keys. OPTION gives an alternate 
character set interpretation, for foreign characters, special symbols, 
etc. SHIFT and OPTION can be used in combination. 

CAPS LOCK latches in the down position when pressed, and releases when 
pressed again. When down it gives the uppercase letter on alphabetic 
keys. The operation of CAPS LOCK on alphabetic keys is parallel to 
that of the SHIFT key, and the CAPS LOCK key has no effect whatsoever 
on any of the other keys. CAPS LOCK and OPTION can be used in 
combination on alphabetic keys. 

The keyboard hardware can sense any or all of the modifier keys being 
pressed simultaneously. 

The COMMAND key 
Pressing a key while holding down the COMMAND key signals that the 
keypress is not data input, but rather a command invocation (see the 
section on Commands). 

(hand) 
As the OPTION and COMMAND keys are unfamiliar features to 
11sers familiar with typewriters, their use should be 
restricted to expert functions not normally encountered 
by novice users. 

Special keys: ___ ENTER, TAB, RETURN, and BACKSPACE 
When the user enters or edits information, the ENTER key confirms that 
entry. When ENTER is pressed, the compu~er checks and validates the 
current entry and allows the user to proceed to a different one. 
Commonly used to confirm the entry of text, ENTER tells the computer to 
accept changes made to a field or form (such as a spreadsheet formula 
or a new file name). 

The TAB key is a signal to proceed: it signals movement to the next 
item in a sequence. TAB often carries the implicit meaning of ENTER 
before the motion is performed. 

KEYBOARD Espinosa-Hoffman 10/8/82 



16 User Interface Guidelines 

The RETURN key is another signal to proceed, but it defines a different 
type of motion than TAB. A press of the RETURN key signals movement to 
the leftmost field one step down (just like a carriage return on a 
typewriter). RETURN also can carry the implicit meaning of ENTER 
before it performs the movement. 

(hand) 
In applications such as the word processor, the TAB and 
RETURN keys not only perform immediate actions, but store 
those actions in the text; in such applications the 
RETURN and TAB keys may be considered character keys. 

BACKSPACE is used to delete characters from text, usually in the course 
of typing that text. The exact use of BACKSPACE is described in the 
section on the Basic Editing Paradigms. 

Typeahead, Auto-Repeat, and Audio Feedback 
If the user types at a time when Macintosh is unable to process the 
keypresses immediately, or the user types more quickly than Macintosh 
can process, the precocious keystrokes are queued for timely 
processing. As keystrokes are handled as events through the Operating 
System's event mechanism, the only limit on the number of characters 
that can be typed ahead of time is the length of the system's event 
queue. 

Normally, Macintosh "clicks" slightly at every keystroke. This audio 
feedback in typing is a global preference that the user can change at 
any time (see the Preferences description, in the section on Desk 
Accessories). 

When the user holds down a key for a certain amount of time, it starts 
repeating automatically. The delays and the rates of repetition are 
global preferences that can be changed by the user at any time. 

All printable characters, the space bar, the BACKSPACE key, and the 
RETURN key, inherently have the auto-repeat ability. The auto-repeat 
ability of each key is a characteristic of the keyboard that the user 
can change with the same utility program that alters the keyboard 
layout. 

Auto-repeat does not function during typeahead; it only operates when 
the application is ready to accept keyboard input. 

Versions of the Keyboard 
There are two physical versions of the keyboard: American and 
European. The European version has one more key than the American. 
The key layout on the European version is designed to conform to the 
ISO standard; the American key layout mimics that of common American 
office typewriters. 

The American keyboard contains 49 character keys (including the space 
bar and RETURN) that produce all the printable ASCII characters. In 

KEYBOARD Espinosa-Hoffman 10/8/82 



ACCEPTING USER INPUT 17 

addition, there are the following modifier and special keys: SHIFT, 
CAPS LOCK, COMMAND, OPTION, ENTER, TAB, and BACKSPACE. 

The European keyboard contains 50 character keys; the special and 
modifier keys are equivalent to those on the American keyboard, but 
their labels denote their functions symbolically. 

(hand) 
As the keyboard interface is a general-purpose clocked 
bidirectional serial port, other devices (such as a music 
keyboard, etc.) may eventually be attached to this port. 

The Numeric Keypad 
An optional numeric keypad is offered that connects between the --main 
unit and the standard keyboard. The keypad contains 18 keys that, 
while labeled similarly to keys on the main keyboard, return different 
keycodes to the main unit. An application can thus determine the 
origin of a keystroke. If desired, the keypad keys can be assigned 
ASCII codes equivalent to their counterparts on the main keyboard. 

The character keys on the keypad are labeled with the digits 0 through 
9, a decimal point, the four standard arithmetic operators for plus, 
minus, times, and divide, and a comma. The keypad also contains the 
special keys ENTER and CLEAR; it has no modifier keys. 

The keys on the numeric keypad follow the same rules for typeahead, 
auto-repeat, and audio feedback as the main keyboard. 

Four keys on the numeric keypad are labeled with "field-motion" 
symbols: small rectangles with arrows exiting them in various 
directions. Some applications may use these keys to move an object or 
indicator orthogonally around the screen, and require the user to use 
the SHIFT key to obtain the four characters (+ * / ,) normally 
available on those keys. 

(hand) 

MODELS 

As the numeric keypad is optional equipment, no 
application shall require it or any keys available on it 
in order to perform standard functions. Specifically, as 
the CLEAR key is not available on the main keybaord, a 
CLEAR function may be implemented with this key only as 
an optimization of another CLEAR command (such as in a 
menu) • 

Espinosa 10/11/82 



18 User Interface Guidelines 

CONCEPTUAL MODELS 

Macintosh, as an appliance computer, has one purpose only: to 
manipulate information. With it, a user can access, display, 
interpret, modify, transfer, replicate, and destroy information. 
Consequently, the central concepts on which the Macintosh system is 
built deal with things relating to information: 

- The container of information, which we call a file; 

- The manipulator of information, which we call a tool; 

- The presenter and interpreter of information, which we call a 
window; 

- The working environment, which we call the desk top; and 

- The information itself, which we call a document. 

On the continuum between pure concept and pure object, each of these 
has its own place. We hope to present our users with only the physical 
objects that represent these concepts, so that they can grasp the 
concepts by inference; we will not require them to know the concepts 
before they encounter any of the objects. 

Of the above, files are the most conceptual; we will use the term 
internally here to mean a generic container of information. As 
described below, files have many distinct incarnations that the user 
will encounter. 

Figure 6. Conceptual Models 

MODELS Espinosa 10/11/82 



CONCEPTUAL MODELS 19 

The desk top, documents, and windows are the most concrete of the above 
group: users will see these as objects and not as concepts at all. 

Tools are somewhere in the middle: although they have certain 
distinguishable physical attributes, most of their importance is in the 
conceptual realm. 

Files 
A file is a container of information. All the texts, pictures, charts, 
and address lists that the user puts into Macintosh are stored in 
files. Files also store information that the user didn't create: 
information usually more intelligible to the computer than the user. 

There are three general classifications for files: those containing 
documents, those containing tools, and those containing resources. 
Documents are created by users and can be viewed and modified by users. 
Tools are created by application programmers; the user can use them but 
can't modify them. Resources are also created by application 
programmers, but can be edited by a resource editor to change the way 
in which a tool communicates with the user (see RESOURCE FILES, below). 

Regardless of its contents, a file has many important attributes. 
Every file has a type that describes its contents and determines which 
tools can manipulate it; a size that describes how large its contents 
are; a name by which the user refers to the file; and a label on which 
the user-can put additional information about the file. It also has 
the dates on which it was created and last modified. 

Tools .------.----What we call a "tool" is generally known as an application program: an 
interactive set of procedures and data structures for manipulating 
information. Writing, drawing, charting, filing, analysis, and BASIC 
programming are the fundamental tools Macintosh provides; there are 
also several other "housekeeping" tools, like using a pocket 
calculator, note pad, and several other "mini-applications" described 
later in this document. A tool manifests itself in two ways: it 
displays a menu bar replete with menus of commands appropriate to that 
tool; and it places a document window on the desk through which the 
user can see the information contained in a file. 

MODELS Espinosa 10/11/82 



20 User Interface Guidelines 

Figure 7. A Typical Tool 

Tools, being themselves information (but intelligible to the computer 
rather than to the user), are stored in files. 

(hand) 
Only one tool can be in use at any given time. 

Documents 
Documents are the information that the user has created or wishes to 
manipulate. Documents can exist inside a file on a diskette or inside 
the memory of Macintosh. A document comprises a coherent set of 
different kinds of information. 

- Most documents comprise only ~ kind of information: all text, 
or one picture, or a series of charts, for example. The user 
manipulates the information and prints it out as a whole. Every 
document thus has a principal "type" of information; this type is 
determined by the tool that formed it. 

- A document can comprise more than one kind of information, but it 
must still form a coherent whole. The user can take information 
of one kind and add it to a document of another kind. But the 
document still retains its principal type, and the user can 
manipulate only the information of that type. 

Associated with each kind of document is a principal tool: the tool 
most appropriate to manipulate that document. The principal tool of 
any document is usually the tool that created it. Other tools may be 
able to read and interpret the document; for example, the BASIC 
language can read word processor documents anticipating the text of a 
program. Such tools are the document's secondary tools. The 
distinction is important only when selecting files from the desk. 

MODELS Espinosa 10/11/82 



CONCEPTUAL MODELS 21 

Resources 
Some files contain information that is neither a tool nor the user's 
information. This information is usually fonts, system programs, 
configuration information, etc. Although such information may have 
principal tools (such as a font editor for fonts), it's most commonly 
used by a tool. 

Files containing such information are called resource files. Tools 
have internal links to the resource files they need; copying a tool 
file, for example, automatically copies all resource files linked to 
it. Resource files are usually created by application programmers to 
accompany tools. The user can edit some resource files by using 
special resource editors, such as font editors or menu editors. 

DESKTOP Espinosa-Hoffman 10/11/82 



22 User Interface Guidelines 

THE DESK TOP MODEL OF ORGANIZATION 

The entire Macintosh working environment is based on familiar and 
intuitive concepts. The Macintosh screen represents a working surface 
or a desk top. Papers, writing or drawing utensils, and other common 
desk accessories have their place on this desk top just as on any 
other. Whenever possible, the objects on the desk top resemble their 
real-life counterparts: for example, all papers are white with black 
lettering. 

Figure 8. The Desk Top 

The Desk 
The desk top metaphor is reinforced by the central tool of the 
Macintosh system, a tool called the Desk. While most tools manipulate 
the documents contained in files, the Desk manipulates the files 
themselves, often regardless of their contents. The basic functions of 
the Desk are as follows: 

- Get, Print, Examine, Delete, or Copy any file or group of files; 

- Initialize a diskette; 

- Rename or rearrange the files on a diskette; 

- Select which diskettes, network diskettes, and peripheral devices 
to work with. 

On the Desk, files are represented by icons, with each file's name as a 
caption to its icon. The icons can be dragged around the desk asnd 
positioned in any order or arrangement. Other parts of the system are 
also represented by icons on the desk: disks and disk drives, 
printers, etc. 

DESKTOP Espinosa-Hoffman 10/11/82 



THE DESK TOP MODEL OF ORGANIZATION 23 

The central purpose of the Desk is to allow the user to manipulate 
files, and to call up the appropriate tools to work on the documents 
the files contain. The user invokes a tool from the Desk, and returns 
to the Desk when finished. 

Once using a tool, the user can call up a subset of the standard Desk 
functions, to choose a new file to work with or to specify a 
destination for the new work. This subset as presently defined 
includes selecting disks and files, creating a new file, and renaming 
and repositioning files. 

WINDOWS Hoffman-Espinosa 10/11/82 



24 User Interface Guidelines 

WINDOWS 

Windows are objects on the desk that display information. The 
information can be a user's document, an error message, or a request 
for more information. Any number of windows can be present on ·the desk 
at any time. As on a real desk, if more windows are placed on the desk 
than reasonably can fit, the windows "overlap" each other: the windows 
in front partially or completely obscure those behind them. 

The guilty underta.ker sighs 
The fonesorne organ grinder cries 
The silver ~;a.xophones ~;ay I should refuse 
The cracked bells anci 'washed out to,orns 
810v·/ into rnv face "Nith scorn 
But its not that wa~l., I wasnt born to lose 

I want ~lou} i "Na.nt ~/OU} I want you so bad 

The cirunken politician leap8 
Upon the street '-('y'here trtotto,ers "Neep 
Anci UOle saviors "/v't"tO are fast asleep) the 
And I v'la;it for thern to interrupt 

Figure 9. Windows 

Each window "floats" in its own plane. Think of a number of plates of 
glass stacked on top of the desk: each plate contains one and only one 
window, and the plates can be moved to make the windows appear in 
different places on the desk. Each window can overlap those behind it, 
and can be overlapped by those in front of it. The frontmost window 
cannot be overlapped. Even when windows do not overlap, they retain 
their front-to-back ordering. 

Opening and Closing Windows 
Windows come up onto the screen in different ways appropriate to the 
purpose of the window. Some windows are created automatically: for 
example, when the user wants to work with a document, the tool being 
used creates a document window in which to present that document. 

Many windows have an icon that, when double-clicked, makes the window 
go away: this icon is called the close box. (This icon is double
clicked, rather than singly-clicked, because of the disturbing 
consequences of accidentally clicking the icon). The application in 
control of the window determines what is done with the window when the 
close box is double-clicked: it can 

WINDOWS Hoffman-Espinosa 10/11/82 



WINDOWS 25 

1. make the window invisible, to be retrieved later; or 

2. remove and destroy the window and any information it contained. 

If an application wishes not to support closing its window with a close 
boxe, it should not place the box on the window. 

The Active Window 
At any given time, one window is of greater importance to the user than 
any other. Usually, the most important window is presenting the 
current document; at other times, an error message or information 
request may be more important. Thus this general rule: 

- The most important window at any given time is always frontmost. 

Naturally, there must be rules to determine which window is most 
important at any given time. 

- Newly-created windows are usually brought to the front. 

- If the user positions the pointer with the mouse inside any window 
that is not in front, and then clicks the mouse button, that 
window is brought to the front. 

Being in front has more consequences for an window than merely being 
more visible. The frontmost window is said to be active, and all 
others, inactive. 

- A window's active state is visibly distinct from its inactive 
stat.e; usually, the title or header of the window is highlighted. 

- Clicking or dragging inside the active window may perform a useful 
function; clicking or dragging inside an inactive window merely 
brings that window to the front. 

- All command and data input is handled by the program that is in 
control of the active window. 

Document Windows 
Although windows display many kinds of information and requests, the 
most common appearance of a window is to display the document currently 
being worked on. Windows displaying documents have parts not usually 
seen in other windows: scroll bars to move the document under the 
window; a size box to change the size of the window; and split bars to 
divide the window into several panels. 

Scroll Bars 
Scroll bars are used to change the user's view of a document. Only the 
active window has scroll bars; inactive windows leave black-bordered 
empty rectangles where their scroll bars will appear when the window is 
activated. 

WINDOWS Hoffman-Espinosa 10/11/82 



26 User Interface Guidelines 

A scroll bar is a light gray shaft, capped on each end with square 
boxes labeled with arrows; inside the shaft is a white rectangle. The 
shaft represents one dimension of the entire document; the white 
rectangle (called the thumb) represents the portion of the document 
currently visible inside the window. As the user moves the document 
under the window, the position of the rectangle in the shaft moves 
correspondingly. 

There are three ways to move the document under the window: by 
sequential scrolling, by "paging" screenful by screenful through the 
document, and by directly positioning the thumb. 

Clicking a scroll arrow moves the document in the direction of the 
scroll arrow. For example, when the user clicks the top scroll arrow, 
the document moves down, bringing the view closer to the top of the 
document. The thumb moves towards the arrow being clicked. 

Each click in a scroll arrow causes movement a distance of one unit in 
the chosen direction, with the unit of distance being appropriate to 
the tool: one line for the word processor, one row or column for the 
spreadsheet, etc. Pressing the scroll arrow causes continuous movement 
in its direction. 

Clicking the mouse anywhere in the gray area of the shaft advances the 
document by screenfuls. The thumb moves toward the place where the 
user clicked, and the document moves in the opposite direction; 
clicking below the thumb, for example, brings the user the next 
screenful towards the bottom of the document. Pressing in the gray 
area keeps screenfuls flipping by until the user releases the button or 
the thumb reaches the pointer. 

In both the above schemes the user moves the document incrementally 
until it is in the proper position under the window; as the document 
moves, the thumb moves accordingly. The user can also move the 
document directly to any position simply by moving the thumb to the 
corresponding position in the shaft. To move the thumb, the user 
presses on the thumb and drags it along the shaft; a flickering outline 
of the thumb follows the pointer. When the mouse button is released, 
the thumb jumps to the position last held by the flickering outline, 
and the document jumps to the position corresponding to the new 
position of the thumb. 

If the user starts dragging the thumb, and then moves the pointer a 
certain distance outside the scroll bar, the thumb detaches itself from 
the pointer and stops following it; if the user releases the mouse 
button, the thumb returns to its original position and the document 
remains unmoved. But if the user still holds the mouse button and 
drags the pointer back into the shaft, the thumb reattaches itself to 
the pointer and can be dragged as usual. 

WINDOWS Hoffman-Espinosa 10/11/82 



WINDOWS 27 

Multiple Windows 
Some tools may be able to keep several windows on the desk at the same 
time, as part of the same logical document. Different windows can 
represent: 

- Different parts of the same document, such as the beginning and 
end of a long term paper; 

- Different interpretations of the same document, such as the 
tabular and chart forms of a set of numerical data; 

- Different parts of a logical whole, like the listing, execution, 
and debugging of a BASIC program; 

- Separate documents being viewed and/or edited simultaneously. 

~·vrittt~n. t;1~J 

p,rLJ.i.i~ H€~ftzf~~la.. 

p,prU. 16~ 19;:;2 

Figure 10. Multiple Windows 

Each tool may deal with the meaning and creation of multiple windows in 
its own way. 

There are occasionally better ways to perform the above functions than 
with multiple windows. Showing different parts of the same document 
can be done better by splitting the' window (see below)'. Different 
interpretations of the same document occasionally merit two panes in 
the same window, rather than two separate windows. The implementation 
decision can best be made by experimentation and testing on actual 
users. 

Moving a Window 
Each tool places windows on the screen wherever it wants them. The 
user can move a window--to make more room on the desk or to uncover a 
window it's overlapping--by dragging its title bar. A flickering 
outline of the window follows the pointer until the user releases the 

WINDOWS Hoffman-Espinosa 10/11/82 



28 User Interface Guidelines 

mouse button. At the release of the button the full window is drawn in 
its new location. 

A window always moves in its own plane; while it's being dragged 
around t the flickering outline is visible over the windows below it but 
is hidden under the windows above. Notice that clicking in the title 
area does not make a window active or bring it to the top. 

(hand) 
Moving a window does not affect what portion of the 
document it is displaying. 

A window can never be moved off the screen; specificallYt it can't be 
moved such that the visible area of the title bar is less than four 
pixels square. 

Moving a window is fully supported by the Window Manager t and is easily 
performed with one procedure call; an application program need not care 
where on the screen its window is placed. 

Changing the Size of a Window 
If a window has a certain icon in its lower right corner t where the 
scroll bars come together, the user can change the size of the 
window--enlarging or reducing it to the desired size. The box that 
contains the icon is called the size box. 

Dragging the size box drags a flickering outline of the window. The 
outline's top left corner stays fixed, while the bottom right corner 
follows the pointer. When the mouse button is released, the entire 
window is redrawn in the size and form of the flickering outline. 

-! . 
\, ••••••••••••••••••• , .................... 1 

t::::::::::::::::::::::::::::::::::::::::::::::::t~ ~----"'-R' 
Figure 11. Moving and Sizing a Window 

Sometimes it's not appropriate to size a window; some tools may not 
support this ability. In this case, the size box is empty and clicking 

WINDOWS Hoffman-Espinosa 10/11/82 



WINDOWS 29 

in it produces no effect. If a tool does support sizing a window, 
however, changing the window's size leaves the document's size 
unchanged; the window simply displays a larger or smaller portion of 
the document. 

(hand) 
Sizing a window does not affect its contents, or change 
the position of the top left corner of the window over 
the document; only the portion of the view that is 
visible inside the window. 

At its maximum size, a window is still small enough that a seven pixel 
square area of the size box is visible on the screen. 

The minimum size window consists of only a title bar the width of the 
title itself, a horizontal scroll bar (or a blank rectangle of 
equivalent size), and the size box. If a window is made so small that 
its title will no longer fit in the title bar, the title is truncated 
to show as many of its initial characters as possible. 

Sizing a window is fully supported by the Window Manager, and is easily 
performed with one procedure call; an application program need not care 
about the size of a window. 

Splitting a Window 
Sometimes it is desirable to be able to see disjoint parts of a 
document simultaneously. Tools that accommodate such a capability 
allow the window to be split into independently scrollable panels. 

Tools that support split panes place split bars at the top of the 
vertical scroll bar and at the left of the horizontal one, if present. 
Pressing a split bar attaches it to the pointer. Dragging the 
split bar positions it anywhere along the nearby scroll bar; releasing 
the mouse button drops the split bar at its current position, splits 
the window at that location, and creates new scroll bars for each 
panel. 

WINDOWS Hoffman-Espinosa 10/11/82 



30 User Interface Guidelines 

Figure 12. Split Views 

The document appears the same, save for the split bar lying across it. 
But there are now separate scroll bars for each pane; whith these, the 
user can scroll each pane independently of the other. 

Dragging a split bar back to its original position reunites the window 
in that direction; the left or top view (and its scroll bar) 
disappears, leaving the right or bottom view. 

The number of views in a document does not alter the number of 
selections per document: i.e., one. The active selection appears 
highlighted in all views that present it. 

Desk Accessories 
Macintosh does not allow two tools to be running at once. However, 
there are several mini-applications that are available while using any 
tool. 

At any time the user can issue a command to call up one of several 
desk accessories. The basic ones provided include: 

Calculator 
Alarm Clock 
Note Pad 
Telegram Form and In-Box (AppleGram) 

Accessories are disk-based: only those accessories available on-line 
can be used. The list of accessories is expanded or reduced according 
to what's available at any given time. The application can support all 
accessories in the system with calls to the Desk Manager. On disk, 
accessories are stored in resource files. More than one accessory can 
be on the desk at any given 'time. 

ACCESSORY Espinosa-Hoffman 10/11/82 



WINDOWS 31 

Who's on Top? __ ~ __ ~~ __ ~ __ ~ ________ ~ __ ~ ______ ~~ __________ ~~ __ 
With a virtual three-dimensional screen it is essential to manage the 
third dimension so that important items or objects requiring immediate 
attention are not obscured accidentally. Hence. in order from front to 
back: 

- The pointer 

- An ale rt box 

- A dialog box 

- The menu bar and all pull-down menus 

- The active window 

- All other windows 

- The desk top 

INSIDE Espinosa 10/1 



32 User Interface Guidelines 

INSIDE DOCUMENTS 

(hand) 
We strongly subscribe to the doctrine of preservation of 
visual fidelity, i.e., what you see is what you get. 

It's important that a document as seen through a window on the desk 
closely resemble the same document when committed to paper. The 
differences (and there will be differences) must be natural and 
unsurpr1s1ng. Naturally, the ruler and graph paper used to create a 
report on Tuesday morning won't be distributed with that report when 
it's presented that afternoon; printing a document shall not carry the 
vestiges of the tool that created that document. 

Any given tool should be able to manipulate, in some way, everything in 
the document it presents~ Macintosh eventually will have many 
different tools, and we do not pretend to foresee the needs of all. 
However, we do provide standard means of manipulating the constituent 
elements of most documents. 

Structure of Documents 
In order to discuss the appearance of information inside documents, it 
is necessary first to digress a bit into the structure of documents. 

A document is a collection of information. Each piece of information 
has its own position in the document, and its own positional 
relationship to the' information around it. 

In terms of structure, there are three principal types of documents: 
texts, free-form documents, and structured documents. 

1. Texts consist of a string of information (in this case, 
characters) that appears two-dimensional but is really linearly 
ordered. More characters can be inserted anywhere within the text 
or added onto the end of the text. There is an inherent order to 
the characters in a text, and definite positions between 
characters. 

2. Free-form documents start completely empty and unstructured, like 
a blank piece of paper. Information can be placed anywhere within 
the document; each piece of information has its own position. 
There may be large, empty spaces in the document that contain no 
information. There is no inherent ordering among the information 
in a free-form document. Pictures drawn in the graphics editor 
are free-form documents. 

3. Structured documents have predefined cells to contain information. 
There is a fixed maximum number of cells per document; no cells 
can be added, nor can they be removed. Cells are usually arranged 
in rows and columns; a given cell is a member of one row and one 
column. There is a definite position between two adjacent cells, 

INSIDE Espinosa 10/11/82 



INSIDE DOCUMENTS 33 

and a position at the corner of a group of four cells. A 
spreadsheet is a structured document. 

'\ -. 

.:;w"'YM"_""...,W.,,'''''w,..''W.W.w.,''''''' ...... WNNM ...... W''.IWMV.W.W.w'''''''''' .... " ...... v-"""""W'-OYl.Yl.Yl.V.V.hi T e Xl 

\ v.. 

+ 

l-"~ 

Fr t._.J ee-
fonn 

Figure 13. Types of Documents 

The type of a document affects many things--mostly how a user selects 
information inside the document. For example, information in a text 
can be selected character-by-character, but information in a structured 
document is selected cell by cell. The exact details ot the selection 
process are described in the section "Selecting Information". 

The Visual Structure 
The structure can manifest itself visibly inside the document. For 
example, the rows-and-columns arrangement of a spreadsheet can be 
clarified by adding graphic grid lines between the cells. These lines 
are not part of the user's data, but they are part of the document. 
Such supporting graphics are usually static elements within the 
document, and cannot be moved or altered. Those that can be altered 
usually affect only the presentation of the user's data, not the data 
itself. 

At the tool's discretion, the supporting graphics in a document mayor 
may not appear when the document is printed. The grid lines on a 
spreadsheet might very well appear, while the rulers in a word 
processor document will probably not be printed. 

Graphics in Documents 
Not only does Macintosh use graphics to show the-structure of a 
document and to otherwise communicate with its user, it also supports 
tools to create and manipulate graphic documents. Two such tools are 
planned: a graphics editor (to design and draw pictures, diagrams, 
illustrations, signs, etc.), and a charts and graphs package (to do bar 

INSIDE Espinosa 10/11/82 



34 User Interface Guidelines 

charts, pie charts, hi-Io graphs, etc. from a numerical data base). 

Graphic documents are usually free-form: each graphic item in the 
document has its own position within the document, and there is no 
inherent relationship among the items (although the tool can define 
such a relationship). But there's no reason that graphic documents 
can't be structured. For example, a graphic programming language mught 
have a text-like or other structure. 

Figure 14. Graphic Documents 

Graphics inside documents are produced using the QuickDraw graphics 
package. The package can draw seven fundamental graphic forms--lines, 
rectangles, ovals, rounded-corner rectangles, wedges, polygons, and 
arbitrary regions--either in outline or filled with a solid pattern. 
It can also place and manipulate images defined bit-by-bit. A tool can 
give the user the ability to draw anything from simple line drawings to 
finely textured halftone pictures. 

The tool must itself determine how to respond to the mouse and keyboard 
in creating and manipulating graphics. 

Appearance of Text 
Most people, even bibliophobes, are confronted with a wide variety'-~ 
pr,inted matter on daily basis. Our eyes are so accustomed to seeing a 
myriad of typestyles, typesizes and typefaces used in publications to 
embellish or emphasize the content, that we no longer take special 
note. Developing eye-catching and pleasing typefaces has been an art 
unto itself since Gutenberg. Appropriate and aesthetically embued 
typesetting has been traditionally the domain of tooled craftsmen. By 
contrast, the repertoire of currently available computer 'typefaces' is 
thoroughly devoid of aesthetic nuances and provides but a bleak parody 
of the printed world. 

CHARACTERS Hoffman-Espinosa 10/11/82 



INSIDE DOCUMENTS 35 

Macintosh documents can contain characters in a number of different 
typefaces, typestyles, and typesizes. Type can abut closely or appear 
loosely packed; parts of some characters (such as the curl of a y) can 
reach back under or up over adjacent characters; and text can freely 
intermix with graphics. After all, text is just a specialized form of 
graphics. 

Note that in this context, numbers are considered text: to users, the 
external appearance of digits is the same as that of other text 
characters. The following discussion thus pertains to numerical 
information as well as natural-language text. 

- For more information on the aesthetics of type design, see a good 
typography book; David Gates' Type is recommended. For 
implementation details on how to place characters on the screen, 
see the Macintosh User Interface ToolBox manual 
QuickDraw: A Programmer's Guide. 

Typefaces, Typesize, and Fonts 
A typeface is a set of typographical characters composed with a 
coherent "feel" and consistent design. Things that relate characters 
in a typeface include the thickness of vertical and horizontal lines, 
the degree and position of curves and swirls, the use of serifs, etc. 
Typefaces have names, usually historical: Bodoni, Goudy, Tile, etc. 
The identity of a typeface is independent of its size or any particular 
typestyle it may conform to (see below). 

Typesize in the printing world is measured in points, a point being 
reasonably close to 1/72 inch. The resolution (in points per inch) of 
the Macintosh screen is quite close to this, but not close enough to 
keep accurately to printers' measurements. But we do describe typesize 
loosely in "points", which have no correlation to the mathematical 
entity of a point in the QuickDraw graphics package, or to anything 
else for that matter. In talking about type, we use points as a rough 
indication of vertical size. 

A font is the entire set of characters of a specific typeface and 
typesize. For example, Helvetica8 refers to a font that contains 
characters of the typeface named Helvetica at a size of 8 points. In 
addition to all the uppercase and lowercase letters, numerals and 
punctuation marks, a font may include mathematical symbols, accented 
letters or other special characters. 

CHARACTERS Hoffman-Espinosa 10/11/82 



36 User Interface Guidelines 

Tifne:: iO.11lan 10, Bolt\. J~~ill.J~·,~ UrlljerHj'1ed,-~ iIIIgfItifip. 

T irnes Roman 14, .EbId j.lJl!ir. 
HeJvetica 10, J.miiD ~ 

Helvetica 1 4, IIlJIJI .." 
Type 1 O'V, fOl11mUm ~~ 
Cacha 12, /JlglI!fJ llfIrtJ'll _ ffJNflin 

'{b t,tl\llis·fJ 18 

Hochlin 36v 

Figure 15. Type 

Typestyles 
Macintosh does not require the use of separate fonts to accommodate 
different styles of the same typeface. A character of any font may be 
subjected to a group of transformations that modify its general 
appearance: such a modification is called a typestyle. There are five 
fundamental typestyles: bold characters, italic (slanted) characters, 
outlined characters, underlined characters, and shadowed characters. 
Any combination of these typestyles can be used, but Macintosh cannot 
be held accountable for any aesthetic atrocities that may be 
perpetrated by an insensitive user. 

Proportionally Spaced vs. Monospace Fonts 
Most printing fonts are proportionally spaced (also known as variable 
pitch). This means that, for example, the "i" is narrower than an "m"; 
the "w" wider than the "J". 

In a monospace (fixed pitch) font, all characters are of the same 
width. Monospace fonts are generally less attractive than 
proportionally spaced fonts. Monospace fonts are sometimes called 
"typewriter" fonts. 

Monospace fonts are appropriate for some applications, such as COBOL 
coding forms, but generally discouraged in Macintosh. As monospaced 
fonts are merely a degenerate case of proportional fonts, they can be 
used just as easily as proportional fonts, when they are needed. It's 
necessary, for example, for proportional fonts to have monospaced 
numerals, so that columns of numbers line up neatly when aligned at 
decimal tab stops. 

CHARACTERS Hoffman-Espinosa 10/11/82 



INSIDE DOCUMENTS 37 

Standard Fonts 
Macintosh uses a distinct system font when presenting its labels, 
messages, and lists to the user. System-provided text in this font 
cannot be edited. The Macintosh system font is Creaml0j users and 
tools may not use this font. 

There is always a standard font in which all information the user has 
entered will appear: the user font is Helvetica10, a nice, sans serif, 
reasonably compact face. 

The use of any other fonts depends on the particular tool being used. 
The word processor, in all probability, will allow the user more 
multiple font ability than most other tools. 

COMMANDS Espinosa-Hoffman 10/11/82 



38 User Interface Guidelines 

WORKING WITH MACINTOSH 

So far, this document has described many things about the Macintosh 
user interface: how it accepts inpout from the user, how it displays 
information on its screen, and how the conceptual underpinnings of the 
system control the structure of interactions. But nothing has been 
said about how these things work together. 

This section describes how input affects output: how Macintosh works. 
It discusses the methods the user will use to perform actions, select 
information, and choose commands to operate on that information. 

Direct Manipulation: Controls -----------------------------------------------
"Piaget has hypothesized that infants first learn about 
causation by realizing that they can directly manipulate objects 
around them--pull off their blankets, throw their bottles, drop 
toys... Such direct manipulations, even on the part of infants, 
involve certain shared features that characterize the notion of 
direct causation that is so integral a part of our constant 
everyday functioning in our environment--as when we flip light 
switches, button our shirts, open doors, etc." 

-- Lakoff & Johnson, 1980 

Friendly systems act on direct causation--they do what they're told. 
Performing actions on a system in an indirect fashion (by typing words 
and pressing RETURN, or by obediently choosing one item from the 
currently displayed list) reduces the sense of direct manipulation that 
is basic to the feeling of causation. To give Macintosh users the 
feeling that they are in control of their machines, many of a tool's 
features are implemented with controls: graphic objects that, when 
directly manipulated by the mouse, cause instant action with graphic 
results. 

Three kinds of controls are supported by the Control Manager in the 
User Interface ToolBox: buttons, check-boxes, and dials. 

Buttons 
Buttons are small objects, usually inside a window (but occasionally on 
the desk top), labeled with words or an icon. Clicking or pressing a 
button performs the instantaneous or continuous action described by the 
button's label. 

Buttons usually perform instantaneous actions, like opening or closing 
windows, or acknowledging error messages. Occasionally, they can also 
perform continuous action: the scroll arrows on a scroll bar are 
continuous-action buttons. 

WORKING Espinosa 10/11/82 



WORKING WITH MACINTOSH 39 

The Control Manager defines one kind of button, an instantaneous or 
continuous pushbutton, labeled with a verbal title. A tool may include 
a procedure to define a custom button, which can be linked in to the 
Control Manager and used just like the standard button. 

Check-Boxes 
Check-boxes are a variant of buttons. Where buttons perform 
instantaneous or continuous actions, check-boxes display a state that 
the user can change. Most commonly seen when filling out a form or 
setting parameters, check-boxes are small squares that appear either 
empty or filled in with a check-mark. The boxes are usually adjacent 
to a word or icon that describes the meaning of the box. 

Clicking in a check-box flips its state, from checked to unchecked or 
vice-versa. Dragging through a field of check-boxes flips the state of 
the first and assigns the new state to all other boxes dragged through. 

A check-box may belong to a group of boxes. If there are no 
interrelationships among the boxes, they are checked and unchecked as 
above. But if the boxes are related such that one and only one must be 
checked at any given time, they work like "radio buttons": clicking in 
an unmarked box marks that box and unmarks the previously marked box. 
Such groups should be labeled clearly, "Choose one of the following:". 
The checked appearance of this kind of box is visually distinct from 
normal, ungrouped check-boxes. 

I' .... , (Bu t tOft 1/ 
'"", .. ,: 

o Cjleci: -Box 1 
o Check-,Box 1. 

Figure 16. Buttons, Check-Boxes, and Dials 

WORKING Espinosa 10/11/82 



40 User Interface Guidelines 

Dials 
Dials display the value, magnitude, or position of something in the 
tool or system, and optionally allow the user to alter that value. 
Dials are predominantly analog devices, displaying their values 
graphically and allowing the user to change the value by dragging an 
indicator; dials may also have a digital display. 

The best example of a dial is the shaft of a scroll bar. The indicator 
of the scroll bar is the thumb; it represents the position of the 
window over the length of the document. The user can drag the thumb to 
change that position. 

Just as with buttons, there are a few standard dials defined in the 
ROM, but a programmer can implement a custom dial and link it in with 
the control mechanism. 

Selecting Information 
A previous section mentioned that Macintosh has one purpose only: to 
manipulate information. If this is true, then there is a simple 
operational paradigm to cover all situations: 

(hand) 
First select some information, then manipulate it. 

This paradigm minimizes modality in basic operations. By selecting the 
information first, the user is free to select different information 
without being committed to a certain manipulation. 

The following sections describe the two parts of this basic paradigm: 
how to select information in a document, and how to choose commands to 
manipulate that information. 

The Selection 
The selection is the collection of information that will be acted upon 
by the next command. There is always one and only one active selection 
in the active window. The selection can be so large as to enclose all 
the information in the document, or it can be so small as to merely 
indicate the position between two pieces of information, enclosing 
nothing at all; the latter selection is called an insertion point. The 
insertion point indicates the position at which newly entered 
information will be placed. 

Positioning the pointer over the user's information in the active 
document and pressing the mouse button usually begins a selection. 
Once the button is pressed, the selection can be completed in two ways: 

1. Clicking selects one piece of information or a position between 
pieces of information. 

2. Dragging selects a group of information. 

SELECTING Espinosa-Hoffman 10/11/82 



WORKING WITH MACINTOSH 41 

[";=) ......... j 
~ \.., ~ 

i/"--"-' i 
; j 
; ; 
; i 
: .............................. : 

--_ .... _ ........... _ .... . 

Figure 17. Selecting Information 

The exact behavior of clicking and dragging to make the selection 
depends on the structure of the document. 

- Clicking in text selects the position between the two characters 
nearest the pointer; this position becomes the insertion point. 
The insertion point in text is represented by a blinking vertical 
bar. 

Clicking in a structured document selects either the cell under 
the pointer, the position between two adjacent cells, or the 
corner of four cells. The latter two selections are insertion 
points, and are represented by blinking vertical or horizontal 
bars, or by a blinking cross. 

Clicking in a free-form document selects the item under the 
pointer. If the pointer is not over a piece of the user's 
information, clicking either does nothing, or selects a position 
in the document. This position, the insertion point, is marked by 
an "anchor" icon. 

SELECTING Espinosa-Hoffman 10/11/82 



42 User Interface Guidelines 

ihis is te):t in a text 60CUTIlent. 

Notice tllat characters are inverte4 in 
st.ep with the)moving p(,inter. I 

Figure 18. Selection by Clicking 

Clicking in editable user information always creates a new selection; 
the information selected is highlighted and the previous selection is 
unhighlighted. Highlighted text appears white-on-black; highlighted 
graphics appear with "knobs". 

Dragging through editable user information selects a group of 
information. It would seem that dragging should select all items 
dragged over--to select items, press the mouse button, drag across the 
items, then release--but experience proves that selecting only those 
items that were dragged over is inefficient. Instead, consider 
dragging as defining two points: the point where the button was 
pressed and the point where it was released. Dragging then selects 
everything between those two points, according to the structure of the 
document, regardless of the path of the mouse. The objects under the 
two points are included in the selection, as are all items between 
those two points. 

- Dragging through text selects all characters, in textual order, 
from the character under the first point to the character under 
the last point. 

Dragging through a structured document selects all cells in the 
rectangle whose corners are the cell under the first point and the 
cell under the last point. 

Dragging through a free-form document selects all items completely 
enclosed by the rectangle whose corners are the first and last 
points. 

During the dragging, the selection is visible--the items that will be 
selected are highlighted, in real time, according to the current 

SELECTING Espinosa-Hoffman 10/11/82 



WORKING \'HTH MACINTOSH 43 

position of the pointer. But the selection is not actually confirmed 
until the mouse button is released. If the user moves the pointer back 
to the first point and releases the mouse button, the result is the 
same as a click at that position (see above) 

The items between the two points are selected regardless of the 
relative orientation of the two points. Starting at the end of a 
sentence and dragging backwards to the beginning operates just as well 
as starting at the beginning and dragging to the end. 

Once the selection is made, the selected items are highlighted and the 
items in the previous selection are unhighlighted. There is no 
mechanism for restoring the previous selection. 

(hand) 
After a selection is made, the pointer becomes invisible 
so as not to obscure the selection. The pointer 
reappears the next time the user moves the mouse. 

Selection by Command 
Some logical groupings of information are more commonly selected than 
others--columns or rows in a spreadsheet, paragraphs in a word 
processor, etc. And occasionally it's convenient for the tool to 
select a piece of information automatically--such as a word or phrase 
that the user is searching for. 

In these cases, the invocation of a command may explicitly or 
implicitly make a new selection. For example, a tool may have a 
"Select All" command to select all information in the document; a 
spelling checker could have a "Select Next Misspelled Word" command, 
etc. 

When any such command is invoked, the tool must scroll the document 
automatically in order to present as much as possible of the new 
selection. 

Automatic Scrolling During Selection 
The only limit on the size of the selection is the size of the document 
itself; the largest possible selection is the entire document. 

But the normal method of selecting as outlined above can't handle 
selections that extend outside the window. We therefore define a way 
to scroll the contents of the window during selection: 

- If during selection the user drags beyond the borders of the 
window, the contents of the window will scroll (automatically and 
continuously) away from that border. New information scrolled 
into the window becomes selected and is highlighted accordingly. 
Scrolling stops when the user either releases the mouse button or 
moves the pointer back into the window: the latter case resumes 
normal selection. 

SELECTING Espinosa-Hoffman 10/11/82 



44 User Interface Guidelines 

"Window" in the above paragraph applies to a single panel of a split 
window; beginning a selection in a panel and moving out of that panel 
scrolls only that panel. 

Extending the Selection 
Selection by dragging and automatic scrolling is fine for relatively 
small selections, but its usefulness deteriorates as the desired 
selection grows larger. An alternate method can be used to make a 
large selection: this process is called extending the selection. A 
selection made in this way is treated the same as any other selection. 

Extending the selection merely adds to the current selection. Whereas 
making a normal selection removes the previous selection, making an 
extended selection enlarges the previous selection to extend to the 
newly selected position. 

Figure 19. Extending a Selection 

1.. 
Scroll 

4. 

Finished 

An extended selection is made by positioning the pointer, holding down 
either of the SHIFT keys on the keyboard, then pressing the mouse 
button. When the mouse button is pressed, all information between the 
original selection and the current pointer position (inclusive) becomes 
selected and highlighted. The user can then drag the mouse around and 
complete the selection as usual. The SHIFT key may be released at any 
time without affecting the selection. 

Extended selections can be made across two panels of a split window. 

SELECTING Espinosa-Hoffman 10/11/82 



WORKING WITH MACINTOSH 45 

Making a Discontiguous Selection 
Some tools may choose to allow selections that are discontiguous: that 
comprise one or more unconnected pieces, that have "holes", or both. 
How a tool deals with operations on such selections is up to its 
designers; the following is merely an outline of how such selections 
are made. 

(hand) 
Discontiguous selection of text is not supported. It 
causes ambiguity upon insertion. 

Making a discontiguous selection is like making an extended selection 
in that it merely augments the current selection, and also that it is 
invoked by holding down a keyboard key while pressing the mouse button. 

-~ 

-

1. 
Move 

4. 
Finished 

Figure 20. Making a Discontiguous Selection 

A discontiguous selection is made by positioning the pointer, holding 
down the COMMAND key, and pressing the mouse button. It continues like 
a normal selection: the user drags the mouse to indicate the last 
point, then releases the mouse button. The COMMAND key may be released 
at any time without affecting the selection. But the kind of selection 
that's being made depends upon the posiition of the pointer when the 
mouse button is pressed: 

If the pointer is not inside the previous selection, the operation 
is a normal selection that does not remove the previous selection. 
Both selected areas are highlighted on the screen; they are both 
considered parts of the selection. 

- If the pointer is inside the previous selection, the operation 
becomes a deselect ion: the information "selected" becomes 
deselected and unhighlighted. The remaining information, even if 

SELECTING Espinosa-Hoffman 10/11/82 



46 User Interface Guidelines 

it contains a hole, is the selection. 

With this paradigm, any arbitrary collection of items in the document 
may be selected. Once again, the selection comprises all highlighted 
items; there is one and only one selection. 

Discontiguous selections can be made in any pane of a split window. 

COMMANDS Espinosa-Hoffman 10/11/82 



COMMANDS 47 

COMMANDS 

Once the information to be operated on has been selected, a command to 
operate on that information can be chosen from lists of commands called 
menus. 

A principal problem with menu-driven systems is that it's difficult for 
the menu to share the screen with the information being worked on, and 
especially difficult to show all menus at the same time. Most systems 
"solve" these problems with modal tree-structured hierarchies of menus, 
where menus are chosen from a menu of menus, while the user's 
information has disappeared from the screen. Unfriendly because it 
segregates information from commands, and confusing because it for,ces 
users to "walk" up and down trees of menus, this approach will not work 
for Macintosh. Instead, taking advantage of Macintosh's ability to 
overlap things on the screen, we make all menus available at all times 
(with the user's information still visible) by means of pull-down 
menus. 

The Menu Bar 
The menu bar is displayed at the top of the screen. It contains a 
number of words and phrases: these are the titles of the menus (see 
below) associated with the current tool. The contents of the menu bar 
and the corresponding menus are different for each tool. In this sense 
the tool is said to "own" the menu bar. 

There is one and only one menu bar on the screen at any time. 
Exceptions may be made in special cases: full-screen games may need no 
menu bar, for example. 

(hand) 
The titles in the menu bar, and their corresponding 
menus, should remain constant throughout the tool. A 
tool should not change the available menus or put up 
different menu bars at different times. 

Of Mice and Menus 
The user positions the pointer over a menu title on the menu bar and 
presses and holds the mouse button. The title becomes highlighted and 
a rectangular menu descends from the menu bar under the title; it 
remains down as long as the mouse button is held down, or until the 
user moves the pointer away from the menu. 

The menu contains a number of items, usually stacked vertically inside 
the menu; each item names an operation that can be performed. The 
items may contain words, icons, or both. To invoke a command in the 
menu, the user drags the pointer down to the menu item (which becomes 
highlighted), then releases the mouse button. As soon as the 
mouse button is released, the menu item blinks briefly, the menu 
disappears, and the command is executed. The menu title in the 
menu bar remains highlighted until the command has completed execution. 

COMMANDS Espinosa-Hoffman 10/11/82 



48 User Interface Guidelines 

ltlenu B~ 

Menu [ten1 

Menu Ite:lIl 

Ide-flU Item 

Menu 

Figure 21. Pull-Down Menus 

Because the user chooses a menu item only by pointing the pointer at 
it, and its command takes effect only when the mouse button is 
released, if the user drags the mouse outside the menu area (when the 
menus are showing) and releases the mouse button, no command is 
selected and no action takes place. Thus there is always recourse 
should the user have a change of heart after pulling down a menu, and 
the user is never forced to activate a command. 

(hand) 
The menu items, and NOT the menu titles in the menu bar, 
act upon selections. Users should always be able to 
peruse the inventory of commands by dragging the pointer 
across the menu bar without fear of causing something to 
happen. 

The only way to pull down a menu is to press the mouse button while the 
pointer is in the menu bar. While the user is holding down the 
mouse button, the pointer does nothing but pull menus down and 
highlight their items. 

If the user tries to perform an operation on a selection that is not 
currently visible, automatic scrolling occurs to make the selection 
visible before the operation is performed. The document scrolls until 
the selection is completely in view or, if the selection is very large, 
the entire window is filled with the part of the selection nearest to 
the current position; then the chosen operation is performed. 

Notes on General Properties of Menus 
Not all menu items are relevant at all times. A menu item that is 
inapplicable to the current selection is visually distinct from the 
others (perhaps grayed out) and will not highlight when a user tries to 
choose it. Repeated attempts by the user to choose an ineffective menu 

COMMANDS Espinosa-Hoffman 10/11/82 



COMMANDS 49 

item warrant explanations from the alert mechanism (see SPECIAL 
CONDITIONS). 

(hand) 
A menu in the menu bar can always be pulled down, even if 
all its menu items are ineffective; in such cases, the 
menu title is also grayed out. The user should always be 
able to survey all the available commands, even if they 
are inoperative. 

Commands that may be invoked from the keyboard with the COMMAND key 
(see below) have a special notation on the right side of the menu. The 
notation consists at present of an apple symbol and the key that is 
used with COMMAND to invoke that command. 

Menu items are grouped in a menu to emphasize the logical relationships 
among the groups. Groups are separated by a one-item-high blank space 
that serves to visually distinguish the groups. This space is not an 
item and is not highlighted when the pointer moves over it. 

Experience shows us that it's easiest for users to choose the second, 
third, and fourth items in the menu: thy're far enough away from the 
menu bar to reach them without overshooting, but still not too much of 
a reach down. We recommend that the most common and safest commands go 
in these positions. 

Also in regards to safety, the commands that cause the greatest effect 
(such as Quit) should be separated from other, less "dangerous" 
commands. Similarly, pairs of commands that perform similar functions 
with slight differences should not be adjacent; a user may choose one 
accidentally, intending the other, and not notice the subtle 
difference. 

!itlt !itlt Title 

Apple-key 'A 
Item 
=G r.$.;1f~ ften~ 
Item 

Figure 22. General Properties of Menus 

COMMANDS Espinosa-Hoffman 10/11/82 



50 User Interface Guidelines 

Some commands come in pairs, with only one command of the pair being 
appropriate at any given time. Most often these pairs control the 
appearance of something on the desk: one command makes the object 
visible, and the other command makes it invisible. For example, in the 
Word Processor, the rulers that set margins and paragraph formatting 
are normally visible in the window. If the user wishes to remove the 
rulers, there is a command called "Hide Rulers". When the user invokes 
this command, the rulers disappear and remain hidden; meanwhile, that 
command has been replaced with its counterpart, "Show Rulers". 

(hand) 
These are not two different commands; they are opposite 
s ides of the same command. The intent of this pairing 
method is to shorten and simplify menus. The pairing 
does not make a good indicator of state. 

Some status information can be conveniently shown in menus, with the 
commands that affect that status. If all the information in the 
selection shares a certain characteristic, and that characteristic can 
be set with a menu command, that command is marked with a check-mark to 
show the state of the selection. 

Also, in situations where commands in a menu not only perform their 
function on the selection, but also set a state that controls the 
interpretation of subsequent input (such as the Bold command), the 
commands whose states are currently in effect are similarly marked. In 
this way the menu' allows the user not only to change how subsequent 
input will be interpreted, but also to see the interpretation before 
changing it. 

The Standard Menus 
Although the titles on the menu bar are different in each tool, the 
three menus at the left of the menu bar (the Apple, Edit, and File) 
remain the same at all times. 

The commands and information in these menus pertain to functions common 
to all Macintosh users: inquiring the state of the current tool and 
data, invoking global system functions, and loading, saving, and 
printing documents. 

The Apple Menu 

Apple 
Calculator 
Alarm Clock 
Note Pad 
AppleGram 

Tool Information 
Document Information 

COMMANDS Espinosa-Hoffman 10/11/82 



COMMANDS 51 

Beginning the Apple menu are the names of the desk accessories 
currently available to the system. Choosing a name activates the 
corresponding accessory and places it on the desk; double-clicking the 
close box on the accessory makes it disappear and reactivates the 
previously active window. The list of available accessories changes 
with the availability of the accessories themselves. 

The "Tool Information" and "Document Information" commands in the Apple 
menu let the user see information pertaining to the current state of 
the tool being used (its author, publisher, copyright message, version 
number, perhaps a hotline number) and the current document (its size, 
file name, label, creation and modification dates, "home" location or 
diskette, and any other status information). 

These commands, when invoked, present a window that contains the 
appropriate information; the window remains on the desk top until the 
user explicitly removes it by double-clicking its close box. 

The document information window gives the user the ability to see 
important but little-used information about the current document, 
without taking up valuable screen space when the information isn't 
needed. The tool information is an important tool in the continued 
support of the customer: should anything go wrong with a tool, the 
users have a way to refer to the exact version number of the 
problematic program when seeking help from a dealer or hotline. 

In tools that have a global "help" facility, the Help command appears 
at the bottom of the Apple menu. 

The Edit Menu 
The Edit menu includes all the editing commands necessary to manipulate 
pieces of documents. 

Edit 
Undo {what} 

Copy 
Cut 
Paste 

Select Everything 

The effects of the four editing commands are more thoroughly discussed 
in the BASIC EDITING PARADIGMS, below. Briefly, Cut removes the 
selection from the document, storing it in an intermediate window 
called the scrap; Paste replaces the current selection with the 
contents of the scrap; Copy duplicates the selection into the scrap 
without removing it from the document; and Undo negates the action of 
the immediately previous command. 

Selection commands and other editing functions appropriate to the 
current tool may also appear in the Edit menu, but the location and 
order of the first four items must not change. 

COMMANDS Espinosa-Hoffman 10/11/82 



52 User Interface Guidelines 

The File Menu 
Although the exact functionality and layout of the File menu has yet to 
be worked out, our current thinking has it resembling this: 

File 
Quit this tool 

Save this document 
Print this document 

Get another document 

"Save this document" saves the current document into a file; "Get 
another document" gets a new document from another file; and "Print 
this document" invokes the printing subsystem of the tool. 

"Save" and "Get" allow the user to use a limited subset of the Desk 
functions in selecting, creating, or naming the file associated with 
the document. 

The "Quit" command is in the Files menu to make sure that users see 
their opportunity to save their work before quitting. Conversely, in 
the process of saving their work, they see their opportunity to leave 
the tool. If the user chooses to Quit before saving the document, the 
tool should give a gentle yet firm reminder that quitting now will 
cause the loss of all that information, and request confirmation before 
actually quitting. 

Keyboard-Invoked Commands 
The editing paradigms described below allow a user to perform all basic 
object manipulation--adding, removing, replacing, and moving--using the 
keyboard to enter text, the mouse to select text, and the commands in 
the Edit menu to manipulate it. 

But this paradigm is likely to generate a lot of hand-waving--the 
user's hand must move from the keyboard to the mouse, and move the 
mouse from. the document to the menu bar. As ~ optimization to reduce 
hand motion, common commands available on the three standard menus may 
also be invoked from the keyboard, by using the COMMAND key in 
combination with another key. 

(hand) 
When the user holds down the COMMAND key on the keyboard 
and presses another key, that key is interpreted not as 
text entry, but as an invocation of a menu command. If 
the key does not correspond to any implemented command, 
the alert mechanism is invoked to beep at the first 
occurrence and give an alert message at any subsequent 
occurrences. 

When one of these command keys is pressed, the menu title of the menu 
containing the corresponding command highlights while the operation is 

COMMANDS Espinosa-Hoffman 10/11/82 



COMMANDS 53 

being performed, then reverts to normal. The menu itself does not pull 
down. 

The currently defined command keys are as follows: 

COMMAND Z Paste 

COMMAND X Cut 

COMMAND C Copy 

COMMAND V Undo 

COMMAND space Save this document and quit 

COMMAND / or? Help 

In all tools that have a Format or Typestyle menu to change the 
typestyle while entering text, the following command key aliases are 
supported: 

COMMAND Q Plain text 

COMMAND W Boldface 

COMMAND E Italic style 

COMMAND R Outline style 

COMMAND T Underlined 

COMMAND Y Shadowed 

The commands, just like their counterparts in the menus, are 
cumulative: pressing COMMAND E while Boldface is already in effect 
results in bold italic text. The Plain Text command undoes all other 
styles. 

The "OK" and "Cancel" buttons in dialog boxes (see below) also have 
command aliases: 

COMMAND Enter OK 

COMMAND ' or Cancel 

Several emergency commands can be invoked from the keyboard. Note that 
rebooting the system is not among them. 

COMMAND • Stop current operation 

COMMAND 1 Eject internal diskette 

COMMAND 2 Eject external diskette 

COMMANDS Espinosa-Hoffman 10/11/82 



54 User Interface Guidelines 

(hand) 
The command keys are aranged positionally, not 
mnemonically. The command keys retain their position 
(not their alphabetical characters) on foreign keyboards. 

What Commands Are and Aren't 

Commands, when invoked, operate immediately and return control to 
the user when completed. 

- Commands operate on something visible in the active window, or add 
or remove a window on the desk. 

Commands that manipulate user information always operate upon the 
active selection, never upon any nonselected data. 

Commands. are either verbs or verb phrases, never nouns with an 
implied verb. 

Most importantly, commands don't put the tool into an invisible 
modal state. 

EDITING Espinosa-Hoffman 10/11/82 



BASIC EDITING PARADIGMS 55 

BASIC EDITING PARADIGMS 

The Macintosh User Interface ToolBox contains a set of core editing 
routines that standardize the ways the user edits and manipulates text. 
As long as application programmers use this package properlYt every 
piece of editable text the user sees on the Macintosh screen can be 
edited using the same quick t consistent methods. The paradigm below 
supports: 

- Inserting t deleting t and replacing text; 

- Moving text from one place to another in the same document; 

- Carrying information between two similar or dissimilar documents. 

The core editing routines also handle font changes t typestyles t and 
paragraph formatting; these abilities are further discussed in the 
documentation of those routines. 

(hand) 
The following discusses only the operation of Cut t Paste t 
COPYt Undo t insertion, and replacement on text. The same 
procedures should operate in a conceptually parallel 
manner on non-text items t i.e., graphics t spreadsheet 
cells, etc. It is the responsibility of the designers 
and programmers to maintain consistency in the editing 
operations on non-text items. 

The Selection 
As described in the section on "Inside Documents"t there is always one 
and only one active selection in an active window that contains 
editable text. A selection takes one of two forms: 

1. A selection between two characters that encloses no text: this 
appears as a blinking vertical bar and is called an insertion 
point. 

2. A selection enclosing one or more characters of text. 

The editing commands Cut, Paste t Copy, and Undo, whether invoked from 
the Edit menu or by the COMMAND key on the keyboard, act upon the 
selection. Typed characters also affect the selection. 

The' Scrap 
The scrap goes hand in hand with the Edit menu. It is a very special 
kind of window with a well-defined function: it holds whatever is cut 
or copied from a document. It sticks around, its contents intact, when 
the user changes tools. 

Every time the user performs a Cut or Copy on the current selection, a 
copy of the text in the selection replaces the previous contents of the 

EDITING Espinosa-Hoffman 10/11/82 



56 User Interface Guidelines 

scrap. 

The user can't select the scrap or any information inside it. But the 
scrap window can be dragged around by its title bar, and can be 
enlarged or reduced by dragging its size box. In most ways the scrap 
behaves just like any other window. 

'B ~ "m _ pa'-/e

E: ment., th\n\dn' 

p ~ Scrap _ 
o Subtt?.rrani an HOJ1 

R 
!: 

.A jo'm pa'\I't?ifJenf, 

F thk.Url 

T 

E 
(In 1he 

R 

.' bout the gO'oJern

men\. Man_ 

~ , Scrap 
on the 

on the 

.1 bout the ~lovern. 

ment M'ID 'B 

~ren(.tICC'8t, t.adge 
ou1.1 says 

on the 

trenchcoat~ badge 

out~ says 

[j Scrap, 

'aid c.11 .• 

Figure 23. Use of the Scrap 

There is only one scrap, which is on the desk for all tools that 
support Cut and Paste (it's hidden during games and such). If the user 
doesn't want the scrap to interfere with other things on the screen, 
the scrap can be shrunk to its smallest size, dragged nearly off the . 
screen, or buried under other documents. Nothing changes the contents 
of the scrap except Cut, Copy, and Undo. 

As the contents of the scrap remain unchanged when applications begin 
and terminate, the scrap can be used for transferring data among 
mutually compatible applications (see "Cutting and Pasting between 
Tools", below). 

The Cut and Copy commands 
The Cut command removes the current selection from the active document 
and puts it in the scrap. The selection completely replaces the 
previous contents of the scrap. The selection in the document is 
reduced to an insertion point. 

If a Cut is attempted when the selection is an insertion point, Cut 
doesn't light up in the menu when chosen. This prevents people from 
accidentally cutting twice and losing the scrap. 

Perfoming a Copy command puts a copy of the current selection into the 
scrap, without changing the original selection in the active document. 
Just as with a Cut, every Copy completely replaces the previous 
contents of the scrap. Also like Cut, the Copy item won't light up if 

EDITING Espinosa-Hoffman 10/11/82 



BASIC EDITING PARADIGMS 57 

the selection is an insertion point. 

Paste 
The Paste command is the effective antonym of Cut: it replaces the 
current selection with the contents of the scrap. A Paste leaves the 
contents of the scrap unaltered; the selection is set to an insertion 
point at the end of the pasted text. With this, successive invocations 
of Paste replicate the contents of the scrap at the selected position 
in the document. 

(eye) 

Undo 

Notice that in a Paste over an existing selection, the 
contents of the selection do not go into the scrap; they 
can be recovered only by an immediate invocation of Undo. 

Finally, the Undo command is a one-level negation of the last command. 
It always applies to all Edit commands; additionally, any larger scope 
of Undo can be added by the application. If the previous operation was 
an Undo, it undoes that Undo. 

Inserting and Replacing Text 
New text can be entered from the keyboard or numeric keypad. Typing 
new text operates much like a Paste command. 

Typed text replaces the current selection. If the current selection is 
an insertion point, the typed characters appear at the insertion point 
and the insertion point moves past the characters. If the current 
selection includes text, the entire selection is automatically reduced 
to an insertion point, deleting the text; insertion then proceeds as 
described above. 

(hand) 
Notice that if a selection is replaced with an entry from 
the keyboard, the selection does not go into scrap. Its 
contents can be recovered only through an immediate 
invocation of Undo. 

Backspacing 
Regardless of circumstances and context, if the selection is an 
insertion point, pressing the BACKSPACE key deletes one character 
before the insertion point and moves the insertion point to the left of 
the position previously held by that character. This happens during 
editing as well as text entry. 

Pressing BACKSPACE while the selection contains characters operates 
much like a Cut, except that the deleted characters go into the 
backspace buffer (see below) rather than the scrap. The first 
BACKSPACE deletes the selected text, reducing the selection to an 
insertion point; subsequent presses of BACKSPACE operate as described 

EDITING Espinosa-Hoffman 10/11/82 



58 User Interface Guidelines 

above. 

Every press of BACKSPACE stores up the deleted characters in the 
backspace buffer. Invoking the Undo command reinserts all characters 
in this buffer back into the document at the insertion point. 
Performing any other operation, such as typing characters or invoking 
another command, clears this buffer; the deleted characters are then 
unrecoverable. 

Cutting and Pasting Between Documents 
Sometimes the user wants to transfer a portion of one document into 
another. The documents may have been created with the same tool, or 
with disparate tools. Macintosh allows this kind of manipulation 
through the mechanism of Cut/Copy and Paste. 

Between Two Documents with the Same Principal Tool 
Transferring information from one document to another created by the 
same application does not pose any difficulty. For example, the user 
may Copy the return address from 'Letter to Jef', Get 'Letter to Linda' 
and Paste in the contents of the scrap. 

When the user discards a tool and returns to the Desk, the scrap 
retains not only its contents, but the contextual information pertinent 
to the tool being used. If the user retrieves that same tool, it can 
interpret that information, so there is little or no loss of context 
when carrying something in the scrap from document to document. 

Between Documents with Different Principal Tools 
Macintosh provides a limited but adequate scheme for transferring 
information from a document of one type to a document of another type. 

Suppose the user wants to transfer a picture of a wolf (previously 
created using the Graphics Editor) into a Word Processor document named 
'Letter to Grandma'. Beginning at the Desk, the user gets the wolf 
picture, automatically entering the Graphics Editor. There the picture 
is selected and Cut or Copied into the scrap; then the user returns to 
the Desk. The picture remains in the scrap. 

Now the user calls up the letter to Grandma and enters the Word 
Processor. Upon selecting a position and attempting to Paste, the Word 
Processor examines the scrap and determines whether it is palatable. 
As Graphics Editor pictures are implemented with the QuickDraw picture 
structure, the Word Processor has no problem interpreting and 
displaying the picture, and graciously pastes it into the letter. 
However, in the letter the wolf and the rectangular area around it are 
selectable only as a single unit; the individual parts of the wolf are 
not editable. To the Word Processor the wolf is static data. 

Each tool may have its own appropriate level of interpretation of the 
scrap. If the user tries to Paste the scrap in a tool that does not 
understand it, the tool presents an alert message to inform the user of 

EDITING Espinosa-Hoffman 10/11/82 



BASIC EDITING PARADIGMS 59 

the undigestability of the scrap. 

BOXES Espinosa-Hoffman 10/11/82 



60 User Interface Guidelines 

SPECIAL CONDITIONS 

The <noun>+<verb> syntax is wonderful and clean when the operations are 
simple and act on only one object. But occasionally a command will 
require more than one object, or will need additional parameters in 
order to be most useful to the user. And sometimes a command won't be 
able to carry out its normal function, or will be be befuddled as to 
the user's real intent. For these special circumstances we have 
included two mechanisms: the Dialog Box to garner additional 
information, and the Alert mechanism to signal error or warning 
conditions. 

Dialog Boxes 
Commands in menus normally act upon only one or two objects: the 
current selection, the scrap, or a default object. If a command needs 
more information before it can be performed, it presents a Dialog Box 
to gather the additional information from the user. 

A Dialog Box is a rectangle that may contain text, buttons, dials, and 
icons. It is slightly below the menu bar, a bit narrower than the 
screen, and as tall as its contents require. It is clearly labelled 
with the name of the command whose invocation prompted the appearance 
of the box. 

PriD.t Ute Decu.m.en\ 

IT) copies 

o 8 ll2 II by 11" pa~-.e1' 

• 8 1 /2 II by 14 II paper 

o 14 II &y 1111 paper 

fig St(\P afttt pdn. tl1\% each ,~e 

Dc OK J 

DCCANCEL) 

Dc STOP) 

Dc PAUSE) 

Figure 24. A Dialog Box 

Some dialog boxes may affect several properties at the same time or 
show several choices of the same property. In such cases, the choices 
have check-boxes next to them. The boxes next to properties that are 
currently in force are checked. Clicking on a check box or the text 
accompanying it puts a check-mark in the box; this may also cause other 
boxes to become unchecked. 

BOXES Espinosa-Hoffman 10/11/82 



SPECIAL CONDITIONS 61 

If the information requested by the dialog box is textual, the user can 
enter and edit that text just like any other editable text. If the 
information has a default value (which it should have, if possible), 
the default text appears selected in the dialog box. If the user 
starts typing, the selected value will be replaced with what the user 
types. For boxes with many text items t the first one is selected when 
the box appears. After editing an item, 

- Pressing ENTER, TAB, or RETURN accepts the changes made to the 
item, and selects the next item in sequence. 

- Clicking in another item accepts the changes made to the previous 
item and selects the newly clicked item. 

There are, at the absolute minimum, two buttons in the Dialog Box--"OK" 
and "Cancel". "OK" enforces the modifications in the properties 
included in the Dialog Box, removes the Dialog Box from the screen, and 
performs the command originally issued. "Cancel" dismisses the 
Dialog Box without effecting any changes. 

The "OK" and "Cancel" buttons should always appear in the same relative 
orientation in the Dialog Box to preserve a consistent feel to the 
interaction. They should be near the title of the dialog box to remind 
the user of what command they will perform or cancel. They may be 
marked with reinforcing icons, e.g., thumbs-up and thumbs-down. 

A Dialog Box may include a "Stop" button, marked with an octagonal stop 
sign, for stopping operations that are in progress, such as printing. 

When a command requires some time to execute, its Dialog Box may 
contain a dial that indicates the level of completion of the task in 
progress. 

The Alert Mechanism 
Every user of every application is liable to do something that the 
application won't understand. From simple typographical errors to 
slips of the mouse to trying to write on a protected diskette, users 
will constantly do things an application can't cope with in a normal 
manner. The Alert mechanism gives applications a way to respond to 
errors not only in a consistent manner, but in steps according to the 
severity of the error, the user's level of expertise, and the 
particular history of the error. 

There are three levels of alerts: 

1. Note: Probably a minor slip that's signaled by an audible 
warning. 

2. Caution: A condition in which the application can't understand 
the user's input, and must request that the user change something. 

3. Stop: A situation that requires definitive action on the part of 
the user, such as inserting another diskette. 

BOXES Espinosa-Hoffman 10/11/82 



62 User Interface Guidelines 

These are ranked in ascending order of importance. Not only are 
program errors ranked in this manner, but repeating an error increases 
its importance: receiving the same Note alert several times, for 
example, turns it into a Caution, which warrants further explanation 
and assistance. 

Note alerts are signaled by a beep from the speaker; if the speaker 
volume is turned off, the beep is inaudible. Caution and Stop alerts 
warrant an alert box (see below). 

Alert Boxes 
Alert Boxes are similar in appearance to Dialog Boxes. Alert Boxes are 
intended to give the user warnings and error messages. Before 
describing Alert Boxes it is worth while mentioning a few words about 
alert messages in general. 

Alert Boxes are displayed to: 

- Clarify the system's response to users' actions, (e.g., "This text 
is not editable"), 

Lead the user through a series of actions required for the 
completion of certain tasks, (e.g. "Please insert a diskette to 
be copied to"), 

Inform of a state that might affect users' future activities ("The 
document is getting too long to hold in memory. You may want to 
break it up into pieces"), 

- Warn the user against doing something irrevocable or dangerous 
("You will lose the contents of this diskette if you proceed with 
initialization. Do you still want to initialize?"), giving an 
opportunity to cancel the command, and 

- Delay while a lengthy operation is being concluded. 

How to Phrase an Alert Message 
It is important to phrase messages in Alert Boxes so that users are not 
left guessing the real meaning. Do not use computer jargon. Sometimes 
it is difficult for the jaded to recognize jargon even as they use it. 
If you have any doubts of the lucidity of a message, try it on an 
unsuspecting naive friend. 

Use icons whenever possible. Graphics can better describe some error 
situations than words, and familiar icons help users distinguish their 
alternatives better. The thumbs-up icon should always lead to the 
safest route out of a situation. 

Generally, it is better to be polite than abrupt, even if it means 
lengthening the message. The role of the Alert Box is to be helpful 
and make constructive suggestions, not to give out orders. But its 
focus is to help the user solve the problem, not to give an interesting 

BOXES Espinosa-Hoffman 10/11/82 



SPECIAL CONDITIONS 63 

but academic description of the problem itself. 

Under no circumstances should an Alert message refer the user to 
external documentation for further clarification. It should provide a 
complete encapsulation of the information needed by the user to take 
appropriate action. 

(hand) 
The best way to make an Alert message understandable is 
to think carefully through the error condition itself. 
Can the application handle this without an error? Is the 
error specific enough so that the user can fix the 
situation? What are the recommended solutions? Can the 
exact item causing the error be displayed in the alert 
message? 

Be as specific as you can when signaling an error condition. 

Appearance of Alert Boxes 
An Alert Box is a rectangle just a little narrower than the screen and 
of variable height. It may contain text, icons~ dials and buttons. It 
appears in a slightly lower position from where Dialog Boxes appear~ to 
emphasize that the alert message is more important. 

CAUTIO.! 

D( OK ) 

o (CANCELJ 

Your documefl t is getting too large to fit on the 

d..i.skeu.f'... Save.i t. n (1\'/ hf'J'ore lU'oceeding. or fin Ii 
anotMr dlsket Ie. 

Figure 25. An Alert Box 

All Alert Boxes have a "Cancel" button that dismisses the box. 
Alert Boxes that require confirmation to perform an action have an 
additional "OK" button. Some Alert "Boxes may include a "Stop" button 
to allow the user to interrupt an ongoing operation. As in 
Dialog Boxes, the relative orientation of these buttons should remain 
the same from box to box. 

If there are a small but finite number of ways to solve the problem~ 
the box may contain descriptions of those ways~ each marked by 

BOXES Espinosa-Hoffman 10/11/82 



64 User Interface Guidelines 

check-boxes. The user checks the desired solution and presses the "OK" 
button. 

Alert Boxes that require immediate attention contain a stop sign in the 
upper-left corner of the box to emphasize the severity of the warning. 

Alert Boxes that inform the user about a process' status may display 
dials to indicate the level of completion of a task, much as in 
Dialog Boxes. 

FRIENDLY Hoffman 10/11/82 



APPENDIX A: THOU-SHALT-NOTS OF A FRIENDLY USER INTERFACE 65 

APPENDIX A: THOU-SHALT-NOTS OF A FRIENDLY USER INTERFACE 

Here are six things to avoid when designing a friendly user interface. 

1. Assigning more than one consequence to the same action. 

2. Giving the user several ways to perform the same function. 
Generally, it is much easier for users to learn a task when there 
is only one obvious way of accomplishing it. Too many 
alternatives in an unfamiliar environment may paralyze the user. 

3. Overloading an application with too many esoteric features. 
Before introducing another nifty feature, ask yourself how the 
feature will affect the overall complexity of the application, and 
how many users will benefit from the feature. 

(hand) 
Featurism is the single major contributor to system 
complexity and user intimidation. 

4. Changing the state of the world while the user is not looking. 
One way to make a user comfortable with a system is to create an 
environment that is predictable and consistent. For example, if 
the contents of a menu change from one invocation to another, the 
user comes to think that the machine has a mind of its own, and 
feels that control of it will always be elusive. 

5. Cluttering the screen. A cluttered and busy screen is frequently 
a symptom of an application design that is not carefully thought 
out. Reevaluating the reasons for different features (always 
keeping the end user in mind) will generally result in a simpler, 
more elegant program and visually more streamlined interface. 

6. Overenthusiastic use of modes. It is highly desirable, if not 
always possible, to allow the user to go from one activity to 
another without feeling trapped in a mode. For an eloquent 
discussion of modes, the reader is referred to "The Smalltalk 
Environment", an article by Larry Tesler in the August, 1981 issue 
of BYTE magazine. 

POINTERS Hoffman 10/11/82 



66 User Interface Guidelines 

APPENDIX B: POINTER SHAPES 

Certain pointer shapes have been standardized to imply that specific 
actions will occur when the mouse button is pushed. 

( I-beam) 
Text selection I 

(Hollow Cross) 
Selection in a structured document 

(Plus sign) 
Drawing graphics ~ 

(Hourglass) 
Long operation in progress (sometimes associated with a ~ 
dial in a dialog box) ~ 

(Arrow) 
All rema1TI1ng cases, including menus, desk top, graphics 
selection, button-pushing and dial-dragging, dead data, 
etc. 

HARDWARE Espinosa-Hoffman 10/11/82 



APPENDIX C: THE PHYSICAL BOX 67 

APPENDIX C: THE PHYSICAL BOX 

The following summarizes Macintosh's salient hardware features. 

Physical box: 

- A main unit with a built-in 9" CRT and a built-in minifloppy 
drive; 

- A detached keyboard; 

- A mouse. 

., .. _-----

... ---------, ...... 

~'------'~ 
~-------------~ 

Figure 26. Macintosh 

Memory capacity: 

- 131,072 bytes (128K) of user and program memory, 21,888 bytes (21 
3/8 K) of which are dedicated to the video display; 

- 65,536 bytes (64K) permament (ROM) storage; 

- 860,160 bytes (840K) storage on the built-in disk drive. 

Microprocessor: 

- Sixteen-bit Motorola MC68000 with eight 32-bit data registers, 
seven 32-bit address registers, and two stack pointers. 

- 56 instructions in 14 addressing modes; microprocessor runs at 8 
million cycles per second (8MHz). 

Display: 

HARDWARE Espinosa-Hoffman 10/11/82 



68 User Interface Guidelines 

- 512 dots wide, 342 dots tall, black and white dots on a square 
grid. Dots displayed at 80 dots per inch on a 9" screen. 

This is the only configuration of Macintosh. There are no other memory 
sizes, no different ROMs, no other video displays. The consistency of 
the Macintosh user interface is based on the consistency of the 
hardware: as every Macintosh ever sold is guaranteed to contain the 
above, every application program written for this configuration will 
run on 100% of the installed base. 

The only options available are: 

- A second 840K floppy disk drive; 

- An 18-key numeric keypad; 

- A dot-matrix or letter-quality printer; 

- Connection to a RS-232, RS-422, or network communication device. 

LAYOUTS Espinosa 10/11/82 



APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS 69 

APPENDIX D: KEYBOARD LAYOUTS AND CHARACTER ASSIGGNMENTS 

Here are the keyboard layouts and ASCII character assignments for the 
standard character sets in Macintosh: 

LAYOUTS Espinosa 10/11/82 



70 User Interface Guidelines 

LAYOUTS Espinosa 10/11/82 



APPENDIX D: KEYBOARD LAYOUTS AND aaARACTER ASSIGGNMENTS 71 

LAYOUTS Espinosa 10/11/82 



72 User Interface Guidelines 

APPENDIX E: GUIDE TO ICONS 
-----------------------------------------------------------------------------------

Here are the standard icons as used on our packing materials, on the 
back of the Macintosh itself, and appearing in Macintosh software: 

~ ~ ~ :''C:i~ 

--~ ~~ 

,~~ 
,- '" ~ -~ .~ 

@ ~.: 

~~~; 
~ .. t 

~ f-
or; 

!l!;: ~ 

~~ ~~ 
:>' ~ ~ 
ft~ ,.z; 

I 
I1j ~ '>Sl ~-l' >.., -

"fj~ ~ 

t.:.: 

~£ ~ •. 
"j 

g~ ~, . 
-!JI 

-i-:; ~ 
-1." . ;.~~;:-~~-.. - :'>~"1;lo.-'C';,:, .. 

~,: .~ 

--~ ~ 

ICONS Espinosa 10/11/82 



APPENDIX E: GUIDE TO ICONS 73 

'!z:. ~~-.3 .•• ";,,,,,,;~,,,:,; •• ~~:.'~~ 
~ ;, 

to 

~ .• 

ICONS Espinosa 10/11/82 



74 User Interface Guidelines 

APPENDIX F: UNRESOLVED ISSUES 

- What does the Close box do in the main document window for a tool? 
Does it put away the document, unload the tool, and return the 
user to the Desk? As Larry's tests show that users occasionally 
hit the Close box when intending to drag the title bar (or pull 
down a menu), is it proper for such a commonly-misused icon to 
perform such a time-consuming task? 

- When inactive windows in Lisa are dragged, they are brought to the 
top afterward. We don't do this. 

Do Show Scrap/Hide Scrap exist? Where? And is the scrap called 
the Clipping? 

- How do Macintosh command-key assignments differ from those on 
Lisa, and will we have a real Apple key rather than the word 
COMMAND? 

- Do Randy's Core Editing or Word Processor routines support 
backspace-by-word, or unbackspace? 

There's a clash between the use of the stop sign as a warning icon 
in Dialog and Alert Boxes and its use as an icon on the interrupt 
button in the same place. 

COMMAND-Click and SHIFT-click, and their conflict in the Craphics 
Editor, is unresolved. 

The 1/4"-grey-around-the-edges was dropped in this draft. It is 
superfluous, hard to code, and adds little to the illusion. 

GLOSSARY Espinosa 10/2/82 



TECHNICAL LEXICON 75 

TECHNICAL LEXICON 

These terms are defined here in their technical meaning and 
relationship to one another. Users will never encounter some of the 
terms mentioned here; neither will they read the descriptions as 
phrased here. For a users'-eye-view of Macintosh terminology, please 
see the glossaries in the Macintosh User Style Guide and in the 
Macintosh Introduction manual. 

Active Selection 

Active Window 

Alarm Clock 

Alert Box 

Alert Message 

Automatic Scrolling 

Back 

Behind 

Button 

GLOSSARY 

(Noun) See Selection, Active 

(Noun) See Window, Active 

(Noun) A desk accessory that displays the 
current date and time, as well as allowing the 
user to set an alarm date and time and an 
alarm message. 
Usage: Same as Desk Accessory 

(Noun) A window containing warnings and 
cautions, which appears when a tool encounters 
an unsolvable error or a dangerous situation. 
An alert box always contains two buttons, 
labeled OK and Cancel. 
See Also: Alert Message 
Usage: Present an A.B. 

(Noun) An audible or visible message or 
warning generated by the computer to signal 
input errors, problems interpreting data, or 
situations threatening the safety of the 
user's data. 
See Also: Alert box 

(Noun) See Scrolling, Automatic 

(Noun) The position or orientation of objects 
on the desk furthest from and least visible to 
the user; objects in front overlap and obscure 
objects in the back. 
See Also: Front Window Behind 
U8age:--Send to the b. In b. of another 

(Adverb) In the position or orientation 
towards the back. An object on the desk is 
behind all the objects that are in front of 
it. 

(Noun) A control that causes an action when 
clicked or pressed. Buttons highlight when 
pressed. 
Usage: Press Click 

Espinosa 10/2/82 



76 User Interface Guidelines 

Button, Mouse 

Calculator 

Cancel button 

Check Box 

Choose 

Click 

Close 

Close Box 

Closed 

Command 

GLOSSARY 

(Noun) See Mouse Button. 

(Noun) A desk accessory that emulates a 
four-function desk calculator. Calculation 
results can be cut and pasted between the 
calculator and the user's document. 
Usage: Same as Desk Accessory 

(Noun) A button that, when pressed, cancels a 
proposed action or action in progress. The 
cancel button is labeled "Cancel" and is 
marked with a thumbs-down icon. 
See Also: OK button 
Usage: Same as button 

(Noun) A control in the shape of a square box, 
which mayor may not have a check mark in it. 
Clicking in a check box toggles its state, and 
may affect the state of related check boxes. 
Usage: Check Click 

(Verb) To pick a menu item from a menu. 
Usage: Choose a command Choose a menu item 

(Verb) To position the pointer and briefly 
press and release the mouse button without 
moving the mouse. 
See Also: Drag Double-Click 
Usage: Click an object Click the mouse 

button 

(Verb) To remove the window from a docu~ent; 
you close a window to reduce it to an icon 
that represents the document. 
Usage: Close a window (never close a file) 

(Noun) The box on the left side of the title 
bar of a document window that, when clicked, 
closes the window. The close box contains an 
icon of a document that "winks" when ckicked. 
Usage: Click the close box 

(Adjective) The state of a window when the 
document it contains is not visible. 
Documents whose windows have been closed are 
represented by icons. 

(Noun) A word (usually appearing as a menu 
item) that describes an action that a 
Macintosh tool can perform; or the action 
itself. 
Usage: Choose a command from a menu The 

command takes effect 

Espinosa 10/2/82 



Control 

Control Panel 

Desk 

Desk Accessories 

Desktop 

Dial 

Dialog Box 

TECHNICAL LEXICON 77 

(Noun) An object on the screen that causes an 
action when clicked or dragged; buttons, 
dials, and scroll bars are the most common 
controls. 
Usage: Use only when necessary. 

(Noun) A desk accessory full of controls. 
With it, the user can change the speaker 
volume, the keyboard repeat speed and delay, 
system paranoia level, etc. 
Usage: Same as Desk Accessory 

(Noun) The tool that deals with coying, 
moving, creating, deleting, and changing the 
names of files. Also refers to the smaller 
version used within applications. 
Usage: On the desk (?) 

(Noun) Mini-tools generally available at all 
times. A pocket calculator, note pad, 
telegram form, alarm clock, and the control 
panel are the currently imagined desk 
accessories. 
Usage: Get a D.A. Use the D.A. 

(Noun) The metaphor for the Macintosh working 
environment. 
See Also: Desk 

(Noun) A control that acts as a pseudo-analog 
output and/or input device. 
See Also: Scroll Bar 
usage:--Adjust a dial 

(Noun) A window opened by a tool that requests 
the user for entry or confirmation of 
information. A dialog box is presented when a 
chosen command needs more information in order 
to take effect. 
See Also: Alert Box -----Usage: Present a d.b. Close the d.b. 

Discontiguous Selection (Noun) See Selection, Discontiguous 

Disk (Noun) Any kind of rotating magnetic storage 
device. 

Disk Drive 

GLOSSARY 

See Also: Diskette Disk Drive 
usage:--Save on a d. Get from a d. 

(Noun) The mechanism that stores and retrieves 
the information on a disk. 
See Also: Diskette 

Espinosa 10/2/82 



78 User Interface Guidelines 

Diskette 

Document 

Document Panel 

(Noun) A thin, plastic disk. 
See Also: Disk Drive 
usage:--Insert the d. Eject the d. On the d. 

(Noun) A collection of information 
intelligible to a user. 
See Also: File Window Tool -----Usage: Get a d. Save a d. Scroll a d. 

(Noun) The pane of a document window that 
presents the document itself, as opposed to 
status panes, formula panes, etc. 
See Also: Panel -----Usage: Avoid if possible. 

Document Window (Noun) A window that displays a document. 
Document windows usually come equipped with a 
title bar, one or two scroll bars, a size box, 
and a close box. 
Usage: Use only when "window" is ambiguous. 

Double-Click (Verb) To click the mouse button again shortly 
after a previous click. Double-clicking an 
object enhances or expands the action normally 
caused by singly clicking that object. 
Usage: D.C. an object D.C. the mouse button 

Drag (Verb) To press and hold the mouse button 
while moving the mouse. Dragging either 
selects items (when done inside the window) or 
drags a flickering outline of an object 
(outside the window). 
See Also: Click Select Choose Size Window ----- Split a Window 
Usage: D. an object D. the mouse D. out a 

rectangle D. across the text 

Enter (Verb) To insert or add information into the 
computer, usually by typing on the keyboard. 
Entries are usually terminated by a press of 
the ENTER key. 
Usage: E. the name 

Extend (the Selection) (Verb) To make the active selection larger by 
holding down the COMMAND key while making 
another selection. The two selections and all 
items in between become the new selection. 

File 

GLOSSARY 

See Also: Select Selection 
DSage:--Extend the Selection Make an extended 

selection 

(Noun) A storage container for information. 
See Also: Document Tool Window Resource ----- File 

Espinosa 10/2/82 



File 

File Name 

Font 

Front 

Highlight 

Icon 

Inactive Selection 

Inactive Window 

Insertion Point 

Invert 

GLOSSARY 

TECHNICAL LEXICON 79 

Usage: Delete a f. Copy a f. Move a f. 
Rename a f. 

(Verb) To put a document into a file, or get a 
document from a file. 

(Noun) The name attached to a file by its 
creator. 

(Noun) A set of characters of the same 
typeface and size. 
See Also: Typestyle 
Usage: Appears in the f. 

(Noun) The position or orientation of objects 
on the desk that are closest and most visible 
to the userj the active window is always in 
front of any other windows. 
See Also: Back Behind -----Usage: Bring to the f. In f. of others 

Frontmost 

(Verb) To emphasize something by making it 
visually distinct from its normal appearance; 
by inverting it, underlining it, making it 
blink, or appear in boldface, etc. 
See Also: Invert Select Front Window -----Usage: H. the text Title bar is highlighted 

(Noun) "1. An image; representation. 2. A 
similie or symbol." (AHD) A graphic 
representation of a material object, a 
concept, or a message. Icons may be objects 
on the desk. 
Usage: Click an i. Drag an i. Labeled with 

an i. 

(Noun) See Selection, Inactive 

(Noun) See Window, Inactive 

(Noun) A selection enclosing nothing; 
indicates the position between two items in a 
document, or an absolute position in that 
document. Indicates the point at which newly 
inserted items will be placed. 
See Also: Select 
UBage:--Make an I.P. At the I.P. 

(Verb) To invert the black-and-white polarity 
of an image; inverting is the most common form 
of highlighting. 
Usage: Inversely highlighted 

Espinosa 10/2/82 



80 User Interface Guidelines 

Item (Noun) A single piece of information in a 
document. Each character in a text, each 
shape or line in a picture, and each cell in a 
spreadsheet is an item. 

Key 

Keyboard 

Menu 

Menu Bar 

Menu Item 

Menu Title 

Mouse 

Mouse Button 

GLOSSARY 

See Also: Select Drag Extend (the 
Selection) 

Usage: Between two items Click an i. Drag 
over items 

(Noun) A button on the keyboard. Character 
keys are typed; modifier keys are held; 
special keys are pressed. 
Usage: Press a k. Hold down a k. 

(Noun) The device used for entering text and 
numeric data. The keyboard has 48 character 
keys, 6 modifier keys, and 4 special keys. 
See Also: Press Type Hold 
~e:--Type Qn the k. 

(NOun) A rectangular list of menu items, which 
is pulled down from the menu bar; the user 
chooses a menu item by pre~sing on a menu 
title, dragging through the menu, and 
releasing on a menu item. 
See Also: Command 
UBage:--Choose from a m. Pull down a m. 

(Noun) The horizontal strip at the top of the 
screen that contains the menu titles. 

(Noun) One item in a menu. A menu item may 
contain words, an icon, or both. Menu items 
usually describe commands. A menu item is 
highlighted when the pointer is over it. 
See Also: Choose 
~e:--Choose a m.i. 

(Noun) A word or phrase in the menu bar that 
designates one menu. Pressing on the menu 
title pulls down ite menu; dragging through 
the menu highlights menu items. 
Usage: Press on the m.t. 

(Noun) A small device the size of a deck of 
cards that rolls around on your desk. Moving 
the mouse causes corresponding motion of the 
pointer on the screen. 
See Also: Mouse button Drag 
Usage: Move the m. Drag the m. 

(Noun) A rectangular button on the top of the 
mouse. Pressing the button initiates some 
action at the position of the pointer; 

Espinosa 10/2/82 



Note Pad 

Numeric Keypad 

Object 

OK button 

Open (a Window) 

Pane 

Panel 

Pointer 

GLOSSARY 

TECHNICAL LEXICON 81 

releasing the button confirms the action. 
See Also: Click Double-click Drag 
Usage: Press the m.b. Release the m.b. 

Click the m.b. 

(Noun) A desk accessory that works as a mini 
word processor t allowing the user to enter and 
edit small amounts of text while working on 
another document. 
Usage: Same as Desk Accessory 

(Noun) An auxilliary keyboard containing keys 
for digits and arithmetic operators t used for 
numeric input. The numeric keypad contains 
sixteen character keys and two special keys. 
See Also: Press Type 
Usage: Same as Keyboard 

(Noun) Anything distinguishable image on the 
desk. Windows t the menu bart and icons are 
objects. 
See Also: Drag Click Front 
usage:--Click an o. Drag an o. Select an o. 

(Noun) A button that t when pressed t confirms a 
proposed action. The OK button is labeled 
"OK" and is marked with a thumbs-up icon. 
See Also: Cancel button 
Usage: Same as button 

(Verb) To create a window onto a document in 
order to view the information. 
See Also: Close Closed -----Usage: Open a window 

(Noun) A portion of a window with a different 
function or purpose than other panes of the 
same window. The tool defines the panes in 
the window it presents. 
See Also: Panel -----Usage: One pane of the window 

(Noun) A user-definable subdivision of a pane. 
The user creates panels in the document pane 
by using a split bar. 
See Also: Splitting a Window 
Usage: One panel of the window 

(Noun) A small object t usually a 
north-northwest arrow t that hovers above all 
other objects on the screen. It moves around 
as you move the mouse around. 
See Also: Click Drag Press 
usage:--Position the p. by moving the mouse 

Espinosa 10/2/82 



82 User Interface Guidelines 

Press 

Principal Tool 

Release 

Resource File 

Scroll 

Scroll Arrow 

Scroll Bar 

Scrolling, Automatic 

Select 

GLOSSARY 

(Verb) 1. To depress the mouse button. 
depress a special key on the keyboard. 
position the pointer with the mouse and 
depress and hold the mouse button. 
See Also: Click Drag Key Release 
Usage: P. the RETURN key P. the mouse 

P. on a menu title 

(Noun) See Tool, Principal. 

2. To 
3. To 

button 

(Verb) To cease pressing. Releasing the mouse 
button quickly, without moving the mouse, 
results in a click. 
See Also: Drag Double-Click 
UBage:--R. the mouse button 

(Noun) A file containing information relevant 
to or necessary for the operation of the 
Macintosh or an individual tool. 
Usage: Same as file 

(Verb) To move a document so that a different 
part of it is visible in the window. 
See Also: Scroll Bar Scrolling 
Usage: S. the document 

(Noun) A button at either end of a scroll bar, 
with a picture of an arrow on it. Pressing a 
scroll arrow scrolls the document in its 
direction, and moves the thumb closer to the 
arrow. 
See Also: Scroll 
usage:--Same as button 

(Noun) A rectangular bar 
bottom edge of a window. 
dragging in various parts 
moves the document in the 
the thumb accordingly. 
See Also: Scroll Arrow -----Usage: Use the s.b. 

along the right or 
Clicking and 
of the scroll bar 
window, and moves 

Shaft Thumb 

(Noun) The process of scrolling while making a 
selection. 
See Also: Scroll 

(Verb) To click or drag in a collection of 
items or objects, in order to designate them 
to be acted upon by a subsequent command. 
See Also: Selection Insertion Point Extend ----- the Selection 
Usage: S. the text S. a file 

Espinosa 10/2/82 



TECHNICAL LEXICON 83 

Selection (Noun) A collection of text or objects 
designated to be acted upon by a subsequent 
command. The selection appears highlighted in 
the document. 
See Also: Select Highlight Active/Inactive 

Selection Insertion Point 
Usage: Edit the s. Make a s. 

Selection, Active (Noun) The selection that will be influenced 
by the next command. The active selection is 
always highlighted. 
See Also: Selection, Inactive 
'ifs"age:-Use "selection" unless ambiguous. 

Selection, Discontiguous (Noun) A selection whose items are not 
contiguous: that have other, nonselected 
items between two selected items. A 
discontiguous selection is made with the 
assistance of the SHIFT key. 

Selection, Inactive 

Shaft 

Size 

Size box 

Split a Window 

Split bar 

GLOSSARY 

See Also: Selection Extending the Selection 
'ifs"age:-Make a d.s. 

(Noun) A selection in an inactive window, or 
in a pane of the active window other than the 
pane containing the active selection. 
See Also: Selection, Active 
Usage: Refer to this only when necessary. 

(Noun) The long, thin gray area of the scroll 
bar in which the thumb appears. Clicking in 
the shaft to either side of the thumb moves 
the document one page. 
See Also: Thumb -----Usage: Click in the s. 

(Verb) To change the size of a window by 
dragging its size box. 
Usage: Size a window 

(Noun) A rectangle in the bottom right corner 
of a window containing an icon. Dragging this 
box allows the user to alter the size of the 
window by repositioning its bottom right 
corner. 
See Also: Size -----Usage: Drag the s.b. 

(Verb) To drag a split bar in order to divide 
a window into two panels. 
Usage: Split the Window 

(Noun) A small black bar at one end of a 
scroll bar. Dragging a split bar into the 
window causes the window to be split into two 

Espinosa 10/2/82 



84 User Interface Guidelines 

Telegram Form 

Thumb 

Thumb 

Title Bar 

Tool 

Tool, Principal 

Type 

Typeface 

GLOSSARY 

panels at the point where the mouse button was 
released. 
See Also: Split a Window 
UBage:--Same as object 

(Noun) A desk accessory that allows the user 
to send or receive messages over the AppleNet 
network. 
Usage: Same as Desk Accessory 

(Noun) The indicator of a scroll bar. The 
position of the thumb within the shaft 
represents the position of the window over the 
length (or breadth) of the document. 
See Also: Thumb (verb) 
UBage:--Drag the t. 

(Verb) To move to a different part of the 
document by dragging the thumb, clicking or 
pressing the scroll arrows, or clicking or 
pressing in the shaft. 
See Also: Scroll -----Usage: T. through the document 

(Noun) The horizontal bar at the top of a 
document window. It contains the name of the 
file from which the document in that window 
was taken. On the left side of the title bar 
is the close box. 
Usage: Same as object 

(Noun) A manipulator of information, otherwise 
known as an Application Program. 
See Also: Document File Resource File ----- Tool, Principal 
Usage: Get a t. Use a t. 

(Noun) The tool most strongly associated with 
a given document. 

(Verb) To press and release one or more 
character keys on the keyboard or numeric 
keypad. The user types information on the 
keyboard. 
Usage: Type the following Type on the 

keybaord 

(Noun) A collection of letters, digits, 
punctuation marks, and other typographical 
symbols with a coherent "look" and consistent 
design. 
See Also: Typestyle Font 
Usage: Of a t. 

Espinosa 10/2/82 



Typestyle 

Window 

Window, Active 

Window, Inactive 

GLOSSARY 

TECHNICAL LEXICON 85 

(Noun) A stylistic variation that can be 
applied to any typeface; examples are 
boldface, italic, underlined, shadowed, and 
outlined. 
See Also: Font Highlight 
Usage: In a t. 

(Noun) A presenter of information. A window 
is an object on the desk. 
See Also: Document Window Tool -----Usage: Open a w. Close a w. Size a w. Drag 

a w. Bring the w. to the front 

(Noun) The frontmost window, which will 
receive commands and data entered. 
See Also: Window, Inactive 
"i.JSage:-Use "window" unless ambiguous. 

(Noun) Any visible window other than the 
active window. 
See Also: Window -----Usage: Refer to this only when necessary. 

Espinosa 10/2/82 



MSGtI:B41194 
INtt: 111 
TO: MAC 

FROM: SUPT MAC 
SENT: 30 NOV 83 16:17:25 
READ: 05 DEC 83 09:59:19 

FILE MENU AND FILING COMMANDS 

The File menus should read: 

Application Finder 

New 
Open ••• 
Close 
Save 

Open 
Dupl tcate 
Get Info 
Put Back 

Save As ••. 
Rever t to Saved 
Page Setup •.• 
Print •.. 

Close 
Close All 
Print 

< your items here) 
Gu it Eject 

New .•• 

Open ••• 

Save: 

in a one-document appl ication, is disabled while a document is open. 
When chosen, opens a new document wind4»l with the title ·Untitled". 
Get the word ·Untitled R from the System Resource file. 

brings up the GetFile dialog showing the contents of the disk <default 
to first on-line volume in the volume queue, usually the boot volume). 
User can use the Dr i ve and Ej ec t bu t tons to sw itch d i'sks or dr i ves. 
The disk directory shows only documents that the current application 
can open (the appl ication passes a type mask, or can install itself in 
a filterProc to select which n~es to display). The user can select 
one and only one document from the 1 ist. Pressing ·Open" attempts to 
load that document (the GetFile dialog will check to see that it~s 

there, readable, the right kind, etc.) If your appl ication has 
trouble loading the selected file, it should alert the user and cancel 
the command. It should not automatically return to the GetFile 
dialog. 

Place the name of the opened fite in the title bar of the document 
window. Record the volume number and version byte to be used in 
saving the document. 

Open: is disabled if no more documents can be opened at the moment. 
The user must manually close an (or the) open document before opening 
a new one. 

attempts to save the current document with the same n~e, volume 
number, and version number as given when it was opened. If the 
document name is ·Untitled n

, Save drops into Save As. 



Save As ••• call,s the PutFile dialog, prompting ·Save document as: n with the 
current name as the default (unless the current name is ·Untitled·, in 
which case the default is a null string). The default volume is the 
first on-l ine volume in the volume queue (usually the boot volume), 
not the volume the file came from (because it may be off-l ine). When 
the user c1 icks Save, PutFile verifies that the file is writable, and 
does overwrite warnings. If you get an error while writing, or the 
disk is full, etc., loop back to the PutFile dialog until a save is 
successful, or cancelled. 

Close: 

Once the file is written, change the document"s name in the title bar 
to that of the file written. Remember the volume number and version 
byte for the next Save command. 

If the frontmost window is a desk accessory, a modeless dialog, or an 
accessory window, Close closes that window. If the frontmost window 
is a document window, Close does an impl icit Save before closing the 
window. Most applications should be able to function without an open 
document window (so the user can open another document; use desk 
accessories, etc. without leaving the appl ication); those that can~t 
should either force an Open or Quit after closing the document window. 

Page Setup: brings up the first printing dialog, with document-specific 
information that should be saved on disk with the documents. This 
includes page size and orientation, and any other information desir'ed 
by the appl tcation. 

Print •.• brings up the printing dialog for the configured printer. Settings 
stick to the printer. See Owen for details of implementation. 

Revert to Saved: confirms that the user really wants to revert to the saved 
copy. If OK, it then confirms that the old coPY exists and is OK 
before dumping the current document and loading the old copy. The 
name remains the same. 

Qu it ••• confirms that the user really wants to Quit. If OK, then does an 
impl icit Close (and Save, if dirty) of all open documents, followed by 
clOSing all other windows. It then returns to the Finder. 

An impl icit Save begins with checking to see if the document is dirty; 
the Save is skipped if it isn't. If the document is dirty, the user 
is asked to confirm whether to save it or not. Pressing Don/t Save 
skips the save; pressing OK drops into the Save code. 

OTHER FILING ISSUES 

Changing Volumes: A Drive buttor. on the GetFile and PutFile dialogs allows the 
user to cycle through the mounted volumes, showing the disk names 
(and, in Get, the contents). Any resulting filename is prefixed with 
the volume name (unless the user typed one in). This does not set the 
working volume. Drive does not appear on one-drive systems, and is 
disabled on two-drive systems with only one volume on-line. 



Ejecting Disks: An Eject button on the GetFile and PutFile dialogs allows the 
user to eject the current volume. In the GetFile dialog, Eject cycles 
to the next volume, if any; if there's no next volume, the volume n~e 
and directory go blank and remain blank until another disk is 
inserted. 

Remounting Disks: When your appl ication gets a Disk Remount event (event bit 7) 
with an I/O error code, trap to package 3, which will allow the user 
to initialize the disk, or eject it if it's a mistake. NOTE that you 
should do this on every remount event with an I/O error, even during 
modey dialogs; be sure to check for remount errors in your modey 
dialog filterProcs. 

Save: is an optimization of Save As to reduce button clicks, and also to 
work around the volume name ambiguity in saving to an off-line disk. 
Although we strongly recommend you support it, it is optional. 

Revert to Saved: is an optimization for a "global Undo·; the user can just do a 
close and open. We recommend it for its clarity and speed, but it is 
optional. 

To: All Developers 
From: Cary Clark Re: Above Note 

Hard COpy of the above information will be included in the next mailing. 

Let me know if the info is sufficiently clear. 

END/CRC 



MACINTOSH USER EDUCATION 

INSIDE MACINTOSH: A ROAD t-1AP /ROAD.MAP/ROAD 

See Also: Pascal Reference Manual for the Lisa 
Macintosh User Interface Guidelines 
Macintosh Operating System Reference Manual 
The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
Macintosh Control Manager Programmer's Guide 
The Menu Manager: A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
TextEdit: A Programmer's Guide 
CoreEdit: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
The Scrap Manager: A Programer's Guide 
The Toolbox Utilities: A Programmer's Guide 
The Memory Manager: A Programmer's Guide 
The Segment Loader: A Programmer's Guide 
Putting Together a Macintosh Application 
Index to Technical Documentation 

Modification History: First Draft (ROM 4.4) 
Second Draft (ROM 7) 

C. Rose 
C. Rose 

8/8/83 
12/22/83 

ABSTRACT 

This manual introduces you to the "inside" of Macintosh: the Operating 
System and other routines that your Macintosh application program will 
call. It will help you figure out which software you need to learn more 
about and how to proceed with the rest of the technical documentation. 

Summary of significant changes and additions since last version: 

- The Toolbox overview has been rewritten, and the Operating System 
overview has been added. 

- "About Using Assembly Language" has been removed; it will be 
replaced by other documentation. 

- "Where to Go From Here" has been updated. 



2 Inside Macintosh Road Map 

TABLE OF CONTENTS 

3 About This Manual 
3 General Overview 
5 About the User Interface Toolbox 
7 About the Operating System 
9 Where to Go From Here 
11 Glossary 

Copyright (c) 1983 Apple Computer, Inc. All rights reserved. 
Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual introduces you to the "inside" of Macintosh: the Operating 
System, the User Interface Toolbox, and other routines that your 
application program may call. It will help you figure out which 
software you need to learn more about and how to proceed with the rest 
of the technical documentation. *** Eventually it will be an 
introductory chapter in a comprehensive manual that describes 
everything in detail. *** 

You should already be familiar with the Macintosh User Interface 
Guidelines. All Macintosh programmers should follow these guidelines 
to ensure that the end user is presented with a consistent interface. 
It would also be helpful for you to be familiar with an existing 
Macintosh application. 

This manual begins with a general overview of the software your 
application program will use, followed by individual overviews of the 
User Interface Toolbox and the Operating System. Following these 
overviews is a section that tells you how to proceed with reading the 
rest of the Toolbox and Operating System documentation. Finally, 
there's a glossary of terms used in this manual. 

GENERAL OVERVIEW 

The routines available for use in Macintosh application programs are 
divided into functional units, many of which are called "managers" of 
the application feature that they support. As shown in Figure 1 on the 
following page, most units are part of either the Operating System or 
the User Interface Toolbox and are in the Macintosh ROM. 

The Operating System is at the lowest level; it does basic tasks such 
as interrupt handling, memory management, and I/O. The User Interface 
Toolbox is a level above the Operating System; it exists to help you 
implement the standard Macintosh user interface in your application. 
The Toolbox calls the Operating System when necessary to do low-level 
operations, and you'll also call the Operating System directly 
yourself. 

Other software is available for performing specialized operations that 
aren't integral to the user interface but may be useful to some 
applications. This includes routines for doing printing and 
floating-point arithmetic. Such software isn't located in the 
Macintosh ROM, nor are certain special-purpose Toolbox units (such as 
CoreEdit, for doing sophisticated text editing). The entire Operating 
System and all the commonly used Toolbox units are in ROM. 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2 



4 Inside Macintosh Road Map 

[ A MACINTOSH APPLICATION PROGRAM J 

THE USER INTERFACE TOOLBOX 

The Resource Manager 
QuickDrsw 
The Font Manager 
The Toolbox Event Manager 
The Window Manager 
The Control Manager 
The Menu Manager 
TextEdit 
CoreEdit (not in ROM) 
The Dialog Manager 
The Desk Manager 
The Scrap Manager 
The Toolbox Util ities 
The System Error Handler 
The Pactage Manager 

THE OPERATING SYSTEM 

The Memory Manager 
The Segment Loader 
The OS Event Manager 
The Keyboard/Mouse Handler 
The File Manager 
The Device Manager 
The Disk Driver 
The Sound Driver 
The Serial Driver 
The Vertical Retrace Manager 
The OS Core (Trep Dispatcher" 

interrupt handlers.. etc.) 
The OS Utilities 

I 

OTHER HIGH-LEVEL SOFTWARE 
(not in ROM) 

Printing 
Floating-Point Arithmetic Package 
Transcendental Functions Package 
Standard Fi Ie Pactage 
I nternat i onal ut iii ties Package 

OTHER LOW-LEVEL SOFTWARE 
(not in ROM) 

Dist Formatt ing Pactage 

I THE MACINTOSH HARDWARE j 

Figure 1. Overview 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2 



GENERAL OVERVIEW 5 

Macintosh applications can be written most easily in Pascal, since all 
units have a Pascal interface *** or will eventually ***. For greater 
efficiency, however, you may want to use assembly language or a 
combination of Pascal and assembly language. *** Currently you must 
develop your application on a Lisa computer and convert it to a 
Macintosh disk before trying it out. Eventually development will be 
possible on the Macintosh itself. *** 

ABOUT THE USER INTERFACE TOOLBOX 

The Macintosh User Interface Toolbox provides a simple means of 
constructing application programs that conform to the Macintosh User 
Interface Guidelines. By offering a common set of routines that every 
application calls to implement the user interface, the Toolbox not only 
ensures consistency but also helps reduce the application's code size 
and development time. At the same time, it allows a great deal of 
flexibility: an application can use its own code instead of a Toolbox 
call wherever appropriate, and can define its own types of windows, 
menus, controls, and desk accessories. 

Figure 2 shows the Toolbox units in rough order of their level, from 
the lowest level at the bottom to the highest level at the top. There 
are many interconnections between these units; the lower-level ones are 
in many cases called by those at the higher levels. 

___ D_e_S_k_M_a_n_a_g_e_r __ IIL.. __ s_c_·r_a.;...p_M_a_n_a~g_er_~ 

Dialog Manager 

Toolbox Utilities 

'---__ Q_u_i_ck_D_ra_w __ .... IITOOlbOX Event Manager I 
Font Manager 

Resource Manager 

Figure 2. Toolbox Units 

(To be added: 
System Error Handler 
and Pac:kag e Manager) 

To keep the data of an application separate from its code, making the 
data easier to modify and easier to share among applications, the 
Toolbox includes the Resource Manager. The Resource Manager lets you, 
for example, store menus separately from your code so that they can be 
edited or translated without requiring recompilation of the code. It 
also allows you to get standard data, such as the wristwatch graphic 
that means "wait", from a shared system file. When you call other 
Toolbox units that need access to the data, they call the Resource 
Manager. Although most applications never need to call the Resource 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2 



6 Inside Macintosh Road Map 

Manager directly, an understanding of the concepts behind it is 
essential. 

Graphics are an important part of every Macintosh application. All 
graphic operations on the Macintosh are performed by the QuickDraw 
unit. To draw something on the screen, you'll often call one of the 
other Toolbox units, but that unit will in turn call QuickDraw. You'll 
also call QuickDraw directly, usually to draw inside a window. 
QuickDraw's underlying concepts, like those of the Resource Manager, 
are important for you to understand. 

Graphics include text as well as pictures. To draw text, QuickDraw 
calls the Font Manager, which does the background work necessary to 
make a variety of character fonts available in various sizes and 
styles. Unless an application includes a font menu, it usually need 
not be concerned with the Font Manager. 

An application decides what to do from moment to moment by exam~n~ng 
input from the user, in the form of mouse and keyboard actions. It 
learns of such actions by repeatedly calling the Toolbox Event Manager 
(which in turn calls another, lower-level Event Manager in the 
Operating System). The Toolbox Event Manager also reports occurrences 
within the application that may require a response, such as when a 
window that was overlapped becomes exposed and needs to be redrawn. 

All information presented by a standard Macintosh application appears 
in windows. To create windows, activate them, move them, resize them, 
or close them, you'll call the Window Manager. It keeps track of 
overlapping windows, so you can manipulate windows without concern for 
how they overlap. The Window Manager, for example, tells the Toolbox 
Event Manager when to inform your application that a window has to be 
redrawn. Also, when the user presses the mouse button, you call the 
Window Manager to learn which part of which window it was pressed in, 
if any, or whether it was pressed in the menu bar or a desk accessory. 

Any window may contain controls, such as buttons, check boxes, and 
scroll bars. You create and manipulate controls with the Control 
Manager. When you learn from the Window Manager that the user pressed 
the mouse button inside a window containing controls, you call the 
Control Manager to find out which control it was pressed in, if any. 

A common place for the user to press the mouse button is, of course, in 
the menu bar. You set up menus in the menu bar by calling the Menu 
Manager. When the user gives a command, either from a menu with the 
mouse or from the keyboard with the Command key, you call the Menu 
Manager to find out which command was given. 

To accept text typed by the user and allow the standard editing 
capabilities, such as cutting and pasting within a document via the 
Clipboard, your application can call either TextEdit or CoreEdit. 
TextEdit is especially easy to use but doesn't support advanced editing 
and formatting features such as fully justified text, tabbing, or 
recognition of word boundaries during cutting and pasting; for these, 
you'll have to use CoreEdit. Bear in mind, however, that CoreEdit is 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP /ROAD. 2 



ABOUT THE USER INTERFACE TOOLBOX 7 

not in the Macintosh ROM; instead, it occupies over 6K of your 
application's available memory. 

When an application needs more information from the user about a 
command, it presents a dialog box. In case of errors or potentially 
dangerous situations, it gives the user an alert, in the form of an 
alert box or sound from the Macintosh's speaker (or both). To create 
and present dialogs and alerts, and find out the user's responses to 
them, you call the Dialog Manager. 

Every Macintosh application should support the use of desk accessories. 
The user opens desk accessories through the Apple menu, which you set 
up by calling the Menu Manager. When you learn that the user has 
pressed the mouse button in a desk accessory, you pass that information 
on to the accessory by calling the Desk Manager. The Desk Manager also 
includes routines that you must call to ensure that desk accessories 
behave properly. 

As mentioned above, you can use TextEdit or CoreEdit to implement the 
standard text editing capability of cutting and pasting via the 
Clipboard in your application. However, to extend the use of the 
Clipboard to allow cutting and pasting between your application and 
another application or a desk accessory, you need to call the Scrap 
Manager. 

Finally, some generally useful operations such as fixed-point 
arithmetic, string manipulation, and logical operations on bits may be 
performed with the Toolbox Utilities. 

*** To be added: System Error Handler, Package Manager, and other 
high-level software *** 

ABOUT THE OPERATING SYSTEM 

The Macintosh Operating System provides the low-level support that 
applications need in order to use the Macintosh hardware. As the 
Toolbox is your program's interface to the user, the Operating System 
is its interface to the Macintosh. 

The Memory Manager dynamically allocates and releases memory for use by 
applications and by the other parts of the Operating System. Most of 
the memory that your program uses is in an area called the heap; the 
code of the program itself occupies space in the heap. Memory space in 
the heap must be obtained from the Memory Manager. 

The Segment Loader is the part of the Operating System that loads the 
program code into memory to be executed. Your program can be loaded 
all at once as a single unit, or you can divide it up into dynamically 
loaded segments to economize on memory usage. 

Low-level, hardware-related events such as mouse-button presses and 
keystrokes are reported by the Operating System Event Manager. (The 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2 



8 Inside Macintosh Road Map 

Toolbox Event Manager then passes them along to the application, along 
with higher-level, software-generated events added at the Toolbox 
level.) The Operating System Event Manager learns of mouse and 
keyboard actions in particular from the Keyboard/Mouse Handler. Your 
program will ordinarily deal only with the Toolbox Event Manager and 
rarely call the Operating System Event Manager or the Keyboard/Mouse 
Handler directly. 

File I/O is supported by the File Manager, and device I/O by the Device 
Manager. The task of making the various types of devices present the 
same interface to the application is performed by specialized device 
drivers. The Operating System includes three built-in drivers: 

- The Disk Driver controls data storage and retrieval on 400K-byte 
3 1/2-inch disks. 

The Sound Driver controls sound generation, including music 
composed of four simultaneous tones. 

- The Serial Driver reads and writes asynchronous data through the 
two serial ports, providing communication between applications and 
serial peripheral devices such as a modem or printer. 

Other drivers can be added independently or built on the existing 
drivers. For example, a printer driver can be built on the Serial 
Driver or a music driver built on the Sound Driver. 

The Macintosh video circuitry generates a vertical retrace interrupt 
(also known as the vertical blanking or VBL interrupt) sixty times a 
second while the beam of the display tube returns from the bottom of 
the screen to the top to display the next frame. The system uses this 
interrupt as a convenient time to perform recurrent tasks such as 
checking the state of the mouse button. An application can also 
schedule routines to be executed at regular intervals based on this 
"heartbeat" of the system. The Vertical Retrace Manager handles the 
scheduling and execution of tasks during the vertical retrace 
interrupt. 

At the very lowest level is the Operating System Core, which does the 
actual interrupt handling, initialization, and other important 
background work necessary to keep the Macintosh functioning. Via the 
Trap Dispatcher, it provides the connection between your request for a 
Toolbox or Operating System service and the physical code that performs 
that service. 

Finally, there are miscellaneous Operating System Utilities for doing 
such things as setting the date and time or finding out the user's 
preferred speaker volume. 

*** To be added: other low-level software (Disk Formatting Package) 

*** 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2 



WHERE TO GO FROM HERE 9 

WHERE TO GO FROM HERE 

*** This section will be considerably rewritten for the final 
comprehensive manual. *** 
The technical documentation will eventually be ordered in such a way 
that you can follow it if you read it sequentially. The proposed order 
for the documentation that's already written is given below. Before 
you begin, you should be familiar with Lisa Pascal, as described in the 
Pascal Reference Manual for the Lisa. You should also know a little 
bit about the Macintosh'~emory management--heaps, handles, and the 
like. For now you can read about these in the Memory Manager manual, 
from "About the Memory Manager" through "Utility Data Types"; 
eventually there will be a separate overview of memory management. 

(hand) 

(hand) 

The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
Macintosh Control Manager Programmer's Guide 
The Menu Manager: A Programmer's Guide 
TextEdit: A Programmer's Guide 
CoreEdit: A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
The Scrap Manager: A Programmer's Guide 
The Toolbox Utilities: A Programmer's Guide 
The Memory Manager: A Programmer's Guide 
Macintosh Operating System Reference Manual 
The Segment Loader: A Programmer's Guide 
Putting Together a Macintosh Application 

The Macintosh Operating System Reference Manual is very 
out-of-date, incomplete, and in a different format from 
the other manuals. It will eventually be completely 
replaced by up-to-date documentation in the usual format. 

Anything not listed above hasn't been documented yet by 
Macintosh User Education, although programmer's notes or 
other preliminary documentation may be available. Check 
with Macintosh Technical Support. 

The individual manuals identify any special-purpose information that 
can possibly be skipped. Most likely you won't need to read everything 
in each manual and can even skip entire manuals. You should at least 
read the manuals on the Toolbox units that deal with the fundamental 
aspects of the user interface: the Resource Manager, QuickDraw, the 
Toolbox Event Manager, the Window Manager, and the Menu Manager. Read 
the other manuals if you're interested in what they discuss, which you 
should be able to tell from the above overviews and from the 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2 



10 Inside Macintosh Road Map 

introductions to the manuals themselves. Each manual's introduction 
will also tell you what you should already know before reading that 
manual. 

The documentation is oriented toward Pascal programmers. If you want 
to program in assembly language, read the "Using QuickDraw from 
Assembly Language" section of the QuickDraw manual. (Eventually that 
section will be removed and there will be a separate, more detailed 
discussion of using assembly language.) There are also notes for 
assembly-language programmers throughout every manual. 

Read the manual "Putting Together a Macintosh Application" when you're 
ready to try something out. Currently the documentation doesn't 
include any sample programs, but you can get some through Macintosh 
Technical Support in the meantime. 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.2 



GLOSSARY 11 

GLOSSARY 

Control Manager: A Toolbox unit that provides routines for creating 
and manipulating controls (such as buttons, check boxes, and scroll 
bars). 

CoreEdit: A Toolbox unit that handles sophisticated text editing and 
formatting, including fully justified text, tabbing, and recognition of 
word boundaries during cutting and pasting. 

Desk Manager: A Toolbox unit that supports the use of desk accessories 
from an application. 

device driver: A piece of Operating System software that controls a 
peripheral device and makes it present the standard interface to the 
application. 

Device Manager: The part of the Operating System that supports device 
I/O. 

Dialog Manager: A Toolbox unit that provides routines for implementing 
dialogs and alerts. 

Disk Driver: The device driver that controls data storage and 
retrieval on 4~~K-byte 3 I/2-inch disks. 

Event Manager: See Toolbox Event Manager or Operating System Event 
Manager. 

File Manager: The part of the Operating System that supports file I/O. 

Font Manager: A Toolbox unit that supports the use of various 
character fonts for QuickDraw when it draws text. 

heap: An area of memory in which space can be allocated and released 
on demand, using the Memory Manager. 

Keyboard/Mouse Handler: The part of the Operating System that controls 
communication with the keyboard and the mouse. 

Memory Manager: The part of the Operating System that dynamically 
allocates and releases memory space in the heap. 

Menu Manager: A Toolbox unit that deals with setting up menus and 
letting the user choose from them. 

Operating System: The lowest-level software in the Macintosh. It does 
basic tasks such as interrupt handling, memory management, and I/O. 

Operating System Core: The part of the Operating System that does the 
actual interrupt handling, initialization, and other important 
background work necessary to keep the Macintosh functioning. 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.G 



12 Inside Macintosh Road Map 

Operating System Event Manager: The part of the Operating System that 
reports hardware-related events such as mouse-button presses and 
keystrokes. 

Operating·System Utilities: Operating System routines that perform 
miscellaneous tasks such as setting the date and time or finding out 
the user's preferred speaker volume. 

QuickDraw: The Toolbox unit that performs all graphic operations on 
the Macintosh screen. 

resource: Data used by an application (such as menus, fonts, and 
icons), and also the application code itself. 

Resource Manager: The Toolbox unit that reads and writes resources. 

Scrap Manager: The Toolbox unit that enables cutting and pasting 
between applications, desk accessories, or an application and a desk 
accessory. 

Segment Loader: The part of the Operating System that loads the code 
of an application into memory, either as a single unit or divided into 
dynamically loaded segments. 

Serial Driver: The device driver that controls communication, via 
serial ports, between applications and serial peripheral devices. 

Sound Driver: The device driver that controls sound generation in an 
application. 

TextEdit: A Toolbox unit that supports the basic text entry and 
editing capabilities of a standard Macintosh application. 

Toolbox: Same as User Interface Toolbox. 

Toolbox Event Manager: A Toolbox unit that allows your application 
program to monitor the user's actions with the mouse, keyboard, and 
keypad. 

Toolbox Utilities: A Toolbox unit that performs generally useful 
operations such as fixed-point arithmetic, string manipulation, and 
logical operations on bits. 

Trap Dispatcher: The part of the Operating System Core that provides 
the connection between your request for a Toolbox or Operating System 
service and the physical code that performs that service. 

User Interface Toolbox: A set of routines and data types that help you 
implement the standard Macintosh user interface in your application. 

vertical retrace interrupt: An interrupt generated sixty times a 
second by the Macintosh video circuitry while the beam of the display 
tube returns from the bottom of the screen to the top; also known as 
the vertical blanking or VBL interrupt. 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.G 



GLOSSARY 13 

Vertical Retrace Manager: The part of the Operating System that 
schedules and executes tasks during the vertical retrace interrupt. 

Window Manager: A Toolbox unit that provides routines for creating and 
manipulating windows. 

12/22/83 Rose CONFIDENTIAL /ROAD.MAP/ROAD.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments tn the author (indicated on the cover 
page) at 1 0460 Bandley Drive MIS 3·G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked·up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

Programming Macintosh Applications in Assembly Language /INTRO/ASSEM 

See Also: Macintosh Memory Management: AnOverview 
The Memory Manager: A Programmer's Guide 
The Segment Loader: A Programmer's Guide 
The Operating System Utilities: A Programmer's Guide 
Putting Together a Macintosh Application 

Modification History: First Draft S. Chernicoff 2/27/84 

ABSTRACT 

This manual tells you what you need to know to write all or part of 
your Macintosh application program in assembly language. The emphasis 
here is on general principles and methods; details on specific OS and 
Toolbox routines are given elsewhere. 



2 Programming Macintosh Applications in Assembly Language 

TABLE OF CONTENTS 

3 About This Manual 
3 Definition Files 
4 Memory Organization 
8 The Dispatch Table 

10 The Trap Mechanism 
10 Format of Trap Words 
12 Trap Macros 
12 Calling Conventions 
12 Register-Based Calls 
14 Stack-Based Calls 
17 Register-Saving Conventions 
18 Pascal Interface to the as and Toolbox 
19 Mixing Pascal and Assembly Language 
23 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 
Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual tells you what you need to know to write all or part of 
your Macintosh application program in assembly language. The emphasis 
here is on general principles and methods; details on specific OS and 
Toolbox routines are given elsewhere. 

The manual assumes you already know how to write assembly language for 
the Motorola MC68~~~ (or just "680~~" for short), the microprocessor 
used in the Macintosh. It also assumes you're familiar with Lisa 
Pascal and its associated software development tools, particularly the 
Assembler, the Pascal Compiler, and the Linker. *** (Currently, all 
software for the Macintosh must be developed on a Lisa computer and 
written on a Macintosh-formatted disk for execution on the Macintosh. 
Eventually development tools will be available on the Macintosh 
itself.) *** 
The manual begins by discussing the various files of definitions 
pertaining to the OS and Toolbox, and what they contain. Then it 
describes the Macintosh's memory layout and organization. This is 
followed by a description·of the dispatch table and the trap mechanism, 
which allow your program to use the OS and Toolbox while remaining 
independent of specific addresses in the Macintosh ROM. Next is a 
discussion of the calling conventions for using the OS and Toolbox from 
assembly language and for mixing Pascal and assembly language in your 
own programs. Finally, there's a glossary of terms used in this 
manual. 

DEFINITION FILES 

The primary aids to assembly-language programmers are a set of 
definition files that define various symbolic names for use in assembly
language programs. By naming the definition files in an .INCLUDE 
directive, you make the definitions available to your program. 

The most important of the definition files are the equates files, which 
use .EQU directives to define values for symbolic names. There are 
separate system, QuickDraw, and Toolbox equates files for definitions 
related to the Operating System, QuickDraw, and the User Interface 
Toolbox. There are also a number of specialized equates files, such as 
the memory equates file~ which contains definitions pertaining to 
memory allocation. These specialized files are discussed in the 
individual manuals that apply to them (for instance, the memory equates 
file is covered in the Memory Manager manual). 

The equates files define a variety of symbolic names for various 
purposes, such as: 

- Useful numeric quantities. For example, the constant maxMenu 
stands for the maximum number of menus in a menu bar. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2 



4 Programming Macintosh Applications in Assembly Language 

- Fixed memory addresses. For example, sysCom is the starting 
address of the system communication area. 

- Addresses of system variables. For example, ticks is the address 
of a long-word integer variable containing the elapsed time in 
ticks (sixtieths of a second) since the system was last started 
up. Often the global variable in turn contains an address: for 
example, sysEvtBuf is the address of a pointer to the system event 
buffer (not the address of the buffer itself!). 

- Masks. For example, tagMask is a mask for extracting the tag 
field from the header of a memory block. 

- Bit numbers. For example, lock is the bit number of the lock bit 
in the first byte of a master pointer, defined for use with the 
bit manipulation instructions BTST (Bit Test), BSET (Bit Set), 
BCLR (Bit Clear), and BCRG (Bit Change). 

- Codes. For example, inMenuBar is the code returned by the Window 
Manager function FindWindow when the user presses the mouse button 
inside the menu bar. 

- Offsets into data structures. For example, wVisible is the offset 
of a window's "visible" flag relative to the beginning of the 
window record. 

It's a good idea always to use the symbolic names defined in an equates 
file in place of the corresponding numerical values (even if you know 
them), since some of these values may be subject to change. One thing 
to watch out for is that the names of the offsets for a data structure 
don't always match the field names in the corresponding Pascal 
definition. In the OS and Toolbox documentation, the definitions are 
normally shown in their Pascal form; the corresponding offset constants 
for assembly-language use are listed in the summary at the end of each 
manual. 

In addition to the equates files, there's also a system errors file, 
which defines symbolic names for all error codes returned by Operating 
System routines. Finally, there are the system, QuickDraw, and Toolbox 
macro files, which define the macros used to callOS and Toolbox 
routines from assembly language. 

MEMORY ORGANIZATION 

In its current configuration, the Macintosh has 128K bytes of volatile 
read/write memory (RAM) and 64K bytes of permanent read-only memory 
(ROM). The ROM contains the built-in code of the Operating System and 
User Interface Toolbox, which is available for use by any application 
program. In the 68000's 16-megabyte address space, RAM occupies 
addresses $0-$lFFFF and ROM is at addresses $400000-$40FFFF. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2 



MEMORY ORGANIZATION 5 

In addition, the various built-in input/output devices are "memory
mapped", meaning that they appear to the processor as addressable 
memory locations with special properties. The 6522 VIA (Versatile 
Interface Adapter) occupies addresses in the range $E00000-$EFFFFF, the 
8530 SCC (Serial Communications Controller) $900000-$9FFFFF and $B00000-
$BFFFFF, and the IWM ("Integrated Woz Machine") disk interface $D00000-
$DFFFFF. You won't ordinarily need to know any details about these 
memory-mapped devices, since you'll deal with them exclusively through 
the Operating System. 

(warning) 
All specific memory addresses given in this section refer 
to the first-release, 128K Macintosh. The Lisa 2 
Macintosh emulator uses a different memory layout, as 
will future versions of Macintosh with different memory 
capacities. For compatibility, always refer to these RAM 
addresses by their symbolic names (given in a table 
below) rather than their numeric values. For calls to OS 
and Toolbox routines located in ROM, use the 68000's 
unimplemented instruction trap, as described below under 
"The Trap Mechanism". This ensures compatibility by 
making all ROM references indirectly, through a dispatch 
table kept in RAM. 

The organization of RAM is shown in Figure 1. The first $100 bytes 
(addresses $0-$FF) are reserved by the 68000 hardware for use as 
exception vectors. The next $300 bytes ($100-$3FF), referred to as the 
"system communication area", contain global variables used by various 
parts of the Macintosh system software. The next $400 bytes ($400-
$7FF) contain the dispatch table for OS and Toolbox routines, discussed 
below under "The Dispatch Table". This is followed by $300 bytes ($800-
$AFF) of additional system globals. 

At (almost) the very end of memory are the main sound buffer ($lFD00-
$lFFE3), used by the Sound Driver to control the sounds emitted by the 
built-in speaker, and the main screen buffer ($IA700-$lFC7F), which 
holds the bit image to be displayed on the Macintosh screen. If an 
interactive debugger such as MacsBug is installed, it immediately 
precedes the screen buffer. Then comes an area reserved for the 
application's parameters and global variables, which normally also 
includes a block of global variables belonging to QuickDraw. When the 
Segment Loader starts up an application, it adjusts the size of this 
area according to the application's needs and sets register AS to point 
to the boundary between the application's parameters and globa1s. 
(This subject is covered in more detail in the Segment Loader manual.) 

(note) 
For special applications; there are an alternate screen 
buffer ($12700~$17C7F) and an alternate sound buffer 
($lA100-$1A3E3). If you use either or both of these, the 
application parameters (or the debugger, if there is one) 
end at $126FF or $lA0FF instead of the normal $lA6FF, and 
the space available for dynamic allocation (see below) is 
reduced accordingly. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2 



6 Programming Macintosh Applications in Assembly Language 

SOO 

$100 

$400 

$800 

$800 

$4DOO 

Hardware except ion vectors 
1---------------1 --- ~y3Com 

System communication area 

1---------------1 --- dispatchTab 

System dispatch table 

1---------------1 --- grafBegin 

System globals 

1---------------1 --- (sysZone) 

System heap 

1----------------1 --- (appIZone) 

Appl ication heap 

--- (heapEnd) 

---(SP) 

Stack 

1---------------1 --- (curStacIc:Base) 
Application globals 

1--------------------1 -----(AS) 
Appl icat ion parameters 

~----------I --- (bufPtr) 

Debugger (i f any) 

$1 A700 1----------------1 --- screenLc.'v 

$1 FC7F 
$lFDOO 
$lFFE3 
$lFFFF 

2/27/84 Chernicoff 

Main screen buffer 

: .. :.:.:.:.:.: .. :-:.:.:.:.:.:.:.:.: .. :.:.:.: .. :.:.: .. :-:.:.:-:-:.:.:.: .. : .. :.:.: .. :.:.: 

Mai n sOlJnd buffer 
:.: .. :.:.:.: .. :.:.:.:.:.:.: .. :.: .. :.: .. :.:.:.:.:.:.:.: .. :.: .. :.: .. :.:.:.:.:.: .. :.:.:-:.: 

Figure 1. RAM Organization 

CONFIDENTIAL 

--- soundLo\\1 

--- (memTop) 

/INTRO/ASSEM.2 



MEMORY ORGANIZATION 7 

All remaining space, between the end of the system globals ($B00) and 
the beginning of the application globals, is available for dynamic 
allocation by the running program. This space is shared between the 
stack and the heap, with the heap growing forward from the beginning of 
the space and the stack growing backward from the end. (The stack and 
the heap are discussed in general terms in the document "Macintosh 
Memory Management: An Overview" *** which will-be the chapter 
preceding this one in the eventual "Inside Macintosh" manual *** and in 
greater detail in the Memory Manager manual.) 

Immediately following the system globals is the system heap, which is 
initialized to a fixed size (currently 16.5K, or $4200 bytes) when the 
system is started up. The system heap is intended for the system's own 
private use; your application program should use the application heap 
for all of its heap allocation. (In particular, the code of the 
application itself resides in the application heap.) The application 
heap is initialized at the start of each new application program 
(currently to 6K, or $1800 bytes), and can then expand as required to 
accommodate the application's needs. The stack grows and shrinks from 
the other end of the space. 

(warning) 
Although the 68000 hardware provides for separate user 
and supervisor stacks, each with its own stack painter, 
the Macintosh maintains only one stack. All application 
programs run in supervisor mode and share the same stack 
with the system; the user stack pointer isn't used. 

The boundaries between the various areas of RAM are marked by global 
constants and variables defined in the equates files. In the following 
table (as well as in Figure 1), names not shown in parentheses are 
constants that are equated directly to the designated address; those in 
parentheses are variables containing long-word pointers that in turn 
point to the address. Names identified as marking the end of an area 
actually refer to the address following the last byte in that area. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.2 



8 Programming Macintosh Applications in Assembly Language 

Name 
sysCom 
dispatchTab 
grafBegin 
(sysZone) 
(applZone) 
(heapEnd) 
(curStackBase) 

(bufPtr) 
screenLow 
(scrnBase) 
soundLow 
( sound Base) 
(memTop) 
romStart 

THE DISPATCH TABLE 

Meaning 
Start of system communication area 
Start of system dispatch table 
Start of additional system globals 
Start of system heap 
Start of application heap 
End of application heap 
Base (end) of stack; 
start of application globals 
End of application parameters 
Start of main screen buffer 
Start of current screen buffer 
Start of main sound buffer 
Start of current sound buffer 
End of RAM 
Start of ROM 

The bulk of the Operating System and Toolbox resides in read-only 
memory (ROM). However, to allow flexibility for future development, 
application code must be kept free of any specific ROM addresses. So 
all references to OS and Toolbox routines are made indirectly, through 
a dispatch table in RAM containing the addresses of the routines. As 
long as the location of the dispatch table is known, the routines 
themselves can be moved to different locations in ROM without 
disturbing the operation of programs that depend on them. 

Information about the locations of the various OS and Toolbox routines 
is encoded in compressed form in the ROM itself. When the system is 
started up, this encoded information is expanded to form the dispatch 
table. Because the dispatch table resides in' RAM (locations $400-
$7FF), individual entries can be "patched" to point to addresses other 
than the original ROM address. This allows changes to be made in the 
ROM code by loading corrected versions of individual routines into RAM 
at system startup and patching the dispatch table to point to them. It 
also allows an application program to replace specific OS and Toolbox 
routines with its own "custom" versions. A pair of utility routines 
for manipulating the dispatch table, GetTrapAddress and SetTrapAddress, 
are described in the Operating System Utilities manual. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3 



THE DISPATCH TABLE 9 

15 14 0 

~I 1'----__ .----1 '" 
~~ ________ ~~ ________ ~~ D 
~ v-

{
O: 
1: 

l 
r""' ____ '.A.. ... _ 

15 

~"'------...... '¥' ..... 

J, 
rornBase } ~ ~ 
ramBase '\!I 

ispatch 1able entry 

" 1 0 
10 I 

" 

Figure 2. Dispatch Table Entry 

lv' ~emory 

"-
I 

Fioutine 

For compactness, entries in the dispatch table are encoded into one 
word each, instead of a full long-word address (see Figure 2). Since 
the dispatch table is 1024 ($400) bytes long, it has room for 512 word
length entries. The high-order bit of each entry tells whether the 
routine resides in ROM (0) or RAM (1). The remaining 1,5 bits give the 
offset of the routine relative to a base address. For routines in ROM, 
this base address is the beginning of the ROM, address $400000; for 
routines in RAM, it's the beginning of the system heap, currently at 
address $B00. 

(note) 
The two base addresses are kept in a pair of global 
variables named romBase and ramBase. 

The offset in a dispatch table entry is expressed 1n words instead of 
bytes, taking advantage of the fact that instructions must always fall 
on word boundaries (even byte addresses). To find the absolute address 
of the routine, the system checks the high-order bit of the dispatch 
table entry to find out which base address to use, doubles the offset 
to convert it from words to bytes, and adds the result to the 
designated base address. 

Using IS-bit word offsets, the dispatch table can address locations 
within a range of 32K words, or 64K bytes, from the base address. 
Starting from romBase, this range is big enough to cover the entire 
ROM; but only half of the 128K RAM lies within range of ramBase. Since 
all RAM-based code resides in the heap, ramBase is set to the beginning 
of the system heap to maximize the amount of useful space within range. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3 



10 Programming Macintosh Applications in Assembly Language 

Locations below the start of the heap ($B~~) are used to hold global 
system data (including the dispatch table itself), and can never 
contain executable code; but if the heap is big enough, it's possible 
for some of the application's code to lie beyond the upper end of the 
dispatch table's range ($l~AFF). Any such code is inaccessible through 
the dispatch table. 

(note) 
This problem will become particularly acute on the Lisa 2 
and on future versions of Macintosh with more than,128K 
of RAM. To make sure they lie within range of ramBase, 
patches to OS and Toolbox routines are typically placed 
in the system heap rather than the application heap. 

THE TRAP MECHANISM 

Calls to the OS and Toolbox via the dispatch table are implemented by 
means of the 68~0~ processor's "1~10 emulator" trap. To issue such a 
call in assembly language, you use one of the trap macros defined in 
the system, QuickDraw, and Toolbox macro files. When you assemble your 
program, the macro generates a trap word in the machine-language code. 
A trap word always b~gins with the hexadecimal digit $A (binary 1~10); 
the rest of the word identifies the routine you're calling, along with 
some additional information pertaining to the call. 

Instruction words beginning with $A don't correspond to any valid 
machine-language instruction, and are known as unimplemented 
instructions. They're used to augment the processor's native 
instruction set with additional operations that are "emulated" in 
software instead of being executed directly by the hardware. On the 
Macintosh, the additional operations are the OS and Toolbox routines. 
Attempting to execute an unimplemented instruction causes a trap to the 
Trap Dispatcher, which examines the bit pattern of the trap word to 
determine what operation it stands for, looks up the address of the 
corresponding routine in the dispatch table, and jumps to the routine. 

Format of Trap Words 

As noted above, a trap word always begins with the digit $A in bits 12-
15, the mark of an unimplemented instruction. Bit 11 tells whether the 
call is to the Operating System (~) or the Toolbox (1). The format of 
the rest of the word depends on whether it's an OS or a Toolbox call. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3 



THE TRAP MECHANISM 11 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 1 o ~ 1 o ~ 1 I 
"" v " 

Trap number 

Unused 

Auto. pop 

Figure 3. Trap Word Format for Toolbox Calls 

Figure 3 shows the trap word format for Toolbox calls. Bits 0-8 form a 
9-bit trap number identifying the particular Toolbox routine being 
called. Bit 9 is unused; bit 10 is called the "auto-pop" bit and is 
discussed below under "Pascal Interface to the OS and Toolbox". 

15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0 

I 1 O~ 1 O~ oi 
~ "" y " 

Trap number 

Pass AO 

Flags 

Figure 4. Trap Word Format for OS Calls 

For Operating System calls, only the low-order 8 bits (bits 0-7) are 
used for the trap number (see Figure 4). Thus of the 512 entries in 
the dispatch table, only the first 256 can be used for OS traps. Bit 8 
of an OS trap has to do with register usage and is discussed below 
under "Register-Saving Conventions". Bits 9 and 10 have specialized 
meanings depending on which OS routine you're calling, and are covered 
where relevant in other manuals. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.3 



12 Programming Macintosh Applications in Assembly Language 

Trap Macros 

The names of all trap macros begin with the underscore character (_), 
followed by the name of the corresponding routine. As a rule, the 
macro name is the same as the name used to call the routine from 
Pascal, as given in the OS and Toolbox documentation. For example, to 
call the Window Manager routine NewWindow, you would use an instruction 
with the macro name NewWindow in the op code field. There are a few 
exceptional cases, however, in which the spelling of the macro name 
differs from the name of the routine itself; these exceptions are noted 
in the documentation for the individual routines. 

Trap macros for Toolbox calls take no arguments; those for OS calls may 
have as many as three optional arguments. The first argument, if 
present, is used to load a register with a parameter value for the 
routine you're calling, and is discussed below under "Register-Based 
Calls". The remaining arguments control the settings of the various 
flag bits in the trap word. The form of these arguments varies with 
the meanings of the flag bits, and is described in the manuals on the 
relevant parts of the Operating System. 

CALLING CONVENTIONS 

The calling conventions for Operating System and Toolbox routines fall 
into two categories: register-based and stack-based. As the terms 
imply, register-based routines receive their parameters and return 
their results in the processor's registers; stack-based routines 
communicate via the stack, following the same conventions used by the 
Pascal Compiler for routines written in Pascal. Before calling any OS 
or Toolbox routine, you have to set up the parameters in the way the 
routine expects. 

(note) 
As a general rule, Operating System routines are register
based and Toolbox routines stack-based, but there are 
exceptions on both sides. Throughout this documentation, 
register-based calling conventions are given for all 
routines that have them; if none is shown, then the 
routine is stack-based. 

Register-Based Calls 

By convention, register-based routines normally use register A~ for 
passing addresses (such as pointers to data objects) and D~ for other 
data values (such as integers). Depending on the routine, these 
registers may be used to pass parameters to the routine, result values 
back to the calling program, or both. For routines that take more than 
two parameters (one address and one data value), the parameters are 
normally collected in a parameter block in memory and a pointer to the 
parameter block is passed in A~. However, not all routines obey these 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4 



CALLING CONVENTIONS 13 

conventions; for example, some expect parameters in other registers, 
such as AI. See the documentation on each individual routine for 
details. 

Whatever the conventions may be for a particular routine, it's up to 
you to set up the parameters in the appropriate registers before 
calling the routine. For instance, the Memory Manager utility 
procedure BlockMove, which copies a block of consecutive bytes from one 
place to another in memory, expects to find the address of the first 
source byte in register A0, the address of the first destination 
location in AI, and the number of bytes to be copied in D0. So to move 
20 bytes beginning at address srcAddr to locations beginning at 
destAddr, you might write something like 

LEA srcAddr,A0 
LEA destAddr,AI 
MOVEQ #2~,D~ 

BlockMove 

;source address in A0 
;destination address in Al 
;byte count in D0 
;trap to routine 

Because many register-based routines expect to find an address of some 
sort in register A0, the trap macros allow you to specify the contents 
of that register as an argument to the macro instead of explicitly 
setting up the register yourself. The first argument you supply to the 
macro, if any, represents an address to be passed in A0. The macro 
will load the register with an LEA (Load Effective Address) instruction 
before trapping to the routine. So, for instance, to perform a Read 
operation on a file, you could set up the parameter block for the 
operation and then use the instruction 

Read paramBlock ;trap to routine with 
pointer to parameter 
block in A0 

This feature is purely a convenience, and is optional: if you don't 
supply any arguments to a trap macro, or if the first argument is null, 
the LEA to A0 will be omitted from the macro expansion. Notice that A0 
is loaded with the actual address denoted by the argument, not the 
contents of that address. 

(note) 
You can use any of the 68000's addressing modes to 
specify this address, with one exception: you can't use 
the two-register indexing mode ("address register 
indirect with index and displacement"). An instruction 
such as 

Read offset(A3,DS) 

won't work properly, because the comma separating the two 
registers will be taken as a delimiter marking the end of 
the macro argument. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4 



14 Programming Macintosh Applications in Assembly Language 

Many register-based routines return a 16-bit result code in the low
order half of register D0 to report successful completion or failure 
due to some error condition. A negative result code always signals an 
error of some kind; a code of 0 denotes successful completion. (Some 
routines also use D0 to return an actual data result. In these cases, 
any nonnegative value in the low-order half of the register represents 
a true result and implies successful completion of the routine.) The 
system errors file defines symbolic names for all result codes reported 
by the various OS routines. 

Just before returning from a register-based call, the Trap Dispatcher 
tests the low-order half of D0 with a TST.W instruction to set the 
processor's condition codes. You can then check for an error by 
branching directly on the condition codes, without any explicit test of 
your own: for example, 

_PurgeMem 
BMI Error 

;trap to routine 
;branch on error 

(warning) 

;no error--actual result 
; in low half of D0 

Not all register-based routines return a result code. 
Some leave the contents of D0 unchanged; others use the 
full 32 bits of the register to return a long-word 
result. See the documentation of individual routines for 
details. 

Stack-Based Calls 

To call a stack-based routine from assembly language, you have to set 
up the parameters on the stack in the same way the compiled object code 
would if your program were written in Pascal. The number and types of 
parameters expected on the stack depend on the routine being called. 
The number of bytes each parameter occupies depends on its type: 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4 



Parameter t~Ee 
BOOLEAN 

CHAR 
INTEGER 
LongInt 
REAL 

String 

Record, array 

Pointer 
Handle 
VAR parameter 

Number of b~tes 
1 byte 

1 byte 
2 bytes 
4 bytes 
4 bytes 

4 bytes 

1-4 bytes 

4 bytes 
4 bytes 
4 bytes 

CALLING CONVENTIONS 15 

Contents 
Low-order bit = 
o (FALSE) or 1 (TRUE) 
ASCII character code 
Twos-complement integer 
Twos-complement integer 
Sign bit, 8-bit biased 
exponent, 23-bit mantissa 
Pointer to string; first 
byte pointed to gives length 
of string in characters 
Contents of structure if 
<= 4 bytes; otherwise 
pointer to structure 
Address of value 
Address of master pointer 
Address of variable, 
regardless of type 

If the routine you're calling is a function, the first step is to 
reserve space on the stack for the function result. Then, for both 
functions and procedures, push the parameters onto the stack in the 
order they occur in the routine's Pascal definition. Finally, call the 
routine by executing the corresponding trap macro. The trap pushes the 
return address onto the stack, along with an extra word of processor 
status information. The Trap Dispatcher removes this extra status 
word, leaving the stack in the state shown in Figure 5 on entry to the 
routine. The routine itself is responsible for removing its own 
parameters from the stack before returning. If it's a function, it 
leaves its result on top of the stack; if it's a procedure, it restores 
the stack to the same state it was in before the call. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4 



4(3P) 

16 Programming Macintosh Applications in Assembly Language 

Lo\v memory 

~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~: ~::: ~: ~:;: ~: ~: ~::::: ~::::::: ~: ~::: ~:::::;::::: ~: :1 
~::::::::::.::::::::::::::::::::::: .. :::::::::::.::.:::::::::::::::::::::1 

~l 
I 

Fieturn ':Hjdres::. I 

I 
I First parameter I 
~ Function result (if an01 

i Pre ... ·' i ou::; :::;lack content:; I 
High memory 

On entry 

(SF') 

(5P) 

L 0\.... rnemory 

~.}·.:.:u.:::.:%ruI:n.:}::u·1 
! Function result i 

I I 
i Pre'a,.' i oU::; ::;tack content::; I 
l 
I 

Hi !;lh memory 

On return (fUnctions) 

: Lo\v memory 

High memory 

On return (procedures) 

Figure 5. Stack Format for Stack-Based Calls 

For example, the Window Manager function GrowWindow is defined in 
Pascal as follows: 

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; 
sizeRect: Rect) : LongInt; 

To call this function from assembly language, you'd write something 
like the following: 

SUBQ.L 
MOVE.L 
MOVE.L 

PEA 

114, SP 
theWindow,-(SP) 
startPt,-(SP) 

sizeRect 

GrowWindow 
MOVE.L (SP)+,D3 

2/27/84 Chernicoff CONFIDENTIAL 

;make room for LongInt result 
;push window pointer 
;a Point is a 4-byte record, 

so push actual contents 
;a Rect is an 8-byte record, 

so push a pointer to it 
;trap to routine 
;pop result from stack 

/INTRO/ASSEM.4 



CALLING CONVENTIONS 17 

(warning) 

(note) 

Don't forget that the stack pointer must always be 
aligned on a word boundary (that is, at an even byte 
address). When pushing a value with an odd number of 
bytes (such as a Boolean or a character), you have to add 
a byte of "padding" to keep the stack pointer even. 
Because all Macintosh application code runs in the 
68~~~ts supervisor mode, an odd stack pointer will cause 
a "double bus fault": a catastrophic system failure from 
which the only escape is to turn the power off and 
restart the machine. 

To keep the stack pointer properly aligned, the 68000 
automatically adjusts the pointer by 2 instead of 1 when 
you move a byte-length value to or from the stack. This 
special case applies only when three conditions are met: 
a one-byte value is being transferred; either the source 
or the destination is specified by predecrement or 
postincrement addressing; and the register being 
decremented or incremented is the stack pointer (A7). 
For example, you can push the Boolean value TRUE onto the 
stack with the instruction 

ST.B -(SP) ; byte-length 
predecrement to 

; stack pointer 

and an extra, unused byte will automatically be added to 
keep the stack pointer even. 

However, when you use any other method to manipulate the 
stack pOinter, it's your responsibility to make sure the 
pointer stays properly aligned. For instance, to reserve 
space on the stack for a Boolean function result, you 
have to remember to decrement explicitly by two bytes 
instead of one: 

SUBQ.L 112,SP ;make room for 
; Boolean result 

The function will return its result in the high-order 
(even-addressed) byte of the two; the other byte is just 
padding and should be ignored. 

Register-Saving Conventions 

AlIOS and Toolbox routines follow Lisa Pascal's register-saving 
conventions, which require the routine to preserve the contents of all 
registers except A0, AI, and D0-D2 (and of course A7, which is 
special). In addition, for register-based routines, the Trap 
Dispatcher saves some of the remaining registers before dispatching to 
the routine and restores them before returning to the calling program. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4 



18 Programming Macintosh Applications in Assembly Language 

Registers AI, 01, and 02 are always saved and restored in this way, so 
their contents are unaffected by a register-based trap even though the 
routine itself is allowed to "trash" them. A7 and D0 are never 
restored: whatever the routine leaves in these registers is passed 
back unchanged to the calling program, allowing the routine to 
manipulate the stack pointer as appropriate and to return a result 
code. 

Whether the Trap Dispatcher preserves register A0 depends on the 
setting of bit 8 of the trap word. If this bit is 0, A0 is saved and 
restored; if it's 1, A0 is passed back from the routine unchanged. 
Thus bit 8 of the trap word should be set to 1 only for those routines 
that return a result in A0, and to 0 for all other routines. The trap 
macros automatically set this bit correctly for each routine, so you 
never have to worry about it yourself. 

Notice, however, that the Trap Dispatcher preserves these other 
registers only on register-based traps. Stack-based traps preserve 
only those registers required by the Pascal conventions (A2-A6, D3-D7). 
If you want to preserve any of the other registers, you have to save 
them yourself before trapping to the routine--typically on the stack 
with a MOVEM (Move Multiple) instruction--and restore them afterward. 

Pascal Interface to the OS and Toolbox 

Lisa Pascal doesn't know anything about the Macintosh trap mechanism. 
When you call an OS or Toolbox routine from Pascal, you're actually 
calling an interface routine that performs the trap for you. For 
register-based calls, the interface routine fetches the parameters from 
the stack where the Pascal calling program left them, puts them in the 
registers where the routine expects them, then traps to the routine. 
On return, it moves the routine's result, if any, from a register to 
the stack and then returns to the calling program. (For routines that 
return a result code, the interface routine also moves the result code 
to a global variable, where it can later be accessed with a special 
Pascal utility routine.) For stack-based calls, there's nothing for 
the interface routine to do except trap to the routine and then return 
to the calling program. 

Ordinarily this would mean that each stack-based interface routine 
would be two instructions long: a trap word and an RTS (Return from 
Subroutine) instruction. However, to save code, the interface routines 
to the Toolbox dispense with the RTS and instead use the "auto-pop" 
bit, bit 10 of the trap word for Toolbox traps. When this bit is set 
to 1, the Trap Dispatcher doesn't return control to the interface 
routine after the trap. Instead, it just removes the trap's return 
address from the stack and returns directly to the calling program. 
This halves the amount of memory space taken up by the Toolbox 
interface routines--from two words per routine to only one, the trap 
word itself. When you trap to a Toolbox routine from assembly 
language, the trap macro sets the auto-pop bit to 0, so that control 
will return normally. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5 



MIXING PASCAL AND ASSEMBLY LANGUAGE 19 

MIXING PASCAL AND ASSEMBLY LANGUAGE 

You can mix Pascal and assembly language freely in your own programs, 
calling routines written in either language from the other. The Pascal 
and assembly-language portions of the program have to be compiled and 
assembled separately, then combined with the Lisa Pascal Linker. For 
convenience in this discussion, we'll refer to such separately compiled 
or assembled portions of a program as "modules", although this term 
isn't actually used in Lisa Pascal. You can divide a program into any 
number of modules, each of which may be written in either Pascal or 
assembly language. 

References in one module to routines defined in another are called 
external references. The Linker resolves external references by 
matching them up with their definitions in other modules. You have to 
identify all the external references in each module so they can be 
resolved properly. To call an assembly-language routine from Pascal, 
you name the routine in a .DEF, .PROC, or .FUNC directive in the module 
where it's defined and declare it with an EXTERNAL declaration in the 
Pascal module that refers to it. To call a Pascal routine from 
assembly language, you declare it in the INTERFACE section of a Pascal 
unit to make it available to other modules and name it in a .REF 
directive in the assembly-language module that uses it. The actual 
process of linking the modules together is covered in the document 
"Putting Together a Macintosh Application". 

All calls from one language to the other, in either direction, must 
obey Pascal's stack-based calling conventions (see "Calling Toolbox 
Routines", above). To call a Pascal routine from assembly language, 
you push the parameters onto the stack before the call and (if the 
routine is a function) look for the result on the stack on return. In 
an assembly-language routine to be called from Pascal, you look for the 
parameters on the stack on entry and leave the result (if any) on the 
stack before returning. 

Under stack-based calling conventions, a convenient way to access a 
routine's parameters on the stack is with a frame pointer, using the 
68000's LINK and UNLK (Unlink) instructions. You can use any address 
register for the frame pointer (except A7, which is reserved for the 
stack pointer), but on the Macintosh register A6 is conventionally used 
for this purpose. The instruction 

LINK A6,1I-12 

at the beginning of a routine saves the previous contents of A6 on the 
stack and sets A6 to point to them. The second operand specifies the 
number of bytes of stack space to be reserved for the routine's local 
variables: in this case, 12 bytes. The LINK instruction offsets the 
stack pOinter by this amount after copying it into A6. 

(warning) 
The offset is added to the stack pointer, not subtracted 
from it. So to allocate stack space for local variables, 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5 



20 Programming Macintosh Applications in Assembly Language 

you have to give a negative offset; the instruction won't 
work properly if the offset is positive. Also t to keep 
the stack pointer correctly aligned, be sure the offset 
is even. For a routine with no local variables on the 
stack, use an offset of #0. 

Register A6 now points to the routine's stack frame; the routine can 
locate its parameters and local variables by indexing with respect to 
this register (see Figure 6). The register itself points to its own 
saved contents, which are often (but needn't necessarily be) the frame 
pointer of the calling routine. The parameters and return address are 
found at positive offsets from the frame pointer. 

I 
I 
I 

Low memory 

Local variables 

(.A.6) ~t-------------4 
Previous (A6) 

4(.A.6) ~t-----------t 
Return address 

8(AS) ~t-------------4 
Last parameter 

F i rsl parameter 

Function result (if any) 

Prey i OIJS stack contents 

High memory 

Figure 6. Frame Pointer 

Since the saved contents of the frame pointer register occupy a long 
word (4 bytes) on the stack, the return address is located at 4(A6) and 
the last parameter at 8(A6). This is followed by the rest of the 
parameters in reverse order, and finally by the space reserved for the 
function result, if any. The proper offsets for these remaining 
parameters and for the function result depend on the number and types 
of the parameters, according to the table above under "Stack-Based 
Calls". If the LINK instruction allocated stack space for any local 
variables, they can be accessed at negative offsets from the frame 
pointer, again depending on their number and types. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5 



MIXING PASCAL AND ASSEMBLY LANGUAGE 21 

At the end of the routine, the instruction 

UNLK A6 

reverses the process: first it releases the local variables by setting 
the stack pointer equal to the frame pointer (A6), then pops the saved 
contents back into register A6. This restores the register to its 
original state and leaves the stack pOinter pOinting to the routine's 
return address. 

A routine with no parameters can now just return to the caller with an 
RTS (Return from Subroutine) instruction. But if there are any 
parameters, it's the routine's responsibility to "strip" them from the 
stack before returning. The usual way of doing this is to pop the 
return address into an address register, increment the stack pointer to 
remove the parameters, then exit with an indirect jump through the 
register. 

Another point to remember is that any routine that's called from Pascal 
must observe Pascal register conventions and preserve registers A2-A6 
and D3-D7. This is usually done by saving those registers the routine 
will be using on the stack with a MOVEM (Move Multiple) instruct,ion, 
then restoring them before returning. Any routine you write that will 
be accessed via the trap mechanism--for instance, your own version of 
an OS or Toolbox routine that you've patched into the dispatch table-
should observe the same conventions. 

Putting all this together, the routine should begin with a sequence 
like 

MyRoutine LINK A6,#-dd ;set up frame pointer-
, dd = number of bytes 
; of local variables 

MOVEM.L A2-A5/D3-D7,-(SP) ; ••• or whatever subset of 
; these registers you use 

and end with something like 

MOVEM.L (SP)+,A2-AS/D3-D7 
UNLK A6 

MOVE.L (SP)+,A1 

ADD.W IIpp,SP 

JMP (AI) 

;restore registers 
;restore frame pOinter 

;save return address in a 
; "trashable" register 
;strip parameters--
; pp = number of bytes 
; of parameters 
;return to caller 

Notice that A6 doesn't have to be included in the MOVEM instructions, 
since it's saved and restored by the LINK and UNLK. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.5 



22 Programming Macintosh Applications in Assembly Language 

(warning) 
Recall that the Segment Loader, when it starts up an 
application, sets register A5 to pOint to the boundary 
between the application's globals and parameters. 
Certain parts of the system (notably QuickDraw and the 
File Manager) rely on finding AS set up properly--so you 
have to be a bit more careful about preserving this 
register. The safest policy is never to touch AS at all. 
If you must use it for your own purposes, just saving its 
contents at the beginning of a routine and restoring them 
before returning isn't enough: you have to be sure to 
restore it before any call that might depend on it. The 
correct setting of AS is always available in the long
word global variable currentAS. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6 



GLOSSARY 23 

GLOSSARY 

application heap: The portion of the heap available to the running 
application program for its own memory allocation. 

dispatch table: A table in RAM containing the addresses of all 
Operating System and Toolbox routines in encoded form. 

external reference: A reference to a routine or variable defined in a 
separate compilation or assembly. 

frame pointer: A pOinter to a routine's stack frame, held in an 
address register and manipulated with the LINK and UNLK instructions. 

heap: The area of memory in which space is dynamically allocated and 
released on demand, using the Memory Manager. 

interface routine: A routine called from Pascal whose purpose is to 
trap to a certain Operating System or Toolbox routine. 

IWM ("Integrated Woz Machine"): The Macintosh's built-in custom disk 
interface. 

parameter block: A table of parameter values to an Operating System 
routine, stored in memory and located by means of a pointer passed in 
an address register. 

QuickDraw equates file: The file defining global constants and 
variables pertaining to QuickDraw. 

QuickDraw macro file: The file defining trap macros for calling 
QuickDraw routines. 

register-based: Said of an Operating System or Toolbox routine that 
receives its parameters and returns its results in the processor's 
registers. 

result code: A code returned by an Operating System routine to report 
successful completion or failure due to some error condition. 

SCC (Serial Communications Controller): The Macintosh's built-in 8530 
serial communication interface. 

stack: The area of memory in which space is allocated and released in 
LIFO (last-in-first-out) order, used primarily for routine parameters, 
return addresses, local variables, and temporary storage. 

stack-based: Said of an Operating System or Toolbox routine that 
receives its parameters and returns its results on the stack. 

stack frame: The area of the stack used by a routine for its 
parameters, return address, local variables, and temporary storage. 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6 



24 Programming Macintosh Applications in Assembly Language 

system communication area: An area of memory containing global 
variables used by the Macintosh system software. 

system equates file: The file defining global constants and variables 
pertaining to the Operating System. 

system errors file: The file defining all result codes returned by 
Operating System routines. 

system heap: The portion of the heap reserved for use by the Macintosh 
system software. 

system macro file: The file defining trap macros for calling Operating 
System routines. 

Toolbox equates file: The file defining global constants and variables 
pertaining to the User Interface Toolbox. 

Toolbox macro file: The file defining trap macros for calling Toolbox 
routines. 

trap macro: A macro that assembles into a trap word, used for calling 
an Operating System or Toolbox routine from assembly language. 

trap number: The identifying number of an Operating System or Toolbox 
routine. 

trap word: An unimplemented instruction representing a call to an 
Operating System or Toolbox routine. 

unimplemented instruction: An instruction word that doesn't correspond 
to any valid machine-language instruction but instead causes a trap; 
used for calling Operating System and Toolbox routines via the 68000's 
trap mechanism. 

VIA (Versatile Interface Adapter): The Macintosh's built-in 6522 
parallel communication interface. 

2/27/~4 Chernicoff CONFIDENTIAL /INTRO/ASSEM.6 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 1 0460 Bandley Drive M/S3·G. Cupertino CA 95014. . 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

The Resource Manager: A Programmer's Guide 

See Also: Macintosh User Interface Guidelines 
Macintosh Operating System Reference Manual 
QuickDraw: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Menu Manager: A Programmer's Guide 
Macintosh Control Manager Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
Putting Together a Macintosh Application 

Modification History: First Draft (ROM 2.0) 
Second Draft (ROM 4) 
Third Draft (ROM 7) 
Errata added 

Caroline 
Caroline 
Caroline 
Caroline 

/RMGR/RESOURCE 

Rose 2/2/83 
Rose 6/21/83 
Rose 10/3/83 
Rose 3/8/84 

ABSTRACT 

Macintosh applications make use of many resources, such as menus, fonts, 
and icons. These resources are stored in resource files separately from 
the application code, for flexibility and ease of maintenance. This 
manual describes resource files and the Resource Manager routines. 

Errata: 

The low-order bit of the resource attribute byte is no lo~ger available 
for use by your application; it's now reserved for internal use by the 
Resource Manager. 

There's a new function: 

FUNCTION SizeResource (theResource: Handle) : INTEGER; 

Given a handle to a resource, SizeResource returns the size of the 
resource in bytes. If the resource isn't in memory, the size is read 
from the resource file. If the given handle isn't a handle to a 
resource, SizeResource will return -1 and the ResError function will 
return the error code resNotFound. 



2 Resource Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Resource Manager 
6 Overview of Resource Files 
8 Resource Specification 
10 Resource References 
13 Using the Resource Manager 
15 Resource Manager Routines 
15 Initializing the Resource Manager 
16 Opening and Closing Resource Files 
17 Checking for Errors 
18 Setting the Current Resource File 
18 Getting Resource Types 
19 Getting and Disposing of Resources 
22 Getting Resource Information 
23 Modifying Resources 
28 Advanced Routines 
29 Resources within Resources 
31 Format of a Resource File 
33 Notes for Assembly-Language Programmers 
35 Summary of the Resource Manager 
37 Summary of the Resource File Format 
38 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Resource Manager, the part of the Macintosh 
User Interface Toolbox through which an application accesses various 
resources that it uses, such as menus, fonts, and icons. *** 
Eventually it will become part of a large manual describing the entire 
Toolbox. *** It discusses resource files, where resources are stored. 
Resources form the foundation of every Macintosh application; even the 
application's code is a resource. In a resource file, the resources 
used by the application are stored separately from the code for 
flexibility and ease of maintenance. 

- You can use an existing program for creating and editing resource 
files, or write one of your own. These programs will call 
Resource Manager routines. 

- Usually you'll access resources indirectly through other Toolbox 
units, such as the Menu Manager and the Font Manager, which in 
turn call the Resource Manager to do the low-level resource 
operations. In some cases, you may need to call a Resource 
Manager file-opening routine and possibly other routines to access 
resources directly. 

(hand) 
This manual describes version 7 of the ROM. If you're 
using a different version, the Resource Manager and the 
file system may not work as discussed here. 

Like all documentation about Toolbox units, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

- The basic functions of the Finder, which are performed with the 
help of the Resource Manager. (To the user, the Finder is known 
as the Desktop Manager.) 

- The Operating System error codes. 

- The Macintosh file system, as documented *** though probably not 
up-to-date *** in the Macintosh Operating System Reference Manual. 
You need to know about this only if you want to understand exactly 
how resources are implemented internally; you don't have· to know 
it to be able to use the Resource Manager. 

If you're going to write your own program to create and edit resource 
files, you also need to know the exact format of each type of resource. 
The documentation for the Toolbox unit that deals with a particular 
type of resource will tell you what you need to know for that resource. 

This manual begins with an introduction to the Resource Manager and 
resources, an overview of resource files, and a discussion of resource 
specification, all of which offer useful general information. The next 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



4 Resource Manager Programmer's Guide 

section deals with resource references; you can skip it if you're only 
going to access resources through other Toolbox units. 

Next, a section on using the Resource Manager introduces you to its 
routines and tells how they fit into the flow of your application. 
This is followed by detailed descriptions of all Resource Manager 
procedures and functions, their parameters, calling protocol, effects, 
side effects, and so on. 

Following these descriptions are sections that will not interest all 
readers. A discussion of how resources point to each other is followed 
by a section giving the exact format of a resource file. *** Also, to 
be removed eventually: notes for programmers who will use the Resource 
Manager routines from assembly language. *** 
Finally, there's a summary of the Resource Manager data structures and 
routine calls and a summary of the resource file format, for quick 
reference, followed by a glossary of terms used in this manual. 

ABOUT THE RESOURCE MANAGER 

Macintosh applications make use of many resources, such as menus, 
fonts, and icons, which are stored in resource files. For example, an 
icon resides in a resource file as a 32-by-32 bit image, and a font as 
a large bit image containing the characters of the font. In some cases 
the resource consists of descriptive information (such as, for a menu, 
the menu title, the text of each command in the menu, whether the 
command is checked with a check mark, and so on). The Resource Manager 
keeps track of resources in resource files and provides routines that 
allow applications and other Toolbox units to access them. 

There's a resource file associated with each application, containing 
the resources specific to that application; these resources include the 
application code itself. There's also a system resource file, which 
contains standard resources shared by all applications (also called 
system resources). 

The resources used by an application are created and changed separately 
from the application's code. This separation is the main advantage to 
having resource files. A change in the title of a menu, for example, 
won't require any recompilation of code, nor will translation to a 
foreign language. 

The Resource Manager is initialized by the system when it starts up, 
and the system resource file is opened as part of the initialization. 
Your application's resource file is opened when the application starts 
up. When instructed to get a certain resource, the Resource Manager 
normally looks first in the application's resource file and then, if 
the search isn't successful, in the system resource file. This makes 
it easy to share resources among applications and also to override a 
system resource with one of your own (if you want to use something 
other than a standard icon in an alert box, for example). C 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



ABOUT THE RESOURCE MANAGER 5 

You refer to a resource by passing the Resource Manager a resource 
specification, which consists of a type and either an 10 number or a 
name. Any resource type is valid, whether one of those reserved by the 
Toolbox (such as for menus and fonts) or a type created for use by your 
application. Given a resource specification, the Resource Manager will 
read the resource into memory and return a handle to it. 

(eye) 
The Resource Manager knows nothing about the formats of 
the individual types of resources. Only the routines in 
other Toolbox units that call the Resource Manager have 
this knowledge. 

While most access to resources is read-only, certain applications may 
want to modify resources. You can change the content of a resource or 
its 10 number. name, or other attributes--everything except its type. 
For example, you can designate whether the resource should be kept in 
memory or whether, as is normal for large resources, it can be removed 
from memory and read in again when needed. You can change existing 
resources, remove resources from the resource file altogether. or add 
new resources to the file. 

Not only can an application's resource file contain resources 
themselves, but it may also contain references to resources in the 
system resource file. These references need not be in the 
application's resource file in order for the system resources to be 
found, because the system resource file will be searched anyway as part 
of the normal search process; however, the references do serve other 
purposes. One is th$t a reference can have a different name than the 
system resource itself, thus providing an "alias" for the resource. 
But more important, these references let the Finder know what resources 
the application uses, thus ensuring that those resources will accompany 
the application if you should copy it to a disk that has a different 
system resource file on it. References to system resources can be 
added or removed with Resource Manager routines. 

Resource files are not limited to applications; anything stored in a 
file can have its own resources. For example, documents usually have 
resource files containing references to the system resources they use, 
such as fonts and icons. As in an application's resource file, these 
references tell the Finder what resources the document uses. An 
unusual font used in only one document can be included in the resource 
file for that document rather than in the system resource file. 

(hand) 
Although shared resources are usually stored in the 
system resource file, you can have other resource files 
that contain resources shared by two or more applications 
(or documents, or whatever). In this case. however, the 
Finder will know nothing about the connection between the 
shared resources and the files that use them. 

A number of resource files may be open at one time; the Resource 
Manager always searches the files in the reverse of the order that they 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



6 Resource Manager Programmer's Guide 

were opened. Since the system resource file is opened when the 
Resource Manager is initialized, it's always searched last. Usually 
the search starts with the most recently opened resource file, but you 
can change it to start with a file that was opened earlier. (See 
Figure 1.) 

Order of 
opening: 

Opened 
last 

Opened 
second 

Opened 
first 

Document's 
re8Oll'Ce file 

Appl icetion's 
resou"ce file 

System reSOll'ce 
file 

You C80 ch8I-ae 
it to this: or this: 

Figure 1. Resource File Searching 

OVERVIEW OF RESOURCE FILES 

Resources may be put in a resource file with the aid of the Resource 
Editor, which is documented *** nowhere right now, because it isn't yet 
available. Meanwhile, you can use the Resource Compiler. You describe 
the resources in a text file that the Resource Compiler uses to 
generate the resource file. The exact format of the input file to the 
Resource Compiler is given in the manual "Putting Together a Macintosh 
Application". *** 
A resource file is not a file in the strictest sense. Although it's 
functionally like a file in many ways, it's actually just one of two 
parts, or "forks", of a file. (See Figure 2.) Every file has a 
resource fork and a data fork (either of which may be empty). The 
resource fork of an application file contains not only the resources 
used by the application but also the application code. The code is 
divided into different segments, each of which is a resource; this 
allows various parts of the program to be loaded and purged 
dynamically. The data fork of an application file initially contains 
nothing, but the application may store data there if desired, by using 
the Operating System file I/O routines. All data related to resources 
is stored in the resource fork via the Resource Manager. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



OVERVIEW OF RESOURCE FILES 7 

.----------------~----~----~-----------------

The application's 
resotrces (which 
include its code 
segments) 

Resource fork 
( II resource file ") 

Inltlelly empty; 
the eppl icetion 
may store data 
here. 

Data fork 

Figure 2. An Application File 

As shown in Figure 3, the system resource file has this same structure. 
The resource fork contains the system resources and the data fork 
contains the RAM-based Operating System routines. Figure 3 also shows 
the structure of a file containing a document; the resource fork 
contains the document's resources and the data fork contains the data 
that comprises the document. 

-----------------

The system 
rescuces 

Resource fork 

("resource file ") 

5y3tem code: 
MM-besed 

OS routines 

Data fork 

System Resource File 

.----------&-_---~-----------

The doclInent's The dete in 
mcuces the doclInent 

Resource fork Data forte 
(I'resource file II) 

------------------------------ ______ 1 

Document File 
Figure 3. Other Files 

To open a resource file, the Resource Manager calls the appropriate 
Operating System routine and returns the reference number it gets from 
the Operating System. This is a number greater than 0 by which you can 
refer to the file when calling other Resource Manager routines. Most 
of the routines, however, don't have such a parameter; instead, they 
assume that the current resource file is where they should perform 
their operation (or begin it, in the case of a search for a resource). 
The current resource file is the last one that was opened unless you 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



8 Resource Manager Programmer's Guide 

specify otherwise. 

A resource file consists primarily of resource data and a resource map. 
The resource data consists of the resources themselves (for example, 
the bit image for an icon or the descriptive information for a menu). 
The resource map provides the connection between a resource 
specification and the corresponding resource data. It's like the index 
of a book; the Resource Manager looks up the resource you specify in 
the resource map and learns where its resource data is located. The 
resource map leads to a resource in the same file as the map or 
provides a reference to a system resource. 

The resource map is read into memory when the file is opened and 
remains there until the file is closed. Notice that although we say 
the Resource Manager searches resource files, it actually searches the 
~esource maps that were read into memory, and not the resource files on 
the disk. 

Resource data is normally read into memory when needed, though you can 
specify that it be read in as soon as the resource file is opened. 
Once read in, the data for a particular resource mayor may not be kept 
in memory, depending on an attribute of that resource that's specified 
in the resource map. Resources consisting of a relatively large amount 
of data are usually designated as purgeable, meaning they may be 
removed from the heap (purged) when space is required by the Memory 
Manager. Before accessing such a resource through its handle, you can 
ask the Resource Manager to read the resource into memory again if it 
was purged. 

(hand) 
Programmers concerned about the amount of available 
memory should be aware that there's a 12-byte overhead in 
the resource map for every resource and an additional 
12-byte overhead for memory management it the resource is 
read into memory. 

To modify a resource, you change the resource data or resource map in 
memory. The change becomes permanent only at your explicit request, 
and then only when the application terminates or when you cail a 
routine specifically for updating or closing the resource file. 

Each resource file also contains a partial copy of the file's directory 
entry, written and used by the Finder, and up to 128 bytes of any data 
the application wishes to store there. 

RESOURCE SPECIFICATION 

In a resource file, every resource is assigned a type, an ID number, 
and optionally a name. When calling a Resource Manager routine to 
access a resource, you specify the resource by passing its type and 
either its ID number or its name. This section gives some general 
information about resource specification. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



RESOURCE SPECIFICATION 9 

The resource ~ is a sequence of four characters. Its Pascal data 
type is: 

TYPE ResType = PACKED ARRAY [1 •• 4] OF CHAR; 

The standard resource types recognized by the Macintosh User Interface 
Toolbox are as follows: 

Resource type 
'CODE' 
'WIND' 
'WDEF' 
'MENU' 
'MDEF' 
'MBAR' 
'CNTL' 
'CDEF' 
'DLOG' 
'ALRT' 
'DITL' 
'ICON' 
'FONT' 
'FWID' 
'CURS' 
'PICT' 
'PAT ' 
'PATII' 
'STR ' 
'DRVR' 
'KEYC' 
'PACK' 
'ANYB' 

Meaning 
Application code segment 
Window template 
Window definition function 
Menu 
Menu definition procedure 
Menu bar 
Control template 
Control definition function 
Dialog template 
Alert template 
Item list in a dialog or alert 
Icon 
Font 
Font widths 
Cursor 
Picture 
Pattern (The space is required.) 
Pattern list 
String (The space is required.) 
Desk accessory or other I/O driver 
Keyboard configuration 
Package 
Any bytes 

In addition, the type 'DSAT' is reserved for system use. 

(eye) 
Uppercase and lowercase letters are distinguished in 
resource types. For example, 'Menu' will not be 
recognized as the resource type for menus. 

Notice that some of the resources listed above are "templates". A 
template is a list of parameters used to build a Toolbox object; it is 
not the object itself. For example, a window template contains 
information specifying the size and location of the window, its title, 
whether it's visible, and so on. The Window Manager uses this 
information to build the window in memory and then never accesses the 
templa te again. 

You can use any four-character sequence (except those listed above) for 
resource types specific to your application. 

Every resource has an ID number, or resource ID. The resource 10 must 
be unique within each resource type, but resources of different types 
may have the same 10. The standard resources in the system resource 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



10 Resource Manager Programmer's Guide 

file are usually numbered starting from~. The exact range of ID 
numbers reserved for system resources varies according to resource 
type. To be safe, if you want the ID numbers of your own resources not 
to conflict with those of the system resources, you should start 
numbering from at least 256 (or call a Resource Manager routine that 
will return an unused resource ID). 

(hand) 
For assembly-language programmers, the file ResEqu.Text 
contains predefined constants for the various resource 
types and for the ID numbers of standard resources. 

A resource may optionally have a resource~. Like the resource ID, 
the resource name must be unique within each type. When comparing 
resource names, The Resource Manager uses the standard Operating System 
string comparison routine, which doesn't distinguish between uppercase 
and lowercase and interprets diacritical marks in foreign names 
properly. 

RESOURCE REFERENCES 

The connection between a resource specification and the corresponding 
resource data is provided by the resource map, via resource references. 
As illustrated in Figure 4, there are two kinds of resource reference: 

- Local references, which. are. references to resources in this 
resource file. These point to the resource data in the file and 
contain a handle to the data if it's in memory. 

- System references, which are references to system resources. 
These provide a resource specification for the resource in the 
system resource file, which in turn leads to a local reference to 
the resource in that file. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



RESOURCE REFERENCES 11 

resou-ce 
specification rescx.rce 

specification 
for system 

resource map rescuce 

Appl icet iorl s resource fi Ie 
.-~----------------------------------------
System resource fi Ie 

resource 
specification 
for system 
resource resouace map 

Figure 4. Resource References in Resource Maps 

Every resource reference has its own type, ID number, and optional 
name. In the case of local references, the ID number and name are 
those of the resource itself. A system reference, on the other hand, 
may have its own ID number and name, different from those of the 
resource it refers to in the system resource file. 

Suppose you're accessing a resource for the first time. You pass a 
resource specification to the Resource Manager, which looks for a match 
among all the references in the resource map; if none is found, it 
looks at the references in the resource map of the next resource file 
to be searched. (Remember, it looks in the resource map in memory, not 
in the file.) Eventually it gets to a local reference to the resource, 
which tells it where the resource data is in the file. After reading 
the resource data into memory, the Resource Manager stores a handle to 
that data in the local reference (again, in the resource map in memory) 
and returns the handle so you can use it to refer to the resource in 
subsequent routine calls. 

Every resource reference also has certain resource attributes that 
determine how the resource should be dealt with. In the routine calls 
for setting or reading them, each attribute is specified by a-bit in 
the low-order byte of a word, as illustrated in Figure 5. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



12 Resource Manager Programmer's Guide 

r----~ 1 if system refereuce, 0 if local ref. euce 
r---~ 1 if read into syatem heap, 0 if appl ication heap 

---.... 1 if ptrgeable, 0 if not 

1 if locked, 0 if not 
...----~ 1 if protected, 0 if not 

~ 
1 if to be preloaded, 0 if not r 1 if to be "",iHen to re8OtJ'Ce fi I~ 0 if not 

I r 8Y8i1able for use by )'011' ewlicetlon 

...-..---r--r---"-""'-I -r-I --'-1--'1 
low-order byte 

(hi~ byte is i~ 

Figure 5. Resource Attributes 

The Resource Manager provides a predefined constant for each attribute, 
in which the bit corresponding to that attribute is set. 

(eye) 

CONST resSysRef = 
resSysHeap = 
resPurgeable 
resLocked = 
resProtected = 
res Preload 
resChanged 
resUser = 

128; 
64; 
32; 
16; 
8; 
4; 
2 ; 
1 ; 

{set if system reference} 
{set if read into system heap} 
{set if purgeable} 
{set if locked} 
{set if protected} 
{set if to be preloaded} 
{set if to be written· to resource file} 
{available for use by your application} 

Your application should not change the setting of the 
resSysRef attribute, nor should it set the resChanged 
attribute directly. (ResChanged is set as a side effect 
of the procedure you call to tell the Resource Manager 
that you've changed a resource.) 

Normally the resSysHeap attribute is set for all system resources; 
however, if the resource is too large for the system heap, this 
attribute will be 0, and the resource will be read into the application 
heap. 

Since a locked resource is neither relocatable nor purgeable, the 
resLocked attribute overrides the resPurgeable attribute; when 
resLocked is set, the resource will not be purgeable regardless of 
whether resPurgeable is set. 

If the resProtected attribute is set, the application can't use 
Resource Manager routines to do any of the following to the resource: 
set the ID number or name in the resource reference; remove the 
resource from the resource file; or remove the system reference to it, 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



RESOURCE REFERENCES 13 

if it's a system' resource. The routine that sets the resource 
attributes may be called, however, to remove the protection or just 
change some of the other attributes. 

The resPreload attribute tells the Resource Manager to read this 
resource into memory immediately after opening the resource file. This 
is useful, for example, if you immediately want to draw ten icons 
stored in the file; rather than read and draw each one individually in 
turn, you can have all of them read in ~hen the file is opened and just 
draw all ten. 

The resChanged attribute is used only while the resource map is in 
memory, and must be ~ in the resource file. It tells the Resource 
Manager whether this resource has been changed. 

'USING THE RESOURCE MANAGER 

This section discusses how the Resource Manager routines fit into the 
general flow of an application program and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

Resource Manager initialization happens automatically when the system 
starts up: the system resource file is opened and its resource map is 
read into memory. Your application's resource file is opened when the 
application starts up; you can call CurResFile to get its reference 
number. You can also call OpenResFile to open any resource file that 
you specify by name, and CloseResFile to close any resource file. A 
function named ResError lets you check for errors that may occur during 
execution of Resource Manager routines. 

(hand) 
These are the only routines you need to know about to use 
the Resource Manager indirectly through other Toolbox 
units; you can skip to their descriptions in the next 
section. 

Normally when you want to access a resource for the first time, you'll 
specify it by type and ID number (or type and name) in a call to 
GetResource (or GetNamedResource). In special situations, you may want 
to get every resource of each type. There are two routines which, used 
together, will tell you all the resource types that are in all open 
resource files: CountTypes and GetlndType. Similarly, CountResources 
and GetlndResource may be used to get all resources of a particular 
type. 

If you don't specify otherwise, GetResource, GetNamedResource, and 
GetlndResource read the resource data into memory and return a handle 
to it. Sometimes, however, you may not need the data to be in memory. 
You can use a procedure named SetResLoad to tell the Resource Manager 
not to read the resource data into memory when you get a resource; in 
this case, the handle returned for the resource will be an empty handle 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.2 



14 Programming Macintosh Applications in Assembly Language 

Many register-based routines return a 16-bit result code in the low
order half of register D0 to report successful completion or failure 
due to some error condition. A negative result code always signals an 
error of some kind; a code of 0 denotes successful completion. (Some 
routines also use D0 to return an actual data result. In these cases, 
any nonnegative value in the low-order half of the register represents 
a true result and implies successful completion of the routine.) The 
system errors file defines symbolic names for all result codes reported 
by the various OS routines. 

Just before returning from a register-based call, the Trap Dispatcher 
tests the low-order half of D0 with a TST.W instruction to set the 
processor's condition codes. You can then check for an error by 
branching directly on the condition codes, without any explicit test of 
your own: for example, 

_PurgeMem 
BMI Error 

;trap to routine 
;branch on error 

(warning) 

;no error--actual result 
; in low half of D0 

Not all register-based routines return a result code. 
Some leave the contents of D0 unchanged; others use the 
full 32 bits of the register to return a long-word 
result. See the documentation of individual routines for 
details. 

Stack-Based Calls 

To call a stack-based routine from assembly language, you have to set 
up the parameters on the stack in the same way the compiled object code 
would if your program were written in Pascal. The number and types of 
parameters expected on the. stack depend on the routine being called. 
The number of bytes each parameter occupies depends on its type: 

2/27/84 Chernicoff CONFIDENTIAL /INTRO/ASSEM.4 



USING THE RESOURCE MANAGER 15 

- CloseResFile, which updates the resource file before closing it. 

- UpdateResFile, which simply updates the resource file. 

- WriteResource, which writes the resource'data for a specified 
resource to the resource file. 

RESOURCE MANAGER ROUTINES 

This section describes all the Resource Manager procedures and 
functions. They are presented in their Pascal form; for information on 
using them from assembly language, see "Using the Toolbox from Assembly 
Language" *** for now, see "Using QuickDraw from Assembly Language" in 
the QuickDraw manual and also "Notes For Assembly-Language Programmers" 
in this manual ***. 

(hand) 
Assembly-language programmers: Except for LoadResource, 
all Resource Manager routines preserve all registers 
except A~ and~. LoadResource preserves A~ and ~ as 
well. 

Initializing the Resource Manager 

Although you don't call these initialization routines (because they're 
executed automatically for you), it's a good idea to familiarize 
yourself with what they do. 

FUNCTION InitResources : INTEGER; 

InitResources is called by the system when it starts up, and should not 
be called by the application. It initializes the Resource Manager, 
opens the system resource file, reads the resource map from the file 
into memory, and returns a reference number for the file. 

(hand) 
The application doesn't need the reference number for the 
system resource file, because every Resource Manager 
routine that has a reference number as a parameter 
interprets 0 to mean the system resource file. 

PROCEDURE RsrcZoneInit; 

RsrcZoneInit is called automatically when your application starts up, 
to initialize the resource map read from the system resource file; 
normally you'll have no need to call it directly. It "cleans up" after 
any resource access that may have been done by a previous application. 
First it closes all open resource files except the system resource 
file. Then, for every system resource that was read into the 

10/3/83 Rose CONFIDENTIAL IRMGR/RESOURCE.R 



16 Programming Macintosh Applications in Assembly Language 

Low memory 
..................................... .................................... 

(SP) ~ )ttttt:~ttrtttt[tItt 
Return address 

4(SP) ~I------------I 
Last parameter 

Low memory 

=:=:=:=:=:::=:::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
(SF') ~ ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Furtct i on resu I t 

F'rev i ous stacK contents 

High memory 

I 
I" 
I 

First parameter 
On return (functions) 

Function result (if any) 

Prey ious stack contents 
Low memory 

High memory 

=:=:=:::=:=:=:::=:=:=:=:=:=:=:=:=:=:::=:=:=:=:=:=:=:=:=:=:::::=:=:=:=:= 
(SP) ~ ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Prev i OIJS stack contents 

On entry High memor~( 

On return (procedures) 

Figure 5. Stack Format for Stack-Based Calls 

For example, the Window Manager function GrowWindow is defined in 
Pascal as follows: 

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; 
sizeRect: Rect) : LongInt; 

To call this function from assembly language, you'd write something 
like the following: 

SUBQ. L 114, SP 
MOVE.L theWindow,-(SP) 
MOVE.L startPt,-(SP) 

PEA sizeRect 

GrowWindow 
MOVE.L (SP)+,D3 

2/27/84 Chernicoff CONFIDENTIAL 

;make room for Longlnt result 
;push window pointer 
;a Point is a 4-byte record, 

so push actual contents 
;a Rect is an 8-byte record, 

so push a pOinter to it 
;trap to routine 
;pop result from stack 

/INTRO/ASSEM.4 



RESOURCE MANAGER ROUTINES 17 

- Updates the resource file by calling the UpdateResFile procedure 

- For each resource in the resource file, deallocates the memory it 
occupies by calling the ReleaseResource procedure 

- Deallocates the memory occupied by the resource map 

- Closes the resource file 

If there's no resource file open with the given reference number, 
CloseResFile will do nothing and the ResError function will return the 
error code resFNotFound. A refNum of ~ represents the system resource 
file, but if you ask to close this file, CloseResFile first closes all 
other open resource files. 

A CloseResFile of every open resource file except the system resource 
file is done automatically when the application terminates. So you 
only need to call CloseResFile if you want to close the system resource 
file, or if you want to close any resource file before the application 
terminates. 

Checking for Errors 

FUNCTION ResError : INTEGER; 

Called after one of the various Resource Manager routines that may 
result in an error condition, ResError identifies the error or returns 
~ if no error occurred. If an error occurred at the Operating System 
level, it returns one of the Operating System error codes, such as 
those for file I/O errors and the Memory Manager "out of memory" error. 
(See the Macintosh Operating System Reference Manual for the exact 
codes.) If an error happened at the Resource Manager level, ResError 
returns one of the following predefined error codes: 

CONST resNotFound -192; {resource not found} 
resFNotFound = -193; {resource file not found} 
addResFailed = -194; {AddResource failed} 
addRefFailed = -195; {AddReference failed} 
rmvResFailed = -196; {RmveResource failed} 
rmvRefFailed = -197; {RmveReference failed} 

Each routine description tells which errors may occur for that routine. 
You can also check for an error after system startup, which calls 
InitResources, and application startup, which opens the application's 
resource file. 

(hand) 
Assembly-language programmers can access the current 
value of ResError through the global variable resErr. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



18 Resource Manager Programmer's Guide 

Setting the Current Resource File 

FUNCTION Cur Res File : INTEGER 

CurResFile returns the reference number of the current resource file. 
You can call it when the application starts up to get the reference 
number of its resource file. 

(hand) 
Assembly-language programmers can access the reference 
number of the current resource file through the global 
variable curMap. 

o 

FUNCTION HomeResFile (theResource: Handle) : INTEGER; 

Given a handle to a resource, HomeResFile returns the reference number 
of the resource file containing that resource. If the given handle 
isn't a handle to a resource, HomeResFile will return -1 and the 
ResError function will return the error code resNotFound. 

PROCEDURE UseResFile (refNum: INTEGER); 

Given the reference number of a resource file, UseResFile sets the 
current resource file to that file. If there's no resource file open 
with the given reference number, UseResFile will do nothing and the 
ResError function will return the error code resFNotFound. A refNum of 
~ represents the system resource file. 

This procedure is useful for changing which reSQurce file is searched 
first. For example, if you no longer want to override a system 
resource with one by the same name in your application's resource file, 
you can call UseResFile(0) to make the search begin (and end) in the 
system resource file. 

Getting Resource Types 

FUNCTION CountTypes : INTEGER; 

CountTypes returns the number 0f resource types in all open resource 
files. 

PROCEDURE GetIndType (VAR theType: ResType; index: INTEGER); 

Given an index ranging from 1 to CountTypes (above), GetIndType returns 
a resource type in theType. Called repeatedly over the entire range 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



RESOURCE MANAGER ROUTINES 19 

for the index, it returns all the resource types in all open resource 
files. If the given index isn't in the range from 1 to CountTypes, 
GetIndType returns four NUL characters (ASCII code ~). 

Getting and Disposing of Resources 

PROCEDURE SetResLoad (load: BOOLEAN); 

Normally, the routines that return handles to resources read the 
resource data into memory if it's not already in memory. 
SetResLoad(FALSE) affects all those routines so that they will not read 
the resource data into memory and will return an empty handle. 
Resources whose resPreload attribute is set will still be read in, 
however, when a resource file is opened. SetResLoad(TRUE) restores the 
normal state. 

(eye) 

(hand) 

If you call SetResLoad(FALSE), be sure to restore the 
normal state as soon as p~ssible, because other Toolbox 
units that call the Resource Manager rely on it. 

Assembly-language programmers can access the current 
SetResLoad state (TRUE or FALSE) through the global 
variable resLoad. 

FUNCTION CountResources (theType: ResType) : INTEGER; 

CountResources returns the total number of resources of the given type 
in all open resource files. 

FUNCTION GetIndResource (theType: ResType; index: INTEGER) Handle; 

Given an index ranging from 1 to CountResources(theType), 
GetlndResource returns a handle to a resource of the given type (see 
CountResources, above). Called repeatedly over the entire range for 
the index, it returns handles to all resources of the given type in all 
open resource files. GetlndResource reads the resource data into 
memory if it's not already in memory, unless you've called 
SetResLoad(FALSE). 

(eye) 
The handle returned will be an empty handle if you've 
called SetResLoad(FALSE), or will become empty if the 
resource data for a purgeable resource is read in but 
later purged. (You can test for an empty handle with, 
for example, myHndl A = NIL.) To read in the data and 
make the handle no longer be empty, you can call 
LoadResource. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



20 Resource Manager Programmer's Guide 

GetIndResource returns handles for all resources in the most recently 
opened resource file first, and then for those in the resource files 
opened before it, in the reverse of the order that they were opened. 
If you want to find out how many resources of a given type are in a 
particular resource file, you can do so as follows: Call 
GetIndResource repeatedly with the index ranging from 1 to the number 
of resources of that type. Pass each handle returned by GetIndResource 
to HomeResFile and count all occurrences where the reference number 
returned is that of the desired file. Be sure to start the index from 
1, and to call SetResLoad(FALSE) so the resources won't be read in. 

(hand) 
The UseResFile procedure affects which file the Resource 
Manager searches first when looking for aO particular 
resource but not when getting indexed resources with 
Get IndResource. 

If the given index isn't in the range from 1 to 
CountResources(theType), GetIndResource returns NIL. It also returns 
NIL if the resource is to be read into memory but won't fit; in this 
case, the ResError function will return an appropriate Operating System 
error code. 

FUNCTION GetResource (theType: ResType; theID: INTEGER) : Handle; 

GetResource returns a handle to the resource having the given type and 
ID number, reading the resource 9ata into memory if it's not already in 
memory and if you haven't called SetResLoad(FALSE) (see the first note 
above for Get IndResource). GetResource looks in the current resource 
file and all resource files opened before it, in the reverse of the 
order that they were opened; the system resource file is searched last. 
If it doesn't find the resource, GetResource returns NIL. It also 
returns NIL if the resource is to be read into memory but won't fit; in 
this case, the ResError function will return an appropriate Operating 
System error code. 

FUNCTION GetNamedResource (theType: ResType; name: Str2SS) : Handle; 

GetNamedResource is the same as GetResource (above) except that you 
pass a resource name instead of an ID number. 

PROCEDURE LoadResource (theResource: Handle); 

Given a handle to a resource (returned by GetIndResource, GetResource, 
or GetNamedResource), LoadResource reads that resource into memory. It 
does nothing if the resource is already in memory or if the given 
handle isn't a handle to a resource; in the latter case, the ResError 
function will return the error code resNotFound. Call this procedure 
if you want to access the data for a resource through its handle and 
either you've called SetResLoad(FALSE) or the resource is purgeable. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



RESOURCE MANAGER ROUTINES 21 

If you've changed the resource data for a purgeable resource and the 
resource is purged before being written to the resource file, the 
changes will be lost; LoadResource will reread the original resource 
from the resource file. ::e the descriptions of ChangedResource and 
SetResPurge for information about how to ensure that changes made to 
purgeable resources will be written to the resource file. 

(hand) 
Assembly-language programmers: LoadResource preserves 
all registers. 

PROCEDURE ReleaseResource (theResource: Handle); 

Given a handle to a resource, ReleaseResource deal locates the memory 
occupied by the resource data, if any, and replaces the handle to that 
resource in the resource map with NIL. (See Figure 6.) The given 
handle will no longer be recognized as a handle to a resource; if the 
Resource Manager is subsequently called to get the released resource, a 
new handle will be allocated. Use this procedure only after you're 
completely through with a resource. 

TYPE myHndl: Handle; 
myHndl := 

GetResou-ce(type,ID); 

After 
AeleeseAesource(myHndl); 

resource map 

~ NIL -

resource map 

master pointer resou-ce data 
~ handle " H 

/ :'-

t mythjl 
I 

---------------------------------------------After 
Detachl'lesolwce(myl-hdl); 

resource map 

master pointer 
NIL 

resource data 

E myHndl 3 myHndl 

Figure 6. ReleaseResource and DetachResource 

If the given handle isn't a handle to a resource, ReleaseResource will 
do nothing and the ResError function will return the error code 
resNotFound. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



22 Resource Manager Programmer's Guide 

PROCEDURE DetachResource (theResource: Handle); 

Given a handle to a resource, DetachResource replaces the handle to 
that resource in the resource map with NIL. (See Figure 6.) The given 
handle will no longer be recognized as a handle to a resource; if the 
Resource Manager is subsequently called to get the detached resource, a 
new handle will be allocated. DetachResource is useful if you want the 
resource data to be accessed only by yourself through the given handle 
and not by the Resource Manager. It's also useful in the unusual case 
that you don't want a resource to be deallocated when a resource file 
is closed. 

If the given handle isn't a handle to a resource, DetachResource will 
do nothing and the ResError function will return the error code 
resNot Found. 

Getting Resource Information 

FUNCTION UniqueID (theType: ResType) : INTEGER; 

UniqueID returns an ID number greater than ~ that isn't currently 
assigned to any resource of the given type in any open resource file. 
Using this number when you add a new resource to a resource file 
ensures that it won't override an existing resource. 

PROCEDURE GetReslnfo (theResource: Handle; VAR theID: INTEGER; VAR 
theType: ResType; VAR name: Str255); 

Given a handle to a resource, GetReslnfo returns the ID number, type, 
and name of the resource. If the current resource file contains a 
system reference to the resource, it returns the ID number, type, and 
name of the system reference, which may be different from those of the 
resource itself in the system resource file. If the given handle isn't 
a handle to a resource, GetReslnfo will do nothing and the ResError 
function will return the error code resNotFound. 

FUNCTION GetResAttrs (theResource: Handle) : INTEGER; 

Given a handle to a resource, GetResAttrs returns the resource 
attributes for the resource. (Resource attributes are described 
earlier under "Resource References".) If the current resource file 
contains a system reference to the resource, GetResAttrs returns the 
attributes of the system reference, which. may be different from those 
of the resource itself in the system resource file. If the given 
handle isn't a handle to a resource, GetResAttrs will do nothing and 
the ResError function will return the error code resNotFound. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



RESOURCE MANAGER ROUTINES 23 

Modifying Resources 

Except for UpdateResFile and WriteResource, all the routines described 
below change the resource map in memory and not the resource file 
itself. 

PROCEDURE SetResInfo (theResource: Handle; theID: INTEGER; name: 
Str255) ; 

Given a handle to a resource, SetResInfo sets the ID number and name of 
the resource to the given ID number and name. If the current resource 
file contains a system reference to the resource, SetResInfo sets only 
the ID number and name of the system reference. 

(hand) 

(eye) 

Assembly-language programmers: If you pass NIL for the 
name parameter, the name will not be changed. 

If the resource is a system resource but the current 
resource file doesn't contain a reference to it, 
SetResInfo will s"et the ID number and name in the system 
resource file itself. This is a dangerous practice, 
because other applications may already access the 
resource and may not work properly if the ID number or 
name is changed. 

The change will be written to the resource file when the file is 
updated if you follow SetResInfo with a call to ChangedResource. 

(eye) 
Even if you don't call ChangedResource fQr this resource, 
the change may be written to the resource file when the 
file is updated. If you've ever called ChangedResource 
for any resource in the file, or if you've added or 
removed a resource or a resource reference, the Resource 
Manager will write out the entire resource map when it 
updates the file, so all changes made to resource 
information in the map will become permanent. If you 
want any of the changes to be temporary, you'll have to 
restore the original information before the file is 
updated. 

SetResInfo does nothing in the following cases: 

- The resProtected attribute for the resource is set. 

- The given handle isn't a handle to a resource. The ResError 
function will return the error code resNotFound. 

- The resource map becomes too large to fit in memory (which can 
happen if a name is passed) or sufficient space for the modified 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



24 Resource Manager Programmer's Guide 

resource file can't be reserved on the disk. ResError will return 
an appropriate Operating System error code. 

PROCEDURE SetResAttrs (theResource: Handle; attrs: INTEGER); 

Given a handle to a resource, SetResAttrs sets the resource attributes 
for the resource to attrs. (Resource attributes are described earlier 
under "Resource References".) If the current resource file contains a 
system reference to the resource, SetResAttrs sets only the attributes 
of the system reference. The resProtected attribute takes effect 
immediately; the others take effect the next time the resource is read 
in. 

(eye) 
Do not use SetResAttrs to set the resChanged attribute; 
you must call ChangedResource instead. Be sure that the 
attrs parameter passed to SetResAttrs doesn't change the 
current setting of this attribute. 

The attributes set with SetResAttrs will be written to the resource 
file when the file is updated if you follow SetResAttrs with a call to 
ChangedResource. However, even if you don't call ChangedResource for 
this resource, the change may be written to the'resource file when the 
file is updated. See the last warning for SetResInfo (above). 

If the given handle isn't a handle to a resource, SetResAttrs will do 
nothing and the ResError function will return the error code 
resNotFound. 

PROCEDURE ChangedResource (theResource: Handle); 

Call ChangedResource after changing either the information about a 
resource in the resource map (as described above under SetResInfo and 
SetResAttrs) or the resource data for a resource, if you want the 
change to be permanent. Given a handle to a resource, ChangedResource 
sets the resChanged attribute for the resource. This attribute tells 
the Resource Manager to do both of the following: 

- Write the resource data for the resource to the resource file when 
the file is updated or when WriteResource is called 

- Write the entire resource map to the resource file when the file 
is updated 

(eye) 
If you change information in the resource map with 
SetResInfo or SetResAttrs and then call ChangedResource, 
remember that not only the resource map but also the 
resource data will be written out when the resource file 
is updated. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



RESOURCE MANAGER ROUTINES 25 

To change the resource data for a purge able resource and make the 
change permanent, you have to take special precautions to ensure that 
the resource won't be purged while you're changing it. You can make 
the resource temporarily unpurgeable and then write it out with 
WriteResource before making it purgeable agafn. You have to use the 
Memory Manager routines HNoPurge and HPurge to make the resource 
unpurgeable and purgeable; SetResAttrs can't be used because it won't 
take effect immediately. For example: 

myHndl := GetResource( type, ID); 

HNoPurge(myHndl); 

ChangedResource(myHndl); 
WriteResource(myHndl); 

HPurge( myHndl); 

{or LoadResource(myHndl) if } 
{ you've gotten it previously} 
{make it unpurgeable} 
{make the changes here} 
{mark it changed} 
{write it out} 
{make it purgeable again} 

Or, instead of calling WriteResource to write the data out immediately, 
you can call SetResPurge(TRUE) before making any changes to purgeable 
resource data. 

ChangedResource does nothing in the following cases: 

- The given handle isn't a handle to a resource. The ResError 
function will return the error code resNotFound. 

- Sufficient space for the modified resource file can't be reserved 
on the disk. ResError will. return an appropriate Operating System 
error code. 

PROCEDURE AddResource (theData: Handle; theType: ResType; theID: 
INTEGER; name: Str255); 

Given a handle to data in memory (not a handle to an existing 
resource), AddResource adds to the current resource file a local 
reference that points to the data. It sets the resChanged attribute 
for the resource, so the data will be written to the resource file when 
the file is updated or when WriteResource is called. If the given 
handle is empty, zero-length resource data will be written. 
AddResource does nothing in the following cases: 

- The given handle is NIL or is already a handle to an existing 
resource. The ResError function will return the error code 
addResFailed. 

- The resource map becomes too large to fit in memory or sufficient 
space for the modified resource file. can't be reserved on the 
disk. ResError will return an appropriate Operating System error 
code. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



26 Resource Manager Programmer's Guide 

PROCEDURE RmveResource (theResource: Handle); 

Given a handle to a resource in the current resource file, RmveResource 
removes the local reference to the resource. The resource data will be 
removed from the resource file when the file is updated. 

(hand) 
It doesn't deallocate the memory occupied by the resource 
data; to do that, call the Memory Manager routine 
DisposeHandle after calling RmveResource. 

If the resProtected attribute for the resource is set or if the given 
handle isn't a handle to a resource in the current resource file, 
RmveResource will do nothing and the ResError function will return the 
error code rmvResFailed. 

(eye) 
It's dangerous to remove a resource from the system 
resource file, because all system references to it will 
become invalid. 

PROCEDURE AddReference (theResource: Handle; theID: INTEGER; name: 
Str2SS) ; 

Given a handle to a system resource, AddReference adds to the current 
resource file a system reference to the resource, giving it the ID 
number and name specified by the parameters. It sets the resChanged 
attribute for the resource, so the reference will be written to the 
resource file when the file is updated. AddReference does nothing in 
the following cases: 

- The current resource file is the system resource file or already 
contains a system reference to the specified resource, or the 
given handle isn't a handle to a system resource. The ResError 
function will return the error code addRefFailed. 

- The resource map becomes too large to fit in memory or sufficient 
space for the modified resource file can't be reserved on the 
disk. ResError will return an appropriate Operating System error 
code. 

PROCEDURE RmveReference (theResource: Handle); 

Given a handle to a system resource, RmveReference removes the system 
reference to the resource from the current resource file. (The 
reference will be removed from the resource file when the file is 
updated.) In the following cases, RmveReference will do nothing and 
the ResError function will return the error code rmvRefFailed: the 
resProtected attribute for the resource is set; there's no system 
reference to the resource in the current resource file; or the given 
handle isn't a handle to a system resource. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



RESOURCE MANAGER ROUTINES 27 

PROCEDURE UpdateResFile (refNum: INTEGER); 

Given the reference number of a resource file, UpdateResFile does the 
following: 

- Changes, adds, or removes resource data in the file as appropriate 
to match the map. Remember that changed resource data is written 
out only if you called ChangedResource. If a resource whose data 
is to be written out has been purged, zero-length resource data 
will be written. 

- Compacts the resource file if necessary, closing up any empty 
space created when a resource or a resource reference was removed 
or when a resource was made larger. (If the size of a changed 
resource is greater than its original size in the resource file, 
it's written at the end of the file rather than at its original 
location, leaving empty space at that location. UpdateResFile 
doesn't close up any empty space created when a resource is made 
smaller.) 

- Writes out the resource map of the resource file, if you ever 
called ChangedResource for any resource in the file or if you 
added or removed a resource or a resource reference. All changes 
to resource information in the map will become permanent as a 
result of this, so if you want any such changes to be temporary, 
you must restore the original information before calling 
UpdateResFile. 

If there's no open resource file with the given reference number, 
UpdateResFile will do nothing and the ResError function will return the 
error code resFNotFound. A refNum of ~ represents the system resource 
file. 

The CloseResFile procedure calls UpdateResFile before it closes the 
resource file, so you only need to call UpdateResFile yourself if you 
want to update the file without closing it. 

PROCEDURE WriteResource (theResource: Handle); 

Given a handle to a resource, WriteResource checks the resChanged 
attribute for that resource and, if it's set (which it will be if· you 
called ChangedResource or AddResource), writes its resource data to the 
resource file and clears its resChanged attribute. If the resource is 
purgeable and has been purged, zero-length resource data will be 
written. WriteResource does nothing if the resProtected attribute for 
the resource is set or if the given handle isn't a handle to a 
resource; in the latter case, the ResError function will return the 
error code resNotFound. 

Since the resource file is updated when the application terminates or 
when you call UpdateResFile (or CloseResFile, which calls 
UpdateResFile), you only need to call WriteResource if you want to 
write out just one or a few resources immediately. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.R 



28 Resource Manager Programmer's Guide 

PROCEDURE SetResPurge (install: BOOLEAN); 

SetResPurge(TRUE) sets a "hook" in the Memory Manager such that before 
purging data specified by a handle, the Memory Manager will first pass 
the handle to the Resource Manager. The Resource Manager will 
determine whether the handle is that of a resource in the application 
heap and, if so, will call WriteResource to write the resource data for 
that resource to the resource file if its resChanged attribute is set 
(see ChangedResource and WriteResource above). SetResPurge(FALSE) 
restores the normal state, clearing the hook so that the Memory Manager 
will once again purge without checking with the Resource Manager. 

SetResPurge(TRUE) is useful in applications that modify purgeable 
resources. You still have to make the resources temporarily 
unpurgeable while making the changes,as shown in the description of 
ChangedResource, but you can set the purge hook instead of writing the 
data out immediately with WriteResource. Notice that you won't know 
exactly when the resources are being written out; most applications 
will want more control than this. If you wish, you can set your own 
such hook. 

Advanced Routines 

The routines described below allow advanced programmers to have even 
greater control over resource file operations. Just as individual 
resources have attributes, an entire resource file also has attributes, 
which these routines manipulate. Like the attributes of individual 
resources, resource file attributes are specified by bits in the 
low-order byte of a word. The Resource Manager provides a predefined 
constant for each attribute, in which the bit corresponding to that 
attribute is set. 

CONST mapReadOnly 
mapCompact 
map Changed 

= 128; 
= 64; 
= 32; 

When the mapReadOnly attribute is set, the Resource Manager will 
neither write anything to the resource file nor check whether there's 
sufficient space for the file on the disk when the resource map is 
modified. 

(eye) 
If you set mapReadOnly but then later clear it, the 
resource file will be written even if there's no room for 
it on the disk. This would destroy the file. 

The mapCompact attribute causes resource file compaction to occur when 
the file is updated. It's set by the Resource Manager when a resource 
or a resource reference is removed, or when a resource is made larger 
and thus has to be written at the end of the resource file. You may 
want to set mapCompact to force compaction when you've only made 
resources smaller. 

10/3/83 Rose CONFIDENTIAL -/RMGR/RESOURCE. R 



RESOURCE MANAGER ROUTINES 29 

The mapChanged attribute causes the resource map to be written to the 
resource file when the file is updated. It's set by the Resource 
Manager when you call ChangedResource or when you add or remove a 
resource or a resource reference. You can set mapChanged if, for 
example, you've changed resource attributes only and don't want to call 
ChangedResource because you don't want the resource data to be written 
out. 

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER; 

Given the reference number of a resource file, GetResFileAttrs returns 
the resource file attributes for the file. If there's no resource file 
with the given reference number, GetResFileAttrs will do nothing and 
the ResError function will return the error code resFNotFound. A 
refNum of ~ represents the system reference file. 

PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER); 

Given the reference number of a resource file, SetResFileAttrs sets the 
resource file attributes of the ~ile to attrs. If there's no resource 
file with the given reference number, SetResFileAttrs will do nothing 
and the ResError function will return the error code resFNotFound. A 
refNum of ~ represents the system reference file, but you shouldn't 
change its resource file attributes. 

RESOURCES WITHIN RESOURCES 

Resources may point to other resources; this section discusses how this 
is normally done, for programmers who are interested in background 
information about resources or who are defining their own resource 
types. 

In a resource file, one resource points to another with the ID number 
of the other resource. For example, the resource data for a menu 
includes the ID number of the menu's definition procedure (a~separate 
resource that determines how the menu looks and behaves). To work with 
the resource data in memory, however, it's faster and more convenient 
to have a handle to the other resource rather than its ID number. 
Since a handle occupies two words, the ID number in the resource file 
is followed by a word containing ~; these two words together serve as a 
placeholder for the handle. Once the other resource has been read into 
memory, these two words can be replaced by a handle to it. (See Figure 
7.) 

10/)/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F 



30 Resource Manager Programmer's Guide 

(hand) 

pleceholder { 
for handle 

Application's resot..rce f;'e 

~handle 

menu 

10 
0 

menu 

\.I '. 

.... ,. · · 
.oil' · 411' 

meoo definition 
procedure 

I 

• 
master 
pointer 

.... · , 

· 
/ · .,.,. 

menu definition 
procedln 

Figure 7. How Resources Point to Resources 

The practice of using the ID number followed by ~ as a 
placeholder is simply a convention. If you like, you can 
set up your own resources. to have the ID number followed 
by a dummy word, or even a word of useful information, or 
you can put the ID in the second rather than the first 
word of the placeholder. 

In the case of menus, the Menu Manager routine GetMenu calls the 
Resource Manager to read the menu and the menu definition procedure 
into memory, and then replaces the placeholder in the menu with the 
handle to the procedure. There may be other cases where you call the 
Resource Manager directly and store the handle in the placeholder 
yourself. It might be useful in these cases to call HomeResFile to 
learn which resource file the original resource is located in, and 
then, before getting the resource it points to, call UseResFile to set 
the current resource file to that file. This will ensure that the 
resource pOinted to is read from that same file (rather than one that 
was opened after it). 

(eye) 
If you modify a resource that points to another resource 
and you make the change permanent by calling 
ChangedResource, be sure you reverse the process 
described here, restoring the other resource's ID number 
in the placeholder. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F 



FORMAT OF A RESOURCE FILE 31 

FORMAT OF A RESOURCE FILE 

This section gives the exact format of a resource file, which you need 
to know if you're writing a program that will create or modify resource 
files directly. You don't have to know the exact format to be able to 
use the Resource Manager routines. 

.. 
AesotJtce header 

(16 bytes) 

Copy of directory entry 
(112 bytes) ~ 

lJIer dele 
(128 bytes) 

I-

~' AesotJtce data .' 

l AesotJtce map .. ' 

Figure 8. Format of a Resource File 

As illustrated in Figure 8, every resource file begins with a resource 
header. The resource header gives the offsets to and lengths of the 
resource data and resource map parts of the file, as follows: 

(hand) 

Number of bytes 
4 bytes 

4 bytes 

4 bytes 
4 bytes 

Contents 
Offset from beginning of resource file 
to resource data 
Offset from beginning of resource file 
to resource map 
Length of resource data 
Length of resource map 

All offsets and lengths in the resource file are given in 
bytes. 

This is what immediately follows the. resource header: 

Number of bytes 
112 bytes 
128 bytes 

Contents 
Partial copy of directory entry for· this file 
Available for user data 

The directory copy is used by the Finder. The user data may be 
whatever the you want. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F 



32 Resource Manager Programmer's Guide 

The resource data follows the user data. It consists of the following 
for each resource in the file: 

Number of bytes 
For each resource: 

4 bytes 
n bytes 

Contents 

Length of following resource data 
Resource data for this resource 

To learn exactly what the resource data is for a standard type of 
resource. see the documentation on the Toolbox unit that deals with 
that resource type. 

After the resource data. the resource map begins as follows: 

Number of bytes 
16 bytes 
4 bytes 

2 bytes 
2 bytes 
2 bytes 

2 bytes 

Contents 
~ (reserved for copy of resource header) 
~ (reserved for handle to next resource map 
to be searched) 
~ (reserved for file reference number) 
Resource file attributes 
Offset from beginning of resource map 
to type list (see below) 
Offset from beginning of resource map 
to resource name list (see below) 

After reading the resource map into memory, the Resource Manager stores 
the indicated information in the reserved areas at the beginning of the 
map. 

The resource map continues with a type list, reference lists. and a 
resource name list. The type list contains the following: 

Number of bytes 
2 bytes 
For each type: 

4 bytes 
2 bytes 

2 bytes 

Contents 
Number of resource types in the map minus 1 

Resource type 
Number of resources of this type in the map 
minus 1 
Offset from beginning of type lfst 
to reference list for resources of this type 

This is followed by the reference list for each type of resource, which 
contains the resource references for all resources of that type. The 
reference lists are contiguous and in the same order as the types in 
the type list. The format of a reference list is as follows: 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F 



Number of- bytes 
For each reference 
of this type: 

2 bytes 
2 bytes 

1 byte 
3 bytes 

4 bytes 

FORMAT OF A RESOURCE FILE 33 

Contents 

Resource ID 
Offset from beginning of resource name list 
to length of resource name, or -1 if none 
Resource attributes 
If local reference, offset from beginning 
of resource data to length of data for this 
resource 
If system reference, ~ (ignored) 
If local reference, ~ (reserved for handle 
to resource) 
If system reference, resource specification 
for system resource: in high-order word, 
resource ID; in low-order word, offset from 
beginning of resource name list to length 
of resource name, or -1 if none 

The resource name list follows the reference list and has this format: 

Number of bytes 
For each name: 

1 byte 
n bytes 

Contents 

Length of following resource name 
Characters of resource name 

Figure 9 on the following page shows where the various offsets lead to 
in a resource file, in general and also specifically for a local 
reference. 

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 

*** This will be moved to a separate chapter of the final comprehensive 
manual. For now, see the QuickDraw manual for complete information 
about how to use the User Interface Toolbox from assembly language. 

*** 
The primary aid to assembly-language programmers is a file named 
ToolEqu.Text. If you use .INCLUDE to include this file when you 
assemble your program, all the Resource Manager constants and locations 
of system globals will be available in symbolic form. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F. 



34 Resource Manager Programmer's Guide 

Aeso..rce 
Deta 

offset to rescuce data 
offset to resou-ce map 

} 

Type 
list 

Reference 
lists 
(local reference 
shown) 

Resolrce 
name list 

Figure 9. Local Reference in a Resource File 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.F 



SUMMARY OF THE RESOURCE MANAGER 35 

SUMMARY OF THE RESOURCE MANAGER 

CONST resSysRef =- 128; {set if system reference} 
resSysHeap = 64; {set if read into'system heap} 
resPurgeable = 32; {set if purgeable} 
resLocked =- 16; {set if locked} 
resProtected = 8; {set if protected} 
res Preload = 4; {set if to be preloaded} 
resChanged = 2; {set if to be written to resource file} 
resUser = 1; {available for use by your application} 

resNotFound = -192; {resource not found} 
resFNotFound = -193; {resource file not found} 
addResFailed = -194 ; {AddResource failed} 
addRefFailed = -195 ; {AddReference failed} 
rmvResFailed = -196 ; {RmveResource failed} 
rmvRefFailed = -197; {RmveReference failed} 

mapReadOnly = 128; 
mapCompact = 64; 
map Changed = 32; 

TYPE ResType = PACKED ARRAY [1 •• 4] OF CHAR; 

Initializing the Resource Manager 

FUNCTION InitResources 
PROCEDURE RsrcZoneInit; 

INTEGER; 

Opening and Closing Resource Files 

PROCEDURE CreateResFile (filename: Str25S); 
FUNCTION OpenResFile (fileName: Str255) INTEGER; 
PROCEDURE CloseResFile (refNum: INTEGER); 

Checking for Errors 

FUNCTION ResError : INTEGER; 

Setting the Current Resource File 

FUNCTION CurResFile : INTEGER; 
FUNCTION HomeResFile (theResource: Handle) 
PROCEDURE UseResFile (refNum: INTEGER); 

10/3/83 Rose CONFIDENTIAL 

INTEGER; 

/RMGR/RESOURCE.S 



36 Resource Manager Programmer's Guide 

Getting Resource TYpes 

FUNCTION CountTypes 
PROCEDURE GetIndType 

INTEGER; 
(VAR theType: ResType; index: INTEGER); 

Getting and Disposing of Resources 

PROCEDURE SetResLoad 
FUNCTION CountResources 
FUNCTION GetIndResource 
FUNCTION GetResource 
FUNCTION GetNamedResource 
PROCEDURE LoadResource 
PROCEDURE ReleaseResource 
PROCEDURE DetachResource 

(load: BOOLEAN); 
(theType: ResType) : INTEGER; 
(theType: ResType; index: INTEGER) : Handle; 
(theType: ResType; theID: INTEGER) : Handle; 
(theType: ResType; name: Str255) : Handle; 
(theResource: Handle); 
(theResource: Handle); 
(theResource: Handle)j 

Getting Resource Information 

FUNCTION UniqueID (theType: R~sType) : INTEGER; 
PROCEDURE GetResInfo (theResource: Handle; VAR theID: INTEGER; VAR 

theType: ResType; VAR name: Str255)j 
FUNCTION GetResAttrs (theResource: Handle) : INTEGER; 

Modifying Resources 

PROCEDURE SetResInfo 

PROCEDURE SetResAttrs 
PROCEDURE ChangedResource 
PROCEDURE AddResource 

PROCEDURE RmveResource 
PROCEDURE AddReference 

PROCEDURE RmveReference 
PROCEDURE UpdateResFile 
PROCEDURE WriteResource 
PROCEDURE SetResPurge 

Advanced Routines 

(theResource: Handle; theID: INTEGER; name: 
Str255); 

(theResource: Handle; attrs: INTEGER); 
(theResource: Handle); 
(theData: Handle; theType: ResType; theID: 

INTEGER; name: Str255); 
(theResource: Handle); 
(theResource: Handle; theID: INTEGER; name: 
Str255); 

(theResource: Handle); 
(refNum: INTEGER); 
(theResource: Handle); 
(install: BOOLEAN); 

FUNCTION GetResFileAttrs (refNum: INTEGER) : INTEGER; 
PROCEDURE SetResFileAttrs (refNum: INTEGER; attrs: INTEGER); 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.S 



SUMMARY OF THE RESOURCE FILE FORMAT 37 

SUMMARY OF THE RESOURCE FILE FORMAT 

(hand) 
All offsets and lengths are given in bytes. 

Resource 
Header 
and other 
data 

Resource 
Data 

Resource 
Map 

Type list 

Reference 
lists (one 
per type, 
contiguous, 
same order 
as in type 
list) 

Resource 
name list 

10/3/83 Rose 

4 bytes 
4 bytes 
4 bytes 
4 bytes 

112 bytes 
128 bytes 

For each resource: 
4 bytes 
n bytes 

16 bytes 
4 bytes 

2 bytes 
2 bytes 
2 bytes 
2 bytes 

2 bytes 
For each type: 

4 bytes 
2 bytes 
2 bytes 

For each reference 
of this type: 

2 bytes 
2 bytes 

1 byte 
3 bytes 

4 bytes 

For each name: 
1 byte 
n bytes 

Offset to resource data 
Offset to resource map 
Length of resource data 
Length of resource map 
Partial copy of file's directory 
User data 

Length of following resource data 
Resource data for this resource 

entry 

Reserved for copy of resource header 
Reserved for handle to next resource map 
to be searched 
Reserved for file reference number 
Resource file attributes 
Offset to type list 
Offset to resource name list 

Number of resource types minus 1 

Resource type 
Number of resources of this type minus 1 
Offset to reference list for this type 

Resource ID 
Offset to length of resource name or -1 
if none 
Resource attributes 
If local reference, offset to length of 
resource data 
If system reference, 0 
If local, reserved for handle to resource 
If system, resource specification for 
system resource: in high-order word, 
resour~e ID; in low-order word, offset to 
length of resource name or -1 if none 

Length of following resource name 
Characters of resource name 

CONFIDENTIAL /RMGR/RESOURCE.S 



38 Resource Manager Programmer's Guide 

GLOSSARY 

current resource file: The last resource file opened, unless you 
specify otherwise with a Resource Manager routine. 

empty handle: A pOinter to a NIL master pOinter. 

local reference: A resource reference to a resource in the same file 
as the reference. It points to the resource data in the file and 
contains a handle to the data if it's in memory. 

purgeable: Able to be removed from the heap (purged) when space is 
required by the Memory Manager. 

reference number: A number greater than ~, returned when a file is 
opened, by which you can refer to that file. In Resource Manager 
routines that expect a reference number, ~ represents the system 
resource file. 

resource: Data or code stored in a resource file and managed by the 
Resource Manager. 

resource attribute: One of several characteristics, specified by bits 
in a resource reference, that determine how the resource should be 
dealt with. 

resource data: In a resource file, the data that comprises a resource. 

resource file: The resource fork of a file, which contains data used 
by the application (such as menus, fonts, and icons) and also the 
application code itself. 

resource header: At the beginning of a resource file, data that gives 
the offsets to and lengths of the resource data and resource map. 

resource ID: A number that, together with the resource type, 
identifies a resource in a resource file. Every resource has an ID 
number. 

resource map: In a resource file, data that is read into memory when 
the file is opened and that, given a resource specification, leads to 
the corresponding resource data. 

resource name: A string that, together with the resource type, 
identifies a resource in a resource file. A resource mayor may not 
have a name. 

resource reference: In a resource map, a local reference leading to 
resource data in the same file as the reference, or a system reference 
leading to data in the system resource file. 

resource specification: A resource type and either a resource ID or a 
resource name. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.G 



GLOSSARY 39 

resource type: The type of a resource in a resource file, designated 
by a sequence of four characters (such as 'MENU' for a menu). 

system reference: In an application's resource file, a resource 
reference to a system resource. It provides a resource specification 
for the resource in the system resource file. 

system resource: A resource in the system resource file. 

system resource file: A resource file containing standard resources, 
accessed if a requested resource wasn't found in any of the other 
resource files that were searched. 

10/3/83 Rose CONFIDENTIAL /RMGR/RESOURCE.G 



COMME:NTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately, 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH PUBLICATIONS 

QuickOraw: A Programmer's Guide /QUICK/QUIKDRAW 

See Also: Macintosh User Interface Guidelines 
Macintosh Operating System Reference Manual 
The Window Manager: A Programmer's Guide 

Modification History: First Draft C. Espinosa 
Revised and Edited C. Espinosa 
Revised and Edited C. Rose 
Errata Added C. Rose 
Revised C. Rose 
Revised for ROM 2.1 C. Rose 

11/27/81 
2/15/82 
8/16/82 
8/19/82 

11/15/82 
3/2/83 

ABSTRACT 

This document describes the QuickDraw graphics package, heart of the 
Macintosh User Interface Toolbox routines. It describes the conceptual 
and physical data types used by QuickDraw and gives details of the 
procedures and functions available in QuickDraw. 

Summary of significant changes and additions since last version: 

- "Font" no longer includes type size. There is a new grafPort 
field (txSize) and a procedure (Text Size) for specifying the size 
(pages 25, 43). Some other grafPort fields were reordered and 
some global variables were moved to the grafPort (page 18). 

- The character style data type was renamed Style and now includes 
two new variations, condense and extend (page 23). 

- You can set up your application now to produce color output when 
devices supporting it are available in the future (pages 30, 45). 

- The Polygon data type was changed (page 33), and the PolyNext 
procedure was removed. 

- There are two new grafPort routines, InitPort and ClosePort (pages 
35, 36), and three new calculation routines, EqualRect and 
EmptyRect (page 48) and EqualPt (page 65). 

- XferRgn and XferRect were removed; use CopyBits, PaintRgn, 
FillRgn, PaintRect, or FillRect. CursorVis was also removed; use 
HideCursor or ShowCursor. 

- A section on customizing QuickOraw operations was added (page 70). 



2 QuickDraw Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About QuickDraw 
5 How To Use QuickDraw 
6 The Mathematical Foundation of QuickDraw 
6 The Coordinate Plane 
7 Points 
8 Rectangles 
9 Regions 
11 Graphic Entities 
12 The Bit Image 
13 The BitMap 
15 Patterns 
15 Cursors 
17 The Drawing Environment: GrafPort 
21 Pen Characteristics 
22 Text Characteristics 
25 Coordinates in GrafPorts 
27 General Discussion of Drawing 
29 Transfer Modes 
3~ Drawing in Color 
31 Pictures and Polygons 
31 Pictures 
32 Polygons 
34 QuickDraw Routines 
34 GrafPort Routines 
39 Cursor-Handling Routines 
4~ Pen and Line-Drawing Routines 
43 Text-Drawing Routines 
45 Drawing in Color 
46 Calculations with Rectangles 
49 Graphic Operations on Rectangles 
5~ Graphic Operations on Ovals 
51 Graphic Operations on Rounded-Corner Rectangles 
52 Graphic Operations on Arcs and Wedges 
54 Calculations with Regions 
58 Graphic Operations on Regions 
59 Bit Transfer Operations 
61 Pictures 
62 Calculations with Polygons 
64 Graphic Operations on Polygons 
65 Calculations with Points 
67 Miscellaneous Utilities 
7~ Customizing QuickDraw Operations 
73 Using QuickDraw from Assembly Language 
78 Summary of QuickDraw 
87 Glossary 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes QuickDraw, a set of graphics procedures, 
functions, and data types that allow a Pascal or assembly-language 
programmer of Macintosh to perform highly complex graphic operations 
very easily and very quickly. It covers the graphic concepts behind 
QuickDraw, as well as the technical details of the data types, 
procedures, and functions you will use in your programs. 

( hand) 
This manual describes version 2.1 of the ROM. In earlier 
versions, QuickDraw may not work as discussed here. 

We assume that you are familiar with the Macintosh User Interface 
Guidelines, Lisa Pascal, and the Macintosh Operating System's memory 
management. This graphics package is for programmers, not end users. 
Although QuickDraw may be used from either Pascal or assembly language, 
this manual gives all examples in their Pascal form, to be clear, 
concise, and more intuitive; a section near the end describes the 
details of the assembly-language interface to QuickDraw. 

The manual begins with an introduction to QuickDraw and what you can do 
with it. It then steps back a little and looks at the mathematical 
concepts that form the foundation for QuickDraw: coordinate planes, 
points, and rectangles. Once you understand these concepts, read on 
about the graphic entities based on those concepts -- how the 
mathematical world of planes and rectangles is translated into the 
physical phenomena of light and shadow. 

Then comes some discussion of how to use several graphics ports, a 
summary of the basic drawing process, and a discussion of two more 
parts of QuickDraw, pictures and polygons. 

Next, there's the detailed description of all QuickDraw procedures and 
functions, their parameters, calling protocol, effects, side effects, 
and so on -- all the technical information you'll need each time you 
write a program for Macintosh. 

Following these descriptions are sections that will not be of interest 
to all readers. Special information is given for programmers who want 
to customize QuickDraw operations by overriding the standard drawing 
procedures, and for those who will be using QuickDraw from assembly 
language. 

Finally, there's a summary of the QuickDraw data structures and routine 
calls, for quick reference, and a glossary that explains terms that may 
be unfamiliar to you. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



4 QuickDraw Programmer's Guide 

ABOUT QUICKDRAW 

QuickDraw allows you to divide the Macintosh screen into a number of 
individual areas. Within each area you can draw many things, as 
illustrated in Figure 1. 

Text 
Bold 
Ifalic: 
Underline 
@lmlUUffi't,;l 
~ 

F~oundP.ects 

(-· ... ·0 
. J "--_." 

Figure 1. 

You can draw: 

Lines P-.eetangles ()\fals 

\'~~): ....... ~ ... 0-··· -..... .. 

P.egions Pnl t •Tonr-l') 
- oJ~ 0- .. 

c?c:PGa 
Q;P' ••••• ~. '.0"'.· •••• 0-.... 

,l ,. ," 
'., . 

Samples of QuickDraw's Abilities 

- Text characters in a number of proportionally-spaced fonts, with 
variations that include boldfacing, italicizing, underlining, and 
outlining. 

- Straight lines of any length and width. 

- A variety of shapes, either solid or hollow, including: 
rectangles, with or without rounded corners; full circles and 
ovals or wedge-shaped sections; and polygons. 

- Any other arbitrary shape or collection of shapes, again either 
solid or hollow. 

- A picture consisting of any combination of the above items, with 
just a single procedure call. 

In addition, QuickDraw has some other abilities that you won't find in 
many other graphics packages. These abilities take care of most of the 
"housekeeping" -- the trivial but time-consuming and bothersome 
overhead that's necessary to keep things in order. 

- The ability to define many distinct "ports" on the screen, each 
with its own complete drawing environment-- its own coordinate 
system, drawing location, character set, location on the screen, 
and so on. You can easily switch from one such port to another. 

3/2/83 'Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



ABOUT QUICKDRAW 5 

Full and complete "clipping" to arbi trary areas, so that drawing 
will occur only where you want. It's like a super-duper coloring 
book that won't let you color outside the lines. You don't have 
to worry about accidentally drawing over something else on the 
screen, or drawing off the screen and destroying memory. 

- Off-screen drawing. Anything you can draw on the screen, you can 
draw into an off-screen buffer, so you can prepare an image for an 
output device without disturbing the screen, or you can prepare a 
picture and move it onto the screen very quickly. 

And QuickDraw lives up to its name! It's very fast. The speed and 
responsiveness of the Macintosh user interface is due primarily to the 
speed of the QuickDraw package. You can do good-quality animation, 
fast interactive graphics, and complex yet speedy text displays using 
the full features of QuickDraw. This means you don't have to bypass 
the general-purpose QuickDraw routines by writing a lot of special 
routines to improve speed. 

How To Use QuickDraw 

QuickDraw can be used from either Pascal or MC68000 machine language. 
It has no user interface of its own; you must write and compile (or 
assemble) a Pascal (or assembly-language) program that includes the 
proper QuickDraw calls, link the resulting object code with the 
QuickDraw code, and execute the linked object file. 

Some programming models are available through your Macintosh software 
coordinator; they show the structure of a properly organized QuickDraw 
program. What's best for beginners is to obtain a machine-readable 
version of the text of one of these programs, read through the text, 
and, using the superstructure of the program as a "shell", modify it to 
suit your own purposes. Once you get the hang of writing programs 
inside the presupplied shell, you can work on changing the shell 
itself. 

QuickDraw is stored permanently in the ROM memory. All access is made 
through an indirection table in low RAM. When you write a program that 
uses QuickDraw, you link it with this indirection table. Each time you 
call a QuickDraw procedure or function, or load a predefined constant, 
the request goes through the table into QuickDraw. You'll never access 
any QuickDraw address directly, nor will you have to code constant 
addresses into your program. The linker will make sure all address 
references get straightened out. 

QuickDraw is an independent unit; it doesn't use any other units, not 
even HeapZone (the Pascal interface to the Operating System's memory 
management routines). This means it cannot use the data types Ptr and 
Handle, because they are defined in HeapZone. Instead, QuickDraw 
defines two data types that are equivalent to Ptr and Handle, QDPtr and 
QDHandle. 

3/2/83 'Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



6 QuickDraw Programmer's Guide 

TYPE QDByte 
QDPtr 
QDHandle 

= -128 •. 127; 
= .... QDByte; 
= .... QDPtr; 

QuickDraw includes only the graphics and utility procedures and 
functions you'll need to create graphics on the screen. Keyboard 
input, mouse input, and larger user-interface constructs such as 
windows and menus are implemented in separate packages that use 
QuickDraw but are linked in as separate units. You don't need these 
units in order to use QuickDraw; however, you'll probably want to read 
the documentation for windows and menus and learn how to use them with 
your Macintosh programs. 

THE MATHEMATICAL FOUNDATION OF QUICKDRAW 

To create graphics that are both precise and pretty requires not 
supercharged features but a firm mathematical foundation for the 
features you have. If the mathematics that underlie a graphics package 
are imprecise or fuzzy, the graphics will be, too. QuickDraw defines 
some clear mathematical constructs that are widely used in its 
procedures, functions, and data types: the coordinate plane, the 
point, the rectangle, and the region. 

The Coordinate Plane 

All information about location, placement, or movement that you give to 
QuickDraw is in terms of coordinates on a plane. The coordinate plane 
is a two-dimensional grid, as illustrated in Figure 2. 

-32.'7613.; 
t 

Figure 2. The Coordinate Plane 

There are two distinctive features of the QuickDraw coordinate plane: 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



THE MATHEMATICAL FOUNDATION OF QUICKDRAW 7 

- All grid coordinates are integers. 

- All grid lines are infinitely thin. 

These concepts are important! First, they mean that the QuickDraw 
plane is finite, not infinite (although it's very large). Horizontal 
coordinates range from -32768 to +32767, and vertical coordinates have 
the same range. (An auxiliary package is available that maps real 
Cartesian space, with X, Y, and Z coordinates, onto QuickDraw's 
two-dimensional integer coordinate system.) 

Second, they mean that all elements represented on the coordinate plane 
are mathematically pure. Mathematical calculations using integer 
arithmetic will produce intuitively correct results. If you keep in 
mind that grid lines are infinitely thin, you'll never have "endpoint 
paranoia" -- the confusion that results from not knowing whether that 
last dot is included in the line. 

Points 

On the coordinate plane are 4,294,967,296 unique points. Each point is 
at the intersection of a horizontal grid line and a vertical grid line. 
As the grid lines are infinitely thin, a point is infinitely small. Of 
course there are more points on this grid than there are dots on the 
Macintosh screen: when using QuickDraw you associate small parts of 
the grid with areas on the screen, so that you aren't bound into an 
arbitrary, limited coordinate system. 

The coordinate origin (0,O) is in the middle of the grid. Horizontal 
coordinates increase as you move from left to right, and vertical 
coordinates increase as you move from top to bottom. This is the way 
both a TV screen and a page of English text are scanned: from the top 
left to the bottom right. 

You can store the coordinates of a point into a Pascal variable whose 
type is defined by QuickDraw. The type Point is a record of two 
integers, and has this structure: 

TYPE VHSelect 
Point 

= (V,H); 
= RECORD CASE INTEGER OF 

~: (v: INTEGER; 
h: INTEGER); 

1: (vh: ARRAY [VHSelect] OF INTEGER) 

END; 

The variant part allows you to access the vertical and horizontal 
components of a point either individually or as an array. For example, 
if the variable goodPt were declared to be of type Point, the following 
would all refer to the coordinate parts of the point: 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



8 QuickDraw Programmer's Guide 

goodPt.v 
goodPt.vh[V] 

goodPt.h 
goodPt. vh [H] 

Rectangles 

Any two points can define the top left and bottom right corners of a 
rectangle. As these points are infinitely small, the borders of the 
rectangle are infinitely thin (see Figure 3). 

Figure 3. A Rectangle 

Rectangles are used to define active areas on the screen', to assign 
coordinate systems to graphic entities, and to specify the locations 
and sizes for various drawing commands. QuickDraw also allows you to 
perform many mathematical calculations on rectangles -- changing their 
sizes, shifting them around, and so on. 

( hand) 
Remember that rectangles, like points, are mathematical 
concepts that have no direct representation on the • 
screen. The association between these conceptual 
elements and their physical representations is made by a 
bitMap, described below. 

The data type for rectangles is called Rect, and consists of four 
integers or two points: 

3/2/83 ,Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



THE MATHEMATICAL FOUNDATION OF QUICKDRAW 9 

TYPE Rect = RECORD CASE INTEGER OF 

0: (top: INTEGER; 
left: INTEGER; 
bottom: INTEGER; 
right: INTEGER); 

1: (topLeft: Point; 
botRight: Point) 

END; 

Again, the record variant allows you to access a variable of type Rect 
either as four boundary coordinates or as two diagonally opposing 
corner points. Combined with the record variant for points, all of the 
following references to the rectangle named bRect are legal: 

( eye) 

Regions 

bRect {type Rect} 

bRect.topLeft bRect.botRight {type Point} 

bRect.top bRect.left {type INTEGER} 
bRect.topLeft.v bRect.topLeft.h {type INTEGER} 
bRect.topLeft.vh[V] bRect.topLeft.vh[H] {type INTEGER} 

bRect.bottom bRect.right {type INTEGER} 
bRect.botRight.v bRect.botRight.h {type INTEGER} 
bRect.botRight.vh[V] bRect.botRight.vh[H] {type INTEGER} 

If the bottom coordinate of a rectangle is equal to or 
less than the top, or the right coordinate is equal to or 
less than the left, the rectangle is an empty rectangle 
(i.e., one that contains no bits). 

Unlike most graphics packages that can manipulate only simple,geometric 
structures (usually rectilinear, at that), QuickDraw has the unique and 
amazing ability to gather an arbitrary set of spatially coherent points 
into a structure called a region, and perform complex yet rapid 
manipulations and calculations on such structures. This remarkable 
feature not only will make your standard programs simpler and faster, 
but will let you perform operations that would otherwise be nearly 
impossible; it is fundamental to the Macintosh user interface. 

You define a region by drawing lines, shapes such as rectangles and 
ovals, or even other regions. The outline of a region should be one or 
more closed loops. A region can be concave or convex, can consist of 
one area or many disjoint areas, and can even have "holes" in the 
middle. In Figure 4, the region on the left has a hole in the middle, 
and the region on the right consists of two disjoint areas. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



10 QuickDraw Programmer's Guide 

Figure 4. Regions 

Because a region can be any arbitrary area or set of areas on the 
coordinate plane, it takes a variable amount of information to store 
the outline of a region. The data structure for a region, therefore, 
is a variable-length entity with two fixed fields at the beginning, 
followed by a variable-length data field: 

TYPE Region = RECORD 
rgnSize: INTEGER; 
rgnBBox: Rect; 
{optional region definition data} 

E~; 

The rgnSize field contains the size, in bytes, of the region variable. 
The rgnBBox field is a rectangle which completely encloses the region. 

The simplest region is a rectangle. In this case, the rgnBBox field 
defines the entire region, and there is no optional region data. For 
rectangular regions (or empty regions), the rgnSize field contains 10. 

The region definition data for nonrectangular regions is stored in a 
compact way which allows for highly efficient access by QuickDraw 
procedures. 

As regions are of variable size, they are stored dynamically on the 
heap, and the Operating System's memory management moves them around as 
their sizes change. Being dynamic, a region can be accessed only 
through a pointer; but when a region is moved, all pointers referring 
to it must be updated. For this reason, all regions are accessed 
through handles, which point to one master pointer which in turn points 
to the region. 

TYPE RgnPtr 
RgnHandle 

3/2/83 Espinosa-Rose 

ARegion; 
ARgnPtr; 

CONFIDENTIAL /QUICK/QUIKDRAW.2 



THE MATHEMATICAL FOUNDATION OF QUICKDRAW 11 

When the memory management relocates a region's data in memory, it 
updates only the RgnPtr master pointer to that region. The references 
through the master pointer can find the region's new home, but any 
references pointing directly to the region's previous position in 
memory would now point at dead bits. To access individual fields of a 
region, use the region handle and double indirection: 

myRgn ......... rgnSize 
myRgn ......... rgnBBox 
myRgn ......... rgnBBox.top 

myRgn ..... rgnBBox 

{size of region whose handle is myRgn} 
{rectangle enclosing the same region} 
{minimum vertical coordinate of all 
points in the region} 

{syntactically incorrect; will not compile 
if myRgn is a rgnHandle} 

Regions are created by a QuickDraw function which allocates space for 
the region, creates a master pointer, and returns a rgnHandle. When 
you're done with a region, you dispose of it with another QuickDraw 
routine which frees up the space used by the region. Only these calls 
allocate or deallocate regions; do NOT use the Pascal procedure NEW to 
create a new region! 

You specify the outline of a region with procedures that draw lines and 
shapes, as described in the section "QuickDraw Routines". An example 
is given in the discussion of CloseRgn under "Calculations with 
Regions" in that section. 

Many calculations can be performed on regions. A region can be 
"expanded" or "shrunk" and, given any two regions, QuickDraw can find 
their union, intersection, difference, and exclusive-OR; it can also 
determine whether a given point or rectangle intersects a given region, 
and so on. There is of course a set of graphic operations on regions 
to draw them on the screen. 

GRAPHIC ENTITIES 

Coordinate planes, points, rectangles, and regions are all good 
mathematical models, but they aren't really graphic elements -- they 
don't have a direct physical appearance. Some graphic entities that do 
have a direct graphic interpretation are the bit image,. bitMap, 
pattern, and cursor. This section describes the data structure of 
these graphic entities and how they relate to the mathematical 
constructs described above. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



12 QuickDraw Programmer's Guide 

The Bit Image 

A bit image is a collection of bits in memory which have a rectilinear 
representation. Take a collection of words in memory and lay them end 
to end so that bit 15 of the lowest-numbered word is on the left and 
bit ~ of the highest-numbered word is on the far right. Then take this 
array of bits and divide it, on word boundaries, into a number of 
equal-size rows. Stack these rows vertically so that the first row is 
on the top and the last row is on the bottom. The result is a matrix 
like the one shown in Figure 5 -- rows and columns of bits, with each 
row containing the same number of bytes. The number of bytes in each 
row of the bit image is called the row width of that image. 

Firsr. 

Figure 5. A Bit Image 

RO~{;I 

Wtd,tt-L 
is 
8 t)1dtes 

L(~st 

81~t~3 

A bit image can be stored in any static or dynamic variable, and can be 
of any length that is a multiple of the row width. 

The Macintosh screen itself is one large visible bit image. The upper 
21,888 bytes of memory are displayed as a matrix of 175,104 pixels on 
the screen, each bit corresponding to one pixel. If a bit's value is 
0, its pixel is white; if the bit's value is 1, the pixel is black. 

The screen is 342 pixels tall and 512 pixels wide, and the row width of 
its bit image is 64 bytes. Each pixel on the screen is square; there 
are 72 pixels per inch in each direction. 

( hand) 
Since each pixel on the screen represents one bit in a 
bit image, wherever this document says "bit", you can 
substitute "pixel" if the bit image is the Macintosh 
screen. Likewise, this document often refers to pixels 
on the screen where the discussion applies equally to 
bits in an off-screen bit image. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



GRAPHIC ENTITIES 13 

The BitMap 

When you combine the physical entity of a bit image with the conceptual 
entities of the coordinate plane and rectangle, you get a bitMap. A 
bitMap has three parts: a pointer to a bit image, the row width (in 
bytes) of that image, and a boundary rectangle which gives the bitMap 
both its dimensions and a coordinate system. Notice that a bitMap does 
not actually include the bits themselves: it points to them. 

There can be several bitMaps pointing to the same bit image, each 
imposing a different coordinate system on it. This important feature 
is explained more fully in "Coordinates in GrafPorts", below. 

As shown in Figure 6, the data structure of a bitMap is as follows: 

TYPE BitMap = RECORD 
baseAddr: 
rowBytes: 
bounds: 

END; 

btlse.haJM.r ", 
rrn .. t,:t B1Jte:s 
bounds 

QDPtr; 
INTEGER; 
Rect 

Figure 6. A BitMap 

The baseAddr field is a pointer to the beginning of the bit image in 
memory, and the rowBytes field is the number of bytes in each row of 
the image. Both of these should always be even: a bitMap should 
always begin on a word boundary and contain an integral number of words 
in each row. 

The bounds field is a boundary rectangle that both encloses the active 
area of the bit image and imposes a coordinate system on it. The 
relationship between the boundary rectangle and the bit image in a 
bitMap is simple yet very important. First, a few general rules: 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



14 QuickDraw Programmer's Guide 

- Bits in a bit image fall between points on the coordinate plane. 

- A rectangle divides a bit image into two sets of bits: those bits 
inside the rectangle and those outside the rectangle. 

- A rectangle that is H points wide and V points tall encloses 
exactly (H-1)*(V-1) bits. 

The top left corner of the boundary rectangle is aligned around the 
first bit in the bit image. The width of the rectangle determines how 
many bits of one row are logically owned by the bitMap; the 
relationship 

8*map.rowBytes )= map.bounds.right-map.bounds.left 

must always be true. The height of the rectangle determines how many 
rows of the image are logically owned by the bitMap; the relationship 

SIZEOF(map.baseAddr A
) )= (map.bounds.bottom-map.bounds.top) 

* map.rowBytes 

must always be true to ensure that the number of bits in the logical 
bitMap area is not larger than the number of bits in the bit image. 

Normally, the boundary rectangle completely encloses the bit image: 
the width of the boundary rectangle is equal to the number of bits in 
one row of the image, and the height of the rectangle is equal to the 
number of rows in the image. If the rectangle is smaller than the 
dimensions of the image, the least significant bits in each row, as 
well as the last rows in the image, are not affected by any operations 
on the bitMap. 

The bitMap also imposes a coordinate system on the image. Because bits 
fall between coordinate points, the coordinate system assigns integer 
values to the lines that border and separate bits, not to the bit 
positions themselves. For example, if a bitMap is assigned the 
boundary rectangle with corners (10,-8) and (34,8), the bottom right 
bit in the image will be between horizontal coordinates 33 and 34, and 
between vertical coordinates 7 and 8 (see Figure 7). 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



GRAPHIC ENTITIES 15 

• 

Figure 7. Coordinates and BitMaps 

Patterns 

A pattern is a 64-bit image, organized as an 8-by-8-bit square, which 
is used to define a repeating design (such as stripes) or tone (such as 
gray). Patterns can be used to draw lines and shapes or to fill areas 
on the screen. 

l~en a pattern is drawn, it is aligned such that adjacent areas of the 
same pattern in the same graphics port will blend with it into a 
continuous, coordinated pattern. QuickDraw provides the predefined 
patterns white, black, gray, ltGray, and dkGray. Any other 64-bit 
variable or constant can be used as a pattern, too. The dat.a type 
definition for a pattern is as follows: 

TYPE Pattern = PACKED ARRAY [0 •• 7] OF 0 •• 255; 

The row width of a pattern is 1 byte. 

Cursors 

A cursor is a small image that appears on the screen and is controlled 
by the mouse. (It appears only on the screen, and never in an 
off-screen bit image.) 

( hand) 
Other Macintosh documentation calls this image a 
"pointer", since it points to a location on the screen. 
To avoid confusion with other meanings of "pointer" in 
this manual and other Toolbox documentation, we use the 
alternate term "cursor". 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



16 QuickDraw Programmer's Guide 

A cursor is defined as a 256-bit image, a 16-by-16-bit square. The row 
width of a cursor is 2 bytes. Figure 8 illustrates four cursors. 

o 
o t 

8 
Figure 8. 

J 
.j 
'-' 

Cursors 

9 

.-. o 

A cursor has three fields: a 16-word data field that contains the 
image itself, a 16-word mask field that contains information about the 
screen appearance of each bit of the cursor, and a hotSpot point that 
aligns the cursor with the position of the mouse. 

TYPE Cursor = RECORD 
data: 
mask: 
hotSpot: 

END; 

ARRAY [0 •• 15] OF INTEGER; 
ARRAY [0 •• 15] OF INTEGER; 
Point 

The data for the cursor must begin on a word boundary. 

The cursor appears on the screen as a 16-by-16-bit square. The 
appearance of each bit of the square is determined by the corresponding 
bits in the data and mask and, if the mask bit is ~, by the pfxel 
"under" the cursor (the one already on the screen in the same position 
as this bit of the cursor): 

Data Mask Resulting pixel on screen 
--r- -1- White 

1 1 Black 
0 ~ Same as pixel under cursor 
1 ~ Inverse of pixel under cursor 

Notice that if all mask bits are ~, the cursor is completely 
transparent, in that the image under the cursor can still be viewed: 
pixels under the white part of the cursor appear unchanged, While under 
the black part of the cursor, black pixels show through as White. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.2 



GRAPHIC ENTITIES 17 

The hotSpot aligns a point in the image (not a bit, a point!) with the 
mouse position. Imagine the rectangle with corners (0,0) and (16,16) 
framing the image, as in each of the examples in Figure 8; the hotSpot 
is defined in this coordinate system. A hotSpot of (0,0) is at the top 
left of the image. For the arrow in Figure 8 to point to the mouse 
position, (0,0) would be its hotSpot. A hotSpot of (8,8) is in the 
exact center of the image; the center of the plus sign or circle in 
Figure 8 would coincide with the mouse position if (8,8) were the 
hotSpot for that cursor. Similarly, the hotSpot for the pointing hand 
would be (16,9). 

Whenever you move the mouse, the low-level interrupt-driven mouse 
routines move the cursor's hotSpot to be aligned with the new mouse 
position. 

( hand) 
The mouse position is always linked to the cursor 
position. You can't reposition the cursor through 
software; the only control you have is Whether it's 
visible or not, and what shape it will assume. Think of 
it as being hard-wired: if the cursor is visible, it 
always follows the mouse over the full size of the 
screen. 

QuickDraw supplies a predefined arrow cursor, an arrow pointing 
north-northwest. 

THE DRAWING ENVIRONMENT: GRAFPORT ------------------------------------------------
A grafPort is a complete drawing environment that defines how and where 
graphic operations will have their effect. It contains all the 
information about one instance of graphic output that is kept separate 
from all other instances. You can have many grafPorts open at once, 
and each one will have its own coordinate system, drawing pattern, 
background pattern, pen size and location, character font and style, 
and bitMap in which drawing takes place. You can instantly switch from 
one port to another. GrafPorts are the structures on which ~ program 
builds windows, which are fundamental to the Macintosh "overlapping 
windows" user interface. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



18 QuickDraw Programmer .... s Guide 

A grafPort is a dynamic data structure, defined as follows: 

TYPE GrafPtr = .... GrafPort; 
GrafPort = RECORD 

device: INTEGER; 
portBits: BitMap; 
portRect: Rect; 
visRgn: RgnHandle; 
clipRgn: RgnHandle; 
bkPat: Pattern; 
fillPat: Pattern; 
pnLoc: Point; 
pnSize: Point; 
pnMode: INTEGER; 
pnPat: Pattern; 
pnVis: INTEGER; 
txFont: INTEGER; 
txFace: Style; 
txMode: INTEGER; 
txSize: INTEGER; 
spExtra: INTEGER; 
fgColor: LongInt; 
bkColor: LongInt; 
colrBit: INTEGER; 
patStretch: INTEGER; 
picSave: QDHandle; 
rgnSave: QDHandle; 
polySave: QDHandle; 
grafProcs: QDProcsPtr 

END; 

All QuickDraw operations refer to grafPorts via grafPtrs. You create a 
grafPort with the Pascal procedure NEW and use the resulting pointer in 
calls to QuickDraw. You could, of course, declare a static VAR of type 
grafPort, and obtain a pointer to that static structure (with the @ 
operator), but as most grafPorts will be used dynamically, their data 
structures should be dynamic also. 

( hand) 
You can access all fields and subfields of a grafPort 
normally, but you should not store new values directly 
into them. QuickDraw has procedures for altering all 
fields of a grafPort, and using these procedures ensures 
that changing a grafPort produces no unusual side 
effects. 

The device field of a grafPort is the number of the logical output 
device that the grafPort will be using. The Font Manager uses this 
information, since there are physical differences in the same logical 
font for different output devices. The default device number is ~, for 
the Macintosh screen. For more information about device numbers, see 
the *** not yet existing *** Font Manager documentation. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



· THE DRAWING ENVIRONMENT: GRAFPORT 19 

The portBits field is the bitMap that points to the bit image to be 
used by the grafPort. All drawing that is done in this grafPort will 
take place in this bit image. The default bitMap uses the entire 
Macintosh screen as its bit image, with rowBytes of 64 and a boundary 
rectangle of (O,O,512,342). The bitMap may be changed to indicate a 
different structure in memory: all graphics procedures work in exactly 
the same way regardless of whether their effects are visible on the 
screen. A program can, for example, prepare an image to be printed on 
a printer without ever displaying the image on the screen, or develop a 
picture in an off-screen bitMap before transferring it to the screen. 
By altering the coordinates of the portBits.bounds rectangle, you can 
change the coordinate system of the grafPort; with a QuickDraw 
procedure call, you can set an arbitrary coordinate system for each 
grafPort, even if the different grafPorts all use the same bit image 
(e.g., the full screen). 

The portRect field is a rectangle that defines a subset of the bitMap 
for use by the grafPort. Its coordinates are in the system defined by 
the portBits.bounds rectangle. All drawing done by the application 
occurs inside this rectangle. The portRect usually defines the 
"writable" interior area of a window, document, or other object on the 
screen. 

The visRgn field is manipulated by the Window Manager; users and 
programmers will normally never change a grafPort's visRgn. It 
indicates that region (remember, an arbitrary area or set of areas) 
which is actually visible on the screen. For example, if you move one 
window in front of another, the Window Manager logically removes the 
area of overlap from the visRgn of the window in the back. When you 
draw into the back window, Whatever's being drawn is clipped to the 
visRgn so that it doesn't run over onto the front window. The default 
visRgn is set to the portRect. The visRgn has no effect on images that 
are not displayed on the screen. 

The clipRgn is an arbitrary region that the application can use to 
limit drawing to any region within the portRect. If, for example, you 
want to draw a half circle on the screen, you can set the clipRgn to 
half the square that would enclose the Whole circle, and go ahead and 
draw the whole circle. Only the half within the clipRgn will actually 
be drawn in the grafPort. The default clipRgn is set arbitrarily 
large, and you have full control over its setting. Notice that unlike 
the visRgn, the clipRgn affects the image even if it is not displayed 
on the screen. 

Figure 9 illustrates a typical bitMap (as defined by portBits), 
portRect, visRgn, and clipRgn. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



20 QuickDraw Programmer's Guide 

~ 
1lm'''JItl 

Figure 9. GrafPort Regions 

The bkPat and fillPat fields of a grafPort contain patterns used by 
certain QuickDraw routines. BkPat is the "background" pattern that is 
used when an area is erased or when bits are scrolled out of it. When 
asked to fill an area with a specified pattern, QuickDraw stores the 
given pattern in the fillPat field and then calls a low-level drawing 
routine which gets the pattern from that field. The various graphic 
operations are discussed in detail later in the descriptions of 
individual QuickDraw routines. 

Of the next ten fields, the first five determine characteristics of the 
graphics pen and the last five determine characteristics of any text 
that may be drawn; these are described in subsections below. 

The fgColor, bkColor, and colrBit fields contain values related to 
drawing in color, a capability that will be available in the future 
when Apple supports color output devices for the Macintosh. FgColor is 
the grafPort's foreground color and bkColor is its background color. 
ColrBit tells the color imaging software which plane of the color 
picture to draw into. For lOOre information, see "Drawing in Color" in 
the general discussion of drawing. 

The patStretch field is used during output to a printer to expand 
patterns if necessary. The application should not change its value. 

The picSave, rgnSave, and polySave fields reflect the state of picture, 
region, and polygon defintion, respectively. To define a region, for 
example, you "open" it, call routines that draw it, and then "close" 
it. If no region is open, rgnSave contains NIL; otherwise, it contains 
a handle to information related to the region definition. The 
application should not be concerned about exactly what information the 
handle leads to; you may, however, save the current value of rgnSave, 
set the field to NIL to disable the region definition, and later 
restore it to the saved value to resume the region definition. The 

3/2/83 ·Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



THE DRAWING ENVIRONMENT: GRAFPORT 21 

picSave and polySave fields work similarly for pictures and polygons. 

Finally, the grafProcs field may point to a special data structure that 
the application stores into if it wants to customize QuickDraw drawing 
procedures or use QuickDraw in other advanced, highly specialized ways. 
(For more information, see "Customizing QuickDraw Operations".) If 
grafProcs is NIL, QuickDraw responds in the standard ways described in 
this manual. 

Pen Characteristics 

The pnLoc, pnSize, pnMode, pnPat, and pnVis fields of a grafPort deal 
with the graphics pen. Each grafPort has one and only one graphics 
pen, which is used for drawing lines, shapes, and text. As illustrated 
in Figure 10, the pen has four characteristics: a location, a size, a 
drawing mode, and a drawing pattern. 

Figure 10. A Graphics Pen 

The pen location is a point in the coordinate system of the grafPort, 
and is where QuickDraw will begin drawing the next line, shape, or 
character. It can be anywhere on the coordinate plane: there are no 
restrictions on the movement or placement of the pen. Remember that 
the pen location is a point on the coordinate plane, not a pixel in a 
bit image! 

The pen is rectangular in shape, and has a user-definable width and 
height. The default size is a 1-by-1-bit square; the width and height 
can range from (0,O) to (32767,32767). If either the pen width or the 
pen height is less than 1, the pen will not draw on the screen. 

- The pen appears as a rectangle with its top left corner at the pen 
location; it hangs below and to the right of the pen location. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



22 QuickDraw Programmer's Guide 

The pnMode and pnPat fields of a grafPort determine how the bits under 
the pen are affected when lines or shapes are drawn. The pnPat is a 
pattern that is used like the "ink" in the pen. This pattern, like all 
other patterns drawn in the grafPort, is always aligned with the port's 
coordinate system: the top left corner of the pattern is aligned with 
the top left corner of the portRect, so that adjacent areas of the same 
pattern will blend into a continuous, coordinated pattern. Five 
patterns are predefined (white, black, and three shades of gray); you 
can also create your own pattern and use it as the pnPai. (A utility 
procedure, called Stuff Hex, allows you to fill patterns easily.) 

The pnMode field determines how the pen pattern is to affect what's 
already on the bitMap when lines or shapes are drawn. When the pen 
draws, QuickDraw first determines what bits of the bitMap will be 
affected and finds their corresponding bits in the pattern. It then 
does a bit-by-bit evaluation based on the pen mode, which specifies one 
of eight boolean operations to perform. The resulting bit is placed 
into its proper place in the bitMap. The pen modes are described under 
"Transfer Modes" in the general discussion of drawing below. 

The pnVis field determines the pen's visibility, that is, whether it 
draws on the screen. For more information, see the descriptions of 
HidePen and ShowPen under "Pen and Line-Drawing Routines" in the 
"QuickDraw Routines" section. 

Text Characteristics 

The txFont, txFace, txMode, txSize, and spExtra fields of a grafPort 
determine how text will be drawn -- the font, style, and size of 
characters and how they will be placed on the bitMap. 

( hand) 
In the Macintosh User Interface Toolbox, character style 
means stylistic variations such as bold, italic, and 
underline; font means the complete set of characters of 
one typeface, such as Helvetica, and does not include the 
character style or size. 

QuickDraw can draw characters as quickly and easily as it draws lines 
and shapes, and in many prepared fonts. Figure 11 shows two QuickDraw 
characters and some terms you should become familiar with. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



THE DRAWING ENVIRONMENT: GRAFPORT 23 

-r--..---_---- ascent. line 

ascent. 

~-+----= __ -+-II"'-E..-_ base line 

.....:L. ____ ---II...-__ descent line 

Figure 11. QuickDraw Characters 

QuckDraw can display characters in any size, as well as boldfaced, 
italicized, outlined, or shadowed, all without changing fonts. It can 
also underline the characters, or draw them closer together or farther 
apart. 

The txFont field is a font number that identifies the character font to 
be used in the grafPort. The font number ~ represents the system font. 
For more information about the system font, the other font numbers 
recognized by the Font Manager, and the construction, layout, and 
loading of fonts, see the *** not yet existing *** Font Manager 
documentation. 

A character font is defined as a collection of bit images: these 
images make up the individual characters of the font. The characters 
can be of unequal widths, and they're not restricted to their "cells": 
the lower curl of a lowercase j, for example, can stretch back under 
the previous character (typographers call this kerning). A font can 
consist of up to 256 distinct characters, yet not all characters need 
be defined in a single font. Each font contains a missing symbol to be 
drawn in case of a request to draw a character that is missing from the 
font. 

The txFace field controls the appearance of the font with values from 
the set defined by the Style data type: 

TYPE StyleItem = (bold, italic, underline, outline, shadow, 
condense, extend); 

Style = SET OF StyleItem; 

You can apply these either alone or in combination (see Figure 12). 
Most combinations usually look good only for large fonts. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



24 QuickDraw Programmer's Guide 

I\Jorrna\ Characters 
Bold Characters 

Underlined Characters ;.5j'Z 
(])~UlfliJ@ra'J COBniUtmU;m 
IllumJlII;r!I Gtm~(j]n 
C~Jnd8nS8d Charac~te.rs 
E~l.tended C~harac.ters 

Bold I!aIic ChamclclS 
U1~_ 

" " " and in other fonts, tJJI)~ 

Figure 12. Character Styles 

If you specify bold, each character is repeatedly drawn one bit to the 
right an appropriate number of times for extra thickness. 

Italic adds an italic slant to the characters. Character bits above 
the base line are skewed right; bits below the base line are skewed 
left. 

Underline draws a line below the base line of the characters. If part 
of a character descends below the base line (as "y" in Figure 12), the 
underline is not drawn through the pixel on either side of the 
descending part. 

You may specify either outline or shadow. Outline makes a hollow, 
outlined character rather than a solid one. With shadow, not only is 
the character hollow and outlined, but the outline is thickened below 
and to the right of the character to achieve the effect of a shadow. 
If you specify bold along with outline or shadow, the hollow part of 
the character is widen~d. 

Condense and extend affect the horizontal distance between all 
characters, including spaces. Condense decreases the distance between 
characters and extend increases it, by an amount Which the Font Manager 
determines is appropriate. 

The txMode field controls the way characters are placed on a bit image. 
It functions much like a pnMode: when a character is drawn, QuickDraw 
determines which bits of the bit image will be affected, does a 
bit-by-bit comparison based on the mode, and stores the resulting bits 
into the bi t image. These modes are described under "Transfer Modes II 
in the general discussion of drawing below. Only three of them 
srcOr, srcXor, and srcBic -- should be used for drawing text. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



THE DRAWING ENVIRONMENT: GRAFPORT 25 

The txSize field specifies the type size for the font, in points (where 
"point" here is a printing term meaning 1/72 inch). Any size may be 
specified. If the Font Manager does not have the font in a specified 
size, it will scale a size it does have as necessary to produce the 
size desired. A value of 0 in this field directs the Font Manager to 
choose the size from among those it has for the font; it will choose 
whichever size is closest to the system font size. 

Finally, the spExtra field is useful when a line of characters is to be 
drawn justified such that it is aligned with both a left and a right 
margin (sometimes called "full justification"). SpExtra is the number 
of pixels by which each space character should be widened to fill out 
the line. 

COORDINATES IN GRAFPORTS 

Each grafPort has its own local coordinate system. All fields in the 
grafPort are expressed in these coordinates, and all calculations and 
actions performed in QuickDraw use the local coordinate system of the 
currently selected port. 

Two things are important to remember: 

- Each grafPort maps a portion of the coordinate plane into a 
similarly-sized portion of a bit image. 

- The portBits.bounds rectangle defines the local coordinates for a 
grafPort. 

The top left corner of portBits.bounds is always aligned' around the 
first bit in the bit image; the coordinates of that corner "anchor" a 
point on the grid to that bit in the bit image. This forms a common 
reference point for multiple grafPorts using the same bit image (such 
as the screen). Given a portBits.bounds rectangle for each port, you 
know that their top left corners coincide. 

The interrelationship between the portBits.bounds and portRect 
rectangles is very important. As the portBits.bounds rectangle 
establishes a coordinate system for the port, the portRect rectangle 
indicates the section of the coordinate plane (and thus the bit image) 
that will be used for drawing. The portRect usually falls inside the 
portBits.bounds rectangle, but it's not required to do so. 

When a new grafPort is created, its bitMap is set to point to the 
entire Macintosh screen, and both the portBits.bounds and the portRect 
rectangles are set to 512-by-342-bit rectangles, with the point (0,0) 
at the top left corner of the screen. 

You can redefine the local coordinates of the top left corner of the 
grafPort's portRect, using the SetOrigin procedure. This changes the 
local coordinate system of the grafPort, recalculating the coordinates 
of all points in the grafPort to be relative to the new corner 

3/2/83 'Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



26 QuickDraw Programmer's Guide 

coordinates. For example, consider these procedure calls: 

SetPort(gamePort); 
SetOrigin(40,80); 

The call to SetPort se ts the current grafPort to gamePort; the call to 
SetOrigin changes the local coordinates of the top left corner of that 
port's portRect to (40,80) (see Figure 13). 

o 9.5 300 ~,12 
- I \ \ \ 
11- [!:'!':'!'~~~ ........... .,.......,.., ........... .,...." 

24.5 

120-

275-

Befon~ ~;-er ()riqin. 

Figure 13. Changing Local Coordinates 

This recalculates the coordinate components of the following elements: 

gamePortA.portBits.bounds gamePortA.portRect 

gamePortA.visRgn 

These elements are always kept "in sync", so that all calculations, 
comparisons, or operations that seem right, work right. 

Notice that when the local coordinates of a grafPort are offset, the 
visRgn of that port is offset also, but the clipRgn is not. A good way 
to think of it is that if a document is being shown inside a grafPort, 
the document "sticks" to the coordinate system, and the port's 
structure "sticks" to the screen. Suppose, for example, that the 
visRgn and clipRgn in Figure 13 before SetOrigin are the same as the 
portRect, and a document is being shown. After the SetOrigin call, the 
top left corner of the clipRgn is still (95,120), but this location has 
moved down and to the right, and the location of the pen within the 
document has similarly moved. The locations of portBits.bounds, 
portRect, and visRgn did not change; their coordinates were offset. As 
always, the top left corner of portBits.bounds remains aligned around 
the first bit in the bit image (the first pixel on the screen). 

If you are moving, comparing, or otherwise dealing with mathematical 
items in different grafPorts (for example, finding the intersection of 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



COORDINATES IN GRAFPORTS 27 

two regions in two different grafPorts), you must adjust to a common 
coordinate system before you perform the operation. A QuickDraw 
procedure, LocalToGlobal, lets you convert a point's local coordinates 
to a global system where the top left corner of the bit image is (0,0); 
by converting the various local coordinates to global coordinates, you 
can compare and mix them with confidence. For more info rmatiO.n, see 
the description of this procedure under "Calculations with Points" in 
the section "QuickDraw Routines". 

GENERAL DISCUSSION OF DRAWING 

Drawing occurs: 

- Always inside a grafPort, in the bit image and coordinate system 
defined by the grafPort's bitMap. 

- Always within the intersection of the grafPort's portBits.bounds 
and portRect, and clipped to its visRgn and clipRgn. 

- Always at the grafPort's pen location. 

- Usually with the grafPort's pen size, pattern, and mode. 

With QuickDraw procedures, you can draw lines, shapes, and text. 
Shapes include rectangles, ovals, rounded-corner rectangles, 
wedge-shaped sections of ovals, regions, and polygons. 

Lines are defined by two points: the current pen location and a 
destination location. When drawing a line, QuickDraw moves the top 
left corner of the pen along the mathematical trajectory from the 
current location to the destination. The pen hangs below and to the 
right of the trajectory (see Figure 14). 

J -. 
--

1 

Figure 14. Drawing Lines 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



28 QuickDraw Programmer's Guide 

( hand) 
No mathematical element (such as the pen location) is 
ever affected by clipping; clipping only determines what 
appears where in the bit image. If you draw a line to a 
location outside your grafPort, the pen location will 
move there, but only the portion of the line that is 
inside the port will actually be drawn. This is true for 
all drawing procedures. 

Rectangles, ovals, and rounded-corner rectangles are defined by two 
corner points. The shapes always appear inside the mathematical 
rectangle defined by the two points. A region is defined in a more 
complex manner, but also appears only within the rectangle enclosing 
it. Remember, these enclosing rectangles have infinitely thin borders 
and are not visible on the screen. 

As illustrated in Figure 15, shapes may be drawn either solid (filled 
in with a pattern) or framed (outlined and hollow). 

lIen lleigllt . 
... 
.,. 

... ~pen 
widtJl 

Figure 15. Solid Shapes and Framed Shapes 

In the case of framed shapes, the outline appears completely within the 
enclosing rectangle -- with one exception -- and the vertical and 
horizontal thickness of the outline is determined by the pen size. The 
exception is polygons, as discussed in "Pictures and Polygons II below. 

The pen pattern is used to fill in the bits that are affected by the 
drawing operation. The pen mode defines how those bits are to be 
affected by directing QuickDraw to apply one of eight boolean 
operations to the bits in the shape and the corresponding pixels on the 
screen. 

Text drawing does not use the pnSize, pnPat, or pnMode, but it does use 
the pnLoc. Each character is placed to the right of the current pen 
location, with the left end of its base line at the pen's location. 
The pen is moved to the right to the location where it will draw the 

3/2/83 -Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



GENERAL DISCUSSION OF DRAWING 29 

next character. No wrap or carriage return is performed automatically. 

The method QuickDraw uses in placing text is controlled by a mode 
similar to the pen mode. This is explained in "Transfer Modes", below. 
Clipping of text is performed in exactly the same manner as all other 
clipping in QuickDraw. 

Transfer Modes 

When lines or shapes are drawn, the pnMode field of the grafPort 
determines how the drawing is to appear in the port's bit image; 
similarly, the txMode field determines how text is to appear. There is 
also a QuickDraw procedure that transfers a bit image from one bitMap 
to another, and this procedure has a mode parameter that determines the 
appearance of the result. In all these cases, the mode, called a 
transfer mode, specifies one of eight boolean operations: for each bit 
in the item to be drawn, QuickDraw finds the corresponding bit in the 
destination bit image, performs the boolean operation on the pair of 
bits, and stores the resulting bit into the bit image. 

There are two types of transfer mode: 

- Pattern transfer modes, for drawing lines or shapes with a 
pattern. 

- Source transfer modes, for drawing text or transferring any bit 
image between two bitMaps. 

For each type of mode, there are four basic operations -- Copy, Or, 
Xor, and Bic. The Copy operation simply replaces the pixels in the 
destination with the pixels in the pattern or source, "painting" over 
the destination without regard for what is already there. The Or, Xor, 
and Bic operations leave the destination pixels under the white part of 
the pattern or source unchanged, and differ in how they affect the 
pixels under the black part: Or replaces those pixels with black 
pixels, thus "overlaying" the destination with the black part of the 
pattern or source; XOr inverts the pixels under the black part; and Bic 
erases them to white. 

Each of the basic operations has a variant in which every pixel in the 
pattern or source is inverted before the operation is performed, giving 
eight operations in all. Each mode is defined by name as a constant in 
QuickDraw (see Figure 16). 

3/2/83 ·Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



30 QuickDraw Programmer's Guide 

Pattern 
transfer 
mode 
patCopy 
patOr 
patXor 
patBic 

notPatCopy 
notPatOr 
notPatXor 
notPatBic 

Drawing in Color 

II II 

1111 lilt 
patCop!.r 
srcCI)PJ' 

pi:1tOr 
.3.fcOr 

tl~.r.Xl)r 
~..rcX(Jr 

patBic 
srcBic 

•••• fti)t.PatCr.rpy ftf.ltP'll0t ftl)tP;":a.ti~l)'f 

fLotSrcCopy flotSrcOr flotSrcXor 
ftfJt'Pi;,ff:J.l::. 
not.SrcBic 

Figure 16. Transfer Modes 

Source Action on each pixel 
transfer If black pixel in 
mode pattern or source 
srcCopy Force black 
srcOr Force black 
srcXor Invert 
srcBic Force white 

notSrcCopy Force white 
notSrcOr Leave alone 
notSrcXor Leave alone 
notSrcBic Leave alone 

in destination: 
If white pixel in 
pattern or source 
Force white 
Leave alone 
Leave alone 
Leave alone 

Force black 
Force black 
Invert 
Force white 

Currently you can only look at QuickDraw output on a black-and-white 
screen or printer. Eventually, however, Apple will support color 
output devices. If you want to set up your application now to produce 
color output 'in the future, you can do so by using QuickDraw procedures 
to set the foreground color and the background color. Eight standard 
colors may be specified with the following predefined constants: 
blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor, 
magentaColor, and yellowColor. Initially, the foreground color is 
blackColor and the background color is whiteColor. If you specify a 
color other than whiteColor, it will appear as black on a 
black-and-white output device. 

To apply the table in the "Transfer Modes" section above to drawing in 
color, make the following translation: where the table shows "Force 
black", read "Force foreground color", and where it shows "Force 
white", read "Force background color". When you eventually receive the 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.3 



GENERAL DISCUSSION OF DRAWING 31 

color output device, you'll find out the effect of inverting a color on 
it. 

( hand) 
QuickDraw can support output devices that have up to 32 
bits of color information per pixel. A color picture may 
be thought of, then, as having up to 32 planes. At any 
one time, QuickDraw draws into only one of these planes. 
A QuickDraw routine called by the color-imaging software 
specifies which plane. 

PICTURES AND POLYGONS 

QuickDraw lets you save a sequence of drawing commands and "play them 
back" later with a single procedure call. There are two such 
mechanisms: one for drawing any picture to scale in a destination 
rectangle that you specify, and another for drawing polygons in all the 
ways you can draw other shapes in QuickDraw. 

Pictures 

A picture in QuickDraw is a transcript of calls to routines which draw 
something -- anything -- on a bitMap. Pictures make it easy for one 
program to draw something defined in another program, with great 
flexibility and without knowing the details about what's being drawn. 

For each picture you define, you specify a rectangle that surrounds the 
picture; this rectangle is called the picture frame. When you later 
call the procedure that draws the saved picture, you supply a 
destination rectangle, and QuickDraw scales the picture so that its 
frame is completely aligned with the destination rectangle. Thus, the 
picture may be expanded or shrunk to fit its destination rectangle. 
For example, if the picture is a circle inside a square picture frame, 
and the destination rectangle is not square, the picture is drawn as an 
oval. 

Since a picture may include any sequence of drawing commands, its data 
structure is a variable-length entity. It consists of two fixed fields 
followed by a variable-length data field: 

TYPE Picture = RECORD 
picSize: INTEGER; 
picFrame: Rect; 
{picture definition data} 

EW; 

The picSize field contains the size, in bytes, of the picture variable. 
The picFrame field is the picture frame which surrounds the picture and 
gives a frame of reference for scaling when the picture is drawn. The 
rest of the structure contains a compact representation of the drawing 

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDRAW.P 



32 QuickDraw Programmer's Guide 

commands that define the picture. 

All pictures are accessed through handles, which point to one master 
pointer which in turn points to the picture. 

TYPE PicPtr = APicture; 
PicHandle APicPtr; 

To define a picture, you call a QuickDraw function that returns a 
picHandle and then call the routines that draw the picture. There is a 
procedure to call when you've finished defining the picture, and 
another for when you're done with the picture altogether. 

QuickDraw also allows you to intersperse picture comments in with the 
definition of a picture. These comments, which do not affect the 
picture's appearance, may be used to provide additional information 
about the picture when it's played back. This is especially valuable 
when pictures are transmitted from one application to another. There 
are two standard types of comment which, like parentheses, serve to 
group drawing commands together (such as all the commands that draw a 
particular part of a picture): 

CONST picLParen = ~; 
picRParen = 1; 

The application defining the picture can use these standard comments as 
well as comments of its own design. 

To include a comment in the definition of a picture, the application 
calls a QuickDraw procedure that specifies the comment with three 
parameters: the comment kind, which identifies the type of comment; a 
handle to additional data if desired; and the size of the additional 
data, if any. When playing back a picture, QuickDraw passes any 
comments in the picture's definition to a low-level procedure accessed 
indirectly through the grafProcs field of the grafPort (see 
"Customizing QuickDraw Operations" for more information). To process 
comments, the application must include a procedure to do the processing 
and store a pointer to it in the data structure pointed to by the 
grafProcs field. 

( hand) 
The standard low-level procedure for processing picture 
comments simply ignores all comments. 

Polygons 

Polygons are similar to pictures in that you define them by a sequence 
of calls to QuickDraw routines. They are also similar to other shapes 
that QuickDraw knows about, since there is a set of procedures for 
performing graphic operations and calculations on them. 

A polygon is simply any sequence of connected lines (see Figure 17). 
You define a polygon by moving to the starting point of the polygon and 

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDRAW.P 



PICTURES AND POLYGONS 33 

drawing lines from there to the next point, from that point to the 
next, and so on. 

Figure 17. Polygons 

The data structure for a polygon is a variable-length entity. It 
consists of two fixed fields followed by a variable-length array: 

TYPE Polygon = RECORD 
polySize: 
polyBBox: 
polyPoints: 

END; 

INTEGER; 
Rect; 
ARRAY [0 •• 0] OF Point 

The polySize field contains the size, in bytes, of the polygon 
variable. The polyBBox field is a rectangle which just encloses the 
entire polygon. The polyPoints array expands as necessary to contain 
the points of the polygon -- the starting point followed by each 
succesive point to which a line is drawn. 

Like pictures and regions, polygons are accessed through handles. 

TYPE PolyPtr = APolygon; 
PolyHandle = APolyPtr; 

To define a polygon, you call a QuickDraw function that returns a 
polyHandle and then form the polygon by calling procedures that draw 
lines. You call a procedure when you've finished defining the polygon, 
and another when you're done with the polygon altogether. 

Just as for other shapes that QuickDraw knows about, there is a set of 
graphic operations on polygons to draw them on the screen. QuickDraw 
draws a polygon by moving to the starting point and then drawing lines 
to the remaining points in succession, just as when the routines were 
called to define the polygon. In this sense it "plays back" those 
routine calls. As a result, polygons are not treated exactly the same 

3/2/83 Rose CONFIDENTIAL /QUICK/QUIKDRAW.P 



34 QuickDraw Programmer's Guide 

as other QuickDraw shapes. For example, the procedure that frames a 
polygon draws outside the actual boundary of the polygon, because 
QuickDraw line-drawing routines draw below and to the right of the pen 
location. The procedures that fill a polygon with a pattern, however, 
stay within the boundary of the polygon; they also add an additional line 
between the ending point and the starting point if those points are not 
the same, to complete the shape. 

There is also a difference in the way QuickDraw scales a polygon and a 
similarly-shaped region if it's being drawn as part of a picture: when 
stretched, a slanted line is drawn more smoothly if it's part of a 
polygon rather than a region. You may find it helpful to keep in mind 
the conceptual difference between polygons and regions: a polygon is 
treated more as a continuous shape, a region more as a set of bits. 

QUICKDRAW ROUTINES 

This section describes all the procedures and functions in QuickDraw, 
their parameters, and their operation. They are presented in their 
Pascal form; for information on using them from assembly language, see 
"Using QuickDraw from Assembly Language". 

GrafPort Routines 

PROCEDURE InitGraf (globalPtr: QDPtr); 

Call InitGraf once and only once at the beginning of your program to 
initialize QuickDraw. It initializes the QuickDraw global variables 
listed below. 

Variable 
thePort 
white 
black 
gray 
ltGray 
dkGray 
arrow 
screenBits 
randSeed 

Type 
GrafPtr 
Pattern 
Pattern 
Pattern 
Pattern 
Pattern 
Cursor 
BitMap 
LongInt 

Initial setting 
NIL 
all-white pattern 
all-black pattern 
50% gray pattern 
25% gray pattern 
75% gray pattern 
pointing arrow cursor 
Macintosh screen, (O,O,512,342) 
1 

The globalPtr parameter tells QuickDraw where to store its global 
variables, beginning with thePort. From Pascal programs, this 
parameter should always be set to @thePort; assembly-language 
programmers may choose any location, as long as it can accommodate the 
number of bytes specified by GRAFSIZE in GRAFTYPES.TEXT (see "Using 
QuickDraw from Assembly Language"). 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



( hand) 

QUICKDRAW ROUTINES 35 

To initialize the cursor, call InitCursor (described 
under "Cursor-Handling Routines" below). 

PROCEDURE OpenPort (gp: GrafPtr); 

OpenPort allocates space for the given grafPort's visRgn and clipRgn, 
initializes the fields of the grafPort as indicated below, and makes 
the grafPort the current port (see SetPort). You must call OpenPort 
before using any grafPort; first perform a NEW to create a grafPtr and 
then use that grafPtr in the OpenPort call. 

Field 
device 
portBits 
portRect 
visRgn 

clipRgn 

bkPat 
fillPat 
pnLoc 
pnSize 
pnMode 
pnPat 
pnVis 
txFont 
txFace 
txMode 
txSize 
spExtra 
fgColor 
bkColor 
colrBit 
patStretch 
pic Save 
rgnSave 
polySave 
grafProcs 

Type 
INTEGER 
BitMap 
Rect 
RgnHandle 

RgnHandle 

Pattern 
Pattern 
Point 
Point 
INTEGER 
Pattern 
INTEGER 
INTEGER 
Style 
INTEGER 
INTEGER 
INTEGER 
Longlnt 
Longlnt 
INTEGER 
INTEGER 
QDHandle 
QDHandle 
QDHandle 
QDProcsPtr 

Initial setting 
~ (Macintosh screen) 
screenBits (see InitGraf) 
screenBits.bounds (0,O,512,342) 
handle to the rectangular region 
«6,O,512,342) 
handle to the rectangular region 
(-3(6(600,-30000,30000,30000) 
white 
black 
(0,O) 
(1,1) 
patCopy 
black 
~ (visible) 
~ (system font) 
normal 
srcOr 
~ (Font Manager decides) 
~ 
blackColor 
whiteColor 
(6 
~ 
NIL 
NIL 
NIL 
NIL 

PROCEDURE InitPort (gp: GrafPtr); 

Given a pointer to a grafPort that has been opened with OpenPort, 
InitPort reinitializes the fields of the grafPort and makes it the 
current port (if it's not already). 

( hand) 
InitPort does everything OpenPort does except allocate 
space for the visRgn and clipRgn. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



36 QuickDraw Programmer's Guide 

PROCEDURE ClosePort (gp: GrafPtr); 

ClosePort deallocates the space occupied by the given grafPort's visRgn 
and clipRgn. When you are completely through with a grafPort, call 
this procedure and then dispose of the grafPort (with a DISPOSE of the 
grafPtr). 

( eye) 

( eye) 

If you do not call ClosePort before disposing of the 
grafPort, the memory used by the visRgn and clipRgn will 
be unrecoverable. 

After calling ClosePort, be sure not to use any copies of 
the visRgn or clipRgn handles that you may have made. 

PROCEDURE SetPort (gp: GrafPtr); 

SetPort sets the grafPort indicated by gp to be the current port. The 
global pointer thePort always points to the current port. All 
QuickDraw drawing routines affect the bitMap thePortA.portBits and use 
the local coordinate system of thePort A• Note that OpenPort and 
InitPort do a SetPort to the given port. 

( eye) 
Never do a SetPort to a port that has not been opened 
with OpenPort. 

Each port possesses its own pen and text characteristics which remain 
unchanged when the port is not selected as the current port. 

PROCEDURE GetPort (VAR gp: GrafPtr); 

GetPort returns a pointer to the current grafPort. If you have a 
program that draws into more than one grafPort, it's extremely useful 
to have each procedure save the current grafPort (with GetPort), set 
its own grafPort, do drawing or calculations, and then resto~e the 
previous grafPort (with SetPort). The pointer to the current grafPort 
is also available through the global pointer thePort, but you may 
prefer to use GetPort for better readability of your program text. For 
example, a procedure could do a GetPort(savePort) before setting its 
own grafPort and a SetPort(savePort) afterwards to restore the previous 
port. 

PROCEDURE GrafDevice (device: INTEGER); 

GrafDevice sets thePortA.device to the given number, which identifies 
the logical output device for this grafPort. The Font Manager uses 
this informatione The initial device number is ~, which represents the 
Macintosh screen. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 37 

PROCEDURE SetPortBits (bm: BitMap); 

SetPortBits sets thePortA.portBits to any previously defined bitMap. 
This allows you to perform all normal drawing and calculations on a 
buffer other than the Macintosh screen -- for example, a 640-by-7 
output buffer for a C. Itoh printer, or a small off-screen image for 
later "stamping" onto the screen. 

Remember to prepare all fields of the bitMap before you call 
SetPortBits. 

PROCEDURE PortSize (width,height: INTEGER); 

PortSize changes the size of the current grafPort's portRect. THIS 
DOES NOT AFFECT THE SCREEN; it merely changes the size of the "active 
area" of the grafPort. 

( hand) 
This procedure is normally called only by the Window 
Manager. 

The top left corner of the portRect remains at its same location; the 
width and height of the portRect are set to the given width and height. 
In other words, PortSize moves the bottom right corner of the portRect 
to a position relative to the top left corner. 

PortSize does not change the clipRgn or the visRgn, nor does it affect 
the local coordinate system of the grafPort: it changes only the 
portRect's width and height. Remember that all drawing occurs only in 
the intersection of the portBits.bounds and the portRect, clipped to 
the visRgn and the clipRgn. 

PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER); 

MovePortTo changes the position of the current grafPort's portRect. 
THIS DOES NOT AFFECT THE SCREEN; it merely changes the location at 
which subsequent drawing inside the port will appear. 

( hand) 
This procedure is normally called only by the Window 
Manager. 

The leftGlobal and topGlobal parameters sec the distance between the 
top left corner of portBits.bounds and the top left corner of the new 
portRect. For example, 

MovePortTo(256,l71); 

will move the top left corner of the portRect to the center of the 
screen (if portBits is the Macintosh screen) regardless of the local 
coordinate system. 

3/2/83· Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



38 'QuickDraw Programmer's Guide 

Like PortSize, MovePortTo does not change the clipRgn or the visRgn, 
nor does it affect the local coordinate system of the grafPort. 

PROCEDURE SetOrigin (h,v: INTEGER); 

SetOrigin changes the local coordinate system of the current grafPort. 
THIS DOES NOT AFFECT THE SCREEN; it does, however, affect where 
subsequent drawing and calculation will appear in the grafPort. 
SetOrigin updates the coordinates of the portBits.bounds, the portRect, 
and the visRgn. All subsequent drawing and calculation routines will 
use the new coordinate system. 

The h and v parameters set the coordinates of the top left corner of 
the portRect. All other coordinates are calculated from this point. 
All relative distances among any elements in the port will remain the 
same; only their absolute local coordinates will change. 

( hand) 
SetOrigin does not update the coordinates of the clipRgn 
or the pen; these items stick to the coordinate system 
(unlike the port's structure, which sticks to the 
screen). 

SetOrigin is useful for adjusting the coordinate system after a 
scrolling operation. (See ScrollRect under "Bit Transfer Operations" 
below. ) 

PROCEDURE SetClip (rgn: RgnHandle); 

SetClip changes the clipping region of the current grafPort to a region 
equivalent to the given region. Note that this does not change the 
region handle, but affects the clipping region itself. Since SetClip 
makes a copy of the given region, any subsequent changes you make to 
that region will not affect the clipping region of the port. 

You can set the clipping region to any arbitrary region, to aid you in 
drawing inside the grafPort. The initial clipRgn is an arbitrarily 
large rectangle. 

PROCEDURE GetClip (rgn: RgnHandle); 

GetClip changes the given region to a region equivalent to the clipping 
region of the current grafPort. This is the reverse of what SetClip 
does. Like SetClip, it does not change the region handle. 

PROCEDURE ClipRect (r: Rect); 

ClipRect changes the clipping region of the current grafPort to a 
rectangle equivalent to given rectangle. Note that this does not 
change the region handle, but affects the region itself. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 39 

PROCEDURE BackPat (pat: Pattern); 

BackPat sets the background pattern of the current grafPort to the 
given pattern. The background pattern is used in ScrollRect and in all 
QuickDraw routines that perform an "erase" operation. 

Cursor-Handling Routines 

PROCEDURE InitCursor; 

InitCursor sets the current cursor to the predefined arrow cursor, an 
arrow pointing north-northwest, and sets the cursor level to ~, making 
the cursor visible. The cursor level, Which is initialized to ~ when 
the system is booted, keeps track of the number of times the cursor has 
been hidden to compensate for nested calls to HideCursor and ShowCursor 
(below). 

Before you call InitCursor, the cursor is undefined (or, if set by a 
previous process, it's whatever that process set it to). 

PROCEDURE SetCursor (crsr: Cursor); 

SetCursor sets the current cursor to the 16-by-16-bit image in crsr. 
If the cursor is hidden, it remains hidden and will attain the new 
appearance When it's uncovered; if the cursor is already visible, it 
changes to the new appearance immediately. 

The cursor image is initi~lized by InitCursor to a north-northwest 
arrow, visible on the screen. There is no way to retrieve the current 
cursor image. 

PROCEDURE HideCursor; 

HideCursor removes the cursor from the screen, restoring the bits under 
it, and decrements the cursor level (which InitCursor initialized to 
0). Every call to HideCursor should be balanced by a subsequent call 
to ShowCursor. 

PROCEDURE ShowCursor; 

ShowCursor increments the cursor level, Which may have been decremented 
by HideCursor, and displays the cursor on the screen if the level 
becomes 0. A call to ShowCursor should balance each previous call to 
HideCursor. The level is not incremented beyond ~, so extra calls to 
ShowCursor don't hurt. 

QuickDraw low-level interrupt-driven routines link the cursor with the 
mouse position, so that if the cursor level is ~ (visible), the cursor 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



40 QuickDraw Programmer's Guide 

automatically follows the mouse. You don't need to do anything but a 
ShowCursor to have a cursor track the mouse. There is no way to 
"disconnect" the cursor from the mouse; you can't force the cursor to a 
certain position, nor can you easily prevent the cursor from entering a 
certain area of the screen. 

If the cursor has been changed (with SetCursor) while hidden, 
ShowCursor presents the new cursor. 

The cursor is initialized by InitCursor to a north-northwest arrow, not 
hidden. 

PROCEDURE ObscureCursorj 

ObscureCursor hides the cursor until the next time the mouse is moved. 
Unlike HideCursor, it has no effect on the cursor level and must not be 
balanced by a call to ShowCursor. 

Pen and Line-Drawing Routines 

The pen and line-drawing routines all depend on the coordinate system 
of the current grafPort. Remember that each grafPort has its own pen; 
if you draw in one grafPort, change to another, and return to the 
first, the pen will have remained in the same location. 

PROCEDURE HidePen; 

HidePen decrements the current grafPort's pnVis field, which is 
initialized to ~ by OpenPort; whenever pnVis is negative, the pen does 
not draw on the screen. PnVis keeps track of the number of times the 
pen has been hidden to compensate for nested calls to HidePen and 
ShowPen (below). HidePen is called by OpenRgn, OpenPicture, and 
OpenPoly so that you can define regions, pictures, and polygons without 
drawing on the screen. 

PROCEDURE ShowPen; 

ShowPen increments the current grafPort's pnVis field, which may have 
been decremented by HidePen; if pnVis becomes ~, QuickDraw resumes 
drawing on the screen. Extra calls to ShowPen will increment pnVis 
beyond ~, so every call to ShowPen should he balanced by a subsequent 
call to HidePen. ShowPen is called by CloseRgn, ClosePicture, and 
ClosePoly. 

PROCEDURE GetPen (VAR pt: Point); 

GetPen returns the current pen location, in the local coordinates of 
the current grafPort. 

3/2/83' Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 41 

PROCEDURE GetPenState (VAR pnState: PenState); 

GetPenState saves the pen location, size, pattern, and mode into a 
storage variable, to be restored later with SetPenState (below). This 
is useful when calling short subroutines that operate in the current 
port but must change the graphics pen: each such procedure can save 
the pen's state when it's called, do whatever it needs to do, and 
restore the previous pen state immediately before returning. 

The PenS tate data type is not useful for anything except saving the 
pen's state. 

PROCEDURE SetPenState (pnState: PenState); 

SetPenState sets the pen location, size, pattern, and mode in the 
current grafPort to the values stored in pnState. This is usually 
called at the end of a procedure that has altered the pen parameters 
and wants to restore them to their state at the beginning of the 
procedure. (See GetPenState, above.) 

PROCEDURE PenSize (width,height: INTEGER); 

PenSize sets the dimensions of the graphics pen in the current 
grafPort. All subsequent calls to Line, LineTo, and the procedures 
that draw framed shapes in the current grafPort will use the new pen 
dimensions. 

The pen dimensions can be accessed in the variable thePortA.pnSize, 
which is of type Point. If either of the pen dimensions is set to a 
negative value, the pen assumes the dimensions (0,O) and no drawing is 
performed. For a discussion of how the pen draws, see the "General 
Discussion of Drawing" earlier in this manual. 

PROCEDURE PenMode (mode: INTEGER); 

PenMode sets the transfer mode through which the pnPat is tr~nsferred 
onto the bitMap when lines or shapes are drawn. The mode may be any 
one of the pattern transfer modes: 

patCopy 
patOr 

patXor 
patBic 

notPatCopy 
notPatOr 

notPatXor 
notPatBic 

If the mode is one of the source transfer modes (or negative), no 
drawing is performed. The current pen mode can be obtained in the 
variable thePortA.pnMode. The initial pen mode is patCopy, in Which 
the pen pattern is copied directly to the bitMap. 

3/2/83 "Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



42 QuickDraw Programmer's Guide 

PROCEDURE PenPat (pat: Pattern); 

PenPat sets the pattern that is used by the pen in the current 
grafPort. The standard patterns white, black, gray, ltGray, and dkGray 
are predefined; the initial pnPat is black. The current pen pattern 
can be obtained in the variable thePort~.pnPat, and this value can be 
assigned (but not compared!) to any other variable of type Pattern. 

PROCEDURE PenNormal; 

PenNormal resets the initial state of the pen in the current grafPort, 
as follows: 

Field 
pnSize 
pnMode 
pnPat 

Setting 
(1,1) 
patCopy 
black 

The pen location is not changed. 

PROCEDURE MoveTo (h,v: INTEGER); 

MoveTo moves the pen to location (h,v) in the local coordinates of the 
current grafPort. No drawing is performed. 

PROCEDURE Move (dh,dv: INTEGER); 

This procedure moves the pen a distance of dh horizontally and dv 
vertically from its current location; it calls MoveTo(h+dh,v+dv), Where 
(h,v) is the current location. The positive directions are to the 
right and down. No drawing is performed. 

PROCEDURE LineTo (h,v: INTEGER); 

LineTo draws a line from the current pen location to the location 
specified (in local coordinates) by hand v. The new pen location is 
(h,v) after the line is drawn. See the general discussion of drawing. 

If a region or polygon is open and being formed, its outline is 
infinitely thin and is not affected by the pnSize, pnMode, or pnPat. 
(See OpenRgn and OpenPoly.) 

PROCEDURE Line (dh,dv: INTEGER); 

This procedure draws a line to the location that is a distance of dh 
horizontally and dv vertically from the current pen location; it calls 
LineTo(h+dh,v+dv), Where (h,v) is the current location. The positive 
directions are to the right and down. The pen location becomes the 
coordinates of the end of the line after the line is drawn. See the 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 43 

general discussion of drawing. 

If a region or polygon is open and being formed, its outline is 
infinitely thin and is not affected by the pnSize, pnMode, or pnPat. 
(See OpenRgn and OpenPoly.) 

Text-Drawing Routines 

Each grafPort has its own text characteristics, and all these 
procedures deal with those of the current port. 

PROCEDURE TextFont (font: INTEGER); 

TextFont sets the current grafPort's font (thePortA.txFont) to the 
given font number. The initial font number is ~, which represents the 
system font. 

PROCEDURE TextFace (face: Style); 

TextFace sets the current grafPort's character style (thePortA.txFace). 
The Style data type allows you to specify a set of one or more of the 
following predefined constants: bold, italic, underline, outline, 
shadow, condense, and extend. For example: 

TextFace([bold]); 
TextFace([bold,italic]); 
TextFace(thePortA.txFace+[bold]); 
TextFace(thePortA.txFace-[bold]); 
TextFace([]); 

PROCEDURE TextMode (mode: INTEGER); 

{bold} 
{bold and italic} 
{whatever it was plus bold} 
{whatever it was but not bold} 
{normal} 

TextMode sets the current grafPort's transfer mode for drawing text 
(thePortA.txMode). The mode should be srcOr, srcXor, or srcBic. The 
initial transfer mode for drawing text is srcOr. 

PROCEDURE TextSize (size: INTEGER); 

TextSize sets the current grafPort's type size (thePortA.txSize) to the 
given number of points. Any size may be specified, but the result will 
look best if the Font Manager has the font in that size (otherwise it 
will scale a size it does have). The next best result will occur if 
the given size is an even multiple of a size available for the font. 
If 0 is specified, the Font Manager will choose one of the available 
sizes -- whichever is closest to the system font size. The initial 
txSize setting is ~. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



44 QuickDraw Programmer's Guide 

PROCEDURE SpaceExtra (extra: INTEGER); 

SpaceExtra sets the current grafPort's spExtra field, which specifies 
the number of pixels by which to widen each space in a line of text. 
This is useful when text is being fully justified (that is, aligned 
with both a left and a right margin). Consider, for example, a line 
that contains three spaces; if there would normally be six pixels 
between the end of the line and the right margin, you would call 
SpaceExtra(2) to print the line with full justification. The initial 
spExtra setting is ~. 

( hand) 
SpaceExtra will also take a negative argument, but be 
careful not to narrow spaces so much that the text is 
unreadable. 

PROCEDURE DrawChar (ch: CHAR); 

DrawChar places the given character to the right of the pen location, 
with the left end of its base line at the pen's location, and advances 
the pen accordingly. If the character is not in the font, the font's 
missing symbol is drawn. 

PROCEDURE DrawString (s: Str2SS); 

DrawString performs consecutive calls to DrawChar for each character in 
the supplied string; the string is placed beginning at the current pen 
location and extending right. No formatting (carriage returns, line 
feeds, etc.) is performed by QuickDraw. The pen location ends up to 
the right of the last character in the string. 

PROCEDURE DrawText (textBuf: QDPtr; firstByte,byteCount: INTEGER); 

DrawText draws text from an arbitrary structure in memory specified by 
textBuf, starting firstByte bytes into the structure and continuing for 
byteCount bytes. The string of text is placed beginning at the current 
pen location and extending right. No formatting (carriage returns, 
line feeds, etc.) is performed by QuickDraw. The pen location ends up 
to the right of the last character in the string. 

FUNCTION CharWidth (ch: CHAR) : INTEGER; 

CharWidth returns the value that will be added to the pen horizontal 
coordinate if the specified character is drawn. CharWidth includes the 
effects of the stylistic variations set with TextFace; if you change 
these after determining the character width but before actually drawing 
the character, the predetermined width may not be correct. If the 
character is a space, CharWidth also includes the effect of SpaceExtra. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



QUICKDRAW ROUTINES 45 

FUNCTION StringWidth (s: Str255) : INTEGER; 

StringWidth returns the width of the given text string, which it 
calculates by adding the CharWidths of all the characters in the string 
(see above). This value will be added to the pen horizontal coordinate 
if the specified string is drawn. 

FUNCTION TextWidth (textBuf: QDPtr; firstByte,byteCount: INTEGER) 
INTEGER; 

TextWidth returns the width of the text stored in the arbitrary 
structure in memory specified by textBuf, starting firstByte bytes into 
the structure and continuing for byteCount bytes. It calculates the 
width by adding the CharWidths of all the characters in the text. (See 
CharWidth, above.) 

PROCEDURE GetFontInfo (VAR info: FontInfo); 

GetFontInfo returns the following information about the current 
grafPort's character font, taking into consideration the style and size 
in which the characters will be drawn: the ascent, descent, maximum 
character width (the greatest distance the pen will move when a 
character is drawn), and leading (the vertical distance between the 
descent line and the ascent line below it), all in pixels. The 
FontInfo data structure is defined as: 

TYPE FontInfo = RECORD 

Drawing in Color 

ascent: INTEGER; 
descent: INTEGER; 
widMax: INTEGER; 
leading: INTEGER 

END; 

These routines will enable applications to do color drawing In the 
future when Apple supports color output devices for the Macintosh. All 
nonwhite colors will appear as black on black-and-white output devices. 

PROCEDURE ForeColor (color: LongInt); 

ForeColor sets the foreground color for all drawing in the current 
grafPort (AthePort.fgColor) to the given color. The following standard 
colors are predefined: blackColor, whiteColor, redColor, greenColor, 
blueColor, cyanColor, magentaColor, and yellowColor. The initial 
foreground color is blackColor. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK/QUIKDRAW.4 



46 QuickDraw Programmer's Guide 

PROCEDURE BackColor (color: LongInt); 

BackColor sets the background color for all drawing in the current 
grafPort (AthePort.bkColor) to the given color. Eight standard colors 
are predefined (see ForeColor above). The initial background color is 
whiteColor. 

PROCEDURE ColorBit (whichBit: INTEGER); 

ColorBit is called by printing software for a color printer, or other 
color-imaging software, to set the current grafPort's colrBit field to 
whichBit; this tells QuickDraw which plane of the color picture to draw 
into. QuickDraw will draw into the plane corresponding to bit number 
whichBit. Since QuickDraw can support output devices that have up to 
32 bits of color information per pixel, the possible range of values 
for whichBit is ~ through 31. The initial value of the colrBit field 
is ~. 

Calculations with Rectangles 

Calculation routines are independent of the current coordinate system; 
a calculation will operate the same regardless of which grafPort is 
active. 

( hand) 
Remember that if the parameters to one of the calculation 
routines were defined in different grafPorts, you must 
first adjust them to be in the same coordinate system. 
If you do not adjust them, the result returned by the 
routine may be different from what you see on the screen. 
To adjust to a common coordinate system, see 
LocalToGlobal and GlobalToLocal under "Calculations with 
Points" below. 

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: INTEGER); 

SetRect assigns the four boundary coordinates to the rectangle. The 
result is a rectangle with coordinates (left,top,right,bottom). 

This procedure is supplied as a utility to help you shorten your 
program text. If you want a more readable text at the expense of 
length, you can assign integers (or points) directly into the 
rectangle's fields. There is no significant code size or execution 
speed advantage to either method; one's just easier to write, and the 
other's easier to read. 

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER); 

OffsetRect moves the rectangle by adding dh to each horizontal 
coordinate and dv to each vertical coordinate. If dh and dv are 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



QUICKDRAW ROUTINES 47 

positive, the movement is to the right and down; if either is negative, 
the corresponding movement is in the opposite direction. The rectangle 
retains its shape and size; it's merely moved on the coordinate plane. 
This does not affect the screen unless you subsequently call a routine 
to draw within the rectangle. 

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER); 

InsetRect shrinks or expands the rectangle. The left and right sides 
are moved in by the amount specified by dh; the top and bottom are 
moved towards the center by the amount specified by dv. If dh or dv is 
negative, the appropriate pair of sides is moved outwards instead of 
inwards. The effect is to alter the size by 2*dh horizontally and 2*dv 
vertically, with the rectangle remaining centered in the same place on 
the coordinate plane. 

If the resulting width or height becomes less than 1, the rectangle is 
set to the empty rectangle (0,0,0,0). 

FUNCTION SectRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect) 
BOOLEAN; 

SectRect calculates the rectangle that is the intersection of the two 
input rectangles, and returns TRUE if they indeed intersect or FALSE if 
they do not. Rectangles that "touch" at a line or a point are not 
considered intersecting, because their intersection rectangle (really, 
in this case, an intersection line or point) does not enclose any bits 
on the bitMap. 

If the rectangles do not intersect, the destination rectangle is set to 
(0,0,0,0). SectRect works correctly even if one of the source 
rectangles is also the destination. 

PROCEDURE UnionRect (srcRectA,srcRectB: Rect; VAR dstRect: Rect); 

UnionRect calculates the smallest rectangle which encloses both input 
rectangles. It works correctly even if one of the source rectangles is 
also the destination. 

FUNCTION PtInRect (pt: Point; r: Rect) : BOOLEAN; 

PtInRect determines whether the pixel below and to the right of the 
given coordinate point is enclosed in the specified rectangle, and 
returns TRUE if so or FALSE if not. 

PROCEDURE Pt2Rect (ptA,ptB: Point; VAR: dstRect: Rect); 

Pt2Rect returns the smallest rectangle which encloses the two input 
points. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



48 QuickDraw Programmer's Guide 

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER); 

PtToAngle calculates an integer angle between a line from the center of 
the rectangle to the given point and a line from the center of the 
rectangle pointing straight up (12 o'clock high). The angle is in 
degrees from ~ to 359, measured clockwise from 12 o'clock, with 9~ 
degrees at 3 o'clock t 18~ at 6 o'clock, and 27~ at 9 o'clock. Other 
angles are measured relative to the rectangle: If the line to the 
given point goes through the top right corner of the rectangle, the 
angle returned is 45 degrees, even if the rectangle is not square; if 
it goes through the bottom right corner, the angle is 135 degrees, and 
so on (see Figure 18). 

r 

~n~!e. = 45 

-------__ 1ft . 
..... ~--.. 

__ -----+---~:ri .. ---. ..,....,..----

.".~ ..... ---------

r 

Figure 18. PtToAngle 

The angle returned might be used as input to one of the procedures that 
manipulate arcs and wedges, as described below under "Graphic 
Operations on Arcs and Wedges". 

FUNCTION EqualRect (rectA,rectB: Rect) : BOOLEAN; 

EqualRect compares the two rectangles and returns TRUE if they are 
equal or FALSE if not. The two rectangles must have identical boundary 
coordinates to be considered equal. 

FUNCTION EmptyRect (r: Rect) : BOOLEAN; 

EmptyRect returns TRUE if the given rectangle is an empty rectangle or 
FALSE if not. A rectangle is considered empty if the bottom coordinate 
is equal to or less than the top or the right coordinate is equal to or 
less than the left. 

3/2/83 'Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



QUICKDRAW ROUTINES 49 

Graphic Operations on Rectangles 

These procedures perform graphic operations on rectangles. See also 
ScrollRect under "Bit Transfer Operations". 

PROCEDURE FrameRect (r: Rect); 

FrameRect draws a hollow outline just inside the specified rectangle, 
using the current grafPort's pen pattern, mode, and size. The outline 
is as wide as the pen width and as tall as the pen height. It is drawn 
with the pnPat, according to the pattern transfer mode specified by 
pnMode. The pen location is not changed by this procedure. 

If a region is open and being formed, the outside outline of the new 
rectangle is mathematically added to the region's boundary. 

PROCEDURE PaintRect (r: Rect); 

PaintRect paints the specified rectangle with the current grafPort's 
pen pattern and mode. The rectangle on the bitMap is filled with the 
pnPat, according to the pattern transfer mode specified by pnMode. The 
pen location is not changed by this procedure. 

PROCEDURE EraseRect (r: Rect); 

EraseRect paints the specified rectangle with the current grafPort's 
background pattern bkPat (in patCopy mode). The grafPort's pnPat and 
pnMode are ignored; the pen location is not changed. 

PROCEDURE InvertRect (r: Rect); 

InvertRect inverts the pixels enclosed by the specified rectangle: 
every white pixel becomes black and every black pixel becomes white. 
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen 
location is not changed. · 

PROCEDURE FillRect (r: Rect; pat: Pattern); 

FillRect fills the specified rectangle with the given pattern (in 
patCopy mode). The grafPort's pnPat, pnMode, and bkPat are all 
ignored; the pen location is not changed. 

3/2/83 .Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



50 QuickDraw Programmer's Guide 

Graphic Operations on Ovals 

Ovals are drawn inside rectangles that you specify. If the rectangle 
you specify is square, QuickDraw draws a circle. 

PROCEDURE FrameOval (r: Rect); 

FrameOval draws a hollow outline just inside the oval that fits inside 
the specified rectangle, using the current grafPort's pen pattern, 
mode, and size. The outline is as wide as the pen width and as tall as 
the pen height. It is drawn with the pnPat, according to the pattern 
transfer mode specified by pnMode. The pen location is not changed by 
this procedure. 

If a region is open and being formed, the outside outline of the new 
oval is mathematically added to the region's boundary. 

PROCEDURE PaintOval (r: Rect); 

PaintOval paints an oval just inside the specified rectangle with the 
current grafPort's pen pattern and mode. The oval on the bitMap is 
filled with the pnPat, according to the pattern transfer mode specified 
by pnMode. The pen location is not changed by this procedure. 

PROCEDURE EraseOval (r: Rect); 

EraseOval paints an oval just inside the specified rectangle with the 
current grafPort's background pattern bkPat (in patCopy mode). The 
grafPort's pnPat and pnMode are ignored; the pen location is not 
changed. 

PROCEDURE InvertOval (r: Rect); 

InvertOval inverts the pixels enclosed by an oval just inside the 
specified rectangle: every white pixel becomes black and every black 
pixel becomes white. The grafPort's pnPat, pnMode, and bkPat are all 
ignored; the pen location is not changed. 

PROCEDURE FillOval (r: Rect; pat: Pattern); 

FillOval fills an oval just inside the specified rectangle with the 
given pattern (in patCopy'mode). The grafPort's pnPat, pnMode, and 
bkPat are all ignored; the pen location is not changed. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



QUICKDRAW ROUTINES 51 

Graphic Operations on Rounded-Corner Rectangles 

PROCEDURE FrameRoundRect (r: Rect; ovaIWidth,ovaIHeight: INTEGER); 

FrameRoundRect draws a hollow outline just inside the specified 
rounded-corner rectangle, using the current grafPort's pen pattern, 
mode, and size. OvalWidth and ovalHeight specify the diameters of 
curvature for the corners (see Figure 19). The outline is as wide as 
the pen width and as tall as the pen height. It is drawn with the 
pnPat, according to the pattern transfer mode specified by pnMode. The 
pen location is not changed by this procedure. 

ovalWid.th 

/ . ...---._-.... \ 

J 
-.,----- rr ...... · .. ·· 

•.... ,.,.----... , .. 
( 
, .. , ....... - -_ ......... . 

Figure 19. Rounded-Corner Rectangle 

If a region is open and being formed, the outside outline of the new 
rounded-corner rectangle is mathematically added to the region's 
boundary. 

PROCEDURE PaintRoundRect (r: Rect; ovaIWidth,ovaIHeight: INTEGER); 

PaintRoundRect paints the specified rounded-corner rectangle with the 
current grafPort's pen pattern and mode. OvalWidth and ovalHeight 
specify the diameters of curvature for the corners. The rounded-corner 
rectangle on the bitMap is filled with the pnPat, according to the 
pattern transfer mode specified by pnMode. The pen location is not 
changed by this procedure. 

PROCEDURE EraseRoundRect (r: Rect; ovaIWidth,ovaIHeight: INTEGER); 

EraseRoundRect paints the specified rounded-corner rectangle with the 
current grafPort's background pattern bkPat (in patCopy mode). 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



52 QuickDraw Programmer's Guide 

Ova1Width and ova1Height specify the diameters of curvature for the 
corners. The grafPort's pnPat and pnMode are ignored; the pen location 
is not changed. 

PROCEDURE InvertRoundRect (r: Rect; ova1Width,ovalHeight: INTEGER); 

InvertRoundRect inverts the pixels enclosed by the specified 
rounded-corner rectangle: every white pixel becomes black and every 
black pixel becomes white. Ova1Width and ova1Height specify the 
diameters of curvature for the corners. The grafPort's pnPat, pnMode, 
and bkPat are all ignored; the pen location is not changed. 

PROCEDURE Fi11RoundRect (r: Rect; ova1Width,ova1Height: INTEGER; pat: 
Pattern); 

Fi11RoundRect fills the specified rounded-corner rectangle with the 
given pattern (in patCopy mode). Ova1Width and ova1Height specify the 
diameters of curvature for the corners. The grafPort's pnPat, pnMode, 
and bkPat are all ignored; the pen location is not changed. 

Graphic Operations on Arcs and Wedges 

These procedures perform graphic operations on arcs and wedge-shaped 
sections of ovals. See also PtToAng1e under "Calculations with 
Rectangles" • 

PROCEDURE FrameArc (r: Rect; startAngle,arcAng1e: INTEGER); 

FrameArc draws an arc of the oval that fits inside the specified 
rectangle, using the current grafPort's pen pattern, mode, and size. 
StartAng1e indicates where the arc begins and is treated mod 36~. 
ArcAngle defines the extent of the arc. The angles are given in 
positive or negative degrees; a positive angle goes clockwise, while a 
negative angle goes counterclockwise. Zero degrees is at 12 o'clock 
high, 90 (or -270) is at 3 o'clock, 180 (or -180) is at 6 o'~lock, and 
270 (or -90) is at 9 o'clock. Other angles are measured relative to 
the enclosing rectangle: a line from the center of the rectangle 
through its top right corner is at 45 degrees, even if the rectangle is 
not square; a line through the bottom right corner is at 135 degrees, 
and so on (see Figure 20). 

3/2/83' Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



QUICKDRAW ROUTINES 53 

startAngle = (I 

i3rCAngl~. = -4.5 { a.r'~Angle = 4.S 

~ arc Angle = .. ~S 
r----__ -==-........,. ... 

Ir 1 ..... 
5 '1 

st.art.Angle = (I 31 ar Angle = (l 

FrarfleArc 

r r 
Fri~fleArc 

Paint-Arc 

Figure 20. Operations on Arcs and Wedges 

The arc is as wide as the pen width and as tall as the pen height. It 
is drawn with the pnPat, according to the pattern transfer mode 
specified by pnMode. The pen location is not changed by this 
procedure. 

( eye) 
FrameArc differs from other QuickDraw procedures that 
frame shapes in that the arc is not mathematically added 
to the boundary of a region that is open and being 
formed. 

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTEGER); 

PaintArc paints a wedge of the oval just inside the specified rectangle 
with the current grafPort's pen pattern and mode. StartAngle and 
arcAngle define the arc of the wedge as in FrameArc. The wedge on the 
bitMap is filled with the pnPat, according to the pattern tr~nsfer mode 
specified by pnMode. The pen location is not changed by this 
procedure. 

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER); 

EraseArc paints a wedge of the oval just inside the specified rectangle 
with the current grafPort's background pattern bkPat (in patCopy mode). 
StartAngle and arcAngle define the arc of the wedge as in FrameArc. 
The grafPort's pnPat and pnMode are ignored; the pen location is not 
changed. 

3/2/83'Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



54 QuickDraw Programmer's Guide 

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER); 

InvertArc inverts the pixels enclosed by a wedge of the oval just 
inside the specified rectangle: every White pixel becomes black and 
every black pixel becomes White. StartAngle and arcAngle define the 
arc of the wedge as in FrameArc. The grafPort's pnPat, pnMode, and 
bkPat are all ignored; the pen location is not changed. 

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pat: 
Pattern); 

FillArc fills a wedge of the oval just inside the specified rectangle 
with the given pattern (in patCopy mode). StartAngle and arcAngle 
define the arc of the wedge as in FrameArc. The grafPort's pnPat, 
pnMode, and bkPat are all ignored; the pen location is not changed. 

Calculations with Regions 

( hand) 
Remember that if the parameters to one of the calculation 
routines were defined in different grafPorts, you must 
first adjust them to be in the same coordinate system. 
If you do not adjust them, the result returned by the 
routine may be different from what you see on the screen. 
To adjust to a common coordinate system, see 
LocaltoGlobal and GlobalToLocal under "Calculations with 
Points" below. 

FUNCTION NewRgn : RgnHandle; 

NewRgn allocates space for a new, dynamic, variable-size region, 
initializes it to the empty region (0,0,0,0), and returns a handle to 
the new region. Only this function creates new regions; all other 
procedures just alter the size and shape of regions you create. 
OpenPort calls NewRgn to allocate space for the port's visRgn and 
clipRgn. 

( eye) 

( eye) 

Except When using visRgn or clipRgn, you MUST call NewRgn 
before specifying a region's handle in any drawing or 
calculation procedure. 

Never refer to a region without using its handle. 

PROCEDURE DisposeRgn (rgn: RgnHandle); 

DisposeRgn deallocates space for the region Whose handle is supplied, 
and returns the memory used by the region to the free memory pool. Use 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



QUICKDRAW ROUTINES 55 

this only after you are completely through with a temporary region. 

( eye) 
Never use a region once you have deallocated it, or you 
will risk being hung by dangling pointers! 

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle); 

CopyRgn copies the mathematical structure of srcRgn into dstRgn; that 
is, it makes a duplicate copy of srcRgn. Once this is done, srcRgn may 
be altered (or even disposed of) without affecting dstRgn. COPYRGN 
DOES NOT CREATE THE DESTINATION REGION: you must use NewRgn to create 
the dstRgn before you call CopyRgn. 

PROCEDURE SetEmptyRgn (rgn: RgnHandle); 

SetEmptyRgn destroys the previous structure of the given region, then 
sets the new structure to the empty region (0,O,O,O). 

PROCEDURE SetRectRgn (rgn: RgnHandle; left,top,right,bottom: INTEGER); 

SetRectRgn destroys the previous structure of the given region, then 
sets the new structure to the rectangle specified by left, top, right, 
and bottom. 

If the specified rectangle is empty (i.e., left>=right or top>=bottom), 
the region is set to the empty region (0,0,0,~). 

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect); 

RectRgn destroys the previous structure of the given region, then sets 
the new structure to the rectangle specified by r. This is 
operationally synonymous with SetRectRgn, except the input rectangle is 
defined by a rectangle rather than by four boundary coordinates. 

PROCEDURE OpenRgn; 

OpenRgn tells QuickDraw to allocate temporary space and start saving 
lines and framed shapes for later processing as a region definition. 
While a region is open, all calls to Line, LineTo, and the procedures 
that draw framed shapes (except arcs) affect the outline of the region. 
Only the line endpoints and shape boundaries affect the region 
definition; the pen mode, pattern, and size do not affect it. In fact, 
OpenRgn calls HidePen, so no drawing occurs on the screen While the 
region is open (unless you called ShowPen just after OpenRgn, or you 
called ShowPen previously without balancing it by a call to HidePen). 
Since the pen hangs below and to the right of the pen location, drawing 
lines with even the smallest pen will change bits that lie outside the 
region you define. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



56 QuickDraw Programmer's Guide 

The outline of a region is mathematically defined and infinitely thin, 
and separates the bitMap into two groups of bits: those within the 
region and those outside it. A region should consist of one or more 
closed loops. Each framed shape itself constitutes a loop. Any lines 
drawn with Line or LineTo should connect with each other or with a 
framed shape. Even though the on-screen presentation of a region is 
clipped, the definition of a region is not; you can define a region 
anywhere on the coordinate plane with complete disregard for the 
location of various grafPort entities on that plane. 

When a region is open, the current grafPort's rgnSave field contains a 
handle to information related to the region definition. If you want to 
temporarily disable the collection of lines and shapes, you can save 
the current value of this field, set the field to NIL, and later 
restore the saved value to resume the region definition. 

( eye) 
Do not call OpenRgn While another region is already open. 
All open regions but the most recent will behave 
strangely. 

PROCEDURE CloseRgn (dstRgn: RgnHandle); 

CloseRgn stops the collection of lines and framed shapes, organizes 
them into a region definition, and saves the resulting region into the 
region indicated by dstRgn. You should perform one and only one 
CloseRgn for every OpenRgn. CloseRgn calls ShowPen, balancing the 
HidePen call made by OpenRgn. 

Here's an example of how to create and open a region, define a barbell 
shape, close the region, and draw it: 

barbell := NewRgn; 
OpenRgn; 

SetRect(tempRect,20,20,30,50); 
FrameOval(tempRect); 
SetRect(tempRect,30,30,80,40); 
FrameRect(tempRect); 
SetRect(tempRect,80,20,90,50); 
FrameOval(tempRect); 

CloseRgn(barbell); 
FiIIRgn(barbell,black); 
DisposeRgn(barbell); 

{make a new region} 
{begin collecting stuff} 
{form the left weight} 

{form the bar} 

{form the right weight} 

{we're done; save in barbell} 
{draw it on the screen} 
{we don't need you anymore ••• } 

PROCEDURE OffsetRgn (rgn: RgnHandle;dh,dv: INTEGER); 

OffsetRgn moves the region on the coordinate plane, a distance of dh 
horizontally and dv vertically. This does not affect the screen unless 
you subsequently call a routine to draw the region. If dh and dv are 
positive, the movement is to the right and down; if either is negative, 
the corresponding movement is in the opposite direction. The region 
retains its size and shape. 

3/2/83 "Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



( hand) 

QUICKDRAW ROUTINES 57 

OffsetRgn is an especially efficient operation, because 
most of the data defining a region is stored relative to 
rgnBBox and so isn't actually changed by OffsetRgn. 

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER); 

InsetRgn shrinks or expands the region. All points on the region 
boundary are moved inwards a distance of dv vertically and dh 
horizontally; if dh or dv is negative, the points are moved outwards in 
that direction. InsetRgn leaves the region "centered" at the same 
position, but moves the outline in (for positive values of dh and dv) 
or out (for negative values of dh and dv). InsetRgn of a rectangular 
region works just like InsetRect. 

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 

SectRgn calculates the intersection of two regions and places the 
intersection in a third region. THIS DOES NOT CREATE THE DESTINATION 
REGION: you must use NewRgn to create the dstRgn before you call 
SectRgn. The dstRgn can be one of the source regions, if desired. 

If the regions do not intersect, or one of the regions is empty, the 
destination is set to the empty region (0,0,0,0). 

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 

UnionRgn calculates the union of two regions and places the union in a 
third region. THIS DOES NOT CREATE THE DESTINATION REGION: you must 
use NewRgn to create the dstRgn before you call UnionRgn. The dstRgn 
can be one of the source regions, if desired. 

If both regions are empty, the destination is set to the empty region 
(0,0,0,0). 

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 

DiffRgn subtracts srcRgnB from srcRgnA and places the difference in a 
third region. THIS DOES NOT CREATE THE DESTINATION REGION: you must 
use NewRgn to create the dstRgn before you call DiffRgn. The dstRgn 
can be one of the source regions, if desired. 

If the first source region is empty, the destination is set to the 
empty region (0,0,0,0). 

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle); 

XorRgn calculates the difference between the union and the intersection 
of two regions and places the result in a third region. THIS DOES NOT 

3/2/83 -Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.5 



58 QuickDraw Programmer's Guide 

CREATE THE DESTINATION REGION: 
dstRgn before you call XorRgn. 
regions, if desired. 

you must use NewRgn to create the 
The dstRgn can be one of the source 

If the regions are coincident, the destination is set to the empty 
region (0,0,0,0). 

FUNCTION PtInRgn (pt: Point; rgn: RgnHandle) : BOOLEAN; 

PtInRgn checks whether the pixel below and to the right of the given 
coordinate point is within the specified region, and returns TRUE if so 
or FALSE if not. 

FUNCTION RectInRgn (r: Rect; rgn: RgnHandle) : BOOLEAN; 

RectInRgn checks Whether the given rectangle intersects the specified 
region, and returns TRUE if the intersection encloses at least one bit 
or FALSE if not. 

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle) : BOOLEAN; 

EqualRgn compares the two regions and returns TRUE if they are equal or 
FALSE if not. The two regions must have identical sizes, shapes, and 
locations to be considered equal. Any two empty regions are always 
equal. 

FUNCTION EmptyRgn (rgn: RgnHandle) : BOOLEAN; 

EmptyRgn returns TRUE if the region is an empty region or FALSE if not. 
Some of the circumstances in which an empty region can be created are: 
a NewRgn call; a CopyRgn of an empty region; a SetRectRgn or RectRgn 
with an empty rectangle as an argument; CloseRgn without a previous 
OpenRgn or with no drawing after an OpenRgn; OffsetRgn of an empty 
region; InsetRgn with an empty region or too large an inset; SectRgn of 
nonintersecting regions; UnionRgn of two empty regions; and DiffRgn or 
XorRgn of two identical or nonintersecting regions. 

Graphic Operations on Regions 

These routines all depend on the coordinate system of the current 
grafPort. If a region is drawn in a different grafPort than the one in 
which it was defined, it may not appear in the proper position inside 
the port. 

PROCEDURE FrameRgn (rgn: RgnHandle); 

FrameRgn draws a hollow outline just inside the specified region, using 
the current grafPort's pen pattern, mode, and size. The outline is as 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 59 

wide as the pen width and as tall as the pen height; under no 
circumstances will the frame go outside the region boundary. The pen 
location is not changed by this procedure. 

If a region is open and being formed, the outside outline of the region 
being framed is mathematically added to that region's boundary. 

PROCEDURE PaintRgn (rgn: RgnHandle); 

PaintRgn paints the specified region with the current grafPort's pen 
pattern and pen mode. The region on the bitMap is filled with the 
pnPat, according to the pattern transfer mode specified by pnMode. The 
pen location is not changed by this procedure. 

PROCEDURE EraseRgn (rgn: RgnHandle); 

EraseRgn paints the specified region with the current grafPort's 
background pattern bkPat (in patCopy mode). The grafPort's pnPat and 
pnMode are ignored; the pen location is not changed. 

PROCEDURE InvertRgn (rgn: RgnHandle); 

InvertRgn inverts the pixels enclosed by the specified region: every 
white pixel becomes black and every black pixel becomes white. The 
grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location 
is not changed. 

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern); 

FillRgn fills the specified region with the given pattern (in patCopy 
mode). The grafPort's pnPat, pnMode, and bkPat are all ignored; the 
pen location is not changed. 

Bit Transfer Operations 

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle); 

ScrollRect shifts ("scrolls") those bits inside the intersection of the 
specified rectangle, visRgn, clipRgn, portRect, and portBits.bounds. 
The bits are shifted a distance of dh horizontally and dv vertically. 
The positive directions are to the right and down. No other bits are 
affected. Bits that are shifted out of the scroll area are lost; they 
are neither placed outside the area nor saved. The grafPort's 
background pattern bkPat fills the space created by the scroll. In 
addition, updateRgn is changed to the area filled with bkPat (see 
Figure 21). 

3/2/83 Espinosa-Rose CONFI DE NTIAL /QUICK.2/QUIKDRAW.6 



60 QuickDraw Programmer's Guide 

'" to or .~.,. r· .-11ol1 t:).~ ·-or { .-1 ,'" or R'~" .-.,. f fJ- t:: ·1 1""1 L.~:·I .)1. .. , '/'.f'i.J.;:.I •• ·l· ~ I..t-::)I.. '.t;;..I.. •• L·, - ,._1 •••. , 

5..I.. 

pnLoc 

Figure 21. Scrolling 

Figure 21 shows that the pen location after a Scro11Rect is in a 
different position relative to what was scrolled in the rectangle. The 
entire scrolled item has been moved to different coordinates. To 
restore it to its coordinates before the Scro11Rect, you can use the 
SetOrigin procedure. For example, suppose the dstRect here is the 
portRect of the grafPort and its top left corner is at (95,12~). 
SetOrigin(105,115) will offset the coordinate system to compensate for 
the scroll. Since the c1ipRgn and pen location are not offset, they 
move down and to the left. 

PROCEDURE CopyBits (srcBits,dstBits: BitMap; srcRect,dstRect: Rect; 
mode: INTEGER; maskRgn: RgnHand1e); 

CopyBits transfers a bit image between any two bitMaps and clips the 
result to the area specified by the maskRgn parameter. The transfer 
may be performed in any of the eight source transfer modes. The result 
is always clipped to the maskRgn and the boundary rectangle of the 
destination bitMap; if the destination bitMap is the current grafPort's 
portBits, it is also clipped to the intersection of the grafPort's 
c1ipRgn and visRgn. If you do not want to clip to a maskRgn, just pass 
NIL for the maskRgn parameter. 

The dstRect and maskRgn coordinates are in terms of the dstBits.bounds 
coordinate system, and the srcRect coordinates are in terms of the 
srcBits.bounds coordinates. 

The bits enclosed by the source rectangle are transferred into the 
destination rectangle according to the rules of the chosen mode. The 
source transfer modes are as follows: 

srcCopy 
srcOr 

3/2/83· Espinosa-Rose 

srcXor 
srcBic 

notSrcCopy 
notSrcOr 

CONFIDENTIAL 

notSrcXor 
notSrcBic 

/QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 61 

The source rectangle is completely aligned with the destination 
rectangle; if the rectangles are of different sizes, the bit image is 
expanded or shrunk as necessary to fit the destination rectangle. For 
example, if the bit image is a circle in a square source rectangle, and 
the destination rectangle is not square, the bit image appears as an 
oval in the destination (see Figure 22). 

Pictures 

Source IiitltAa:p 

S(I1JfCe 

Transfer 
l'11fJde 

Source 
i ti;ft~lfef 

l·Jiode 
Destination BitIlJtafJ 

Figure 22. Operation of CopyBits 

FUNCTION OpenPicture (picFrame: Rect) : PicHandle; 

ffl as.k'.Rgrl 

r[lagkR~1l 

= NIl. 

OpenPicture returns a handle to a new picture which has the given 
rectangle as its picture frame, and tells QuickDraw to start saving as 
the picture definition all calls to drawing routines and all picture 
comments (if any). 

OpenPicture calls HldePen, so no drawing occurs on the screen While the 
picture is open (unless you call ShowPen just after OpenPicture, or you 
called ShowPen previously without balancing it by a call to HidePen). 

When a picture is open, the current grafPort's picSave field contains a 
handle to information related to the picture definition. If you want 
to temporarily disable the collection of routine calls and picture 
comments, you can save the current value of this field, set the field 
to NIL, and later restore the saved value to resume the picture 
definition. 

( eye) 
Do not call OpenPicture while another picture is already 
open. 

3/2/83 ·Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



62 QuickDraw Programmer's Guide 

PROCEDURE ClosePicture; 

ClosePicture tells QuickDraw to stop saving routine calls and picture 
comments as the definition of the currently open picture. You should 
perform one and only one ClosePicture for every OpenPicture. 
ClosePicture calls ShowPen, balancing the HidePen call made by 
OpenPicture. 

PROCEDURE PicComment (kind,dataSize: INTEGER; dataHandle: QDHandle); 

PicComment inserts the specified comment into the definition of the 
currently open picture. Kind identifies the type of comment. 
DataHandle is a handle to additional data if desired, and dataSize is 
the size of that data in bytes. If there is no additional data for the 
comment, dataHandle should be NIL and dataSize should be~. The 
application that processes the comment must include a procedure to do 
the processing and store a pointer to the procedure in the data 
structure pointed to by the grafProcs field of the grafPort (see 
"Customizing QuickDraw Operations"). 

PROCEDURE DrawPicture (myPicture: PicHandle; dstRect: Rect); 

DrawPicture draws the given picture to scale in dstRect, expanding or 
shrinking it as necessary to align the borders of the picture frame 
with dstRect. DrawPicture passes any picture comments to the procedure 
accessed indirectly through the grafProcs field of the grafPort (see 
PicComment above). 

PROCEDURE KillPicture (myPicture: PicHandle); 

KillPicture deallocates space for the picture whose handle is supplied, 
and returns the memory used by the picture to the free memory pool. 
Use this only when you are completely through with a picture. 

Calculations with Polygons 

FUNCTION OpenPoly : PolyHandle; 

OpenPoly returns a handle to a new polygon and tells QuickDraw to start 
saving the polygon definition as specified by calls to line-drawing 
routines. While a polygon is open, all calls to Line and LineTo affect 
the outline of the polygon. Only the line endpoints affect the polygon 
definition; the pen mode, pattern, and size do not affect it. In fact, 
OpenPoly calls HidePen, so no drawing occurs on the screen while the 
polygon is open (unless you call ShowPen just after OpenPoly, or you 
called ShowPen previously without balancing it by a call to HidePen). 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 63 

A polygon should consist of a sequence of connected lines. Even though 
the on-screen presentation of a polygon is clipped, the definition of a 
polygon is not; you can define a polygon anywhere on the coordinate 
plane with complete disregard for the location of various grafPort 
entities on that plane. 

When a polygon is open, the current grafPort's polySave field contains 
a handle to information related to the polygon definition. If you want 
to temporarily disable the polygon definition, you can save the current 
value of this field, set the field to NIL, and later restore the saved 
value to resume the polygon definition. 

( eye) 
Do not call OpenPoly While another polygon is already 
open. 

PROCEDURE ClosePoly; 

ClosePoly tells QuickDraw to stop saving the definition of the 
currently open polygon and computes the polyBBox rectangle. You should 
perform one and only one ClosePoly for every OpenPoly. ClosePoly calls 
ShowPen, balancing the HidePen call made by OpenPoly. 

Here's an example of how to open a polygon, define it as a triangle, 
close it, and draw it: 

triPoly := OpenPoly; 
MoveTo(300,100); 
LineTo(400,200); 
LineTo(200,200); 
LineTo(300,100); 

ClosePoly; 
FiIIPoly(triPoly,gray); 
KiIIPoly(triPoly); 

{save handle and begin collecting stuff} 
{ move to first point and } 
{ form } 
{ the } 
{ triangle } 
{stop collecting stuff} 
{draw it on the screen} 
{we're all done} 

PROCEDURE K1llPoly (poly: PolyHandle); 

KillPoly deallocates space for the polygon Whose handle is supplied, 
and returns the memory used by the polygon to the free memory pool. 
Use this only after you are completely through with a polygon. 

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER); 

OffsetPoly moves the polygon on the coordinate plane, a distance of dh 
horizontally and dv vertically. This does not affect the screen unless 
you subsequently call a routine to draw the polygon. If dh and dv are 
positive, the movement is to the right and down; if either is negative, 
the corresponding movement is in the opposite direction. The polygon 
retains its shape and size. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



64 QuickDraw Programmer's Guide 

( hand) 
OffsetPoly is an especially efficient operation, because 
the data defining a polygon is stored relative to 
polyStart and so isn't actually changed by OffsetPoly. 

Graphic Operations on Polygons 

PROCEDURE FramePoly (poly: PolyHandle); 

FramePoly plays back the line-drawing routine calls that define the 
given polygon, using the current grafPort's pen pattern, mode, and 
size. The pen will hang below and to the right of each point on the 
boundary of the polygon; thus, the polygon drawn will extend beyond the 
right and bottom edges of polyAA.polyBBox by the pen width and pen 
height, respectively. All other graphic operations occur strictly 
within the boundary of the polygon, as for other shapes. You can see 
this difference in Figure 23, where each of the polygons is shown with 
its polyBBox. 

F rarnePoly PaJntPoJy 

Figure 23. Drawing Polygons 

If a polygon is open and being formed, FramePoly affects the outline of 
the polygon just as if the line-drawing routines themselves had been 
called. If a region is open and being formed, the outside outline of 
the polygon being framed is mathematically added to the region's 
boundary. 

PROCEDURE PaintPoly (poly: PolyHandle); 

PaintPoly paints the specified polygon with the current grafPort's pen 
pattern and pen mode. The polygon on the bitMap is filled with the 
pnPat, according to the pattern transfer mode specified by pnMode. The 

3/2/83-Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 65 

pen location is not changed by this procedure. 

PROCEDURE ErasePoly (poly: PolyHandle); 

ErasePoly paints the specified polygon with the current grafPort's 
background pattern bkPat (in patCopy mode). The pnPat and pnMode are 
ignored; the pen location is not changed. 

PROCEDURE InvertPoly (poly: PolyHandle); 

InvertPoly inverts the pixels enclosed by the specified polygon: every 
white pixel becomes black and every black pixel becomes white. The 
grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location 
is not changed. 

PROCEDURE FillPoly (poly: PolyHandle; pat: Pattern); 

FillPoly fills the specified polygon with the given pattern (in patCopy 
mode). The grafPort's pnPat, pnMode, and bkPat are all ignored; the 
pen location is not changed. 

Calculations with Points 

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point); 

AddPt adds the coordinates of srcPt to the coordinates of dstPt, and 
returns the result in dstPt. 

PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point); 

SubPt subtracts the coordinates of srcPt from the coordinates of dstPt, 
and returns the result in dstPt. 

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER); 

SetPt assigns two integer coordinates to a variable of type Point. 

FUNCTION EqualPt (ptA,ptB: Point) : BOOLEAN; 

EqualPt compares the two points and returns true if they are equal or 
FALSE if not. 

3/2/83.Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



66 QuickDraw Programmer's Guide 

PROCEDURE LocalToGlobal (VAR pt: Point); 

LocalToGlobal converts the given point from the current grafPort's 
local coordinate system into a global coordinate system with the origin 
(~,~) at the top left corner of the port's bit image (such as the 
screen). This global point can then be compared to other global 
points, or be changed into the local coordinates of another grafPort. 

Since a rectangle is defined by two points, you can convert a rectangle 
into global coordinates by performing two LocalToGlobal calls. You can 
also convert a rectangle, region, or polygon into global coordinates by 
calling OffsetRect, OffsetRgn, or OffsetPoly. For examples, see 
GlobalToLocal below. 

PROCEDURE GlobalToLocal (VAR pt: Point); 

GlobalToLocal takes a point expressed in global coordinates (with the 
top left corner of the bitMap as coordinate (0,O» and converts it into 
the local coordinates of the current grafPort. The global point can be 
obtained with the LocalToGlobal call (see above). For example, suppose 
a game draws a "ball" within a rectangle named ballRect, defined in the 
grafPort named gamePort (as illustrated below in Figure 24). If you 
want to draw that ball in the grafPort named selectPort, you can 
calculate the ball's selectPort coordinates like this: 

SetPort(gamePort); {start in origin port} 
selectBall := ballRect; {make a copy to be moved} 
LocalToGlobal(selectBall.topLeft); {put both corners into} 
LocaIToGlobal(selectBall.botRight); { global coordinates } 

SetPort(selectPort); {switch to destination port} 
GlobalToLocal(selectBall.topLeft); {put both corners into } 
GlobalToLocal(selectBall.botRight); { these local coordinates} 
FillOval(selectBall,ballColor); {now you have the ball!} 

3/2/83 Espinosa-Rose CONFIDENTIAL IQUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 67 

15 
-30-~(~~~~~~ 

7(1 -

80-

Figure 24. Converting between Coordinate Systems 

You can see from Figure 24 that LocalToGlobal and GlobalToLocal simply 
offset the coordinates of the rectangle by the coordinates of the top 
left corner of the local grafPort's boundary rectangle. You could also 
do this with OffsetRect. In fact, the way to convert regions and 
polygons from one coordinate system to another is with OffsetRgn or 
OffsetPoly rather than LocalToGlobal and GlobalToLocal. For example, 
if myRgn were a region enclosed by a rectangle having the same 
coordinates as ballRect in gamePort, you could convert the region to 
global coordinates with 

OffsetRgn(myRgn, -20, -40); 

and then convert it to the coordinates of the selectPort grafPort with 

OffsetRgn(myRgn, IS, -30); 

Miscellaneous Utilities 

FUNCTION Random : INTEGER; 

This function returns an integer, uniformly distributed pseudo-random, 
in the range from -32768 through 32767. The value returned depends on 
the global variable randSeed, wnich InitGraf initializes to 1; you can 
start the sequence over again from where it began by resetting randSeed 
to 1. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



68 QuickDraw Programmer's Guide 

FUNCTION GetPixel (h,v: INTEGER) : BOOLEAN; 

GetPixel looks at the pixel associated with the given coordinate point 
and returns TRUE if it is black or FALSE if it is White. The selected 
pixel is immediately below and to the right of the point Whose 
coordinates are given in h and v, in the local coordinates of the 
current grafPort. There is no guarantee that the specified pixel 
actually belongs to the port, however; it may have been drawn by a port 
overlapp,ing the current one. To see if the point indeed belongs to the 
current port, perform a PtInRgn(pt,thePort .... visRgn). 

PROCEDURE Stuff Hex (thingPtr: QDPtr; s: Str255); 

Stuff Hex pokes bits (expressed as a string of hexadecimal digits) into 
any data structure. This is a good way to create cursors, patterns, or 
bit images to be "stamped" onto the screen with CopyBits. For example, 

StuffHex(@stripes,'0102040810204~8~') 

places a striped pattern into the pattern variable stripes. 

( eye) 
There is no range checking on the size of the destination 
variable. It's easy to ove'rrun the variable and destroy 
something if you don't know What you're doing. 

PROCEDURE ScalePt (VAR pt: Point; srcRect,dstRect: Rect); 

A width and height are passed in pt; the horizontal component of pt is 
the width, and the vertical component of pt is the height. ScalePt 
scales these measurements as follows and returns the result in pt: it 
multiplies the given width by the ratio of dstRect's width to srcRect's 
width, and multiplies the given height by the ratio of dstRect's height 
to srcRect's height. In Figure 25, Where dstRect's width is twice 
srcRect's width and its height is three times srcRect's height, the pen 
width is scaled from 3 to 6 and the pen height is scaled from 2 to 6. 

3/2/83 'Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



QUICKDRAW ROUTINES 69 

Figure 25. ScalePt and MapPt 

PROCEDURE MapPt (VAR pt: Point; srcRect,dstRect: Rect); 

Given a point within srcRect, MapPt maps it to a similarly located 
point within dstRect (that is, to where it would fall if it were part 
of a drawing being expanded or shrunk to fit dstRect). The result is 
returned in pt. A corner point of srcRect would be mapped to the 
corresponding corner point of dstRect, and the center of srcRect to the 
center of dstRect. In Figure 25 above, the point (3,2) in srcRect is 
mapped to (18,7) in dstRect. FromRect and dstRect may overlap, and pt 
need not actually be within srcRect. 

( eye) 
Remember, if you are going to draw inside the rectangle 
in dstRect, you will probably also want to scale the pen 
size accordingly with ScalePt. 

PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect); 

Given a rectangle within srcRect, MapRect maps it to a similarly 
located rectangle within dstRect by calling MapPt to map the top left 
and bottom right corners of the rectangle. The result is returned in 
r. 

PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect); 

Given a region within srcRect, MapRgn maps it to a similarly located 
region within dstRect by calling MapPt to map all the points in the 
region. 

3/2/83" Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.6 



70 QuickDraw Programmer's Guide 

PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect); 

Given a polygon within srcRect, MapPoly maps it to a similarly located 
polygon within dstRect by calling MapPt to map all the points that 
define the polygon. 

CUSTOMIZING QUICKDRAW OPERATIONS 

For each shape that QuickDraw knows how to draw, there are procedures 
that perform these basic graphic operations on the shape: frame, 
paint, erase, invert, and fill. Those procedures in turn call a 
low-level drawing routine for the shape. For example, the FrameOval, 
PaintOval, EraseOval, InvertOval, and FillOval procedures all call a 
low-level routine that draws the oval. For each type of object 
QuickDraw can draw, including text and lines, there is a pointer to 
such a routine. By changing these pointers, you can install your own 
routines, and either completely override the standard ones or call them 
after your routines have modified parameters as necessary. 

Other low-level routines that you can install in this way are: 

The procedure that does bit transfer and is called by CopyBits. 

- The function that measures the width of text and is called by 
CharWidth, Stringt.Jidth, and TextWidth. 

- The procedure that processes picture comments and is called by 
DrawPicture. The standard such procedure ignores picture 
comments. 

- The procedure that saves drawing commands as the definition of a 
picture, and the one that retrieves them. This enables the 
application to draw on remote devices, print to the disk, get 
picture input from the disk, and support large pictures. 

The grafProcs field of a grafPort determines which low-level routines 
are called; if it contains NIL, the standard routines are called, so 
that all operations in that grafPort are done in the standard ways 
described in this manual. You can set the grafProcs field to point to 
a record of pointers to rout ines.· The da ta type of gr afProcs is 
QUProcsPtr: 

3/2/83 Rose CONFIDENTIAL /QUICK. 2!QUIKDRAW. 7 



CUSTOMIZING QUICKDRAW OPERATIONS 71 

TYPE QDProcsPtr = AQDProcs; 
QDProcs = RECORD 

textProc: 
lineProc: 
rectProc: 
rRectProc: 
ovalProc: 
arcProc: 
polyProc: 
rgnProc: 
bitsProc: 
commentProc: 
txMeasProc: 
getPicProc: 
putPicProc: 

END; 

QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr 

{text drawing} 
{line drawing} 
{rectangle drawing} 
{roundRect drawing} 
{oval drawing} 
{arc/wedge drawing} 
{polygon drawing} 
{region drawing} 
{bi t transfer} 
{picture comment processing} 
{text width measurement} 
{picture retrieval} 
{picture saving} 

To assist you in setting up a QDProcs record, QuickDraw provides the 
following procedure: 

PROCEDURE SetStdProcs (VAR procs: QDProcs); 

This procedure sets all the fields of the given QDProcs record to point 
to the standard low-level routines. You can then change the ones you 
wish to point to your own routines. For example, if your procedure 
that processes picture comments is named MyComments, you will store 
@MyComments in the commentProc field of the QDProcs record. 

The routines you install must of course have the same calling sequences 
as the standard routines, which are described below. The standard 
drawing routines tell which graphic operation to perform from a 
parameter of type GrafVerb. 

TYPE GrafVerb = (frame, paint, erase, invert, fill); 

When the grafVerb is fill, the pattern to use when filling is passed in 
the fillPat field of the grafPort. 

PROCEDURE StdText (byteCount: INTEGER; textBuf: QDPtr; numer,denom: 
INTEGER) ; 

StdText is the standard low-level routine for drawing text. It draws 
text from the arbitrary structure in memory specified by textBuf, 
starting from the first byte and continuing for byteCount bytes. Numer 
and denom specify the scaling, if any: numer.v over denom.v gives the 
vertical scaling, and numer.h over denom.h gives the horizontal 
scaling. 

PROCEDURE StdLine (newPt: Point); 

StdLine is the standard low-level routine for drawing a line. It draws 
a line from the current pen location to the location specified (in 

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.7 



72 QuickDraw Programmer's Guide 

local coordinates) by newPt. 

PROCEDURE StdRect (verb: GrafVerb; r: Rect); 

StdRect is the standard low-level routine for drawing a rectangle. It 
draws the given rectangle according to the specified grafVerb. 

PROCEDURE StdRRect (verb: GrafVerb; r: Rect; ovalwidth,ovaIHeight: 
INTEGER) ; 

StdRRect is the standard low-level routine for drawing a rounded-corner 
rectangle. It draws the given rounded-corner rectangle according to 
the specified grafVerb. Ovallvidth and ovalHeight specify the diameters 
of curvature for the corners. 

PROCEDURE StdOval (verb: GrafVerb; r: Rect); 

StdOval is the standard low-level routine for drawing an oval. It 
draws an oval inside the given rectangle according to the specified 
grafVerb. 

PROCEDURE StdArc (verb: GrafVerb; r: Rect; startAngle,arcAngle: 
INTEGER); 

StdArc is the standard low-level routine for drawing an arc or a wedge. 
It draws an arc or wedge of the oval that fits inside the given 
rectangle. The grafVerb specifies the graphic operation; if it's the 
frame operation, an arc is drawn; otherwise, a wedge is drawn. 

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle); 

StdPoly is the standard low-level routine for drawing a polygon. It 
draws the given polygon according to the specified grafVerb. 

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle); 

StdRgn is the standard low-level routine for drawing a region. It 
draws the given region according to the specified grafVerb. 

PROCEDURE StdBits (VAR srcBits: BitMap; VAR srcRect,dstRect: Rect; 
mode: INTEGER; maskRgn: RgnHandle); 

StdBits is the standard low-level routine for doing bit transfer. It 
transfers a bit image between the given bitMap and thePortA.portBits, 
just as if CopyBits were called with the same parameters and with a 
destination bitMap equal to thePort A .portBits. 

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.7 



CUSTOMIZING QUICKDRAW OPERATIONS 73 

PROCEDURE StdComment (kind,dataSize: INTEGER; dataHandle: QDHandle); 

StdComment is the standard low-level routine for processing a picture 
comment. Kind identifies the type of comment. DataHandle is a handle 
to additional data, and dataSize is the size of that data in bytes. If 
there is no additional data for the command, dataHandle will be NIL and 
dataSize will be~. StdComment simply ignores the comment. 

FUNCTION StdTxMeas (byteCount: INTEGER; textBuf: QDPtr; VAR 
numer,denom: Point; VAR info: FontInfo) : INTEGER; 

StdTxMeas is the standard low-level routine for measuring text width. 
It returns the width of the text stored in the arbitrary structure in 
memory specified by textBuf, starting with the first byte and 
continuing for byteCount bytes. Numer and denom specify the scaling as 
in the StdText procedure; note that StdTxMeas may change them. 

PROCEDURE StdGetPic (dataPtr: QDPtr; byteCount: INTEGER); 

StdGetPic is the standard low-level routine for retrieving information 
from the definition of a picture. It retrieves the next byteCount 
bytes from the definition of the currently open picture and stores them 
in the data structure pointed to by dataPtr. 

PROCEDURE StdPutPic (dataPtr: QDPtr; byteCount: INTEGER); 

StdPutPic is the standard low-level routine for saving information as 
the definition of a picture. It saves as the definition of the 
currently open picture the drawing commands stored in the data 
structure pointed to by dataPtr, starting with the first byte and 
continuing for the next byteCount bytes. 

USING QUICKDRAW FROM ASSEMBLY LANGUAGE 

All Macintosh User Interface Toolbox routines can be called from 
assembly-language programs as well as from Pascal. When you write an 
assembly-language program to use these routines, though, you must 
emulate Pascal's parameter passing and variable transfer protocols. 

This section discusses how to use the QuickDraw constants, global 
variables, data types, procedures, and functions from assembly 
language. 

The primary aid to assembly-language programmers is a file named 
GRAFTYPES.TEXT. If you use .INCLUDE to include this file When you 
assemble your program, all the QuickDraw constants, offsets to 
locations of global variables, and offsets into the fields of 
structured types will be available in symbolic form. 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A 



74 QuickDraw Programmer's Guide 

Constants 

QuickDraw constants are stored in the GRAFTYPES.TEXT file, and you can 
use the constant values symbolically. For example, if you've loaded 
the effective address of the thePortA.txMode field into address 
register A2, you can set that field to the srcXor mode with this 
statement: 

MOVE.W #SRCXOR, (A2) 

To refer to the number of bytes occupied by the QuickDraw global 
variables, you can use the constant GRAFSIZE. When you call the 
InitGraf procedure, you must pass a pointer to an area at least that 
large. 

Data Types 

Pascal's strong typing ability lets you write Pascal programs without 
really considering the size of a variable. But in assembly language, 
you must keep track of the size of every variable. The sizes of the 
standard Pascal data types are as follows: 

Type Size 
INTEGER Word (2 bytes) 
LongInt Long (4 bytes) 
BOOLEAN Word (2 bytes) 
CHAR Word (2 bytes) 
REAL Long (4 bytes) 

INTEGERs and Longlnts are in two's complement form; BOOLEANs have their 
boolean value in bit 8 of the word (the low-order bit of the byte at 
the same location); CHARs are stored in the high-order byte of the 
word; and REALs are in the KCS standard format. 

The QuickDraw simple data types listed below are constructed out of 
these fundamental types. 

Type 
QDPtr 
QDHandle 
Word 
Str255 
Pattern 
Bits16 

Size 
Long (4 bytes) 
Long (4 bytes) 
Long (4 bytes) 
Page (256 bytes) 
8 bytes 
32 bytes 

Other data types are constructed as records of variables of the above 
types. The size of such a type is the sum of the sizes of all the 
fields in the record; the fields appear in the variable with the first 
field in the lowest address. For example, consider the data type 
BitMap, which is defined like this: 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A 



USING QUICKDRAW FROM ASSEMBLY LANGUAGE 75 

TYPE BitMap = RECORD 
baseAddr: QDPtr; 
rowBytes: INTEGER; 
bounds: Rect 

END; 

This data type would be arranged in memory as seven words: a long for 
the baseAddr, a word for the rowBytes, and four words for the top, 
left, right, and bottom parts of the bounds rectangle. To assist you 
in referring to the fields inside a variable that has a structure like 
this, the GRAFTYPES.TEXT file defines constants that you can use as 
offsets into the fields of a structured variable. For example, to move 
a bitMap's rowBytes value into D3, you would execute the following 
instruction: 

MOVE.W MYBITMAP+ROWBYTES,D3 

Displacements are given in the GRAFTYPES.TEXT file for all fields of 
all data types defined by QuickDraw. 

To do double indirection, you perform an LEA indirectly to obtain the 
effective address from the handle. For example, to get at the top 
coordinate of a region's enclosing rectangle: 

( eye) 

MOVE.L MYHANDLE,AI 
MOVE. L (AI) ,AI 
MOVE.W RGNBBOX+TOP(Al),D3 

Load handle into Al 
Use handle to get pointer 
Load value using pointer 

For regions (and all other variable-length structures 
with handles), you must not move the pointer into a 
register once and just continue to use that pointer; you 
must do the double indirection each time. Every 
QuickDraw, Toolbox, or memory management call you make 
can possibly trigger a heap compaction that renders all 
pointers to movable heap items (like regions) invalid. 
The handles will remain valid, but pointers you've 
obtained through handles can be rendered invalid at any 
subroutine call or trap in your program. 

Global Variables 

Global variables are stored in a special section of Macintosh low 
memory; register A5 always points to this section of memory. The 
GRAFTYPES.TEXT file defines a constant GRAFGLOB that points to the 
beginning of the QuickDraw variables in this space, and other constants 
that point to the individual variables. To access one of the 
variables, put GRAFGLOB in an address register, sum the constants, and 
index off of that register. For example, if you want to know the 
horizontal coordinate of the pen location for the current grafPort, 
which the global variable thePort points to, you can give the following 
instructions: 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A 



76 QuickDraw Programmer's Guide 

MOVE.L 
MOVE.L 
MOVE.W 

GRAFGLOB(A5),A0 
THEPORT(A0),Al 
PNLOC+H(Al),D0 

Procedures and Functions 

Point to QuickDraw globals 
Get current grafPort 
Get thePortA.pnLoc.h 

To call a QuickDraw procedure or function, you must push all parameters 
to it on the stack, then JSR to the function or procedure. When you 
link your program with QuickDraw, these JSRs are adjusted to refer to 
the jump table in low RAM, so that a JSR into the table redirects you 
to the actual location of the procedure or function. 

The only difficult part about calling QuickDraw procedures and 
functions is stacking the parameters. You must follow some strict 
rules: 

- Save all registers you wish to preserve BEFORE you begin pushing 
parameters. Any QuickDraw procedure or function can destroy the 
contents of the registers A0, AI, D0, DI, and D2, but the others 
are never altered. 

- Push the parameters in the order that they appear in the Pascal 
procedural interface. 

- For booleans, push a byte; for integers and characters, push a 
word; for pointers, handles, long integers, and reals, push a 
long. 

- For any structured variable longer than four (4) bytes, push a 
pointer to the variable. 

- For all VAR parameters, regardless of size, push a pointer to the 
variable. 

- When calling a function, FIRST push a null entry equal to the size 
of the function result, THEN push all other parameters. The 
result will be left on the stack after the function returns to 
you. 

This makes for a lengthy interface, but it also guarantees that you can 
mock up a Pascal version of your program, and later translate it into 
assembly code that works the same. For example, the Pascal statement 

blackness := GetPixel(50,mousePos.v); 

would be written in assembly language like this: 

CLR.W -(SP) Save space for boolean result 
MOVE.W #50,-(SP) Push constant 50 (decimal) 
MOVE.W MOUSEPOS+V,-(SP) Push the value of mousePos.v 
JSR GETPIXEL Call routine 
MOVE.W (SP)+,BLACKNESS Fetch result from stack 

3/2/83" Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.A 



USING QUICKDRAW FROM ASSEMBLY LANGUAGE 77 

This is a simple example, pushing and pulling word-long constants. 
Normally, you'll be pushing more pointers, using the PEA (Push 
Effective Address) instruction: 

FillRoundRect(myRect,l,thePortA.pnSize.v,white); 

PEA 
MOVE.W 
MOVE.L 
MOVE.L 
MOVE.W 
PEA 
JSR 

MYRECT 
111, -(SP) 
GRAFGLOB(AS),Af/J 
THEPORT(Af/J),Al 
PNSIZE+V(Al),-(SP) 
WHITE(Af/J) 
FILLROUNDRECT 

Push pointer to myRect 
Push constant 1 
Point to QuickDraw globals 
Get current grafPort 
Push value of thePortA.pnSize.v 
Push pointer to global variable white 
Call the subroutine 

To call the TextFace procedure, push a word in Which each of seven bits 
represents a stylistic variation: set bit ~ for bold, bit 1 for 
italic, bit 2 for underline, bit 3 for outline, bit 4 for shadow, bit 5 
for condense, and bit 6 for extend. 

3/2/83'Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



78 QuickDraw Programmer's Guide 

SUMMARY OF QUICKDRAW 

CONST srcCopy = rJ; 
srcOr = 1; 
srcXor = 2; 
srcBic = 3; 
notSrcCopy = 4; 
notSrcOr = 5; 
notSrcXor = 6; 
notSrcBic = 7; 
patCopy = 8; 
patOr = 9; 
patXor = 10; 
patBic = 11; 
notPatCopy = 12; 
notPatOr = 13; 
notPatXor = 14; 
notPatBic = 15; 

blackColor = 33; 
whiteColor = 30; 
redColor = 205; 
greenColor 341; 
blueColor = 409 ; 
cyanColor = 273 ; 
magentaColor = 137; 
yellowColor = 69; 

picLParen = rJ; 
picRParen = 1-, 

TYPE QDByte 
QDPtr 
QDHandle 
Str25S 
Pattern 
Bits16 
GrafVerb 

= -128 .. 127; 
= ..... QDByte; 

..... QDPtr; 
= STRING [255] ; 
= PACKED ARRAY [0 .. 7] OF 0 .. 255; 
= ARRAY [0 •• 15] OF INTEGER; 
= (frame, paint, erase, invert, fill); 

StyleItem = (bold, italic, underline, outline, shadow, condense, 
extend) ; 

Style = SET OF StyleItem; 

FontInfo = RECORD 
ascent: 
descent: 
widMax: 
leading: 

END; 

3/2/83 Espinosa-Rose 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER 

CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



SUMMARY OF QUICKDRAW 79 

VHSelect = (vth); 
Point = RECORD CASE INTEGER OF 

0: (v: INTEGER; 
h: INTEGER); 

1: (vh: ARRAY[VHSelect] OF INTEGER) 

END; 

Rect = RECORD CASE INTEGER OF 

0: (top: 
left: 
bottom: 
right: 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER) ; 

1: (topLeft: Point; 
botRight: Point) 

END; 

BitMap = RECORD 
baseAddr: 
rowBytes: 
bounds: 

END; 

Cursor = RECORD 
data: 
mask: 
hotSpot: 

END; 

PenState = RECORD 
pnLoc: 
pnSize: 
pnMode: 
pnPat: 

END; 

RgnHandle = ARgnPtr; 
RgnPtr = ~egion; 
Region = RECORD 

QDPtr; 
INTEGER; 
Rect 

Bits16; 
Bits16; 
Point 

Point; 
Point; 
INTEGER; 
Pattern 

rgnSize: INTEGER; 
rgnBBox: Rec t ; 
{more data if not rectangular} 

END; 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



80 QuickDraw Programmer's Guide 

PicHandle = APicPtr; 
PicPtr = APicture; 
Picture = RECORD 

picSize: INTEGER; 
picFrame: Rect; 
{picture definition data} 

END; 

PolyHandle = APolyPtr; 
PolyPtr = APolygon; 
Polygon = RECORD 

polySize: INTEGER; 
polyBBox: Rect; 
polyPoints: ARRAY [0 •• 0] OF Point 

END; 

QDProcsPtr 
QDProcs 

AQDProcs; 
= RECORD 

textProc: 
lineProc: 
rectProc: 
rRectProc: 
ovalProc: 
arcProc: 
polyProc: 
rgnProc: 
bitsProc: 
commentProc: 
txMeasProc: 
getPicProc: 
putPicProc: 

END; 

3/2/83 'Espinosa-Rose 

QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr; 
QDPtr 

CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



SUMMARY OF QUICKDRAW 81 

GrafPtr = AGrafPort; 
GrafPort = RECORD 

device: INTEGER; 
portBits: BitMap; 
portRect: Rect; 
visRgn: RgnHandle; 
clipRgn: RgnHandle; 
bkPat: Pattern; 
fillPat: Pattern; 
pnLoc: Point; 
pnSize: Point; 
pnMode: INTEGER; 
pnPat: Pattern; 
pnVis: INTEGER; 
txFont: INTEGER; 
txFace: Style; 
txMode: INTEGER; 
txSize: INTEGER; 
spExtra: INTEGER; 
fgColor: LongInt; 
bkColor: LongInt; 
colrBit: INTEGER; 
patStretch: INTEGER; 
picSave: QDHandle; 
rgnSave: QDHandle; 
polySave: QDHandle; 
grafProcs: QDProcsPtr 

END; 

VAR thePort: GrafPtr; 
white: Pattern; 
black: Pattern; 
gray: Pattern; 
ltGray: Pattern; 
dkGray: Pattern; 
arrow: Cursor; 
screenBits: BitMap; 
randSeed: LongInt; 

GrafPort Routines 

(globalPtr: QDPtr); 
(gp: GrafPtr); 
(gp: GrafPtr); 
(gp: GrafPtr); 
(gp: GrafPtr); 
(VAR gp: GrafPtr); 
(device: INTEGER); 
(bm: BitMap); 

PROCEDURE InitGraf 
PROCEDURE OpenPort 
PROCEDURE InitPort 
PROCEDURE ClosePort 
PROCEDURE SetPort 
PROCEDURE GetPort 
PROCEDURE GrafDevice 
PROCEDURE SetPortBits 
PROCEDURE Port Size 
PROCEDURE MovePortTo 
PROCEDURE SetOrigin 

(width,height: INTEGER); 
(leftGlobal,topGlobal: INTEGER); 
(h, v: INTEGER); 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



82 QuickDraw Programmer's Guide 

PROCEDURE SetClip 
PROCEDURE GetClip 
PROCEDURE ClipRect 
PROCEDURE BackPat 

Cursor Handling 

PROCEDURE InitCursor; 

(rgn: RgnHandle); 
(rgn: RgnHandle); 
(r: Rect); 
(pat: Pattern); 

PROCEDURE SetCursor (crsr: Cursor); 
PROCEDURE HideCursor; 
PROCEDURE ShowCursor; 
PROCEDURE ObscureCursor; 

Pen and Line Drawing 

PROCEDURE HidePen; 
PROCEDURE ShowPen; 
PROCEDURE GetPen (VAR pt: Point); 
PROCEDURE GetPenState (VAR pnState: PenState); 
PROCEDURE SetPenState (pnState: PenState); 
PROCEDURE PenSize (width,height: INTEGER); 
PROCEDURE PenMode (mode: INTEGER); 
PROCEDURE PenPat (pat: Pattern); 
PROCEDURE PenNormal; 
PROCEDURE MoveTo (h,v: INTEGER); 
PROCEDURE Move (dh,dv: INTEGER) ; 
PROCEDURE LineTo (h,v: INTEGER) ; 
PROCEDURE Line (dh,dv: INTEGER) ; 

Text Drawing 

PROCEDURE TextFont (font: INTEGER) ; 
PROCEDURE TextFace (face: Style) ; 
PROCEDURE TextMode (mode: INTEGER); 
PROCEDURE TextSize (size: INTEGER); 
PROCEDURE SpaceExtra (extra: INTEGER); 
PROCEDURE DrawChar (ch: CHAR); 
PROCEDURE DrawString (s: Str255); 
PROCEDURE Dr awText (textBuf: QDPtr; firstByte,byteCount: 
FUNCTION CharWidth (ch: CHAR) : INTEGER; 
FUNCTION StringWidth (s: Str255) : INTEGER; 
FUNCTION TextWidth (textBuf: QDPtr; firstByte,byteCount: 

INTEGER; 
PROCEDURE GetFontInfo (VAR info: FontInfo); 

INTEGER) ; 

INTEGER) 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



SUMMARY OF QUICKDRAW 83 

Drawing in Color 

PROCEDURE ForeColor (color: LongInt); 
PROCEDURE BackColor (color: LongInt); 
PROCEDURE ColorBit (whichBit: INTEGER); 

Calculations with Rectangles 

PROCEDURE SetRect 
PROCEDURE OffsetRect 
PROCEDURE InsetRect 
FUNCTION SectRect 

PROCEDURE UnionRect 
FUNCTION PtInRect 
PROCEDURE Pt2Rect 
PROCEDURE PtToAngle 
FUNCTION EqualRect 
FUNCTION EmptyRect 

(VAR r: Rect; left,top,right,bottom: INTEGER); 
(VAR r: Rect; dh,dv: INTEGER); 
(VAR r: Rect; dh,dv: INTEGER); 
(srcRectA,srcRectB: Rect; VAR dstRect: Rect) 
BOOLEAN; 

(srcRectA,srcRectB: Rect; VAR dstRect: Rect) 
(pt: Point; r: Rect) : BOOLEAN; 
(ptA,ptB: Point; VAR dstRect: Rect); 
(r: Rect; pt: Point; VAR angle: INTEGER); 
(rectA,rectB: Rect) : BOOLEAN; 
(r: Rect) : BOOLEAN; 

Graphic Operations on Rectangles 

PROCEDURE FrameRect (r: Rect) ; 
PROCEDURE PaintRect (r: Rect) ; 
PROCEDURE EraseRect (r: Rect) ; 
PROCEDURE InvertRect (r: Rect) ; 
PROCEDURE FillRect (r: Rect; pat: Pattern) ; 

Graphic Operations on Ovals 

PROCEDURE FrameOval (r: Rect) ; 
PROCEDURE PaintOval (r: Rect) ; 
PROCEDURE EraseOval (r: Rect) ; 
PROCEDURE InvertOval (r: Rect) ; 
PROCEDURE FillOval (r: Rect; pat: Pattern); 

Graphic Operations on Rounded-Corner Rectangles 

PROCEDURE FrameRoundRect 
PROCEDURE PaintRoundRect 
PROCEDURE EraseRoundRect 
PROCEDURE InvertRoundRect 
PROCEDURE FillRoundRect 

3/2/83 Espinosa-Rose 

(r: Rect; ovalWidth,ovaIHeight: INTEGER); 
(r: Rect; ovaIWidth,ovaIHeight: INTEGER); 
(r: Rect; ovalWidth,ovalHeight: INTEGER); 
(r: Rect; ovaIWidth,ovalHeight: INTEGER); 
(r: Rect; ovaIWidth,ovaIHeight: INTEGER; 
pat: Pattern); 

CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



84 QuickDraw Programmer's Guide 

Graphic Operations on Arcs and Wedges 

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: INTEGER) ; 
PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTEGER) ; 
PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: INTEGER) ; 
PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER) ; 
PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pat: 

Pattern); 

Calculations with Regions 

FUNCTION NewRgn: 
PROCEDURE DisposeRgn 
PROCEDURE CopyRgn 
PROCEDURE SetEmptyRgn 
PROCEDURE SetRectRgn 
PROCEDURE RectRgn 
PROCEDURE OpenRgn; 
PROCEDURE CloseRgn 
PROCEDURE OffsetRgn 
PROCEDURE InsetRgn 
PROCEDURE SectRgn 
PROCEDURE UnionRgn 
PROCEDURE DiffRgn 
PROCEDURE XOrRgn 
FUNCTION PtInRgn 
FUNCTION RectInRgn 
FUNCTION EqualRgn 
FUNCTION EmptyRgn 

RgnHandle; 
(rgn: RgnHandle); 
(srcRgn,dstRgn: RgnHandle); 
(rgn: RgnHandle); 
(rgn: RgnHandle; left,top,right,bottom: 
(rgn: RgnHandle; r: Rect); 

(dstRgn: RgnHandle); 
(rgn: RgnHandIe; dh,dv: INTEGER); 
(rgn: RgnHandIe; dh,dv: INTEGER); 
(srcRgnA,srcRgnB,dstRgn: RgnHandIe); 
(srcRgnA,srcRgnB,dstRgn: RgnHandIe); 
(srcRgnA,srcRgnB,dstRgn: RgnHandle); 
(srcRgnA,srcRgnB,dstRgn: RgnHandle); 
(pt: Point; rgn: RgnHandIe) : BOOLEAN; 
(r: Rect; rgn: RgnHandIe) : BOOLEAN; 
(rgnA,rgnB: RgnHandIe) : BOOLEAN; 
(rgn: RgnHandle) : BOOLEAN; 

Graphic Operations on Regions 

PROCEDURE FrameRgn 
PROCEDURE PaintRgn 
PROCEDURE EraseRgn 
PROCEDURE InvertRgn 
PROCEDURE FillRgn 

(rgn: 
(rgn: 
(rgn: 
(rgn: 
(rgn: 

Bit Transfer Operations 

RgnHa nd Ie) ; 
RgnHand Ie) ; 
RgnHand Ie) ; 
RgnHandle) ; 
RgnHandle; pat: Pattern); 

INTEGER); 

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle); 
PROCEDURE CopyBits (srcBits,dstBits: BitMap; srcRect,dstRect: Rect; 

mode: INTEGER; maskRgn: RgnHandle); 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



SUMMARY OF QUICKDRAW 85 

Pictures 

FUNCTION OpenPicture 
PROCEDURE Pic Comment 
PROCEDURE ClosePicture; 
PROCEDURE DrawPicture 
PROCEDURE KlllPicture 

(picFrame: Rect) : PicRandle; 
(kind,dataSize: INTEGER; dataRandle: QDRandle); 

(myPicture: PicRandle; dstRect: Rect); 
(myPicture: PicRandle); 

Calculations with Polygons 

FUNCTION OpenPoly: PolyRandle; 
PROCEDURE ClosePoly; 
PROCEDURE KlllPoly (poly: PolyRandle); 
PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER); 

Graphic Operations on Polygons 

PROCEDURE FramePoly 
PROCEDURE PaintPoly 
PROCEDURE ErasePoly 
PROCEDURE InvertPoly 
PROCEDURE FillPoly 

(poly: 
(poly: 
(poly: 
(poly: 
(poly: 

PolyRandle) ; 
PolyRandle) ; 
PolyRandle) ; 
PolyRandle) ; 
PolyRandle; pat: Pattern); 

Calculations with Points 

PROCEDURE AddPt 
PROCEDURE SubPt 
PROCEDURE SetPt 
FUNCTION EqualPt 
PROCEDURE LocalToGlobal 
PROCEDURE GlobalToLocal 

Miscellaneous Utilities 

(srcPt : Point; VAR dstPt : Point) ; 
(srcPt: Point; VAR dstPt: Point); 
(VAR pt: Point; h,v: INTEGER); 
(ptA,ptB: Point) : BOOLEAN; 
(VAR pt: Point); 
(VAR pt: Point); 

FUNCTION Random: INTEGER; 
FUNCTION GetPixel 
PROCEDURE Stuff Rex 
PROCEDURE ScalePt 
PROCEDURE MapPt 
PROCEDURE MapRect 
PROCEDURE MapRgn 
PROCEDURE MapPoly 

(h,v: INTEGER) : BOOLEAN; 
(thingPtr: QDPtr; s: Str255); 
(VAR pt: Point; srcRect,dstRect: Rect); 
(VAR pt: Point; srcRect,dstRect: Rect); 
(VAR r: Rect; srcRect,dstRect: Rect); 
(rgn: RgnRandle; srcRect,dstRect: Rect); 
(poly: PolyHandle; srcRect,dstRect: Rect); 

3/2/83 Espinosa-Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.S 



86 QuickDraw Programmer's Guide 

Customizing QuickDraw Operations 

PROCEDURE SetStdProcs 
PROCEDURE StdText 

PROCEDTJRE StdLine 
PROCEDURE StdRect 
PROCEDURE StdRRect 

PROCEDURE StdOval 
PROCEDURE StdArc 

PROCEDURE StdPoly 
PROCEDURE StdRgn 
PROCEDURE StdBits 

PROCEDURE StdComment 
FUNCTION StdTxMeas 

PROCEDURE StdGetPic 
PROCEDURE StdPutPic 

3/2/83 Espinosa-Rose 

(VAR procs: QDProcs); 
(byteCount: INTEGER; textAddr: QDPtr; numer,denom: 
Point); 

(newPt: Point); 
(verb: GrafVerb; r: Rect); 
(verb: GrafVerb; r: Rect; ovalw1dth,ovalHeight: 
INTEGER) ; 

(verb: GrafVerb; r: Rect); 
(verb: GrafVerb; r: Rect; startAngle,arcAngle: 
INTEGER) ; 

(verb: GrafVerb; poly: PolyHandle); 
(verb: GrafVerb; rgn: RgnHandle); 
(VAR srcBits: BitMap; VAR srcRect,dstRect: Rect; 
mode: INTEGER; maskRgn: RgnHandle); 

(kind,dataSize: INTEGER; dataHandle: QDHandle); 
(byteCount: INTEGER; textBuf: QDPtr; VAR numer, 
denom: Point; VAR info: FontInfo) : INTEGER; 

(dataPtr: QDPtr; byteCount: INTEGER); 
(dataPtr: QDPtr; byteCount: INTEGER); 

CONFIDENTIAL !QUICK. 2!QUIKDRAW.S 



GLOSSARY 87 

GLOSSARY 

bit image: A collection of bits in memory which have a rectilinear 
representation. The Macintosh screen is a visible bit image. 

bitMap: A pointer to a bit image, the row width of that image, and its 
boundary rectangle. 

boundary rectangle: A rectangle defined as part of a bitMap, which 
encloses the active area of the bit image and imposes a coordinate 
system on it. Its top left corner is always aligned around the first 
bit in the bit image. 

character style: A set of stylistic variations, such as bold, italic, 
and underline. The empty set indicates normal text (no stylistic 
variations). 

clipping: Limiting drawing to within the bounds of a particular area. 

clipping region: Same as c1ipRgn. 

c1ipRgn: The region to which an application limits drawing in a 
grafPort. 

coordinate plane: A two-dimensional grid. In QuickDraw, the grid 
coordinates are integers ranging from -32768 to +32767, and all grid 
lines are infinitely thin. 

cursor: A 16-by-16-bit image that appears on the screen and is 
controlled by the mouse; called the "pointer" in other Macintosh 
documentation. 

cursor level: A value, initialized to ~ when the system is booted, 
that keeps track of the number of times the cursor has been hidden. 

empty: Containing no bits, as a shape defined by only one point. 

font: The complete set of characters of one typeface, such as 
Helvetica. 

frame: To draw a shape by drawing an outline of it. 

global coordinate system: The coordinate system based on the top left 
corner of the bit image being at (0,0). 

grafPort: A complete drawing environment, including such elements as a 
bitMap, a subset of it in which to draw, a character font, patterns for 
drawing and erasing, and other pen characteristics. 

grafPtr! A pointer to a grafPort. 

handle: A pointer to one master pointer to a dynamic, re1ocatab1e data 
structure (such as a region). 

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.G 



88 QuickDraw Programmer's Guide 

hotSpot: The point in a cursor that is aligned with the mouse 
position. 

kern: To stretch part of a character back under the previous 
character. 

local coordinate system: The coordinate system local to a grafPort, 
imposed by the boundary rectangle defined in its bitMap. 

missing symbol: A character to be drawn in case of a request to draw a 
character that is missing from a particular font. 

pattern: An 8-by-8-bit image, used to define a repeating design (such 
as stripes) or tone (such as gray). 

pattern transfer mode: One of eight transfer modes for drawing lines 
or shapes with a pattern. 

picture: A saved sequence of QuickDraw drawing commands (and, 
optionally, picture comments) that you can play back later with a 
single procedure call; also, the image resulting from these commands. 

picture comments: Data stored in the definition of a picture which 
does not affect the picture's appearance but may be used to provide 
additional information about the pict~re When it's played back. 

picture frame: A rectangle, defined as part of a picture, which 
surrounds the picture and gives a frame of reference for scaling when 
the picture is drawn. 

pixel: The visual representation of a bit on the screen (white if the 
bit is 0, black if it's 1). 

point: The intersection of a horizontal grid line and a vertical grid 
line on the coordinate plane, defined by a horizontal and a vertical 
coordinate. 

polygon: A sequence of connected lines, defined by QuickDraw 
line-drawing commands. 

port: Same as grafPort. 

portBits: The bitMap of a grafPort. 

portBits.bounds: The boundary rectangle of a grafPort's bitMap. 

portRect: A rectangle, defined as part of a grafPort, which encloses a 
subset of the bitMap for use by the grafPort. 

region: An arbitrary area or set of areas on the coordinate plane. 
The outline of a region should be one or more closed loops. 

row width: The number of bytes in each row of a bit image. 

3/2/83 Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.G 



GLOSSARY 89 

solid: Filled in with any pattern. 

source transfer mode: One of eight transfer modes for drawing text or 
transferring any bit image between two bitMaps. 

style: See character style. 

thePort: A global variable that points to the current grafPort. 

transfer mode: A specification of which boolean operation QuickDraw 
should perform when drawing or when transferring a bit image from one 
bitMap to another. 

visRgn: The region of a grafPort, manipulated by the Window Manager, 
which is actually visible on the screen. 

3/2/83· Rose CONFIDENTIAL /QUICK.2/QUIKDRAW.G 



MACINTOSH USER EDUCATION 

The Font Manager: A Programmer's Guide /FMGR/FONT 

See Also: Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
Macintosh Operating System Reference Manual 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Menu Manager: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 

Modification History: Preliminary Draft Caroline Rose 
First Draft (ROM 3.0) Caroline Rose 
Second Draft (ROM 7) Brad Hacker 
Third Draft Caroline Rose & Brad Hacker 

4/20/83 
4/22/83 

2/7/84 
6/11/84 

ABSTRACT 

The Font Manager is the part of the Macintosh User Interface Toolbox 
that supports the use of various character fonts when you draw text with 
QuickDraw. This manual introduces you to the Font Manager and describes 
the routines your application can call to get font information. It also 
describes the data structures of fonts and discusses how the Font 
Manager communicates with QuickDraw. 

Summary of significant changes and additions since last draft: 

- The default application font has changed from New York to Geneva. 

- Details are now given on the font characterization table (page 
13 ). 

- Programmers defining their own fonts must include the characters 
with ASCII codes $00, $09, and $0D (page 18). 

- The sample location table and offset/width table have been 
corrected, as has the calculation of the offset in the font 
record's owTLoc field (page 21). 

- Some assembly-language information has been changed and added. 



2 Font Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Font Manager 
6 Font Numbers 
7 Characters in a Font 
7 Font Scaling 
9 Using the Font Manager 
9 Font Manager Routines 
9 Initializing the Font Manager 
10 Getting Font Information 
10 Keeping Fonts in Memory 
10 Advanced Routine 
11 Communication Between QuickDrawand the Font Manager 
16 Format of a Font 
20 Font Records 
23 Font Widths 
23 How QuickDraw Draws Text 
24 Fonts in a Resource File 
26 Summary of the Font Manager 
31 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

The Font Manager is the part of the Macintosh User Interface Toolbox 
that supports the use of various character fonts when you draw text 
with QuickDraw. This manual intr09uces you to the Font Manager and 
describes the routines your application can call to get font 
information. It also describes the data structures of fonts and 
discusses how the Font Manager communicates with QuickDraw. *** 
Eventually this will become part of the comprehensive Inside Macintosh 
manual. *** 
Like all documentation about Toolbox units, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with: 

- resources, as described in the Resource Manager manual 

- the basic concepts and structures behind QuickDraw, particularly 
bit images and how to draw text 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an overview of the Font Manager and what you can 
do with it. It then discusses the font numbers by which fonts are 
identified, the characters in a font, and the scaling of fonts to 
different sizes. Next, a section on using the Font Manager introduces 
its routines and tells how they fit into the flow of your application. 
This is followed by detailed descriptions of Font Manager procedures 
and functions, their parameters, calling protocol, effects, side 
effects, and so on. 

Following these descriptions are sections that will not interest all 
readers. There's a discussion of how QuickDraw and the Font Manager 
communicate, followed by a section that describes the format of the 
data structures used to define fonts, and how QuickDraw uses the data 
to draw characters. Next is a section that gives the exact format of 
fonts in a resource file. 

Finally, there's a summary of the Font Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

ABOUT THE FONT MANAGER 

The main function of the Font Manager is to provide font support for 
QuickDraw. To the Macintosh user, font means the complete set of 
characters of one typeface; it doesn't include the size of the 
characters, and usually doesn't include any stylistic variations (such 

6/11/84 Rose-Hacker /FMGR/FONT.2 



4 Font Manager Programmer's Guide 

as bold and italic). 

(note) 
Usually fonts are defined in the normal style and 
stylistic variations are applied to them; for example, 
the italic style simply slants the normal characters. 
However, fonts may be designed to include stylistic 
variations in the first place. 

The way you identify a font to QuickDraw or the Font Manager is with a 
font number. Every font also has a name (such as "New York") that's 
appropriate to include in a menu of available fonts. 

The size of the characters, called the font size, is given in points. 
Here this term doesn't have the same meaning as the "point" that's an 
intersection of lines on the QuickDraw coordinate plane, but instead is 
a typographical term that stands for approximately 1/72 inch. The font 
size measures the distance between the ascent line of one line of text 
and the ascent line of the next line of single-spaced text (see Figure 
1). It assumes 80 pixels per inch, the approximate resolution of the 
Macintosh screen. For example, since an Imagewriter printer has twice 
the resolution of the screen, high-resolution 9-point output to the 
printer is actually accomplished with an 18-point font. 

(note) 

font 
size ........ 

,---, . \ 

I 
" i 

ascent fine 

base line 

}~es(:ent J i ne --t------- l-Ieading 

,...-.." 

( ..... ) 

Figure 1. Font Size 

Because measurements cannot be exact on a bit-mapped 
output device, the actual font size may be slightly 
different from what it would be in normal typography. 

Whenever you call a QuickDraw routine that does anything with text, 
QuickDraw passes the following information to the Font Manager: 

6/11/84 Rose-Hacker /FMGR/FONT.2 



ABOUT THE FONT MANAGER 5 

- The font number. 

- The character style, which is a set of stylistic variations. The 
empty set indicates normal text. (See the QuickDraw manual for 
details.) 

The font size. The size may range from 1 point to 127 points, but 
for readability should be at least 6 points. 

- The horizontal and vertical scaling factors, each of which is 
represented by a numerator and a denominator (for example, a 
numerator of 2 and a denominator of 1 indicates 2-to-1 scaling in 
that direction). 

- A Boolean value indicating whether the characters will actually be 
drawn or not. They will not be drawn, for example, when the 
QuickDraw function CharWidth is called (since it only measures 
characters) or when text is drawn after the pen has been hidden 
(such as by the HidePen procedure or the OpenPicture function, 
which calls HidePen). 

- A number specifying the device on which the characters will be 
drawn or printed. The number 0 represents the Macintosh screen. 
The Font Manager can adapt fonts to other devices. 

Given this information, the Font Manager provides QuickDraw with 
information describing the font and--if the characters will actually be 
drawn--the bits comprising the characters. 

Fonts are stored as resources in resource files; the Font Manager calls 
the Resource Manager to read them into memory. System-defined fonts 
are stored in the system resource file. You may define your own fonts 
with the aid of the Resource Editor and include them in the system 
resource file so they can be shared among applications. *** (The 
Resource Editor doesn't yet exist, but an interim Font Editor is 
available from Macintosh Technical Support.) *** In special cases, you 
may want to store a font in an application's resource file or even in 
the resource file for a document. It's also possible to store only the 
character widths and general font information, and not the bits 
comprising the characters, for those cases where the characters won't 
actually be drawn. 

A font may be stored in any number of sizes in a resource file. If a 
size is needed that's not available as a resource, the Font Manager 
scales an available size. 

Fonts occupy a large amount of storage: a 12-point font typically 
occupies about 3K bytes, and a 24-point font, about 10K bytes; fonts 
for use on a high-resolution output device can take up four times as 
much space as that (up to a maximum of 32K bytes). Fonts normally are 
purgeable, which means they may be removed from the heap when space is 
required by the Memory Manager. If you wish, you can call a Font 
Manager routine to make a font temporarily unpurgeable. 

6/11/84 Rose-Hacker /FMGR/FONT.2 



6 Font Manager Programmer's Guide 

There are also routines that provide information about a font. You can 
find out the name of a font having a particular font number, or the 
font number for a font having a particular name. You can also learn 
whether a font is available in a certain size or will have to be scaled 
to that size. 

FONT NUMBERS 

The Font Manager includes the following font numbers for identifying 
system-defined fonts: 

CaNST systemFont = 0; {system font} 
app1Font = 1 ; {application font} 
new York 2; 
geneva = 3; 
monaco 4; 
venice 5; 
london = 6; 
athens = 7 ; 
sanFran 8; 
toronto 9; 

The system font is so called because it's the font used by the system 
(for drawing menu titles and commands in menus, for example). The name 
of the system font is Chicago. The size of text drawn by the system in 
this font is fixed at 12 points (called the system font size). 

The application font is the font your application will use unless you 
specify otherwise. Unlike the system font, the application font isn't 
a separate font with its own typeface, but is essentially a reference 
to another font--Geneva, by default. *** In the future, there may be a 
way for the user to change the application font, perhaps through the 
Control Panel desk accessory. *** 

Assembly-language~: The font number of the application font 
is stored in the global variable apFontID. 

6/11/84 Rose-Hacker /FMGR/FONT.2 



CHARACTERS IN A FONT 7 

CHARACTERS IN A FONT 

A font can consist of up to 255 distinct characters; not all characters 
need be defined in a single font. Figure 2 on the following page shows 
the standard printing characters on the Macintosh and their ASCII codes 
(for example, the ASCII code for II A" is 41 hexadecimal, or 65 decimal). 

In addition to its maximum of 255 characters, every font contains a 
missing symbol that's drawn in case of a request to draw a character 
that's missing from the font. 

FONT SCALING 

The information QuickDraw passes to the Font Manager includes the font 
size and the scaling factors QuickDraw wants to use. The Font Manager 
determines the font information to return to QuickDraw by looking for 
the exact size needed among the sizes stored for the font. If the 
exact size requested isn't available, it then looks for a nearby size 
that it can scale. 

1. It looks first for a font that's twice the size, and scales down 
that size if there is one. 

2. If there's no font that's twice the size, it looks for a font 
that's half the size, and scales up that size if there is one. 

3. If there's no font that's half the size, it looks for a larger 
size of the font, and scales down the next larger size if there is 
one. 

4. If there's no larger size, it looks for a smaller size of the 
font, and scales up the closest smaller size if there is one. 

5. If the font isn't available in any size at all, it uses the 
application font instead, scaling the font to the proper size. 

6. If the application font isn't available in any size at all, it 
uses the system font instead, scaling the font to the proper size. 

Scaling looks best when the scaled size is an even multiple of an 
available size. 

Assembly-language~: You can use the global variable 
fScaleDisable to defeat scaling, if desired. Normally, 
fScaleDisable is 0. If you set it to a nonzero value, the Font 
Manager will look for the size as described above but will 
return the font unsealed. 

6/11/84 Rose-Hacker /FMGR/FONT.2 



8 Font Manager Programmer's Guide 

0234557 B 9 ABC D E F 

I) SP 0 @ ~) ". 
At 

..... t t 
P e :00· ~ -

3€ I °1 A Qo a q A e 0 ::+0: . . :-. I -1 

V 
II 2 B R b (: 

,. 
¢ ~ ~~: ~ r 1 -, " 2 

3 • # 3 C Q 
tJ c s 

,. ... 

V: E 1 £, :=2 : " 

• $ 4 D T (J t. N A 
£ ..... ¥ ~f~ 1 ~ 

, 4 

.. 
C1? 5 E LJ e u 0 1 • ::~.: 

~.., 

, 
1'0 ,.., 

. " 
5 

& 6 F V f U 
,..,. 

qr .: 21-= :b.. t 
V n 6 

I 7 G W 
... ,. 

13 ::2.: : g w a 0 « 0 ". " 
7 

( 8 H X h 
... "-

® ::n: X a 0 . . » y 8 

) 9 I Y j Y 
A. A. 

© ~n~ a 0 ... 9 

* t \.,1 Z j z a 0 
TM "f t .... 

K [ { 
,.. ,.,. ... "-

+ . k a 0 ~ A , B 

0 ,. .. ~ 

, < L \ I I a u Q A c 

] } ." 

O~ 
,..., 

- - M m C; U :;t : 0 -D 

N A 
,..., ,. A. 

IE IT . > n e u Ge E 

/ ? 0 
"-

0 . - 0 e u rlI ce F 

SP stands for a space. 
r...I stands for 8 nonbrealci rag space) same VI idth as numbers. 

The first four characters are only in the system font (Chicago). 
The .shaded characters are only in the Geneva, Monaco and system fonts. 

ASCII codes $9D through $FF are reserved for future expansion. 

Figure 2. Font Characters 

6/11/84 Rose~H.acker /FMGR/FONT.2 



USING THE FONT MANAGER 9 

USING THE FONT MANAGER 

This section introduces you to the Font Manager routines and how they 
fit into the general flow of an application program. The routines 
themselves are described in detail in the next section. 

The InitFonts procedure initializes the Font Manager; you should call 
it after initializing QuickDraw but before initializing the Window 
Manager. 

You can set up a menu of fonts in your application by using the Menu 
Manager procedure AddResMenu (see the Menu Manager manual for details). 
When the user chooses a menu item from the font menu, call the Menu 
Manager procedure GetItem to get the name of the corresponding font, 
and then the Font Manager function GetFNum to get the font number. The 
GetFontName function does the reverse of GetFNum: given a font 10, it 
returns the font name. 

In a menu of font sizes in your application, you may want to let the 
user know which sizes the current font is available in and therefore 
will not require scaling. You can call the Rea1Font function to find 
out whether a font is available in a given size. 

If you know you'll be using a font a lot and don't want it to be 
purged, you can use the SetFontLock procedure to make the font 
unpurgeab1e during that time. 

Advanced programmers who want to write their own font editors or 
otherwise manipulate fonts can access fonts directly with the SwapFont 
function. 

FONT MANAGER ROUTINES 

This section describes all the Font Manager procedures and functions. 
The routines are presented in their Pascal form; for information on 
using them from assembly language, see the manual Programming Macintosh 
Applications in Assembly Language. 

Initializing the Font Manager 

PROCEDURE InitFonts; 

InitFonts initializes the Font Manager. If the system font isn't 
already in memory, InitFonts reads it into memory. Call this procedure 
once before all other Font Manager routines or any Toolbox routine that 
will call the Font Manager. 

6/11/84 Rose-Hacker /FMGR/FONT.R 



10 Font Manager Programmer's Guide 

Getting Font Information 

PROCEDURE GetFontName (fontNum: INTEGER; VAR theName: Str25S); 

GetFontName returns in theName the name of the font having the font 
number fontNum. If there's no such font, GetFontName returns the empty 
string. 

Assembly-language note: The macro you invoke to call 
GetFontName from assembly language is named GetFName. 

PROCEDURE GetFNum (fontName: Str25S; VAR theNum: INTEGER); 

GetFNum returns in theNum the font number for the font having the given 
fontName. If there's no such font, GetFNum returns 0. 

FUNCTION RealFont (fontNum: INTEGER; size: INTEGER) : BOOLEAN; 

RealFont returns TRUE if the font having the font number fontNum is 
available in the given size in a resource file, or FALSE if the font 
has to be scaled to that size. 

Keeping Fonts in Memory 

PROCEDURE SetFontLock (lockFlag: BOOLEAN); 

SetFontLock applies to the font in which text was most recently drawn; 
it makes the font unpurgeable if lockFlag is TRUE or purgeable if 
lockFlag is FALSE. Since fonts are normally purgeable, this procedure 
is useful for making a font temporarily unpurgeable. 

Advanced Routine 

The following low-level routine will not normally be used by an 
application directly, but may be of interest to advanced programmers 
who want to bypass the QuickDraw routines that deal with text. 

6/11/84 Rose-Hacker /FMGR/FONT.R 



FONT MANAGER ROUTINES 11 

FUNCTION SwapFont (inRec: FMInput) : FMOutPtr; 

SwapFont returns a pointer to an FMOutput record containing the size, 
style, and other information about an adapted version of the font 
requested in the given FMInput record. (FMInput and FMOutput records 
are explained in the following section.) SwapFont is called by 
QuickDraw every time a QuickDraw routine that does anything with text 
is used. If you want to call SwapFont yourself, you must build an 
FMInput record and then use the returned pointer to access the 
resulting FMOutput record. 

Assembly-language note: The macro you invoke to call SwapFont 
from assembly language is named _FMSwapFont. 

COMMUNICATION BETWEEN QUICKDRAW AND THE FONT MANAGER 

This section describes the data structures that allow QuickDraw and the 
Font Manager to exchange information. It also discusses the 
communication that may occur between the Font Manager and the driver of 
the device on which the characters are being drawn or printed. You can 
skip this section if you want to change fonts, character style, and 
font sizes by calling QuickDraw and aren't interested in the lower
level data structures and routines of the Font Manager. To understand 
this section fully, you'll have to be familiar with device drivers and 
the Device Manager. *** (Device Manager manual doesn't yet exist.) 

*** 
Whenever you call a QuickDraw routine that does anything with text, 
QuickDraw requests information from the Font Manager about the 
characters. The Font Manager performs any necessary calculations and 
returns the requested information to QuickDraw. As illustrated in 
Figure 3, this information exchange occurs via two data structures, a 
font input record (type FMInput) and a font output record (type 
FMOutput). 

6/11/84 Rose-Hacker /FMGR/FONT.D 



12 Font Manager Programmer's Guide 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ................ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ................ .. .. .. .. .. .. .. ................ .............. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ................ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ................ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .......... .. . . . . .. .. .. . . . .. .. .. . · .......... .. .. . . . .. . . . .. . .. .. .. .. .. · ............ . .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. . . .. .. .. . .. .. .. . . .. .. . .. .. .. .. .. .. .. · .......... .. .. . . .. . . .. .............. · ....... .. · ........... .. .. .. .. . . .. .. ............ .. .. . . .. .. .. · ........... .. .. . . .. . .. . ................ .. . .. .. . .. .. ................ · .......... . · .......... . .. . . .. . . .. · ........... . · ........ . .. .. . . .. . .. .. .. . .. . . . 

FMlnput 

for all devices 

.......... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ............ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 

............ 

~ ~ ~8.n~~e.r ~ ~ ................ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 

~u~nnn~~n~ , 
.. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. .. .. .. .. .. .. .. .. .......... .. .. ............ .. .. .......... .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. ................ .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .......... .. 

if high-order by1e of device field 
isn't 0 

Status call 

font character
ization table 

Contro I ca II 

. ..... .. .. .......... .. .. ........... .. .. .......... .. .. ............ .. .............. .. ............ .. . .......... .. .. .. .. .. .. .. .. .. .. ......... .. .. ............ .. .. .......... .. .. ........... . 

n~~~~i~~n~ 
~ : ~ Dr iver ~: ~ ............. .. .. . .. .. .. .. . .. .......... .. .. .......... . .............. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. ................ .. .. .. .. .. .. . .. ............ .. .. .. .. .. .. .. .. .. ............ .. .. .......... .. .. . .. . .. .. .. .. .. .......... .. .. ............ . .. .. .. .. .. .. .. .. ........... .. .. ......... .. .. ............ .. .. .. .. .. .. .. .. . .. .. .. .. .. .. . .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .......... .. .. ............ . .. .......... .. .. ........... .. .. . .. .. .. .. .. .. .. .. .. .. . .. . .. .......... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .......... .. .. .......... . .. ............ .. .. .. .. .. .. .. .. .. ............ . .. .......... .. .. ............ .. .. .......... .. .. ............ .. .. .. .. .. .. .. .. .. ............ .. .. ......... .. .. ............ .. .. .......... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ............ .. .. .......... .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .......... .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. ............ . .. .......... .. 

1-------.. ~~ ~~~~~~~~ ~ ~ ~~~ final modifications 

Figure 3. Communication About Fonts 

First, QuickDraw passes the Font Manager a font input record: 

TYPE FMInput = PACKED RECORD 
family: 
size: 
face: 
needBits: 
device: 
numer: 
denom: 

END; 

INTEGER; 
INTEGER; 
Style; 
BOOLEAN; 
INTEGER; 
Point; 
Point 

{font number} 
{font size} 
{character style} 
{TRUE if drawing} 
{device-specific information} 
{numerators of scaling factors} 
{denominators of scaling factors} 

The first three fields contain the font number, size, and character 
style that QuickDraw wants to use. The needBits field indicates 
whether the characters actually will be drawn or not. If the 
characters are being drawn, all of the information describing the font, 
including the bit image comprising the characters, will be read into 
memory. If the characters aren't being drawn and there's a resource 
consisting of only the character widths and general font information, 
that resource will be read instead. 

The high-order byte of the device field contains a device driver 
reference number. From the driver reference number, the Font Manager 
can determine the optimum stylistic variations on the font to produce 
the highest quality printing or drawing available on a device (as 
explained below). The low-order byte of the device field is ignored by 
the Font Manager but may contain information used by the device driver. 

The numer and denom fields contain the scaling factors to be used; 
numer.v divided by denom.v gives the vertical scaling, and numer.h 

6/11/84 Rose-Hacker /FMGR/FONT.D 



COMMUNICATION BETWEEN QUICKDRAW AND THE FONT MANAGER 13 

divided by denom.h gives the horizontal scaling. 

The Font Manager takes the FMInput record and asks the Resource Manager 
for the font. If the requested size isn't available, the Font Manager 
scales another size to match (as described previously). 

Then the Font Manager gets the font characterization table via the 
device field. If the high-order byte of the device field is 0, the 
Font Manager gets the font characterization table for the screen (which 
is stored in the Font Manager). If the high-order byte of the device 
field is nonzero, the Font Manager calls the status routine of the 
device driver having that reference number, and the status routine 
returns a font characterization table. The status routine may use the 
value of the low-order byte of the device field to determine the font 
characterization table it returns. 

(note) 
If you want to make your own calls to the device driver's 
status routine, the refNum parameter of the Status 
function must contain the driver reference number from 
the font input record's device field, the csCode 
parameter must be 8, and the csParam parameter must 
contain a pointer to the following: a pointer to where 
the device driver should put the font characterization 
table followed by an integer containing the value of the 
font input record's device field. 

Figure 4 shows the structure of a font characterization table and, on 
the right, the values it contains for the Macintosh screen and 
Imagewriter printer driver. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



14 Font Manager Programmer's Guide 

by1e 0 

2 

4 

7 

10 

13 

16 

19 

22 

25 

dots per vertical inch on device 

dots per horizontal inch on device 

bo Id character isti cs 

ital ic characteristics 

not used 

out line character i s1 ics 

shadow characteri st ics 

condensed characteri st iC3 

extended characterist ies 

under I ine character isti cs 

screen 

80 

80 

0, 1, 1 

1J 8, 1 

0, 0, 0 

5, 1, 1 

5, 2, 2 

0, 0, -1 

0 .. 0, 1 

1, 1, 1 

Figure 4. Font Characterization Table 

Imagewr iter 

80 

80 

0, 2, 2 

1, 8, 2 

0, o} 0 

5 .. 1 .. 2 

5,2 .. 4 

0 .. 0, -2 

0 .. 0,2 

1, 3, 2 

The first two words of the font characterization table contain the 
number of dots per inch on the device. The remainder of the table 
consists of 3-byte triplets providing information about the different 
stylistic variations. For all but the triplet defining the underline 
characteristics: 

- The first byte in the triplet indicates which byte beyond the bold 
field of the FMOutput record (see below) is affected by the 
triplet. 

- The second byte contains the amount to be stored in the affected 
field. 

- The third byte indicates the amount by which the extra field of 
the FMOutput record is to be incremented (starting from 0). 

The triplet defining the underline characteristics indicates the amount 
by which the FMOutput record's ulOffset, ulShadow, and ulThick fields 
(respectively) should be incremented. 

Based on the information in the font characterization table, the Font 
Manager determines the optimum ascent, descent, and leading, so that 
the highest quality printing or drawing available will be produced. It 
then stores this information in a font output record: 

6/11/84 Rose-Hacker /FMGR/FONT.n 



COMMUNICATION BETWEEN QUICKDRAW AND THE FONT MANAGER 15 

TYPE FMOutput = PACKED RECORD 
errNum: 
fontHandle: 
bold: 
italic: 
ulOffset: 
ulShadow: 
ulThick: 
shadow: 
extra: 
ascent: 
descent: 
widMax: 
leading: 
unused: 
numer: 
denom: 

END; 

INTEGER; 
Handle; 
Byte; 
Byte; 
Byte; 
Byte; 
Byte; 
Byte; 
SignedByte; 
Byte; 
Byte; 
Byte; 
SignedByte; 

{not used} 
{handle to font record} 
{bold factor} 
{italic factor} 
{underline offset} 
{underline shadow} 
{underline thickness} 
{shadow factor} 
{width of style} 
{ascent} 
{descent} 
{maximum character width} 
{leading} 
{not used} Byte; 

Point; 
Point 

{numerators of scaling factors} 
{denominators of scaling factors} 

ErrNum is reserved for future use, and is set to 0. FontHandle is a 
handle to the font record of the font, as described in the next 
section. Bold, italic, ulOffset, ulShadow, ulThick, and shadow are all 
fields that modify the way stylistic variations are done; their values 
are taken from the font characterization table, and are used by 
QuickDraw. (You'll need to experiment with these values if you want to 
determine exactly how they're used.) Extra indicates the number of 
pixels that each character has been widened by stylistic variation. 
For example, using the values shown in the rightmost column of Figure 
4, the extra field for bold italic characters would be 4. Ascent, 
descent, widMax, and leading are the same as the fields of the FontInfo 
record returned by the QuickDraw procedure GetFontInfo. Numer and 
denom contain the scaling factors. 

Just before returning this record to QuickDraw, the Font Manager calls 
the device driver's control routine to allow the driver to make any 
final modifications to the record. Finally, the font information is 
returned to QuickDraw via a pointer to the record, defined as follows: 

(note) 

TYPE FMOutPtr = AFMOutput; 

If you want to make your own calls to the device driver's 
control routine, the refNum parameter of the Control 
function must contain the driver reference number from 
the font input record's device field, the csCode 
parameter must be 8, and the csParam parameter must 
contain a pointer to the following: a pointer to the 
font output record followed by an integer containing the 
value of the font input record's device field. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



16 Font Manager Programmer's Guide 

FORMAT OF A FONT 

This section describes the data structure that defines a font; you need 
to read it only if you're going to define your own fonts with the 
Resource Editor *** doesn't yet exist *** or write your own font 
editor. 

Each character in a font is defined by pixels arranged in rows and 
columns. This pixel arrangement is called a character image; it's the 
image inside each of the character rectangles shown in Figure 5. 

character 
origin 

character 
origin 

1- character width---. 

t······:·······:·················· 

ascent line 

character 
rectangle 

base line 

··r·····~ ----.-&.-:...-...:..-- descent tine -
Limage width-J 

.--character width---. 
-~- ascent line -

character ..--+--
rectangle 

base line 

'--- image width -' 
descent line 

Figure 5. Character Images 

character 
height 

character 
height 

The base line is a horizontal line coincident with the bottom of each 
character, excluding descenders. The character origin is a point on 
the base line used as a reference location for drawing the character. 
Conceptually the base line is the line that the pen is on when it 
starts drawing a character, and the characer origin is the point where 
the pen starts drawing. 

The character rectangle is a rectangle enclosing the character image; 
its sides are defined by the image width and the character height: 

6/11/84 Rose-Hacker /FMGR/FONT.n 



FORMAT OF A FONT 17 

- The image width is simply the horizontal extent of the character 
image, which varies among characters in the font. It mayor may 
not include space on either side of the character; to minimize the 
amount of memory required to store the font, it should not include 
space. 

- The character height is the number of pixels from the ascent line 
to the descent line (which is the same for all characters in the 
font). 

The image width is different from the character width, which is the 
distance to move the pen from this character's origin to the next while 
drawing--in other words, the image width plus the amount of blank space 
to leave before the next character. The character width may be 0, in 
which case the character that follows will be superimposed on this 
character (useful for accents, underscores, and so on). Characters 
whose image width is 0 (such as a space) can have a nonzero character 
width. 

Characters in a proportional font all have character widths 
proportional to their image width, whereas characters in a fixed-width 
font all have the same character width. 

Characters can kern; that is, they can overlap adjacent characters. 
The first character in Figure 5 above doesn't kern, but the second one 
kerns left. 

In addition to the terms used to describe individual characters, there 
are terms describing features of the font as a whole (see Figure 6). 

r----........ - .... ---..--- .]scent line 
••• - •• ~ ......... ; ........ ; .......... ; ........ ~ •• * •••• ; ••••••• ; •••••• 

recta~! ~ ::::::I::::::t:::t:::::t.:~:~!:::::::I::::~L::: 
······I·······!-·····I·_··--j-······I·_····I·······I·····. 

::::r::I:::::!:::::::r::::l::::::~:::::r:::: 

Q!:;c:ent 

--~/-~.~~~+~--~~~~~~--+-- ba~e line } 

character _I' ~·····r····r·····(···r····r····T·····t .. ·· descent 
origin .... -----------....... - descent line 

Figure 6. Features of Fonts 

The font rectangle is somewhat analogous to a character rectangle. 
Imagine that all the character images in the font are superimposed with 
their origins coinciding. The smallest rectangle enclosing all the 
superimposed images is the font rectangle. 

The ascent is the distance from the base line to the top of the font 
rectangle, and the descent is the distance from the base line to the 
bottom of the font rectangle. 

6/11/84 Rose-Hacker /FMGR/FONT.n 



18 Font Manager Programmer's Guide 

The character height is the vertical extent of the font rectangle. The 
maximum character height is 127 pixels. The maximum width of the font 
rectangle is 254 pixels. 

The leading is the amount of blank space to draw between lines of 
single-spaced text--the number of pixels between the descent line of 
one line of text and the ascent line of the next line of text. 

Finally, for each character in a font there's a character offset. As 
illustrated in Figure 7, the character offset is simply the difference 
in position of the character rectangle for a given character and the 
font rectangle. 

character 
rec1an!~le 

10nt 
rectan!;Jle 

character 
origin 

--t-----H 

'-r' 
character 

offset 

Figure 7. Character Offset 

Every font has a bit image that contains a complete sequence of all its 
character images (see Figure 8 on the following page). The number of 
rows in the bit image is equivalent to the character height. The 
character images in the font are stored in the bit image as though the 
characters were laid out horizontally (in ASCII order, by convention) 
along a common base line. 

The bit image doesn't have to contain a character image for every 
character in the font. Instead, any characters marked as being missing 
from the font are omitted from the bit image. When QuickDraw tries to 
draw such characters, a missing symbol is drawn instead. The missing 
symbol is stored in the bit image after all the other character images. 

(warning) 
Every font must have a missing symbol. The characters 
with ASCII codes 0 (NUL), $09 (horizontal tab), and $QJn 
(return) must not be missing from the font; usually 
they'll be zero-length, but you may want to store a space 
for the tab character. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



H 
Z o 
J:x,. 

< 
J:x,. 
o 

crlsracter 
height 

,---------------ro' .... ··.~··idth-------------------
....................................................................... :···l ...... ·· .. ·· .. ·· .. ··· .. ·· .... · ........ ···· .... ·· .......... ·· .. · .... ·· ............................................ l· .. ! ....................................... · .... · .... ·· .... · ...... · .... · ........ 1 

•• •••••••••••• •••••• ••••••••••••••••••••• ••• • •••••••••••• .. ............. ...... ..................... ... . I::: :: .:::: :: :::::::: I •• •• •• •• •••• ••••• • •• •• •• •• •••• ••• •••••••• •••• ••••• • ••••••••••••••• .... ........... .... ... ........... ....... ..... . .............. . 
•••• ••••••••••• •••• ••• ••• •••• •••• ••••• •• •• • ••• •• •• •• •• •• •• ••••• ••• ••• •••• •• ••• • •• •• •• •• •• •• ••••• •• •• •••• •• •••• .. .... .. .... ..... .. .. .... .. .... •• •••• •• •••• ••• •• •• •• •••• •• ••• • ................ .. .. ... .. .. .. .... ...... 

• •••••••••••••••• •• •• ••• •• •• •• •••• •• ••• • 
1 I: :: I: I: :: .::. •• :1. .::: II:. .1: I:. .::: .11· •• : •..... .................... ........ ............... ....... ...... ........ . ................... . 
~.u.u .................. , .......... , ...... , ....... , ............ : ... : ...................... · ....................... l~······""""····" .. "·" .. ···· ...... ········;···~·· .. ·· .. · .... ""· .. ·"···"""""",, .... ·"""···l·"···'i : . . '.. ... . : 
1 .:: •••• ::. 1 
1 UP! 
l ..................................................................... : ... ; ............................................................ .................................................. J· .. t ......................................................................... 1 

missing missing 
characters symbo I 

+J 
~ 
0 

J:x,. 

as 
.... 
0 

\I-f 

Q) 

bO as 
S 
t-4 

+J 
-r! 
I:Q 

~ 
as 

or! 
+J 
.... 
as 
~ 

• 
00 

Q) 
.... 
:s 
bO 

or! 
~ 

A 
• 

fool 
Z 
0 
J:x,. 
"-
~ 

~ 
"-

.... 
Q) 

~ 
(J 
as 
T 
Q) 
en 
0 
~ 

~ 
00 
"-
.-4 
.-4 

"-
\0 



20 Font Manager Programmer's Guide 

Font Records 

The information describing a font is contained in a data structure 
called a font record, which contains. the following: 

- the font type (fixed-width or proportional) 

- the ASCII code of the first character and the last character in 
the font 

the maximum character width and maximum amount any character kerns 

- the character height, ascent, descent, and leading 

- the bit image of the font 

- a location table, which is an array of words specifying the 
location of each character image within the bit image 

- an offset/width table,-which is an array of words specifying the 
character offset and character width for each character in the 
font. 

For every character, the location table contains a word that specifies 
the bit offset to the location of that character's image in the bit 
image. The entry for a character missing from the font contains the 
same value as the entry for the next character. The last word of the 
table contains the offset to one bit beyond the end of the bit image 
(that is, beyond the character image for the missing symbol). The 
image width of each character is determined from the location table by 
subtracting the bit offset to that character from the bit offset to the 
next character in the table. 

There's also one word in the offset/width table for every character: 
the high-order byte specifies the character offset and the low-order 
byte specifies the character width. Missing characters are flagged in 
this table by a word value of -1. The last word is also -1, indicating 
the end of the table. 

Figure 9 illustrates a sample location table and offset/width table 
corresponding to the bit image in Figure 6. 

6/11/84 Rose-Hacker /FMGR/FONT.n 



word 0 t:~ ---L-~---fl 
~ ",' 

,i.'7 

:320 

336 
:351 

351 

:351 
351 
:351 
351 

351 

364 

650 

664 
67~1 

Ei89 

location 
table 

~,7 

,. 
Jt. 

,. 

0 20 
0 15 

0 16 

(I 15 

-1 

-1 

-1 
-1 

-1 
-1 

0 ,--, .:. 

0 16 

o 14 
(I 11 
(I 16 

-1 

offsetl wi dth 
table 

FORMAT OF A FONT 21 

II~." 

118 11 

.,r'T 

IIZI1 

rn i ::;3 ing characters 

-
lIa ll 

JIb" 
'7 

dummy image 

Figure 9. Sample Location Table and Offset/Width Table 

A font record is referred to by a handle that you can get by calling 
the SwapFont function or the Resource Manager function GetResource. 
The data type for a font record is as follows: 

6/11/84 Rose-Hacker /FMGR/FONT.n 



22 Font Manager Programmer's Guide 

TYPE FontRec = RECORD 
fontType: 
firstChar: 
lastChar: 
widMax: 
kernMax: 
nDescent: 
fRectWid: 
chHeight: 
owTLoc: 
ascent: 
descent: 
leading: 
rowWords: 

(note) 

{ 

{ 

{ 

bitlmage: 

locTable: 

owTable: 

END; 

INTEGER; {font type} 
INTEGER; {ASCII code of first character} 
INTEGER; {ASCII code of last character} 
INTEGER; {maximum character width} 
INTEGER; {maximum character kern} 
INTEGER; {negative of descent} 
INTEGER; {width of font rectangle} 
INTEGER; {character height} 
INTEGER; {offset to offset/width table} 
INTEGER; {ascent} 
INTEGER; {descent} 
INTEGER; {leading} 
INTEGER; {row width of bit image / 2} 
ARRAY [1 •• rowWords, 1 •• chHeight] OF INTEGER; } 

{bit image} 
ARRAY [firstChar •• lastChar+2] OF INTEGER; } 

{location table} 
ARRAY [firstChar •• lastChar+2] OF INTEGER; } 

{offset/width table} 

The variable-length arrays appear as comments because 
they're not valid Pascal syntax; they're used only as 
conceptual aids. 

The fontType field must contain one of the following predefined 
constants: 

CONST propFont 
fixedFont 

$9000; 
= $B000; 

{proportional font} 
{fixed-width font} 

The values in the widMax, kernMax, nDescent, fRectWid, chHeight, 
ascent, descent, and leading fields all specify a number of pixels. 
KernMax indicates the largest number of pixels any character kerns, and 
should always be negative or 0, because kerning is specified by 
negative numbers (the kerned pixels are to the left of the character 
origin). NDescent must be set to the negative of the descent. 

The owTLoc field contains a word offset from itself to the offset/width 
table; it's equivalent to 

4 + (rowWords * chHeight) + (lastChar - firstChar + 3) + 1 

(warning) 
Remember, the offset and row width in a font record are 
given in words, not bytes. 

Normally, the Resource Editor will change the fields in a font record 
for you. You shouldn't have to change any fields unless you edit the 
font without the aid of the Resource Editor. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



FORMAT OF A FONT 23 

Assembly-language~: The global variable romFont0 contains a 
handle to the font record for the system font. 

Font Widths 

A resource can be defined that consists of only the character widths 
and general font information--everything but the font's bit image and 
location table. If there is such a resource, it will be read in 
whenever QuickDraw doesn't need to draw the text, such as when you call 
one of the routines CharWidth, HidePen, or OpenPicture (which calls 
HidePen). The FontRec data type described above, minus the rowWords, 
bitlmage, and locTable fields, reflects the structure of this type of 
resource. The owTLoc field will contain 4, and the fontType field will 
contain the following predefined constant: 

CONST fontWid = $ACB0; {font width data} 

How QuickDraw Draws Text 

This section provides a conceptual discussion of the steps QuickDraw 
takes to draw characters (without scaling or stylistic variations such 
as bold and outline). Basically, QuickDraw simply copies the character 
image onto the drawing area at a specific location. 

1. Take the initial pen location as the character origin for the 
first character. 

2. Check the word in the offset/width table for the character to see 
if it's -1. The word to check is entry (charCode - firstChar), 
where charCode is the ASCII code of the character to be drawn. 

2a. The character exists if the entry in the offset/width table 
isn't -1. Determine the character offset and character width 
from the bytes of this same word. Find the character image 
at the location in the bit image specified by the location 
table. Calculate the image width by subtracting this word 
from the succeeding word in the location table. Determine 
the number of pixels the character kerns by subtracting 
kernMax from the character offset. 

2b. The character is missing if the entry in the offset/width 
table is -1; information about the missing symbol is needed. 
Determine the missing symbol's character offset and character 
width from the next-to-last word in the offset/width table. 
Find the missing symbol at the location in the bit image 
specified by the next-to-last word in the location table 
(lastChar - firstChar + 1). Calculate the image width by 

6/11/84 Rose-Hacker /FMGR/FONT.D 



24 Font Manager Programmer's Guide 

subtracting the next-to-Iast word in the location table from 
the last word (lastChar - firstChar + 2). Determine the 
number of pixels the missing symbol kerns by subtracting 
kernMax from the character offset. 

3. Move the pen to the left the number of pixels that the character 
kerns. Move the pen up the number of pixels specified by the 
ascent. 

4. If the fontType field is fontWid, skip to step 5; otherwise, copy 
each row of the character image onto the screen or paper, one row 
at a time. The number of bits to copy from each word is given by 
the image width, and the number of words is given by the chHeight 
field. 

5. If the fontType field is fontWid, move the pen to the right the 
number of pixels specified by the character width. If fontType is 
fixedFont, move the pen to the right the number of pixels 
specified by the widMax field. 

6. Return to step 2. 

FONTS IN A RESOURCE FILE 

This section contains details about fonts in resource files that most 
programmers need not be concerned about, since they can use the 
Resource Editor *** eventually *** to define fonts. It's included here 
to give background information to those who are interested. 

Every size of a font is stored as a separate resource. The resource 
type for a font is 'FONT'. The resource data for a font is simply a 
font record: 

6/11/84 Rose-Hacker /FMGR/FONT.D 



Number of bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
n bytes 

m bytes 

m bytes 

FONTS IN A RESOURCE FILE 25 

Contents 
FontType field of font record 
FirstChar field of font record 
LastChar field of font record 
WidMax field of font record 
KernMax field of font record 
NDescent field of font record 
FRectWid field of font record 
ChHeight field of font record 
OWTLoc field of font record 
Ascent field of font record 
Descent field of font record 
Leading field of font record 
RowWords field of font record 
Bit image of font 

n = 2 * rowWords * chHeight 
Location table of font 

m = 2 * (lastChar - firstChar + 3) 
Offset/width table of font 

m = 2 * (lastChar - firstChar + 3) 

The resource type 'FWID' is used to store only the character widths and 
general information for a font; its resource data is a font record 
without the rowWords field, bit image, and location table. 

As shown in Figure 10, the resource ID of a font is composed of two 
parts: bits 7 to 15 are the font number, and bits 0 to 6 are the font 
size. Thus the resource ID corresponding to a given font number and 
size is 

(128 * font number) + font size 

15 7 6 0 

I font number font size 

Figure 10. Resource ID for a Font 

Since 0 is not a valid font size, the resource ID having 0 in the size 
field is used to provide only the name of the font: the name of the 
resource is the font name. For example, for a font named Griffin and 
numbered 400, the resource naming the font would have a resource ID of 
51200 and the resource name 'Griffin'. Size 10 of that font would be 
stored in a resource numbered 51210. 

Font numbers 0 through 127 are reserved for fonts provided by Apple, 
and font numbers 128 through 383 are reserved for assignment, by Apple, 
to software vendors. Each font will be assigned a unique number, and 
that font number should be used to identify only that font (for 
example, font number 9 will always be Toronto). Font numbers 384 
through 511 are available for your use in whatever way you wish. 

6/11/84 Rose-Hacker /FMGR/FONT.D 



26 Font Manager Programmer's Guide 

SUMMARY OF THE FONT MANAGER 

Constants 

CONST { Font numbers } 

systemFont = 0; {system font} 
applFont 1 ; {application font} 
new York = 2; 
geneva 3; 
monaco 4; 
venice 5 ; 
london = 6; 
athens = 7 • , 
sanFran = 8; 
toronto = 9 ; 

{ Font types 

propFont 
fixedFont 
fontWid 

Data Types 

TYPE FMInput 

= $9000; 
= $B000; 
= $ACB0; 

{proportional font} 
{fixed-width font} 
{font width data} 

PACKED RECORD 
family: INTEGER; 
size: INTEGER; 
face: Style; 

{font number} 
{font size} 
{character style} 
{TRUE if drawing} needBits: BOOLEAN; 

device: INTEGER; 
numer: 
denom: 

Point; 
Point 

{device-specific information} 
{numerators of scaling factors} 
{denominators of scaling factors } 

END; 

6/11/84 Rose-Hacker /FMGR/FONT.S 



SUMMARY OF THE FONT MANAGER 27 

FMOutPtr = .... FMOutput; 
FMOutput PACKED RECORD 

errNum: INTEGER; {not used} 
fontHandle: Handle; {handle to font record} 
bold: Byte; {bold factor} 
italic: Byte; {italic factor} 
ulOffset: Byte; {underline offset} 
ulShadow: Byte; {underline shadow} 
ulThick: Byte; {underline thickness} 
shadow: Byte; {shadow factor} 
extra: SignedByte; {width of style} 
ascent: Byte; {ascent} 
descent: Byte; {descent} 
widMax: Byte; {maximum character width} 
leading: SignedByte; {leading} 
unused: Byte; {not used} 
numer: Point; {numerators of scaling factors} 
denom: Point {denominators of scaling factors} 

END; 

FontRec = RECORD 
fontType: INTEGER; {font type} 
firstChar: INTEGER; {ASCII code of first character} 
lastChar: INTEGER; {ASCII code of last character} 
widMax: INTEGER; {maximum character width} 
kernMax: INTEGER; {maximum character kern} 
nDescent: INTEGER; {negative of descent} 
fRectl1ax: INTEGER; {width of font rectangle} 
chHeight: INTEGER; {character height} 
owTLoc: INTEGER; {offset to offset/width table} 
ascent: INTEGER; {ascent} 
descent: INTEGER; {descent} 
leading: INTEGER; {leading} 
rowWords: INTEGER; {row width of bit image / 2} 

{ bitlmage: ARRAY [l •• rowWords, 1 •• chHeight] OF INTEGER; } 
{bit image} 

{ locTable: ARRAY [firstChar •• lastChar+2] OF INTEGER; } 
{location table} 

{ owTable: ARRAY [firstChar •• lastChar+2] OF INTEGER } 
{offset/width table} 

END; 

Routines 

Initializing the Font Manager 

PROCEDURE InitFonts; 

6/11/84 Rose-Hacker /FMGR/FONT.S 



28 Font Manager Programmer's Guide 

Getting Font Information 

PROCEDURE GetFontName (fontNum: INTEGER; VAR theName: Str255); 
PROCEDURE GetFNum (fontName: Str255; VAR theNum: INTEGER); 
FUNCTION RealFont (fontNum: INTEGER; size: INTEGER) : BOOLEAN; 

Keeping Fonts in Memory 

PROCEDURE SetFontLock (lockFlag: BOOLEAN); 

Advanced Routine 

FUNCTION SwapFont (inRec: FMInput) FMOutPtr; 

Assembly-Language Information 

Constants 

; Font numbers 

sysFont 
applFont 
new York 
geneva 
monaco 
venice 
london 
athens 
sanFran 
toronto 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

; Font types 

propFont 
fixedFont 
fontWid 

.EQU 

.EQU 

.EQU 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

;system font 
;application font 

$9000 
$B000 
$ACB0 

;proportional font 
;fixed-width font 
;font width data 

; Control and Status call code 

fMgrCtl1 .EQU 8 ;code used to get and modify font 
; characterization table 

Font Input Record Data Structure 

fmInFamily 
fmInSize 
fmInFace 

6/11/84 Rose-Hacker 

Font number 
Font size 
Character style 

/FMGR/FONT.S 



SUMMARY OF THE FONT MANAGER 29 

fmlnNeedBits 
fmlnDevice 
fmlnNumer 
fmlnDenom 

TRUE if drawing 
Device-specific information 
Numerators of scaling factors 
Denominators of scaling factors 

Font Output Record Data Structure 

*** these offsets don't exist yet *** 
fmOutError Not used 
fmOutFontHandle Handle to font record 
fmOutBold Bold factor 
fmOutItalic 
fmOutUIOffset 
fmOutUIShadow 
fmOutUIThick 
fmOutShadow 
fmOutExtra 
fmOutAscent 
fmOutDescent 
fmOutWidMax 
fmOutLeading 
fmOutUnused 
fmOutNumer 
fmOutDenom 

Italic factor 
Underline offset 
Underline shadow 
Underline thickness 
Shadow factor 
Width of style 
Ascent 
Descent 
Maximum character width 
Leading 
Not used 
Numerators of scaling factors 
Denominators of scaling factors 

Font Record Data Structure 

fFormat 
fMinChar 
fMaxChar 
fMaxWd 
fBBOX 
fBBOY 
fBBDX 
fBBDY 
fLength 
fAscent 
fDescent 
fLeading 
fRaster 

Font type 
ASCII code of first character 
ASCII code of last character 
Maximum character width 
Maximum character kern 
Negative of descent 
Width of font rectangle 
Character height 
Offset to offset/width table 
Ascent 
Descent 
Leading 
Row width of bit image / 2 

Special Macro Names 

Routine name 
GetFontName 
SwapFont 

Macro name 
GetFName 

_FMSwapFont 

6/11/84 Rose-Hacker /FMGR/FONT.S 



30 Font Manager Programmer's Guide 

Variables 

Name 
apFontID 
f Scale Disable 
romFont0 

Size 
2 bytes 
1 byte 
4 bytes 

6/11/84 Rose-Hacker 

Contents 
Font number of application font 
Nonzero to disable scaling 
Handle to font record for system font 

/FMGR/FONT.S 



GLOSSARY 31 

GLOSSARY 

application font: The font your application will use unless you 
specify otherwise--Geneva, by default. 

ascent: The vertical distance from a font's base line to its ascent 
line. 

base line: A horizontal line coincident with the bottom of each 
character in a font, excluding descenders. 

character height: The vertical distance from a font's ascent line to 
its descent line. 

character image: The bit image that defines a character. 

character offset: The horizontal separation between a character 
rectangle and a font rectangle. 

character origin: The point on a base line used as a reference 
location for drawing a character. 

character rectangle: A rectangle enclosing an entire character image. 
Its sides are defined by the image width and the character height. 

character width: The distance to move the pen from one character's 
origin to the next; equivalent to the image width plus the amount of 
blank space to leave before the next character. 

descent: The vertical distance from a font's base line to its descent 
line. fixed-width font: A font whose characters all have the same 
width. 

font: The complete set of characters of one typeface. 

font characterization table: A table of parameters in a device driver 
that specifies how best to adapt fonts to that device. 

font number: The number by which you identify a font to QuickDraw or 
the Font Manager. 

font record: A data structure that contains all the information 
describing a font. 

font rectangle: The smallest rectangle enclosing all the character 
images in a font, if the images were all superimposed over the same 
character origin. 

font size: The size of a font in points; equivalent to the distance 
between the ascent line of one line of text and the ascent line of the 
next of line of single-spaced text. 

6/11/84 Rose-Hacker /FMGR/FONT.G 



32 Font Manager Programmer's Guide 

image width: The horizontal extent of a character image. 

kern: To draw part of a character so that it overlaps an adjacent 
character. 

leading: The amount of blank vertical space between the descent line 
of one line of text and the ascent line of the next line of 
single-spaced text. 

location table: An array of words (one for each character in a font) 
that specifies the location of each character's image in the font's bit 
image. 

missing symbol: A character to be drawn in case of a request to draw a 
character that's missing from a particular font. 

offset/width table: An array of words that specifies the character 
offsets and character widths of all characters in a font. 

point: The intersection of a horizontal grid line and a vertical grid 
line on the coordinate planet defined by a horizontal and a vertical 
coordinate; also, a typographical term meaning approximately 1/72 inch. 

proportional font: A font whose characters all have character widths 
that are proportional to their image width. 

scaling factor: A value, given as a fraction, that specifies the 
amount a character should be stretched or shrunk before it's drawn. 

style: Same as character style. 

system font: The font that the system uses (in menus, for example). 
Its name is Chicago. 

system font size: The size of text drawn by the system in the system 
font; 12 points. 

6/11/84 Rose-Hacker /FMGR/FONT.G 



MACINTOSH USER EDUCATION 

The Event Manager: A Programmer's Guide 

See also: ~~cintosh User Interface Guidelines 
Macintosh Operating System Reference Manual 
QuickDraw: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
The Menu Manager: A Programmer's Guide 
The Control Manager: A Programmer's Guide 

/EMGR/EVENTS 

Modification History: First Draft (ROM 4) S. Chernicoff 6/20/83 

ABSTRACT 

The Macintosh Event Manager is your program's link to its human user, 
allowing it to monitor the user's actions with the mouse, keyboard, and 
keypad. A typical Macintosh application program is event-driven: it 
decides what to do from moment to moment by asking the Event Manager 
for events and responding to them one by one, in whatever way is 
appropriate. The Event Manager is also used for various purposes 
within the Toolbox itself, such as to coordinate the ordering and 
display of windows on the screen. Finally, you can use the Event 
Manager as a means of communication between parts of your own program. 



2 Event ~fanager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Nanual 
4 About the Event Manager 
5 Event Types 
6 Priority of Events 
7 Keyboard Events 
9 Event Records 

12 Event Masks 
14 Using the Event }1anager 
17 Event Manager Routines 
17 Accessing Events 
18 Posting and Removing Events 
19 Reading the Mouse 
2~ Reading the Keyboard and Keypad 
22 Miscellaneous Utilities 
22 Journaling 
23 Resource Format for Keyboard Configurations 
24 Notes for Assembly-Language Programmers 
25 Appendix: Standard Key and Character Codes 
35 Summary of the Event Manager 
37 Glossary 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Event Manager, the part of the Macintosh User 
Interface Toolbox that allows your program to monitor the user's 
actions with the mouse, keyboard, and keypad. *** Eventually it will 
become part of a larger manual describing the entire Toolbox. *** The 
Event Manager is also used for various purposes within the Toolbox 
itself, such as to coordinate the ordering and display of windows on 
the screen. Finally, you can use the Event Manager as a means of 
communication between parts of your own program. 

(eye) 
This manual describes version 4 of the Macintosh ROM. If 
you're using a different version, the Event Manager may 
not work exactly as described here. 

Actually, there are two Event Managers: one in the Operating System 
and one in the Toolbox. The Toolbox Event Manager calls the one in the 
Operating System and serves as an interface between it and your 
application program; it also adds some features that aren't present at 
the Operating System level, such as the window management facilities 
mentioned above. This manual describes the Toolbox Event Manager, 
which is ordinarily the one your program will be dealing with. All 
references to "the Event Manager" should be understood to refer to the 
Toolbox Event Manager. For information on the Operating System's Event 
Manager, see the Macintosh Operating System Reference Manual. 

Like all Toolbox documentation, this manual assumes you are familiar 
with the Macintosh User Interface Guidelines and with Lisa Pascal. You 
should also have at least a general notion of what the Window Manager, 
Desk ~~nager, Menu Manager, Control Manager, and Resource Manager do. 
It would also be helpful to have some familiarity with a Macintosh 
application program as an illustration of the concepts presented here. 

The manual begins with an introduction to the Event Manager and what 
you can do with it. It then discusses the various types of event, 
their relative priority, and how the user's keyboard actions, in 
particular, are reported in the form of events. Next come sections on 
the structure of event records, which contain all the pertinent 
information about each event, and event masks, which some of the Event 
Manager routines expect as parameters. 

A section on using the Event Manager introduces its routines and tells 
how they fit into the flow of your application program. This is 
followed by detailed descriptions of all Event ~~nager procedures and 
functions, their parameters, calling protocol, effects, side effects, 
and so on. 

Following these descriptions are sections that will not be of interest 
to all readers. Special information is given on the Event Manager's 
journaling mechanism, which allows your program's interactions with the 
user to be recorded and played back later; on the format used in 
resource files for storing a keyboard configuration, which determines 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2 



4 Event Manager Programmer's Guide 

what character each key on the keyboard stands for; and on how to use 
the Event Manager routines from assembly language. 

Finally, there are an appendix containing detailed information on the 
standard Macintosh character set and keyboard configuration, a quick
reference summary of the Event Manager data structures and routines, 
and a glossary of terms used in this manual. 

ABOUT THE EVENT MANAGER 

The Macintosh Event Manager is your program's link to its human user. 
Whenever the user presses the mouse button, types on the keyboard or 
keypad, or inserts a disk in a disk drive, your program is notified by 
means of an event. A typical Macintosh application progam is event
driven: it decides what to do from moment to moment by asking the 
Event Manager for events and responding to them one by one, in whatever 
way is appropriate. 

Although the Event Manager's primary purpose is to monitor the user's 
actions and pass them to your program in an orderly way, it also serves 
as a convenient mechanism for sending signals from one part of a 
program to another. For instance, the Window Manager uses events to 
coordinate the ordering and display of windows as the user activates 
and deactivates them and moves them around on the Macintosh screen. 
You can also define your own types of event and use them in any way 
your application calls for. 

Events waiting to be processed are kept in the event queue. In 
principle, the event queue is a FIFO (first-in-first-out) list: events 
are added to the queue (posted) at one end and retrieved from the 
other. You can think of the queue as a funnel that collects events 
from a variety of sources and feeds them to your program on demand, in 
the order they occurred. (There are a few exceptions to the strict 
FIFO ordering, which will be discussed later.) 

(eye) 
The event queue has a limited capacity *** (currently 30 
events, but may change) ***. When the queue becomes 
full, the Event Manager begins throwing out old events to 
make room for new ones as they're posted. The event 
thrown out is always the oldest one in the queue. 

Using the Event Manager, your program can: 

- Retrieve events one at a time from the event queue 

Control which types of event get posted and which are ignored 

- Post events of its own 

- Read the current state of the keyboard, keypad, and mouse button 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2 



ABOUT THE EVENT MANAGER 5 

- }lonitor the location of the mouse 

- Read the system clock to find out how much time has elapsed since 
the system was last started up 

Another important service provided by the Event Manager is journaling. 
This feature enables your program to record all its interactions with 
the Event Manager and play them back later. 

EVENT TYPES 

Events are of various types, depending on their or1g1n and meaning. 
Some report actions by the user, some are generated by the Window 
Manager, some *** (not yet implemented) *** arise in the Macintosh's 
low-level input/output drivers, and some may be generated by your 
program itself for its own purposes. Some events are handled by the 
Desk Manager before your program ever sees them; others are left for 
your program to handle in its own way. 

The most important event types, the ones the Event Manager was created 
to handle, are those that record actions by the user: 

- Mouse down and mouse up events occur when the user presses or 
releases the mouse button. 

- Key down and key up events occur when the user presses or releases 
a key on the keyboard or keypad. The Event Manager also 
automatically generates auto-key events when the user presses and 
holds down a repeating key. Together, these three event types are 
called keyboard events. 

- Disk inserted events occur when the user inserts a disk into a 
disk drive. 

- Abort events occur when the user presses a special combination of 
keys. *** Tentatively the combination is Command-period 
(Command-.), but this may change; there's also some possibility 
that more than one key combination will be provided to interrupt a 
running program in different ways or for different purposes. *** 
An abort event signals the program to stop whatever it's doing and 
return control directly to the user, allowing the user to 
interrupt a time-consuming process or regain control of a runaway 
program. An abort event can also be generated by the Event 
Manager's own journaling mechanism, signaling the program to reset 
itself to some standard initial state before replaying a journal. 

(hand) 
Mere movements of the mouse are not reported as events. 
If necessary, your program can keep track of them by 
periodically asking the Event Manager for the current 
location of the mouse. 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2 



6 Event ~~nager Programmer's Guide 

The following event types are used by the Window Hanager to coordinate 
the display of windows on the screen: 

- Activate events are generated whenever an inactive window becomes 
active or vice versa. They generally occur in pairs (that is, one 
window is deactivated and another activated at the same time). 

- Update events occur when a window's contents need to be redrawn, 
usually as a result of the user's opening, closing, activating, or 
moving a window. 

Two more event types (I/O driver events and network events) are 
reserved for use by the low-level input/output system. *** At present, 
these types are not used at all. *** In addition, your program can 
define as many as four event types of its own and use them for whatever 
purposes you like. 

One final type of event is the null event, which is what the Event 
Hanager returns if it has no other events to report. 

PRIORITY OF EVENTS 

It was stated earlier that in principle the event queue is a FIFO list-
that is, events are retrieved from the queue in the order they were 
originally posted. Actually, the way in which various types of event 
are generated and detected causes some to have higher priority than 
others. Furthermore, when you ask the Event Manager for an event, you 
can specify a particular type or types that are of interest. This can 
also alter the strict FIFO order, by causing some events to be passed 
over in favor of others that were actually posted later. Everything 
said in the following discussion is understood to be limited to the 
event types you've specifically requested in your Event Manager call. 

The Event Manager always returns the highest-priority event available 
of the requested type(s). The priority ranking is as follows: 

1. Activate (window becoming inactive before window becoming active) 

2. Mouse down, mouse up, key down, key up, disk inserted, abort, 
network, I/O driver, application-defined (all in FIFO order) 

3. Auto-key 

4. Update (in front-to-back order) 

5. Null 

Activate events take priority over all others; they are detected in a 
special way, and are never actually placed in the event queue. The 
Event Manager checks for pending activate events before looking in the 
event queue, so it will always return such an event if one is 
available. Because of the special way activate events are detected, 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2 



PRIORITY OF EVENTS 7 

there can never be more than two such events pending at the same time: 
one for a window becoming inactive and another for a window becoming 
active. If there's one of each, the event for the window becoming 
inactive is reported first. 

Category 2 includes most of the possible event types. Hithin this 
category, events are normally retrieved from the queue in the order 
they were posted. 

If no event is available in categories 1 and 2, the Event Manager next 
checks to see whether the appropriate conditions hold for an auto-key 
event. (These conditions are described in detail in the next section.) 
If so, it generates one and returns it to your program. 

Next in priority are update events. Like activate events, these are 
not placed in the event queue, but are detected in another way. If no 
higher-priority event is available, the Event Manager checks for 
windows whose contents need to be redrawn. If it finds one, it 
generates and returns an update event for that window. Windows are 
checked in the order in which they're displayed on the screen, from 
front to back, so if two or more windows need to be updated, an update 
event will be generated for the frontmost such window. 

Finally, if no other event is available, the Event Manager returns a 
null event. 

KEYBOARD EVENTS 

Every key on the Macintosh keyboard and the optional keypad generates 
key down and key up events when pressed and released. (Exceptions are 
the modifier keys--Shift, Caps Lock, Command *** name may change ***, 
and Option. These keys are treaterl specially, as described below, and 
generate no keyboard events of their own.) In addition, the Event 
Manager itself generates auto-key events whenever you request an event 
and all of the following conditions apply: 

- No higher-priority event of the requested type(s) is available 

- The user is currently holding down a key other than a modifier key 

- The appropriate time interval (see below) has elapsed since the 
last keyboard event 

- Auto-key events are one of the types you've requested 

- Auto-key events are one of the types currently being posted into 
the event queue 

Two different time intervals are taken into account. Auto-key events 
begin to be generated after a certain initial delay has elapsed since 
the original key down event (that is, since the key was originally 
pressed). Thereafter, they are generated each time a certain repeat 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2 



8 Eve~t }mnager Programmer's Guide 

interval has elapsed since the last auto-key event. The initial 
settings for these two intervals are 16 ticks (sixtieths of a second) 
for the initial delay and 4 ticks for the repeat interval. The user 
can adjust these settings to individual preference with the control 
panel desk accessory. 

When the user presses, holds down, or releases a key, the resulting 
keyboard event identifies the key in two different ways: with a key 
code designating the key itself and a character code designating the 
character the key stands for. Character codes are given in the 
extended version of ASCII (the American Standard Code for Information 
Interchange) used by Macintosh and Lisa; see the Appendix for further 
information. 

The association between keys and characters is defined by a keyboard 
configuration. The particular character a key generates depends on 

'\ three things: 

- The key itself 

- The keyboard configuration currently in effect 

- Which, if any, of the modifier keys were held down when the key 
was pressed 

As mentioned earlier, the modifier keys don't generate keyboard events 
of their own. Instead, they modify the meaning of the other keys by 
changing the character codes that those keys generate. For example, 
under the standard Macintosh keyboard configuration, the "c" key 
generates a lowercase letter c when pressed by itself; when pressed 
with the Shift or Caps Lock key down, it generates a capital C; with 
the Option key down, a lowercase c with a cedilla (~), used in French, 
Portuguese, and a few other foreign languages; and with Option and 
Shift or Option and Caps Lock down, a capital C with a cedilla (~). 
The state of each of the option keys is also reported in a field of the 
event record (see next section), where your program can examine it 
directly. 

Keyboard configurations are handled as resources and stored in resource 
files. The standard keyboard configuration gives each key its normal 
ASCII character code according to the standard Macintosh keyboard 
layout, as shown in the Appendix. When the Option key is held down, 
most keys generate special characters with codes between 128 and 255 
($80 and $FF), included in the extended character set for business, 
scientific, and international use. 

(hand) 
Notice that under the standard keyboard configuration 
only the Shift, Caps Lock, and Option keys actually 
modify the character a key stands for: the Command key 
has no effect on the character code generated. (Keyboard 
configurations other than the standard may take the 
Command key into account.) Similarly, character codes 
for the keypad are affected only by the Shift key. To 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.2 



KEYBOARD EVENTS 9 

find out whether the Command key was down at the time of 
an event (or Caps Lock or Option in the case of one 
generated from the keypad), you have to examine the 
appropriate field of the event record. 

Normally you'll just want to use the standard keyboard configuration, 
which is read from the system resource file every time the Macintosh is 
started up. Other keyboard configurations can be used to reconfigure 
the keyboard for foreign use or for nonstandard layouts such as the 
Dvorak arrangement. In rare cases, you may want to define your own 
keyboard configuration to suit your program's special needs. For 
information on how to install an alternate keyboard configuration or 
define one of your own, see "Resource Format for Keyboard 
Configurations" and "Notes for Assembly-Language Programmers", below. 

EVENT RECORDS 

Every event is represented internally by an event record containing all 
pertinent information about that event. The event record includes the 
following information: 

- The type of event 

- The time the event was posted 

- The location of the mouse at the time the event was posted 

- The state of the mouse button and modifier keys at the time the 
event was posted 

- Any additional information required for a particular type of 
event, such as which key the user pressed or which window is being 
activated 

This information is filled into the event record for every event--even 
for null events, which just mean that nothing special has happened. 

Event records are defined as follows: 

TYPE EventRecord = RECORD 
what: 
message: 
when: 
where: 
modifiers: 

END; 

INTEGER; 
LongInt; 
LongInt; 
Point; 
INTEGER 

The what field contains an event code identifying the type of the 
event. The Event Manager can handle a maximum of 16 different event 
types, denoted by event codes from ~ to 15. The following standard 
event codes are built into the Event Manager as predefined constants: 

6/20/83 Chernicoff CONFIDENTIAL /EHGR/EVENTS.3 



10 Event Manager Programmer's Guide 

CaNST nullEvent ~; {null} 
mouseDown = 1· {mouse down} , 
mouseUp 2· , {mouse up} 
keyDown = 3· {key down} , 
keyUp 4· , {key up} 
autoKey 5· , {auto-key} 
updateEvt = 6· {update} , 
diskEvt = 7· {disk inserted} , 
activateEvt 8· , {activate} 
abortEvt g. , {abort} 
networkEvt 10 ; {network} 
driverEvt 11; {I/O driver} 
applEvt = 12 ; {application-defined} 
app2Evt = 13 ; {application-defined} 
app3Evt 14 ; {application-defined} 
app4Evt 15; {application-defined} 

The when field contains the time the event was posted, in ticks 
(sixtieths of a second) since the system was last started up. 

The where field gives the location of the mouse at the time the event 
was posted, expressed in global coordinates. 

15 14 1~ 12 11 10 S e 7 6 5 4 J 2 1 0 

I I I 
... i ' I I Activate/deactivate 

Systeml appl ication window 

Unused 

'----------Mouse button 
-------------- Command key 

.... ----------- Shift key 
~--------------------------CaDsLockkey 

.... -------------Option key 

-.--------------------- Unused 

Figure 1. Modifier Bits 

The modifiers field gives the state of the mouse button and the 
modifier keys at the time the event was posted, as shown below and in 
Figure 1. A 1 in any bit position me,ans that that key or button was 
down; 0 means it was up. (Following the customary convention, the bit 
positions are numbered from right to left, starting from ~ at the low
order end; see Figure 1.) 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3 



Bit 
15-12 

11 
10 

9 
8 
7 

6-2 
1-0 

Heaning 
Unused 
Option key 
Caps Lock key 
Shift key 

EVENT RECORDS 11 

Command key *** (name may change) *** 
House button 
Unused 
Used only by activate events (see below) 

For activate events, the low-order bit of the modifiers field (bit ~) 
is set to 1 if a window is being activated, or to ~ if it is being 
deactivated. When one window is deactivated and another is activated 
at the same time (as is usually the case), bit 1 of the modifiers field 
is set to 1 if one of the windows involved belongs to your application 
program and the other is a system window (a window not created by your 
program, such as one containing a desk accessory); if they're both 
system or both application windows, this bit is set to~. You can use 
this information to take some special action when the active window 
changes from an application window to a system window or vice versa: 
for example, you might want to hide a menu or dim some of its items 
when a system window becomes active and restore them when control 
returns to one of your program's own windows. 

31 24 23 16 15 8 7 o 
I s 

'---v---' '---v---' 

.. I __ Character code 

.... ------- Key code 

Figure 2. Event Message Format for Keyboard Events 

The message field contains the event message, which conveys extra 
information specific to a particular event type: 

- For keyboard events, the event message identifies the key that was 
pressed or released, as shown in Figure 2. The low-order byte 
(message MOD 256) contai.ns the character code for the key, 
depending on the keyboard configuration currently in effect and on 
which, if any, of the modifier keys were held down. Under the 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3 



12 Event Manager Programmer's Guide 

standard keyboard configuration this is just the normal ASCII code 
associated with the key, which is usually the information your 
program needs. The third byte (message DIV 256) gives the key 
code, useful in special cases (a music generator, for example) 
where you want to treat the keyboard as a set of buttons unrelated 
to specific characters. Detailed information on key and character 
codes for the standard Macintosh keyboard configuration is given 
in the Appendix. The first two bytes of the message are set to ~. 

- For disk inserted events, the event message gives the drive number 
of the disk drive: 1 for the Macintosh's built-in drive, 2 for 
the external drive, if any. Numbers greater than 2 denote 
additional disk drives connected through the serial port. By the 
time your program receives a disk inserted event, the system will 
already have attempted to mount the volume that was inserted. If 
for any reason the attempt was unsuccessful (for example, if the 
user has inserted an unformatted disk), the high-order word of the 
event message will contain the error code returned by the 
Operating System; see the Operating System manual for further 
details. 

- For activate and update events, the event message is a pointer to 
the window affected. 

- For abort events, the event message identifies the key that the 
user pressed in order to interrupt the program. The format is the 
same as described above for keyboard events. For abort events 
generated by the Event Manager's own journaling mechanism, the 
message field is set to ~. 

- For application-defined event types, you can use the event message 
for whatever information your application calls for. 

- For mouse down, mouse up, and null events, the event message is 
meaningless and should be ignored. 

EVENT }1ASKS 

Several of the Event Manager routines can be restricted to a specific 
event type or group of types. For instance, instead of just requesting 
the next available event, you can ask specifically for the next 
keyboard event. 

You specify which event types a particular Event Manager call applies 
to by supplying an event mask as a parameter. This is an integer in 
which each of the 16 bit positions stands for an event type, as shown 
in Figure 3. Notice that the bit position representing a given type 
corresponds to the event code for that type. For example, update 
events (type code 6) are specified by bit 6 of the mask, counting from 
o at the right (low-order) end~ A 1 bit at that position means that 
this Event Manager call applies to update events; a ~ means it doesn't. 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3 



EVENT MASKS 13 

1:. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I 

~ 

Figure 3. Event Mask 

Null 
Mouse down 
Mouse up 
Key down 
Key up 
p,uto·key 
IJpdete 
Disk: inserted 
Activate 
Abort 
Network: 
1/0 driver 

Appl ication-defined 

Masks for each single event type are built into the Event Manager as 
predefined constants: 

CONST nullMask 1-, {null} 
mDownMask 2-, {mouse down} 
mUpMask = 4- {mouse up} , 
keyDownHask 8-, {key down} 
keyUpMask = 16; {key up} 
autoKeyMask 32; {auto-key} 
updateMask = 64; {update} 
diskMask 128; {disk inserted} 
activMask 256; {activate} 
abortMask = 512; {abort} 
networkMask 1024; {network} 
driverMask 2048; {I/O driver} 
applMask 4096; {application-defined} 
app2Mask = 8192; {application-defined} 
app3Mask = 16384; {application-defined} 
app4Mask -32768; {application-defined} 

There .... s also a predefined mask consisting of alII bits, to designate 
every event type: 

CONST everyEvent = -1; 

You can form any mask you need by combining these mask constants with 
integer addition and subtraction. For example, to specify any keyboard 
event, you can use a mask of 

keyDownMask + keyUpMask + autoKeyMask 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3 



14 Event Manager Programmer's Guide 

For any event except an update, you can use 

(hand) 

everyEvent - updateMask 

Recommended programming practice is always to use an 
event mask of everyEvent unless there is a specific 
reason not to. This ensures that all events will be 
processed in their natural order. 

In addition to the mask parameters to individual Event Manager 
routines, there's also a global system event mask, which controls which 
event types get posted into the event queue. Only those events 
corresponding to 1 bits in the system event mask are posted; those with 
~ bits are ignored. When the system is started up, the system event 
mask is initially. set to post all except key up events--that is, it is 
initialized to 

everyEvent - keyUpMask 

(Key up events are meaningless for most applications, and your program 
will usually want to ignore them anyway.) If necessary for your 
particular application, you can change the setting of the system event 
mask with the Event Manager procedure SetEventMask. 

USING THE EVENT MANAGER 

This section discusses how the Event Manager routines fit into the 
general flow of your program and gives you an idea of which routines 
you'll need to use. The routines themselves are described in detail in 
the next section. 

Before using the Event Manager, you should call the Window Manager 
procedure InitWindows: parts of the Event Manager rely on the Window 
Manager's data structures and will not work properly unless those 
structures have been properly initialized. It's also usually a good 
idea to call FlushEvents(everyEvent,~), to empty the event queue of any 
stray events left over from before your program was started up (such as 
keystrokes typed to the Finder). 

As noted earlier, most application programs are event-driven. Such 
programs typically have a main loop that repeatedly calls GetNextEvent 
to retrieve the next available event, then uses a CASE statement to 
decide what type of event it is and take whatever action is 
appropriate. 

Your program is only expected to respond to those events that are 
directly related to its own operations. Events that are of interest 
only to the system, or that pertain only to system windows, are 
intercepted and handled by the Desk Manager, but are still reported 
back to your program by GetNextEvent. After calling GetNextEvent, you 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3 



USING THE EVENT MANAGER 15 

should test its Boolean result to find out whether your program needs 
to respond to the event: TRUE means the event is of interest to your 
program, FALSE means you can ignore it. 

(hand) 
Events handled by the system include activate and update 
events for system windows; all keyboard and mouse up 
events when a system window is active, if the window 
contains a desk accessory that is prepared to handle the 
event; and network events if there's a desk accessory 
present that will handle them. Further details are given 
in the Desk Manager manual. 

On receiving a mouse down event, you should first call the Window 
Manager function FindWindow to find out where on the screen the mouse 
button was pressed; you can then respond in whatever way is 
appropriate. Depending on the part of the screen the button was 
pressed in, this may involve calls to Toolbox routines such as the Menu 
Manager function MenuSelect, the Desk Manager procedure SystemClick, 
the Window Manager routines SelectWindow, DragWindow, GrowWindow, and 
TrackGoAway, and the Control Manager routines FindControl, 
TrackControl, and DragControl. See the relevant Toolbox manuals for 
details. 

(hand) 
If your program attaches some special significance to 
double mouse clicks, you can detect them by comparing the 
time and location of each mouse down event with those of 
the previous such event. If the two events are 
sufficiently close to each other in time and space-
separated by not more than, say, half a second (30 ticks) 
and three pixels--you can consider them a double click 
and respond accordingly. 

When one of your own windows is active, you should respond to keyboard 
and mouse up events in whatever way your application calls for. For 
example, when the user types a character on the keyboard, you might 
want to insert that character into the document displayed in an active 
document window. For keyboard events, you should first check the 
modifiers field to see whether the character was typed with the Command 
key held down: if so, the user may have been choosing a menu item by 
typing its keyboard equivalent. To find out, pass the character that 
was typed to the Menu Manager function MenuKey. If that character, 
combined with the Command key, stands for a menu item, MenuKey will 
return a nonzero result identifying the item. You can then do whatever 
is appropriate to respond to that menu item, just as if the user had 
chosen it with the mouse. If MenuKey's result is 0, the user has typed 
a key combination that has no menu eq~ivalent; your program may then 
want to respond in some other way. 

(hand) 
Under the Macintosh User Interface Guidelines, the 
keyboard's usual auto-repeat property doesn't apply to 
Command-key combinations that stand for menu items. When 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3 



16 Event Manager Programmer's Guide 

you receive a nonzero result from MenuKey, you should 
execute the corresponding menu command only if the event 
you're responding to was a mouse down event; if it was an 
auto-key event, just ignore it and go on to the next 
event. 

When you receive an activate event for one of your own windows, the 
Window Manager will already have done all of the normal "housekeeping" 
associated with the event, such as highlighting or unhighlighting the 
window. You can then take any further action of your own that your 
application may require, such as showing or hiding a scroll bar or 
highlighting or unhighlighting a selection. 

On receiving an update event for one of your own windows, you should 
usually call the Window Manager procedure BeginUpdate, redraw the 
window's contents, then call EndUpdate. 

When you receive a disk inserted event, the Desk Manager will already 
have responded to the event by attempting to mount the new volume just 
inserted in the disk drive. Usually there's nothing more for your 
program to do, but GetNextEvent returns TRUE anyway, giving you an 
opportunity to take some further action if your application demands it. 
If the attempt to mount the volume was unsuccessful, there will be a 
nonze'ro error code in the high-order word of the event message; in this 
case you might want to take some special action, such as displaying an 
alert box containing an error message. 

If the event you receive is an abort event, first check to see whether 
it was generated by the user or by the Event Manager's own journaling 
mechanism. For user-generated abort events, your program should stop 
whatever it's doing and return to its main loop to process the next 
available event; for those that originate in the journaling mechanism, 
it should reset its internal state as appropriate to prepare for 
replaying a journal. 

(hand) 
During any particularly time-consuming operation, your 
program should check for abort events periodically to 
allow the user to interrupt the operation from the 
keyboard. 

Network events are handled by the Desk Manager as long as there's a 
desk accessory present that can respond to them. If GetNextEvent 
returns a TRUE result for a network event, then no such desk accessory 
is present; your program should normally just ignore the event. 
*** The exact meaning and use of I/O driver events is not yet 
specified, so (for the time being) you needn't worry about how to 
respond to them. *** 
If you're using your own event types for internal communication between 
parts of your program, you can use PostEvent to post them into the 
event queue. When you receive them back from GetNextEvent, you can 
respond to them in whatever way is appropriate for your application. 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.3 



USING THE EVENT MANAGER 17 

To "peek" at pending events without removing them from the event queue, 
use EventAvail instead of GetNextEvent. To remove all events of a 
given type or types from the queue, use FlushEvents. To control which 
event types get posted into the queue, or to cause certain types to be 
ignored, use SetEventMask. 

In addition to receiving the user's mouse and keyboard actions in the 
form of events, you can directly read the keyboard (and keypad), mouse 
location, and state of the mouse button by calling GetKeys, GetMouse, 
and Button, respectively. To follow the mouse when the user drags it 
with the button down, use StillDown or \~aitMouseUp. 

Finally, you can read the current setting of the system clock at any 
time by calling TickCount. 

EVENT MANAGER ROUTINES 

This section describes all the Event Manager procedures and functions. 
They are presented in their Pascal form; for information on using them 
from assembly language" see "Using the Toolbox from Assembly Language" 
*** (doesn't exist, but see QuickDraw manual) *** and also "Notes for 
Assembly-Language Programmers" in this manual. 

Accessing Events 

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord) 
BOOLEAN; 

GetNextEvent returns the next available event of a specified type or 
types and removes it from the event queue. The event is returned as 
the value of the parameter theEvent; eventMask specifies which event 
types are of interest. GetNextEvent will return the next available 
event of any type designated by a 1 bit in the mask, subject to the 
priority rules discussed above under "Priority of Events". Event types 
corresponding to ~ bits in the mask are ignored. If no event of any of 
the designated types is available, GetNextEvent returns a null event, 
regardless of the setting of the eventMask bit for null events. 

(eye) 
Since update events are never actually placed in the 
event queue, GetNextEvent can't remove them from the 
queue. before returning them, as it does with other 
events. If your program doesn't take some explicit 
action to "clear" the update event, it will keep getting 
the same event back again. The normal way of clearing an 
update event is with BeginUpdate and EndUpdate; further 
explanation can be found in the Window Manager manual. 

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4 



18 Event Manager Programmer's Guide 

Before reporting an event to your program, GetNextEvent first calls the 
Desk Manager function SystemEvent to see whether the system wants to 
intercept and respond to the event. If so (or if the event being 
reported is a null event), GetNextEvent returns a function result of 
FALSE to notify your program that it can ignore this event; a function 
result of TRUE means that your program should handle the event itself. 
The Desk ~~nager normally intercepts the following events: 

- All activate and update events directed to a system window 

All keyboard and mouse up events if the currently active window is 
a system window and contains a desk accessory that is prepared to 
handle the event 

All network events if there is a desk accessory present that can 
handle them 

The Desk Manager also responds to disk inserted events by attempting to 
mount the volume that has just been inserted; but in this case 
GetNextEvent returns TRUE to allow your program to take some further 
action if appropriate. All other events (including all mouse down 
events, regardless of which window is active) are left for your program 
to handle. See the Desk Manager manual for further details. 

FUNCTION EventAvai1 (event~lask: INTEGER; VAR theEvent: EventRecord) 
BOOLEAN; 

EventAvail returns in theE vent the next available event of the type or 
types specified by eventMask, but does not remove the event from the 
event queue. This allows you to "peek" at pending events while still 
leaving them in the queue for later processing. In all other respects, 
EventAvai1 works exactly the same as GetNextEvent (see above). 

Posting and Removing Events 

PROCEDURE PostEvent (eventCode: INTEGER; eventMsg: LongInt); 

PostEvent places in the event queue an event of the type designated by 
eventCode, with the event message specified by eventMsg. The main use 
of this procedure is for posting events of your own application-defined 
types. It's also sometimes useful for placing an event back in the 
queue after you've removed it with GetNextEvent. Notice, however, that 
in this case the system clock time, mouse location, and state of the 
mouse button and modifier keys will b,e changed from their original 
values to those in effect at the time the event is reposted. 

(eye) 
Be very careful about ,posting any but your own 
application-defined events into the queue. For example, 
attempting to post an activate or update event will 

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4 



EVENT MANAGER ROUTINES 19 

interfere with the internal operation of the Event 
Manager, since such events are detected in other ways and 
are not normally placed in the queue at all. If you 
repost a mouse event, the mouse location associated with 
it will be changed, possibly altering its meaning; 
reposting a keyboard event may cause modifier information 
to be lost or characters to be transposed from the order 
in which the user originally typed them. In general, you 
should avoid using PostEvent for any but your own events 
unless you're sure you know what you're doing. 

PROCEDURE FlushEvents (eventMask,stopMask: INTEGER); 

FlushEvents removes from the event queue all events of the type(s) 
specified by eventMask, up to, but not including, the first event of 
any type specified by stopMask. To remove all events of a particular 
type or types, use a stopMask value of O. You might use FlushEvents, 
for example, on receiving an abort event, to remove any mouse or 
keyboard events that may have occurred before the program was 
interrupted. 

(hand) 
When your program is first started up, it's usually a 
good idea to call FlushEvents(everyEvent,0) to empty the 
event queue of any stray events that may have been left 
lying around, such as unprocessed keystrokes typed to the 
Finder. 

Reading the Mouse 

PROCEDURE GetMouse (VAR mouseLoc: Point); 

GetMouse returns the current mouse location as the value of the 
parameter mouseLoc. The location is expressed in the local coordinate 
system of the current grafPort (which might be, for example, the 
currently active window). Notice that this differs from the mouse 
location stored in the where field of an event record, which is given 
in global coordinates. 

FUNCTION Button : BOOLEAN; 

The Button function returns the current state of the mouse button: 
TRUE if the button is down, FALSE if ,it isn't. 

FUNCTION StillDown : BOOLEAN; 

Called after a mouse down event, StillDown tests whether the mouse 
button is still down. It returns TRUE if the button is currently down 

6/20/83 Chernicoff CONFIDENTIAL ICMGR/EVENTS.4 



20 Event Manager Programmer's Guide 

and there are no more mouse events (mouse ups or later mouse downs) 
pending in the event queue. This is a true test of whether the button 
is still down from the original press--unlike Button (see above), which 
returns TRUE whenever the button is currently down, even if it has been 
released and pressed again since the original mouse down event. 

FUNCTION WaitMouseUp : BOOLEAN; 

WaitMouseUp works exactly the same as StillDown (see above), except 
that if the button is not still down from the original press, 
WaitMouseUp removes the corresponding mouse up event before returning 
FALSE. 

Reading the Keyboard and Keypad 

PROCEDURE GetKeys (VAR theKeys: KeyMap); 

GetKeys reads the current state of the keyboard (and keypad, if any) 
and returns it in the form of a keyMap: 

TYPE KeyMap = PACKED ARRAY [1 •• 128] OF BOOLEAN; 

Each element of the keyMap is TRUE if the corresponding key is down, 
FALSE if it isn't. The correspondence between elements of the keyMap 
and keys on the keyboard and keypad is shown in Table 1. KeyMap 
elements corresponding to blank entries in the table are unused. 
Notice that GetKeys doesn't distinguish between the two Shift keys or 
the two Option keys. 

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4 



Element 

'/) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

6/20/83 Chernicoff 

A 
S 
D 
F 
II 
G 
Z 

X 
C 
V 

B 
Q 
w 
E 
R 
Y 
T 
1 
2 
3 
4 
6 
5 
= 
9 
7 

8 
f/J 
] 
o 
U 
[ 
I 
p 

Return 
L 
J 

K . , 
\ 
, 
/ 
N 
H 

Element 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
7'/) 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

96-127 

EVENT ~YU~AGER ROUTINES 21 

Key 

Tab 
Space bar 

Backspace 
Enter 

Command *** (name may change) *** 
Shift 
Caps Lock 
Option 

• (keypad) 
* (keypad) 

+ (keypad) 
Clear (keypad) 
, (keypad) 

Enter (keypad) 
/ (keypad) 
- (keypad) 

f/J (keypad) 
1 (keypad) 
2 (keypad) 
3 (keypad) 
4 (keypad) 
5 (keypad) 
6 (keypad) 
7 (keypad) 

8 (keypad) 
9 (keypad) 

(Unused) 

Table 1. KeyMap Elements 

CONFIDENTIAL /CMGR/EVENTS.4 



22 Event Manager Programmer's Guide 

Miscellaneous Utilities 

PROCEDURE SetEventNask (theHask: INTEGER); 

SetEventMask sets the system event mask to the specified value. This 
mask controls the posting of events into the event queue. Only event 
types corresponding to 1 bits in the mask are posted; all others are 
ignored. The initial setting for the system event mask is to post all 
except key up events. 

SetEventMask is useful if for some reason you want to know when keys 
are released as well as when they're pressed, or if you know that some 
other event type is of no interest to your program and needn't be 
posted. For example, if your program attaches no special meaning to 
mouse up events, you may want to dispense with them; or you might want 
to eliminate keyboard repeat by preventing auto-key events from being 
posted. 

(hand) 
Since space in the event queue is limited, it's generally 
a good idea to disable any event type that you know your 
program has no use for. 

The system event mask has no effect on activate or update events, since 
these events are detected in other ways and are never actually posted 
into the event queue. 

FUNCTION TickCount : LongInt; 

TickCount returns the current value of the system clock, which gives 
the elapsed time in ticks (sixtieths of a second) since the system was 
last started up. 

JOURNALING 

Using the Event Manager's journaling mechanism, all of a program's 
interactions with the Event Manager can be recorded and later played 
back, just as if they were happening for the first time. A journal is 
a record of all calls to the Event Manager routines GetNextEvent, 
EventAvail, GetMouse, Button, GetKeys, and TickCount. When a journal 
is being recorded, every call to any of these routines is sent to a 
special input/output driver and recorded in the journal, along with the 
result returned. 

When the journal is played back, the same Event Manager calls read 
their results back from the journal instead of directly from the mouse, 
keyboard, keypad, and system clock. To the application program, the 
results it receives from the Event Manager in response to these calls 

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4 



JOURNALING 23 

look exactly as if they were coming directly from the user. Since the 
program is event-driven, its behavior is completely determined by this 
stream of results. In particular, the sequence of calls the program 
issues to the Event Manager while replaying the journal will exactly 
match those that occurred when the journal was originally recorded. 
Since the results the Event Manager sends back are taken from the 
journal, the same sequence of events that occurred when the journal was 
recorded will be reproduced when the journal is played back. 

(eye) 
Null events are not fully recorded in the journal: the 
fact that a null event was generated is recorded, but not 
the contents of the event record's fields. When the 
journal is played back, this information--the time the 
event was posted, the mouse location, and the state of 
the mouse button and modifier keys--is lost; the contents 
of the when, where, and modifiers fields are meaningless. 
If there's any chance your program may be executed from a 
journal instead of by direct interaction with the user, 
it should not rely in any way on the contents of a null 
event's fields. 

The user can control journal recording and playback with the journaling 
desk accessory. It can also be controlled by the application program 
itself, but only from the assembly-language level: see "Notes for 
Assembly-Language Programmers", below, for details. *** The exact 
method of controlling the journaling mechanism has not been finally 
determined and will probably change. *** 

RESOURCE FORMAT FOR KEYBOARD CONFIGURATIONS 

The keyboard configuration, which translates the keys the user presses 
on the keyboard and keypad into the characters they represent, is 
treated as a resource and read from a resource file. The standard 
Macintosh keyboard configuration is stored in the system resource file 
and is read automatically when the Macintosh is started up. One way to 
substitute an alternate keyboard configuration--for example, for 
foreign use--is to use the Resource Editor *** (which doesn't yet 
~xist) *** to replace the standard configuration with the new one in 
the system resource file. Then the next time the Macintosh is 
restarted, it will read the new keyboard configuration instead of the 
standard one. 

(hand) 
It's also possible for a running program to install a new 
keyboard configuration "on the fly". This can only be 
done in assembly language; details are given in the next 
section. 

Actually, the keyboard configuration is a pair of machine-language 
configuration routines, one for the keyboard and one for the keypad. 
These routines accept a key code, along with the state of the modifier 

6/20/83 Chernicoff CONFIDENTIAL /CMGR/EVENTS.4 



24 Event Manager Programmer's Guide 

keys, as input and return the corresponding character code as output. 
The arguments and result are passed directly in machine registers, so 
the routines must be written in assembly language, not in Pascal. 

The keyMap index (see Table 1) for the key to be translated is passed 
to the configuration routine in register D2. Register D1 contains the 
fourth word (indices 48 to 63) of the current keyMap, which includes 
the status bits for the four modifier keys at the positions shown in 
Figure 4. All other bits in this word should be ignored. The 
configuration routine is expected to return a character code in 
register D0; it should preserve the contents of all other registers. 
If the specified key combination doesn't correspond to any character, 
the configuration routine should return~: in this case, no keyboard 
event will be generated. 

15 14 lJ 12 11 10 9 6 7 6 5 4 1 o 

111------ Command key 
Shift key 
Caps. Lock key 
Option key 

Figure 4. Modifi.er Bi ts for Configuration Routines 

When the Macintosh is started up, two configuration routines are read 
from the system resource file. Both have a resource type of 'KEYC'; 
the resource ID is 1 for the keyboard routine and 2 for the keypad 
routine. The resource data for a resource of this type is just the 
machine code for the routine. The first byte of code is assumed to be 
the entry point for executing the routine. 

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 

Information about how to use the User Interface Toolbox from assembly 
language is given elsewhere. *** For now, see the QuickDraw 
manual. *** This section contains special notes of interest to 
programmers who will be using the Event Manager from assembly language. 

6/20/83 Chernicoff CONFIDENTIAL ICMGR/EVENTS.4 



NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 25 

The primary aid to assembly-language programmers is a file named 
TOOLEQU.TEXT. If you use .INCLUDE to include this file when you 
assemble your program, all the Event Manager constants, offsets to 
locations of global variables, and offsets into fields of structured 
types will be available in symbolic form. 

In assembly language, you can control the operation of 
mechanism by setting the global variable JournalFlag. 
variable to a positive, nonzero value turns on journal 
setting it negative turns on playback; setting it to ~ 
off. 

the journaling 
Setting this 
recording; 
turns journaling 

The global variables Key1Trans and Key2Trans are used to hold pointers 
to the keyboard and keypad configuration routines, respectively. You 
can replace either or both of these routines "on the fly" by the 
following steps: 

1. Call the Resource Manager function GetResource (or 
GetNamedResource) to find the new configuration routine in its 
resource file, read it into memory, and get a handle to it. 

2. Use the Operating System call RecoverHandle to convert the 
existing routine pointer from Key1Trans or Key2Trans into a 
handle. 

3. Use the Operating System call DisposHand1e to free the storage 
occupied by the old routine. 

4. Convert the handle you received from the Resource Manager into a 
pointer and store it in Key1Trans (for a keyboard routine) or 
Key2Trans (for a keypad routine). 

APPENDIX: STANDARD KEY AND CHARACTER CODES 

The following tables show the key and character codes used by Macintosh 
and the characters assigned to keys on the keyboard and keypad under 
the standard Macintosh keyboard configuration. All key and character 
codes are given in hexadecimal; for the benefit of readers with only 
ten fingers, there's a hexadecimal/decimal conversion table at the end 
of this Appendix. 

Table 2 shows the extended ASCII character set used by Macintosh and 
Lisa. The first digit of the hexadecimal character code is shown at 
the top of the table, the second down the left side. For example, 
character code $47 stands for the capital letter G, which appears in 
the table at the intersection of column 4 and row 7. 

Character codes between $20 and $7E have their normal ASCII meanings. 
Codes between $80 and $CA denote special characters included in the 
extended character set for business, scientific, and international use; 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5 



26 Event }mnager Programmer's Guide 

codes from $CB to $FF are unassigned. ASCII control characters ($00 to 
$lF, as well as $20 and $7F) are identified in the table by their 
traditional ASCII abbreviations: 

Code 
$00 
$01 
$02 
$03 
$04 
$05 
$06 
$07 
$08 
$09 
$0A 
$0B 
$0c 
$0D 
$0E 
$0F 

$20 

Abbr. 
NUL 
SOIl 
STX 
ETX 
EaT 
ENQ 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
SO 
SI 

SP 

Neaning 
Null 
Start of Header 
Start of Text 
End of Text 
End of Tape 
Enquiry 
Acknowledge 
Bell 
Backspace 
Horizontal Tab 
Line Feed 
Vertical Tab 
Form Feed 
Carriage Return 
Shift Out 
Shift In 

Space 

Code 
$10 
$11 
$12 
$13 
$14 
$15 
$16 
$17 
$18 
$19 
$lA 
$lB 
$lC 
$lD 
$lE 
$lF 

$7F 

Abbr. 
DLE 
DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
US 

DEL 

Meaning 
Data Link Escape 
Device Control 1 
Device Control 2 
Device Control 3 
Device Control 4 
Negative Acknowledge 
Synchronous Idle 
End Transmission Block 
Cancel 
End of Hedium 
Substitute 
Escape 
Field Separator 
Group Separator 
Record Separator 
Unit Separator 

Delete 

However, most of these characters have no special meaning on Macintosh 
and cannot be generated from the Macintosh keyboard under the standard 
keyboard configuration. The exceptions are the following: 

Code Character Key 
$03 ETX Enter (keyboard and keypad) 
$08 BS Backspace 
$09 HT Tab 
$0D CR Return 
$lB ESC Clear (keypad) 
$lC FS Left arrow (keypad) 
$lD GS Right arrow (keypad) 
$lE RS Up arrow (keypad) 
$lF US Down arrow (keypad) 
$20 SP Space bar 

In addition, as shown in the table, codes from $11 to $15 denote 
special characters used on the Macintosh screen, such as the open and 
solid Apple characters. These characters are intended exclusively for 
use on the screen, and have no keyboard or keypad equivalents under the 
standard keyboard configuration. 

The characters shaded in the table are accented letters used in various 
foreign languages. Under the standard keyboard configuration, these 
characters cannot be typed directly from the keyboard. Instead, they 
are generated by first typing the accent or diacritical mark alone, 
followed by the letter to be accented. For example, a lowercase letter 
e with a grave accent (e, character code $8F) is produced by typing a 
grave accent (', code $60) followed by a lowercase e (code $65). The 
Macintosh keyboard driver will *** (eventually) *** translate such two-

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5 



APPENDIX: STANDARD KEY AND CHARACTER CODES 27 

character sequences involving diacriticals into the corresponding 
single accented letters. 

Tables 3 and 4 show the hexadecimal key codes corresponding to keys on 
the Macintosh keyboard and keypad, respectively. ~10difier keys are not 
shown, since they never generate keyboard events of their own. 

Table S shows the hexadecimal character codes generated by each key on 
the keyboard under the standard keyboard configuration. Table Sa gives 
the character generated when the key is pressed by itself, Table Sb 
when it is pressed with the Shift key held down, Table Sc the Caps Lock 
key, Table Sd the Option key, and Table Se the Option and Shift or 
Option and Caps Lock keys. Again, the modifier keys themselves are not 
shown. 

Table 6 shows the hexadecimal character codes for the keypad under the 
standard keyboard configuration. Table 6a gives the character 
generated when the key is pressed by itself, Table 6b when it is 
pressed with the Shift key held down. 

Finally, Table 7 is a conversion table between hexadecimal and decimal. 
To convert a two-digit hexadecimal number to decimal, find its first 
digit at the top of the table and its second down the left side. The 
decimal equivalent is found at the intersection of that column and row. 
For example, hexadecimal $6C is equivalent to decimal 108, found at the 
intersection of column 6 and row C. To convert a decimal number to 
hexadecimal, find the number in the body of the table and read its 
first and second hexadecimal digits from the head of that column and 
row, respectively. For example, decimal 227 is in column E and row 3, 
so its hexadecimal equivalent is $E3. 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.S 



28 Event I1anager Programmer's Guide 

o 1 2 3 456 F 

o NUL OLE ISP 10 @ pi-
'" SOH Del ! o ! 1 A Qat 

2 ~s-Tx-+O~~~-·-·~1-2-4-B-4-R~-b~~~--~~--+-~--+-~--~~i 
1 

.~: 

~~_#~3~I_c~s~c~s~::~~-:-~:it~~~_£~~~I~~~~~'1 
$ 14 D T d t );f[f § I ¥ f I I 
% 5 E I u e u :l): >:{ - .. = 4 

1----i-~4_____4_--+-~-~-----1-__4__-+_____+_-+_=_,......___!_-_+__----_+_~.;: 

& 6 F I V I f v I:._o.) .. ii.:: ,r d I/).I 
1-----4--4-----4--4----4--......!.----J-~~~~-_I__~--_+____+-_+___t:~: 

• 7 G Wig w >ii.16 B 2 I ~ I t 
I----+---+--~_-!-----J._--;.......::~_~~.;.:......;_~-+_==_+_-_+_____+_-_+_____I:~: 

( 8 H I X I h I x I::~: :-6: ® IT ~ I I 

B VT l'ESrAlC I + ; K [ k {:::~:: :::~:: ~ a :f: >a: >0-: - t : : . :: .. ' :: :~: 

C FF FiJ I < L \ 1 I a I:td Q I 
CR GS I I o .,J r--s:: - = M] } f'" :.' :. U".:" :: :. ... n :.:" ~ m y ~ lL i 

E so R~ • > N n :-~tl{ IF. a:! i ~_+--~_4--_!__-4-~~~~~~~--_+__+-+_~--~~] 

F __ ~ ___ ~~ 
Non-printing Printing characters . 

Table 2. Macintosh and Lisa Extended ASCII Character Set 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5 



APPENDIX: STANDARD KEY AND CHARACTER CODES 29 

Key: ['] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] [-] [=] [Backspace] 
Code: $32 $12 $13 $14 $15 $17 $16 $IA $IC $19 $ID $IB $18 $33 

Key: [Tab] [Q] [W] [E] [R] [T] [Y] [U] [I] [0] [P] [[] []] [\] 
Code: $30 $0c $0D $0E $0F $11 $10 $20 $22 $IF $23 $21 $IE $2A 

Key: [A] [S] [D] [F] [G] [H] [J] [K] [L] [;] ['] [Return] 
Code: $00 $01 $02 $03 $05 $04 $26 $28 $25 $29 $27 $24 

Key: [Z] [X] [C] [V] [B] [N] [M] [,] [.] [I] 
Code: $06 $07 $08 $09 $0B $2D $2E $2B $2F $2C 

Key: 
Code: 

Space 
$31 

[ Enter 
$34 

Table 3. Key Codes for Macintosh Keyboard 

Key: [Clear] [-] [+] [*] 
Code: $47 $4E $46 $42 

Key: [7] [8] [9 ] [I] 
Code: $59 $5B $5C $4D 

Key: [4] [5] [6] [ , ] 
Code: $56 $57 $58 $48 

Key: [1] [2] [3] [E] 
Code: $53 $54 $55 [n] 

[t] 
[e] 

Key: [ 0 ] [ . ] [r] 
Code: $52 $41 $4C 

Table 4. Key Codes for Macintosh Keypad 

6/20/83 Chernicoff CONFIDENTIAL IEMGR/EVENTS.5 



30 Event Manager Programmer's Guide 

Key: ['] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] [-] [=] [Backspace] 
Code: $60 $31 $32 $33 $34 $35 $36 $37 $38 $39 $30 $2D $3D $08 
Char: 1 2 3 4 5 6 7 8 9 0 = BS 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

[Tab] 
$09 

HT 

[Q] [W] [E] [R] [T] [Y] [U] [1] [0] [P] [[] []] [\] 
$71 $77 $65 $72 $74 $79 $75 $69 $6F $70 $5B $5D $5C 

q w e r t y u i 0 p [ ] \ 

[A] [S] [D] [F] [G] [H] [J] [K] [L] [;] ['] [Return] 
$61 $73 $64 $66 $67 $68 $6A $6B $6C $3B $27 $0D 

a s d f g h j k 1 CR 

[Z] [X] [C] [V] [B] [N] [M] [,] [.] [I] 
$7A $78 $63 $76 $62 $6E $6D $2C $2E $2F 

z x c v b n m 1 

Space 
$20 

SP 

(a) Unshifted 

[ Enter 
$03 
ETX 

Table 5. Standard Character Codes for Macintosh Keyboard 

6/20/83 Chernicoff CONFIDENTIAL IEHGR/EVENTS.5 



APPENDIX: STANDARD KEY AND CHARACTER CODES 31 

Key: [ ... ] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] [-] [=] [Backspace] 
Code: $7E $21 $40 $23 $24 $25 $5E $26 $2A $28 $29 $5F $2B $08 
Char: ! @ /I $ % & * () + BS 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

[Tab] 
$09 

HT 

[Q] [W] [E] [R] [T] [Y] [U] [I] [0] [P] [[] []] [\] 
$51 $57 $45 $52 $54 $59 $55 $49 $4F $50 $7B $7D $7C 
Q W E R T Y U I 0 P { } I 

[A] [S] [D] [F] [G] [H] [J] [K] [L] [;] ['] [Return] 
$41 $53 $44 $46 $47 $48 $4A $4B $4C $3A $22 $0D 

A S D F G H J K L CR 

[Z] [X] [C] [V] [B] [N] [M] [,] [.] [I] 
$5A $58 $43 $56 $42 $4E $4D $3C $3E $3F 

Z X C V B N M < > ? 

Space 
$20 

SP 

(b) Shift Key Down 

[ Enter ] 
$03 
ETX 

Key: [ ... ] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] [-] [=] [Backspace] 
Code: $60 $31 $32 $33 $34 $35 $36 $37 $38 $39 $30 $2D $3D $08 
Char: 1 2 3 4 5 6 7 8 9 0 = BS 

Key: [Tab] [Q] [W] [E] [R] [T] [Y] [U] [I] [0] [P] [[] []] [\] 
Code: $09 $51 $57 $45 $52 $54 $59 $55 $49 $4F $50 $5B $5D $5C 
Char: HT Q W E R T Y U I 0 P [ ] \ 

Key: [A] [8] [D] [F] [G] [H] [J] [K] [L] [;] ['] [Return] 
Code: $41 $53 $44 $46 $47 $48 $4A $4B $4C $3B $27 $0D 
Char: A S D F G H J K L CR 

Ke y : [ Z ] [X] [ C ] [V] [ B] [ N] [M] [, ] [.] [ / ] 
Code: $5A $58 $43 $56 $42 $4E $4D $2C $2E $2F 
Char: Z X C V B N M / 

Key: 
Code: 
Char: 

Space 
$20 

SP 

(c) Caps Lock Key Down 

[ Enter 
$03 
ETX 

Table 5. Standard Character Codes for Macintosh Keyboard (continued) 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5 



32 Event Manager Programmer's Guide 

Key: ['] [1] [2] [3] [4] [S] [6] [7] [8] [9] [0] [-] [=] [Backspace] 
Code: $60 $C1 $AA $A3 $A2 $B0 $A4 $A6 $AS $BB $BC $B1 $AD $08 
Char: ' 1 m t t. GO ~ ,r . a 0 +;: BS 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

Key: 
Code: 
Char: 

[Tab] 
$09 

HT 

[Q] [W] [E] [R] [T] [Y] [U] [1] [0] [P] [[] []] [\] 
$A1 $B7 $AB $A8, $A0 ~B~ $AC $~0 $BF $B9 $BS $C8 $0~. 
o E ' e t '+.' IJ 1r P. « 

[A] [S] [0] [F] [G] [H] [J] [K] [L] [;] ['] [Return] 
$8C $A7 $B6 $C4 $A9 $SE $C6 $00 $C2 $BD $BE $00 
ft~df@)AA ..,n~ CR 

[Z] [X] [C] [V] [B] [N] [M] [,] [.] [I] 
$00 $CS $80 $C3 $BA $7E $00 $B2 $B3$c0 
~ ~ ~ J < > t 

Space 
$20 

SP 

(d) Option Key Down 

[ Enter ] 
$03 
ETX 

['] [1] [2] [3] [4] [S] [6] [7] [8] [9] [0] [-] [=] [Backspace] 
$60 $C1 $AA $A3 $A2 $B0 $A4 $A6 $AS $BB $BC $B1 $AD $08 
, i 1M £. t. 00 ~ ~r • ~ .£ ±;: BS 

[Tab] [Q] [W] [E] [R] [T] [Y] [U] [1] [0] [P] [[] []] [\] 
$09 $A1 $B7 $AB $A8 $A0 $B4 $AC$00 $AF $B8 $BS $C7 $00 
HT' r:' ~t ¥ .. 01f.LL~ 

[A] [S] [0] [F] [G] [H] [J] [K] [L] [;] ['] [Return] 
$§1 $A7 $B6 $C4 $A9 $SE $C6 $fD0 $C2 $BD'$AE $00 
X e> d f (D A 6. ..... Sl,E. CR 

[Z] [X] [C] [V] [B] [N] [M] [,] [.] [I] 
$00 $CS $82 $C3 $BA $7E $00 $B2 $B3 $c0 
~C1fS- ~2t 

[ Space ] [ Enter 
$20 $03 

SP ETX 

(e) Option and Shift or Option and Caps Lock Keys Down 

Table S. Standard Character Codes for Macintosh Keyboard (continued) 

6/20/83 Chernicoff CONFIDENTIAL IEMGR/EVENTS.S 



APPENDIX: STANDARD KEY AND CHARACTER CODES 33 

Key: [Clear] [-] [+] [* ] 
Code: $IB $2D $IC $ID 
Char: ESC ... ~ 
Key: [7 ] [8] [9] [/ ] 
Code: $37 $38 $39 $IE 
Char: 7 8 9 l' 
Key: [4] [5] [6] [ , ] 
Code: $34 $35 $36 $IF 
Char: 4 5 6 ~ 

Key: [1] [2] [3] [E] 
Code: $31 $32 $33 [n] 
Char: 1 2 3 [t] 

[e] 
Key: [ 0 [ . ] [r] 
Code: $30 $2E $03 
Char: 0 . ETX 

(a) Unshifted 

Key: [Clear] [- ] [+] [*] 
Code: $IB $2D $2B $2A 
Char: ESC + * 

Key: [7] [8] [9] [/ ] 
Code: $37 $38 $39 $2F 
Char: 7 8 9 / 

Key: [4] [5] [6] [ , ] 
Code: $34 $35 $36 $2C 
Char: 4 5 6 

Key: [1] [2] [3] [E] 
Code: $31 $32 $33 [n] 
Char: 1 2 3 [t] 

[e] 
Key: [ 0 ] [ . ] [r] 
Code: $30 $2E $03 
Char: 0 . ETX 

(b) Shift Key Down 

Table 6. Standard Character Codes for Macintosh Keypad 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.5 



34 Event Manager Programmer's Guide 

Second 
digit First digit 

o 1 2 3 4 5 6 7 8 9 ABC D E F 
I 

o I 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 
I 

1 I 1 17 33 49 65 81 97 113 129 145 161 117 193 209 225 241 
I 

2 I 2 18 34 50 66 82 98 114 130 146 162 178 194 210 226 242 
I 

3 I 3 19 35 51 67 83 99 115 131 147 163 179 195 211 227 243 

4 4 20 36 52 68 84 100 116 132 148 164 180 196 212 228 244 

5 5 21 37 53 69 85 101 117 133 149 165 181 197 213 229 245 

6 6 22 38 54 70 86 102 118 134 150 166 182 198 214 230 246 

7 7 23 39 55 71 87 103 119 135 151 167 183 199 215 231 247 

8 8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 

9 9 25 41 57 73 89 105 121 137 153 169 185 201 217 233 249 

A 10 26 42 58 74 90 106 122 138 154 170 186 202 218 234 250 

B 11 27 43 59 75 91 107 123 139 155 171 187 203 219 235 251 

C 12 28 44 60 76 92 108 124 140 156 172 188 204 220 236 252 

D 13 29 45 61 77 93 109 125 141 157 173 189 205 221 237 253 

E 14 30 46 62 78 94 110 126 142 158 174 190 206 222 238 254 

F 15 31 47 63 79 95 111 127 143 159 175 191 207 223 239 255 

Table 7. Hexadecimal/Decimal Conversion Table 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6 



SUMMARY OF THE EVENT MANAGER 35 

SUMHARY OF THE EVENT l-lANAGER 

CaNST nullEvent 
mouseDown 
mouseUp 
keyDown 
keyUp 
autoKey 
updateEvt 
diskEvt 
activateEvt 
abortEvt 
networkEvt 
driverEvt 
app1Evt 
app2Evt 
app3Evt 
app4Evt 

nullMask 
mDownMask 
mUpMask 
keyDownMask 
keyUpHask 
autoKeyMask 
updateMask 
diskMask 
activMask 
abortMask 
networkMask 
driver}1ask 
app1Mask 
app2Mask 
app3Mask 
app4Mask 

= ~; 
1; 
'). "', 
3; 
4; 
5; 
6; 
7; 
8; 
9; 
10; 
11; 

= 12; 
= 13; 

14 ; 
15; 

= 1; 
2; 
4; 
8; 
16 ; 
32; 
64; 

= 128; 
256; 

= 512; 
= 1024; 

2048; 
4096; 

= 8192; 
= 16384; 

-32768; 

{null} 
{mouse down} 
{mouse up} 
{key down} 
{key up} 
{auto-key} 
{update} 
{disk inserted} 
{activate} 
{abort} 
{network} 
{I/O driver} 
{application-defined} 
{application-defined} 
{application-defined} 
{application-defined} 

{null} 
{mouse down} 
{mouse up} 
{key down} 
{key up} 
{auto-key} 
{update} 
{disk inserted} 
{activate} 
{abort} 
{network} 
{I/O driver} 
{application-defined} 
{application-defined} 
{application-defined} 
{application-defined} 

everyEvent = -1; 

TYPE EventRecord = RECORD 
what: 
message: 
when: 
where: 
modifiers: 

END; 

INTEGER; 
Longlnt; 
Longlnt; 
Point; 
INTEGER 

KeyMap = PACKED ARRAY [1 •• 128] OF BOOLEAN; 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6 



36 Event }~nager Programmer's Guide 

Accessing Events 

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: EventRecord) 
BOOLEAN; 

FUNCTION EventAvail (eventMask: INTEGER; VAR theEvent: EventRecord) 
BOOLEAN; 

Posting and Removing Events 

PROCEDURE PostEvent (eventCode: INTEGER; eventMsg: LongInt); 
PROCEDURE FlushEvents (eventMask,stopMask: INTEGER); 

Reading the Mouse 

PROCEDURE GetMouse 
FUNCTION Button: 
FUNCTION StillDown 
FUNCTION WaitMouseUp 

(VAR mouseLoc: Point); 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 

Reading the Keyboard and Keypad 

PROCEDURE GetKeys (VAR theKeys: KeyMap); 

Miscellaneous Utilities 

PROCEDURE SetEventMask (theMask: INTEGER); 
FUNCTION TickCount: LongInt; 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6 



GLOSSARY 37 

GLOSSARY 

abort event: An event generated when the user presses a special 
combination of keys *** (tentatively Command-.) ***, or when the Event 
Manager's journaling mechanism wants a program to prepare for replaying 
a journal. 

activate event: An event generated by the Window Manager when a window 
changes from active to inactive or vice versa. 

auto-key event: An event generated periodically when the user presses 
and holds down a key on the keyboard or keypad. 

character code: An integer representing the character that a key or 
combination of keys on the keyboard or keypad stands for. 

configuration routine: A machine-language routine that defines a 
particular keyboard configuration by translating a key code, together 
with the state of the modifier keys, into a corresponding character 
code. 

disk inserted event: An event generated when the user inserts a disk 
in a disk drive. 

event: A notification to an application program of some occurrence 
that the program must respond to. 

event code: An integer representing a particular type of event. 

event mask: A parameter passed to an Event Manager routine specifying 
which types of event the routine is to be applied to. 

event message: A field of an event record containing information 
specific to the particular type of event. 

event queue: The Event Manager's list of pending events waiting to be 
processed. 

event record: The internal representation of an event, where the Event 
Manager stores all pertinent information about that event. 

I/O driver event: An event generated by one of the Macintosh's input/ 
output drivers. *** (Not yet implemented.) *** 

journal: A record of all of a program's interactions with the Event 
Manager over a period of time, which can be played back in order to 
reproduce the original session. 

keyboard configuration: A resource that defines a particular keyboard 
layout by associating a character code with each key or combination of 
keys on the keyboard or keypad. 

6/20/83 Chernicoff CONFIDENTIAL /EHGR/EVENTS.6 



38 Event Manager Programmer's Guide 

keyboard event: An event generated when the user presses, releases, or 
holds down a key on the keyboard or keypad; any key down, key up, or 
auto-key event. 

key code: An integer representing a key on the keyboard or keypad, 
without reference to the character that key stands for. 

key down event: An event generated when the user presses a key on the 
keyboard or keypad. 

key up event: An event generated when the user releases a key on the 
keyboard or keypade 

modifier key: A key (Shift, Caps Lock, Option, or Command) that 
generates no keyboard events of its own, but changes the meaning of 
those generated by other keys. 

mouse down event: An event generated when the user presses the mouse 
button. 

mouse up event: An event generated when the user releases the mouse 
button. 

network event: An event generated by the Macintosh's network driver. 
*** (Not yet implemented.) *** 
null event: An event returned by the Event Manager when it has no 
other events to report. 

post: To place an event in the event queue for later processing. 

system event mask: A global event mask that controls which types of 
event get posted into the event queue. 

update event: An event generated by the Window Manager when a window's 
contents need to be redrawn. 

6/20/83 Chernicoff CONFIDENTIAL /EMGR/EVENTS.6 



MACINTOSH USER EDUCATION 

The Window Manager: A Programmer's Guide /WMGR/WINDOW 

See Also: Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Control Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
The Dialog Manager: A Programmer's Guide 
Toolbox Utilities: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 

Modification History: First Draft 
Interim Release 
Second Draft 

Pam Stanton-Wyman 
Caroline Rose 
Caroline Rose 

Revised Caroline Rose 
Third Draft (ROM 2.1) Caroline Rose 
Fourth Draft (ROM 7) Caroline Rose 
Fifth Draft Caroline Rose & Brent Davis 

8/16/82 
9/30/82 
10/8/82 
11/2/82 
3/1/83 

8/25/83 
5/30/84 

ABSTRACT 

Windows play an important part in Macintosh applications, since all 
information presented by an application appears in windows. The Window 
Manager provides routines for creating and manipulating windows. This 
manual describes those routines along with related concepts and data 
types. 

Summary of significant changes and additions since last draft: 

- New window definition IDs have been added (page 8) and the 
diameters of curvature for an rDocProc type of window can now be 
varied (page 9). 

The discussion of how a window is drawn has been corrected and 
refined (page 15). 

- Assembly-language notes were added where appropriate, and the 
summary was updated to include all assembly-language information. 



2 Window Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Window Manager 
6 Windows and GrafPorts 
6 Window Regions 
8 Windows and Resources 
10 Window Records 
11 Window Pointers 
12 The WindowRecord Data Type 
15 How a Window is Drawn 
17 Making a Window Active: Activate Events 
18 Using the Window Manager 
20 Window Manager Routines 
20 Initialization and Allocation 
23 Window Display 
26 Mouse Location 
28 Window Movement and Sizing 
31 Update Region Maintenance 
33 Miscellaneous Utilities 
35 Low-Level Routines 
37 Defining Your Own Windows 
38 The Window Definition Function 
39 The Draw Window Frame Routine 
40 The Hit Routine 
41 The Routine to Calculate Regions 
41 The Initialize Routine 
41 The Dispose Routine 
42 The Grow Routine 
42 The Draw Size Box Routine 
42 Formats of Resources for Windows 
44 Summary of the Window Manager 
50 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Window Manager, a major component of the 
Macintosh User Interface Toolbox. *** Eventually it will become part 
of the comprehensive Inside Macintosh manual. *** The Window Manager 
allows you to create, manipulate, and dispose of windows in a way 
that's consistent with the Macintosh User Interface Guidelines. 

Like all Toolbox documentation, this manual assumes you're familiar 
with the Macintosh User Interface Guidelines, Lisa Pascal, and the 
Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

Resources, as discussed in the Resource Manager manual. 

- The basic concepts and structures behind QuickDraw, particularly 
points, rectangles, regions, grafPorts, and pictures. You don't 
have to know the QuickDraw routines in order to use the Window 
Manager, though you'll be using QuickDraw to draw inside a window. 

- The Toolbox Event Manager. Some Window Manager routines are 
called only in response to certain events. 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Window Manager and what 
you can do with it. It then discusses some basic concepts about 
windows: the relationship between windows and grafPorts; the various 
regions of a window; and the relationship between windows and 
resources. Following this is a discussion of window records, where the 
Window Manager keeps all the information it needs about a window. 
There are also sections on what happens when a window is drawn and when 
a window becomes active or inactive. 

Next, a section on using the Window Manager introduces its routines and 
tells how they fit into the flow of your application program. This is 
followed by detailed descriptions of all Window Manager procedures and 
functions, their parameters, calling protocol, effects, side effects, 
and so on. 

Following these descriptions are sections that will not interest all 
readers: special information is provided for programmers who want to 
define their own windows, and the exact formats of the resources 
related to windows are described. 

Finally, there's a summary of the Window Manager for quick reference, 
followed by a glossary of terms used in this manual. 

5/30/84 Rose-Davis /WMGR/WINDOW.2, 



4 Window Manager Programmer's Guide 

ABOUT THE WINDOW MANAGER 

The Window Manager is a tool for dealing with windows on the Macintosh 
screen. The screen represents a working surface or desktop; graphic 
objects appear on the desktop and can be manipulated with the mouse. A 
window is an object on the desktop that presents information, such as a 
document or a message. Windows can be any size or shape, and there can 
be one or many of them, depending on the application. 

Some types of windows are predefined. One of these is the standard 
document window, as illustrated in Figure 1. Every document window has 
a title bar containing a title that's centered and in the system font 
and system font size. In addition, a particular document window mayor 
may not have a close box or a size box; you'll learn in this manual how 
to implement them. There may also be scroll bars along the bottom 
and/or right edge of a document window. Scroll bars are controls, and 
are supported by the Control Manager. 

Close box Title bar 

Scroll bar 

_0 Size box ........... 
Scroll bar 

Figure 1. An Active Document Window 

Your application can easily create standard types of windows such as 
document windows, and can also define its own types of windows. Some 
windows may be created indirectly for you when you use other parts of 
the Toolbox; an example is the window the Dialog Manager creates to 
display an alert box. Windows created either directly or indirectly by 
an application are collectively called application windows. There's 
also a class of windows called system windows; these are the windows in 
which desk accessories are displayed. 

The document window shown in Figure 1 above is the frontmost (active) 
window, the one that will be acted on when the user types, gives 
commands, or whatever is appropriate to the application being used. 
Its title bar is highlighted--displayed in a distinctive visual way--so 
that the window will stand out from other, inactive windows that may be 
on the screen. Since a close box, size box, and scroll bars will have 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



ABOUT THE WINDOW MANAGER 5 

an effect only in an active window, none of them appear in an inactive 
window (see Figure 2) • 

(note) 

... 1RI8. 

Charg8. 
Inective 
windows 

The 
active 
window 

Figure 2. Overlapping Document Windows 

If a document window has neither a size box nor scroll 
bars, the lines delimiting those areas aren't drawn, as 
in the Memo window in Figure 2. 

An important function of the Window Manager is to keep track of 
overlapping windows. You can draw in any window without running over 
onto windows in front of it. You can move windows to different places 
on the screen, change their plane (their front-to-back ordering), or 
change their size, all without concern for how the various windows 
overlap. The Window Manager keeps track of any newly exposed areas and 
provides a convenient mechanism for you to ensure that they're properly 
redrawn. 

Finally, you can easily set up your application so that mouse actions 
cause these standard responses inside a document window, or similar 
responses inside other windows: 

- Clicking anywhere in an inactive window makes it the active window 
by bringing it to the front and highlighting its title bar. 

- Clicking inside the close box of the active window closes the 
window. Depending on the application, this may mean that the 
window disappears altogether, or a representation of the window 
(such as an icon) may be left on the desktop. 

- Dragging anywhere inside the title bar of a window (except in the 
close box, if any) pulls an outline of the window across the 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



6 Window Manager Programmer's Guide 

screen, and releasing the mouse button moves the window to the new 
location. If the window isn't the active window, it becomes the 
active window unless the Command key was also held down. A window 
can never be moved completely off the screen; by convention, it 
can't be moved such that the visible area of the title bar is less 
than four pixels square. 

- Dragging inside the size box of the active window changes the size 
of the window. 

WINDOWS AND GRAFPORTS 

It's easy for applications to use windows: to the application, a 
window is a grafPort that it can draw into like any other with 
QuickDraw routines. When you create a window, you specify a rectangle 
that becomes the portRect of the grafPort in which the window contents 
will be drawn. The bitMap for this grafPort, its pen pattern, and 
other characteristics are the same as the default values set by 
QuickDraw, except for the character font, which is set to the 
application font. These characteristics will apply whenever the 
application draws in the window, and they can easily be changed with 
QuickDraw routines (SetPort to make the grafPort the current port, and 
other routines as appropriate). 

There is, however, more to a window than just the grafPort that the 
application draws in. In a standard document window, for example, the 
title bar and outline of the window are drawn by the Window Manager, 
not by the application. The part of a window that the Window Manager 
draws is called the window frame, since it usually surrounds the rest 
of the window. For drawing window frames, the Window Manager creates a 
grafPort that has the entire screen as its portRect; this grafPort is 
called the Window Manager port. 

WINDOW REGIONS 

Every window has the following two regions: 

the content region: the area that your application draws in 

- the structure region: the entire window; its complete "structure" 
(the content region plus the window frame) 

The content region is bounded by the rectangle you specify when you 
create the window (that is, the portRect of the window's grafPort); for 
a document window, it's the entire portRect. This is where your 
application presents information and where the size box and scroll bars 
of a document window are located. By convention, clicking in the 
content region of an inactive window makes it the active window. 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



(note) 

WINDOW REGIONS 7 

The results of clicking and dragging that are discussed 
here don't happen automatically; you have to make the 
right Window Manager calls to cause them to happen. 

A window may also have any of the regions listed below. Clicking or 
dragging in one of these regions causes the indicated action. 

A go-away region within the window frame. Clicking in this region 
of the active window closes the window. 

- A drag region within the window frame. Dragging in this region 
pulls an outline of the window across the screen, moves the window 
to a new location, and makes it the active window unless the 
Command key was held down. 

A grow region, usually within the content region. Dragging in 
this region of the active window changes the size of the window. 
In a document window, the grow region is in the content region, 
but in windows of your own design it may be in either the content 
region or the window frame. 

Figure 3 illustrates the various regions of a standard document window 
and its window frame. 

• Go-away region 

.................... 
:: :::::: :::: ::::::::::::::::::::::::: .-.................................... . 

Drag region 

Structure region Content region 
= Content region 
+ Window frame Grow region II 

Figure 3. Document Window Regions and Frame 

An example of a window that has no-drag region is the window that 
displays an alert box. On the other hand, you could design a window 
whose drag region is the entire structure region and whose content 
region is empty; such a window might present a fixed picture rather 
than information that's to be manipulated. 

Another important window region is the update region. Unlike the 
regions described above, the update region is dynamic rather than 
fixed: the Window Manager keeps track of all areas of the content 

5/30/84 Rose-Davis /WMGR/WINOOW.2 



8 Window Manager Programmer's Guide 

region that have to be redrawn and accumulates them into the update 
region. For example, if you bring to the front a window that was 
overlapped by another window, the Window Manager adds the formerly 
overlapped (now exposed) area of the front window's content region to 
its update region. You'll also accumulate areas into the update region 
yourself; the Window Manager provides update region maintenance 
routines for this purpose. 

WINDOWS AND RESOURCES 

The general appearance and behavior of a window is determined by a 
routine called its window definition function, which is stored as a 
resource in a resource file. The window definition function performs 
all actions that differ from one window type to another, such as 
drawing the window frame. The Window Manager calls the window 
definition function whenever it needs to perform one of these type
dependent actions (passing it a message that tells which action to 
perform). 

The system resource file includes window definition functions for the 
standard document window and other predefined types of windows. If you 
want to define your own, nonstandard window types, you'll have to write 
your own window definition functions for them, as described later in 
the section "Defining Your Own Windows". 

When you create a window, you specify its type with a window definition 
ID, which tells the Window Manager the resource ID of the definition 
function for that type of window. You can use one of the following 
constants as a window definition ID to refer to a predefined type of 
window (see Figure 4): 

CONST documentProc = 0; {standard document window} 
dBoxProc = 1 ; {alert box or modal dialog box} 
plainDBox 2; {plain box} 
altDBoxProc 3; {plain box with shadow} 
noGrowDocProc = 4; {document window without size box} 
rDocProc = 16; {rounded-corner window} 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



WINDOWS AND RESOURCES 9 

documentProc noGrowOocProc rDocProc 

dBoxProc plainDBox altDBoxProc 

Figure 4. Predefined Types of Windows 

DocumentProc represents a standard document window that mayor may not 
contain a size box; noGrowDocProc is exactly the same except that the 
window must not contain a size box. If you're working with a number of 
document windows that need to be treated similarly, but some will have 
size boxes and some won't, you can use documentProc for all of them. 
If none of the windows will have size boxes, however, it's more 
convenient to use noGrowDocProc. 

The dBoxProc type of window resembles an alert box or a "modal" dialog 
box (the kind that requires the user to respond before doing any other 
work on the desktop). It's a rectangular window with no go-away 
region, drag region, or grow region and with a two-pixel-thick border 
two pixels in from the edge. It has no special highlighted state 
because alerts and modal dialogs are always displayed in the frontmost 
window. PlainDBox and altDBoxProc are variations of dBoxProc: 
plainDBox is just a plain box with no inner border, and altDBoxProc has 
a two-pixel-thick shadow instead of a border. 

The rDocProc type of window is like a document window with no grow 
region, with rounded corners, and with a method of highlighting that 
inverts the entire title bar (that is, changes white to black and vice 
versa). It's sometimes used for desk accessories. Rounded-corner 
windows are drawn by the QuickDraw procedure FrameRoundRect, which 
requires that the diameters of curvature be passed as parameters. For 
an rDocProc type of window, the diameters of curvature are both 16. 
You can add a number from 1 to 7 to rDocProc to get different 
diameters: 

5/30/84 Rose-Davis /WMGR/WINDOW.2 



10 Window Manager Programmer's Guide 

Window definition ID Diameters of curvature 
rDocProc 16, 16 
rDocProc + 1 4, 4 
rDocProc + 2 6, 6 
rDocProc + 3 8, 8 
rDocProc + 4 10, 10 
rDocProc + 5 12, 12 
rDocProc + 6 20, 20 
rDocProc + 7 24, 24 

To create a window, the Window Manager needs to know not only the 
window definition ID but also other information specific to this 
window, such as its title (if any), its location, and its plane. You 
can supply all the needed information in individual parameters to a 
Window Manager routine or, better yet, you can store it as a single 
resource in a resource file and just pass the resource ID. This type 
of resource is called a window template. Using window templates 
simplifies the process of creating a number of windows of the same 
type. More important, it allows you to isolate specific window 
descriptions from your application's code. Translation of window 
titles into a foreign language, for example, would require only a 
change to the resource file. 

(note) 
You can create window templates and store them in 
resource files with the aid of the Resource Editor *** 
eventually (for now, the Resource Compiler) ***. The 
Resource Editor relieves you of having to know the exact 
format of a window template, but for interested 
programmers this information is given in the section 
"Formats of Resources for Windows". 

WINDOW RECORDS 

The Window Manager keeps all the information it requires for its 
operations on a particular window in a window record. The window 
record contains the following: 

-, The grafPort for the window. 

- A handle to the window definition function. 

- A handle to the window's title, if any. 

- The window class, which tells whether the window is a system 
window, a dialog or alert window, or a window created directly by 
the application. 

- A handle to the window's control list, which is a list of all the 
controls, if any, in the window. The Control Manager maintains 
this list. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



WINDOW RECORDS 11 

- A pointer to the next window in the window list, which is a list 
of all windows ordered according to their front-to-back positions 
on the desktop. 

*** The handle to the window's title has a data type that you may want 
to use yourself elsewhere; it's defined in the Memory Manager as 
follows: 

TYPE Str255 
StringPtr 
StringHandle 

STRING[255]; 
.... Str255; 
.... StringPtr; 

Forthcoming Memory Manager documentation will include this. *** 

The window record also contains an indication of whether the window is 
currently visible or invisible. These terms refer only to whether the 
window is drawn in its plane, not necessarily whether you can see it on 
the screen. If, for example, it's completely overlapped by another 
window, it's still "visible" even though it can't be seen in its 
current location. 

The 32-bit reference value field of the window record is reserved for 
use by your application. You specify an initial reference value when 
you create a window, and can then read or change the reference value 
whenever you wish. For example, it might be a handle to data 
associated with the window, such as a TextEdit edit record. 

Finally, a window record may contain a handle to a QuickDraw picture of 
the window contents. The application can swap out the code and data 
that draw the window contents if desired, and instead use this picture. 
For more information, see "How a Window is Drawn". 

The data type for a window record is called WindowRecord. A window 
record is referred to by a pointer, as discussed further under "Window 
Pointers" below. You can store into and access most of the fields of a 
window record with Window Manager routines, so normally you don't have 
to know the exact field names. Occasionally--particularly if you 
define your own type of window--you may need to know the exact 
structure; it's given below under "The WindowRecord Data Type". 

Window Pointers 

There are two types of pointer through which you can access windows: 
WindowPtr and WindowPeek. Most programmers will only need to use 
WindowPtr. 

The Window Manager defines the following type of window pointer: 

TYPE WindowPtr = GrafPtr; 

It can do this because the first thing stored in a window record is the 
window's grafPort. This type of pointer can be used to access fields 
of the grafPort or can be passed to QuickDraw routines that expect 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



12 Window Manager Programmer's Guide 

pointers to grafPorts as parameters. The application might call such 
routines to draw into the window, and the Window Manager itself calls 
them to perform many of its operations. The Window Manager gets the 
additional information it needs from the rest of the window record 
beyond the grafPort. 

In some cases, however, a more direct way of accessing the window 
record may be necessary or desirable. For this reason, the Window 
Manager also defines the following type of window pointer: 

TYPE WindowPeek = AWindowRecord; 

Programmers who want to access WindowRecord fields directly must use 
this type of pointer (which derives its name from the fact that it lets 
you "peek" at the additional information about the window). A 
WindowPeek pointer is also used wherever the Window Manager will not be 
calling QuickDraw routines and will benefit from a more direct means of 
getting to the data stored in the window record. 

Assembly-language note: From assembly language, of course, 
there's no type checking on pointers, and the two types of 
pointer are equal. 

The WindowRecord Data Type 

For those who want to know more about the data structure of a window 
record or who will be defining their own types of windows, the exact 
data structure is given here. 

TYPE WindowRecord 
RECORD 

port: 
windowKind: 
visible: 
hilited: 
goAwayFlag: 
spareFlag: 
strucRgn: 
contRgn: 
updateRgn: 
windowDefProc: 
dataHandle: 
titleHandle: 
titleWidth: 
controlList: 
nextWindow: 
windowPic: 
ref Con: 

END; 

5/30/84 Rose-Davis 

GrafPort; {window's grafPort} 
INTEGER; {window class} 
BOOLEAN; {TRUE if visible} 
BOOLEAN; {TRUE if highlighted} 
BOOLEAN; {TRUE if has go-away region} 
BOOLEAN; {reserved for future use} 
RgnHandle; {structure region} 
RgnHandle; {content region} 
RgnHandle; {update region} 
Handle; {window definition function} 
Handle; {data used by windowDefProc} 
StringHandle; {window's title} 
INTEGER; {width of title in pixels} 
Handle; {window's control list} 
WindowPeek; {next window in window list} 
PicHandle; {picture for drawing window} 
LongInt {window's reference value} 

/WMGR/WINDOW.3 



WINDOW RECORDS 13 

The port is the window's grafPort. 

WindowKind identifies the window class. If negative, it means the 
window is a system window (it's the desk accessory's reference number, 
as described in the Desk Manager manual). It may also be one of the 
following predefined constants: 

CaNST dialogKind 
userKind 

2; {dialog or alert window} 
8; {window created directly by the application} 

WindowKind values 1 through 7 are reserved for system use. UserKind is 
stored in this field when a window is created directly by application 
calls to the Window Manager (rather than indirectly through the Dialog 
Manager, as for dialogKind); for such windows the application can in 
fact set the window class to any value greater than 8 if desired. 

When visible is TRUE, the window is currently visible. 

Hilited and goAwayFlag are checked by the window definition function 
when it draws the window frame, to determine whether the window should 
be highlighted and whether it should have a go-away region. For a 
document window, this means that if hilited is TRUE, the title bar of 
the window is highlighted, and if goAwayFlag is also TRUE, a close box 
appears in the highlighted title bar. 

(note) 
The Window Manager sets the visible and hilited flags to 
TRUE by storing 255 in them rather than 1. This may 
cause problems in Lisa Pascal; to be safe, you should 
check for the truth or falsity of these flags by 
comparing ORD of the flag to 0. For example, you would 
check to see if the flag is TRUE with 
ORD(myWindow.visible) <> 0. 

StrucRgn, contRgn, and updateRgn are region handles, as defined in 
QuickDraw, to the structure region, content region, and update region 
of the window. These regions are all in global coordinates. 

WindowDefProc is a handle to the window definition function for this 
type of window. When you create a window, you identify its type with a 
window definition ID, which is converted into a handle and stored in 
the windowDefProc field. Thereafter, the Window Manager uses this 
handle to access the definition function; you should never need to 
access this field directly. 

(note) 
The high-order byte of the windowDefProc field contains 
some additional information that the Window Manager gets 
from the window definition ID; for details, see the 
section "Defining Your Own Windows". Also note that if 
you write your own window definition function, you can 
include it as part of your application's code and just 
store a handle to it in the windowDefProc field. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



14 Window Manager Programmer's Guide 

DataHandle is reserved for use by the window definition function. If 
the window is one of your own definition, your window definition 
function may use this field to store and access any desired 
information. If no more than four bytes of information are needed, the 
definition function can store the information directly in the 
dataHandle field rather than use a handle. For example, the definition 
function for rounded-corner windows uses this field to store the 
diameters of curvature. 

TitleHandle is a stringHandle to the window's title, if any. 

TitleWidth is the width, in pixels, of the window's title in the system 
font and system font size. This width is determined by the Window 
Manager and is normally of no concern to the application. 

ControlList is a handle to the window's control list. 

NextWindow is a pointer to the next window in the window list, that is, 
the window behind this window. If this window is the farthest back 
(with no windows between it and the desktop), nextWindow is NIL. 

Assembly-language note: The global variable windowList contains 
a pointer to the first window in the window list. Remember that 
any window in the list may be invisible. 

WindowPic is a handle to a QuickDraw picture of the window contents, or 
NIL if the application will draw the window contents in response to an 
update event, as described under "How a Window is Drawn", below. 

Ref Con is the window's reference value field, which the application may 
store into and access for any purpose. 

(note) 
Notice that the go-away, drag, and grow regions are not 
included in the window record. Although these are 
conceptually regions, they don't necessarily have the 
formal data structure for regions as defined in 
QuickDraw. The window definition function determines 
where these regions are, and it can do so with great 
flexibility. 

Assembly-language note: The global constant windowSize equals 
the length in bytes of a window record. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



HOW A WINDOW IS DRAWN 15 

HOW A WINDOW IS DRAWN 

When a window is drawn or redrawn, the following two-step process 
usually takes place: the Window Manager draws the window frame and the 
application draws the window contents. 

To perform the first step of this process, the Window Manager calls the 
window definition function with a request that the window frame be 
drawn. It manipulates regions of the Window Manager port as necessary 
before calling the window definition function, to ensure that only what 
should and must be drawn is actually drawn on the screen. Depending on 
a parameter passed to the routine that created the window, the window 
definition function mayor may not draw a go-away region in the window 
frame (a close box in the title bar, for a document window). 

Usually the second step is that the Window Manager generates an update 
event to get the application to draw the window contents. It does this 
by accumulating in the update region the areas of the window's content 
region that need updating. The Toolbox Event Manager periodically 
checks to see if there's any window whose update region is not empty; 
if it finds one, it reports (via the GetNextEvent function) that an 
update event has occurred, and passes along the window pointer in the 
event message. (If it finds more than one such window, it issues an 
update event for the frontmost one, so that update events are reported 
in front-to-back order.) The application should respond as follows: 

1. Call BeginUpdate. This procedure temporarily replaces the visRgn 
of the window's grafPort with the intersection of the visRgn and 
the update region. It then sets the update region to the empty 
region; this "clears" the update event so it won't be reported 
again. 

2. Draw the window contents, entirely or in part. Normally it's more 
convenient to draw the entire content region, but it suffices to 
draw only the visRgn. In either case, since the visRgn is limited 
to where it intersects the old update region, only the parts of 
the window that require updating will actually be drawn on the 
screen. 

3. Call EndUpdate, which restores the normal visRgn. 

Figure 5 illustrates the effect of BeginUpdate and EndUpdate on the 
visRgn and update region of a window that's redrawn after being brought 
to the front. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



16 Window Manager Programmer's Guide 

Before BeginUpdate After BeginUpdate After EndUpdate 

visRgn ~ visRgn ~ visRgn ~ 
update ~ (update region (update region 
region is empty) is empty) 

Figure 5. Updating Window Contents 

If you choose to draw only the visRgn in step 2 above, there are 
various ways you can check to see whether what you need to draw falls 
in that region. With the QuickDraw functions PtInRgn and RectInRgn, 
you can check whether a point or rectangle lies in the visRgn. Or it 
may be more convenient to look at the visRgn's enclosing rectangle, 
which is stored in its bBox field. The QuickDraw functions PtInRect 
and SectRect let you check for intersection with a rectangle. 

To be able to respond to update events for one of its windows, the 
application has to keep track of the window's contents, usually in a 
data structure. In most cases, it's best never to draw immediately 
into a window; when you need to draw something, just keep track of it 
and add the area where it should be drawn to the window's update region 
(by calling one of the Window Manager's update region maintenance 
routines, InvalRect and InvaIRgn). Do the actual drawing only in 
response to an update event. Usually this will simplify the structure 
of your application considerably, but be aware of the following 
possible problems: 

- This method isn't convenient to apply to areas that aren't easily 
defined by a rectangle or a region; in those cases, you would just 
draw directly into the window. 

- If you find that sometimes there's too long a delay before the 
update event happens, you can "force" update events where 
necessary by calling GetNextEvent with a mask that accepts only 
that type of event. 

The Window Manager allows an alternative to the update event mechanism 
that may be useful for some windows: a handle to a QuickDraw picture 
may be stored in the window record. If this is done, the Window 
Manager doesn't generate an update event to get the application to draw 
the window contents; instead, it calls the QuickDraw procedure 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



HOW A WINDOW IS DRAWN 17 

DrawPicture to draw the picture whose handle is stored in the window 
record (and it does all the necessary region manipulation). If the 
amount of storage occupied by the picture is less than the size of the 
code and data necessary to draw the window contents, and the 
application can swap out that code and data, this drawing method is 
more economical (and probably faster) than the usual updating process. 

Assembly-language note: The global variables saveUpdate and 
paintWhite are flags that determine whether the Window Manager 
will generate any update events and whether it will paint the 
update region of a window white before generating an update 
event, respectively. Normally they're both set, but you can 
clear them to prevent the behavior that they control; for 
example, clearing paintWhite is useful if the background of the 
window isn't white. The Window Manager sets both flags 
periodically, so you should clear the appropriate flag just 
before each situation you wish it to apply to. 

MAKING A WINDOW ACTIVE: ACTIVATE EVENTS 

A number of Window Manager routines change the state of a window from 
inactive to active or from active to inactive. For each such change, 
the Window Manager generates an activate event, passing along the 
window pointer in the event message and, in the modifiers field of the 
event record, bits that indicate the following: 

- Whether this window has become active or inactive. (If active, 
the activeF1ag bit is set; if inactive, it's 0.) 

- Whether the active window is changing from an application window 
to a system window or vice versa. (If so, the changeF1ag bit is 
set; otherwise, it's 0.) 

When the Toolbox Event Manager finds out from the Window Manager that 
an activate event has been generated, it passes the event on to the 
application (via the GetNextEvent function). Activate events have the 
highest priority of any type of event. 

Usually when one window becomes active another becomes inactive, and 
vice versa, so activate events are most commonly generated in pairs. 
When this happens, the Window Manager generates first the event for the 
window becoming inactive, and then the event for the window becoming 
active. Sometimes only a single activate event is generated, such as 
when there's only one window in the window list, or when the active 
window is permanently disposed of (since it no longer exists). 

Activate events for dialog and alert windows are handled by the Dialog 
Manager. In response to activate events for windows created directly 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



18 Window Manager Programmer's Guide 

by your application, you might take actions such as the following: 

- In a document window containing a size box or scroll bars, erase 
the size box icon or scroll bars when the window becomes inactive 
and redraw them when it becomes active. 

- In a window that contains text being edited, remove the 
highlighting or blinking vertical bar from the text when the 
window becomes inactive and restore it when the window becomes 
active. 

- Enable or disable a menu or certain menu items as appropriate to 
match what the user can do when the window becomes active or 
inactive. 

Assembly-language note: The global variable curActivate 
contains a pointer to a window for which an activate event has 
been generated; the event, however, may not yet have been 
reported to the application via GetNextEvent, so you may be able 
to keep the event from happening by clearing curActivate. 
Similarly, you may be able to keep a deactivate event from 
happening by clearing the global variable curDeactive. 

USING THE WINDOW MANAGER 

This section discusses how the Window Manager routines fit into the 
general flow of an application program and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

To use the Window Manager, you must have previously called InitGraf to 
initialize QuickDraw and InitFonts to initialize the Font Manager. The 
first Window Manager routine to call is the initialization routine 
InitWindows, which draws the desktop and the (empty) menu bar. 

Where appropriate in your program, use NewWindow or GetNewWindow to 
create any windows you need; these functions return a window pointer, 
which you can then use to refer to the window. NewWindow takes 
descriptive information about the window from its parameters, whereas 
GetNewWindow gets the information from window templates in a resource 
file. You can supply a pointer to the storage for the window record or 
let it be allocated by the routine creating the window; when you no 
longer need a window, call CloseWindow if you supplied the storage, or 
DisposeWindow if not. 

When the Toolbox Event Manager function GetNextEvent reports that an 
update event has occurred, call BeginUpdate, draw the visRgn or the 
entire content region, and call EndUpdate (see "How a Window is Drawn", 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



USING THE WINDOW MANAGER 19 

above). You can also use InvalRect or InvalRgn to prepare a window for 
updating, and ValidRect or ValidRgn to temporarily protect portions of 
the window from updating. 

When drawing the contents of a window that contains a size box in its 
content region, you'll draw the size box if the window is active or 
just the lines delimiting the size box and scroll bar areas if it's 
inactive. The FrontWindow function tells you which is the active 
window; the DrawGrowIcon procedure helps you d~aw the size box or 
delimiting lines. You'll also call the latter procedure when an 
activate event occurs that makes the window active or inactive. 

(note) 
Although unlikely, it's possible that a desk accessory 
may not be set up to handle update or activate events, so 
GetNextEvent may return TRUE for a system window's update 
or activate event. For this reason, it's a good idea to 
check whether such an event applies to one of your own 
windows rather than a system window, and ignore it if it. 

When GetNextEvent reports a mouse-down event, call the FindWindow 
function to find out which part of which window the mouse button was 
pressed in. 

If it was pressed in the content region of an inactive window, 
make that window the active window by calling SelectWindow. 

- If it was pressed in the grow region of the active window, call 
GrowWindow to pull around an image that shows the window's size 
will change, and then SizeWindow to actually change the size. 

- If it pressed in the drag region of any window, call DragWindow, 
which will pull an outline of the window across the screen, move 
the window to a new location, and, if the window is inactive, make 
it the active window (unless the Command key was held down). 

- If it was pressed in the go-away region of the active window, call 
TrackGoAway to handle the highlighting of the go-away region and 
to determine whether the mouse is inside the region when the 
button is released. Then do whatever is appropriate as a response 
to this mouse action in the particular application. For example, 
call Close Window or DisposeWindow if you want the window to go 
away permanently, or HideWindow if you want it to disappear 
temporarily. 

(note) 
If the mouse button was pressed in the content region of 
an active window (but not in the grow region), call the 
Control Manager function FindControl if the window 
contains controls. If it was pressed in a system window, 
call the Desk Manager procedure SystemClick. See the 
Control Manager and Desk Manager manuals for details. 

5/30/84 Rose-Davis /WMGR/WINDOW.3 



20 Window Manager Programmer's Guide 

The procedure that simply moves a window without pulling around an 
outline of it, MoveWindow, can be called at any time, as can SizeWindow 
--though the application should not surprise the user by taking these 
actions unexpectedly. There are also routines for changing the title 
of a window, placing a window behind another window, and making a 
window visible or invisible. Call these Window Manager routines 
wherever needed in your program. 

WINDOW MANAGER ROUTINES 

This section describes first the Window Manager procedures and 
functions that are used in most applications, and then the low-level 
routines for use by programmers who have their own ideas about what to 
do with windows. All routines are presented in their Pascal form; for 
information on using them from assembly language, see Programming 
Macintosh Applications in Assembly Language. 

Initialization and Allocation 

PROCEDURE InitWindows; 

InitWindows initializes the Window Manager. It creates the Window 
Manager port; you can get a pointer to this port with the GetWMgrPort 
procedure. InitWindows draws the desktop and the (empty) menu bar. 
Call this procedure once before all other Window Manager routines. 

(nqte) 
InitWindows creates the Window Manager port as a 
nonrelocatable block in the application heap. For 
information on how this may affect your application's use 
of memory, see the Memory Manager manual. *** (A section 
on how to survive with limited memory will be added to 
that manual.) *** 

Assembly-language note: InitWindows draws as the desktop the 
region whose handle is in the global variable grayRgn (normally 
a rounded-corner rectangle occupying the entire screen, minus 
the menu bar). It paints this region with the pattern in the 
global variable deskPattern (normally gray). Any subsequent 
time that the desktop needs to be drawn, such as when a new area 
of it is exposed after a window is closed or moved, the Window 
Manager calls the procedure whose pointer is stored in the 
global variable deskHook, if any (normally deskHook is 0). The 
deskHook procedure is called with 0 in D0 to distinguish this 
use of it from its use in responding to clicks on the desktop 
(as discussed in the description of FindWindow); it should 
respond by painting thePortA.clipRgn with deskPattern and then 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



WINDOW MANAGER ROUTINES 21 

doing anything else it wants. 

PROCEDURE GetWMgrPort (VAR wPort: GrafPtr); 

GetWMgrPort returns in wPort a pointer to the Window Manager port. 

Assembly-language note: This pointer is stored in the global 
variable wMgrPort. 

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEAN; procID: INTEGER; behind: WindowPtr; 
goAwayFlag: BOOLEAN; ref Con: LongInt) : WindowPtr; 

NewWindow creates a window as specified by its parameters, adds it to 
the window list, and returns a windowPtr to the new window. It 
allocates space for the structure and content regions of the window and 
asks the window definition function to calculate those regions. 

WStorage is a pointer to where to store the window record. For 
example, if you've declared the variable wRecord of type WindowRecord, 
you can pass @wRecord as the first parameter to NewWindow. If you pass 
NIL for wStorage, the window record will be allocated on the heap; in 
that case, though, the record will be nonrelocatable, and so you risk 
ending up with a fragmented heap. You should therefore not pass NIL 
for wStorage unless your program has an unusually large amount of 
memory available or has been set up to dispose of windows dynamically. 
Even then, you should avoid passing NIL for wStorage if there's no 
limit to the number of windows that your application can open. *** 
(Some of this may be moved to the Memory Manager manual when that 
manual is updated to have a section on how to survive with limited 
memory.) *** 
BoundsRect, a rectangle given in global coordinates, determines the 
window's size and location. It becomes the portRect of the window's 
grafPort; note, however, that the portRect is in local coordinates. 
NewWindow makes the QuickDraw call SetOrigin(~,~), so that the top left 
corner of the portRect will be (~,~). 

(note) 
The bitMap, pen pattern, and other characteristics of the 
window's grafPort are the same as the default values set 
by the OpenPort procedure in QuickDraw, except for the 
character font, which is set to the application font 
rather than the system font. Note, however, that the 
SetOrigin(~,~) call changes the coordinates of the 
grafPort's portBits.bounds and visRgn as well as its 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



22 Window Manager Programmer's Guide 

portRect. 

Title is the window's title. If the title of a document window is 
longer than will fit in the title bar, only as much of the beginning of 
the title as will fit is displayed. 

If the visible parameter is TRUE, NewWindow draws the window. First it 
calls the window definition function to draw the window frame; if 
goAwayFlag is also TRUE and the window is frontmost (as specified by 
the behind parameter, below), it draws a go-away region in the frame. 
Then it generates an update event for the entire window contents. 

ProcID is the window definition ID, which leads to the window 
definition function for this type of window. The window definition IDs 
for the predefined types of windows are listed above under "Windows and 
Resources". Window definition IDs for windows of your own design are 
discussed later under "Defining Your Own Windows". 

The behind parameter determines the window's plane. The new window is 
inserted in back of the window pointed to by this parameter. To put 
the new window behind all other windows, use behind=NIL. To place it 
in front of all other windows, use behind=POINTER(-l); in this case, 
NewWindow will unhighlight the previously active window, highlight the 
window being created, and generate appropriate activate events. 

Ref Con is the window's reference value, set and used only by your 
application. 

NewWindow also sets the window class in the window record to indicate 
that the window was created directly by the application. 

FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr; behind: 
WindowPtr) : WindowPtr; 

Like NewWindow (above), GetNewWindow creates a window as specified by 
its parameters, adds it to the window list, and returns a windowPtr to 
the new window. The only difference between the two functions is that 
instead of having the parameters boundsRect, title, visible, procID, 
goAwayFlag, and ref Con, GetNewWindow has a single windowID parameter, 
where windowID is the resource ID of a window template that supplies 
the same information as those parameters. The wStorage and behind 
parameters of GetNewWindow have the same meaning as in NewWindow. 

PROCEDURE CloseWindow (theWindow: WindowPtr); 

CloseWindow removes the given window from the screen and deletes it 
from the window list. It releases the memory occupied by all data 
structures associated with the window, but not the memory taken up by 
the window record itself. Call this procedure when you're done with a 
window if you supplied NewWindow or GetNewWindow a pointer to the 
window storage (in the wStorage parameter) when you created the window. 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



WINDOW MANAGER ROUTINES 23 

Any update events for the window are discarded. If the window was the 
frontmost window and there was another window behind it, the latter 
window is highlighted and an appropriate activate event is generated. 

PROCEDURE DisposeWindow (tlleWindow: WindowPtr); 

DisposeWindow calls CloseWindow (above) and then releases the memory 
occupied by the window record. Call this procedure when you're done 
with a window if you let the window record be allocated on the heap 
when you created the window (by passing NIL as the wStorage parameter 
to NewWindow or GetNewWindow). 

Assembly-language note: The macro you invoke to call 
DisposeWindow from assembly language is named _DisposWindow. 

Window Display 

These procedures affect the appearance or plane of a window but not its 
size or location. 

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255); 

SetWTitle sets theWindow's title to the given string, performing any 
necessary redrawing of the window frame. 

PROCEDURE GetWTitle (theWindow: WindowPtr; VAR title: Str255); 

GetWTitle returns theWindow's title as the value of the title 
parameter. 

PROCEDURE SelectWindow (theWindow: WindowPtr); 

SelectWindow makes theWindow the active window as follows: it 
unhighlights the previously active window, brings theWindow in front of 
all other windows, highlights theWindow, and generates the appropriate 
activate events. Call this procedure if there's a mouse-down event in 
the content region of an inactive window. 

PROCEDURE HideWindow (theWindow: WindowPtr); 

HideWindow makes theWindow invisible. If theWindow is the frontmost 
window and there's a window behind it, HideWindow also unhigh1ights 
theWindow, brings the window behind it to the front, highlights that 
window, and generates appropriate activate events (see Figure 6). If 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



24 Window Manager Programmer's Guide 

theWindow is already invisible. HideWindow has no effect. 

I Charg •• I Ch ...... I c ... rg .. 
I I I 

.... mu I aJi ....... = ~CE"'.mu== 
I 

aJ58uuuntl= 

~ 

---

wPtr poi nts to the 
frootmost wi radow 

After 
Hi deW i ndow(wPtr) 

After 
ShowWindow(wPtr) 

Figure 6. Hiding and Showing Document Windows 

PROCEDURE ShowWindow (theWindow: WindowPtr); 

ShowWindow makes theWindow visible. It does not change the front-to
back ordering of the windows. Remember that if you previously hid the 
frontmost window with HideWindow. HideWindow will have brought the 
window behind it to the front; so if you then do a ShowWindow of the 
window you hid, it will no longer be frontmost (see Figure 6 above). 
If theWindow is already visible. ShowWindow has no effect. 

(note) 
Although it's inadvisable. you can create a situation 
where the frontmost window is invisible. If you do a 
ShowWindow of such a window, it will highlight the window 
if it's not already highlighted and will generate an 
activate event to force this window from inactive to 
active. 

PROCEDURE ShowHide (theWindow: WindowPtr; showFlag: BOOLEAN); 

If showFlag is FALSE, ShowHide makes theWindow invisible if it's not 
already invisible and has no effect if it is already invisible. If 
showFlag is TRUE, ShowHide makes theWindow visible if it's not already 
visible and has no effect if it is already visible. Unlike HideWindow 
and ShowWindow, ShowHide never changes the highlighting or front-to
back ordering of windows or generates activate events. 

(warning) 
Use this procedure carefully, and only in special 
circumstances where you need more control than allowed by 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



WINDOW MANAGER ROUTINES 25 

HideWindow and ShowWindow. 

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: BOOLEAN); 

If fHilite is TRUE, this procedure highlights theWindow if it's not 
already highlighted and has no effect if it is highlighted. If fHilite 
is FALSE, HiliteWindow unhighlights theWindow if it is highlighted and 
has no effect if it's not highlighted. The exact way a window is 
highlighted depends on its window definition function. 

Normally you won't have to call this procedure, since you should call 
SelectWindow to make a window active, and SelectWindow takes care of 
the necessary highlighting changes. Highlighting a window that isn't 
the active window is contrary to the Macintosh User Interface 
Guidelines. 

PROCEDURE BringToFront (theWindow: WindowPtr); 

BringToFront brings theWindow to the front of all other windows and 
redraws the window as necessary. Normally you won't have to call this 
procedure, since you should call SelectWindow to make a window active, 
and SelectWindow takes care of bringing the window to the front. If 
you do call BringToFront, however, remember to call HiliteWindow to 
make the necessary highlighting changes. 

PROCEDURE SendBehind (theWindow: WindowPtr; behindWindow: WindowPtr); 

SendBehind sends theWindow behind behindWindow, redrawing any exposed 
windows. If behindWindow is NIL, it sends theWindow behind all other 
windows. If theWindow is the active window, it unhighlights theWindow, 
highlights the new active window, and generates the appropriate 
activate events. 

(warning) 

(note) 

Do not use SendBehind to deactivate a previously active 
window. Calling SelectWindow to make a window active 
takes care of deactivating the previously active window. 

If you're moving theWindow closer to the front (that is, 
if it's initially even farther behind behindWindow), you 
must make the following calls after calling SendBehind: 

wPeek := POINTER(theWindow); 
PaintOne(wPeek, wPeekA.strucRgn); 
CalcVis(wPeek, wPeekA.strucRgn) 

PaintOne and CalcVis are described below under "Low-Level 
Routines". 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



26 Window Manager Programmer's Guide 

FUNCTION FrontWindow : WindowPtr; 

FrontWindow returns a pointer to the first visible window in the window 
list (that is, the active window). If there are no visible windows, it 
returns NIL. 

Assembly-language note: In the global variable ghostWindow, you 
can store a pointer to a window that's not to be considered 
frontmost even if it is (for example, if you want to have a 
special editing window always present and floating above all the 
others). If the window pointed to by ghostWindow is the first 
window in the window list, FrontWindow will return a pointer to 
the next visible window. 

PROCEDURE DrawGrowIcon (theWindow: WindowPtr); 

Call DrawGrowIcon in response to an update or activate event involving 
a window that contains a size box in its content region. If theWindow 
is active (highlighted), DrawGrowIcon draws the size box; otherwise, it 
draws whatever is appropriate to show that the window temporarily 
cannot be sized. The exact appearance and location of what's drawn 
depend on the window definition function. For an active document 
window, DrawGrowIcon draws the size box icon in the bottom right corner 
of the portRect of the window's grafPort, along with the lines 
delimiting the size box and scroll bar areas (15 pixels in from the 
right edge and bottom of the portRect). It doesn't erase the scroll 
bar areas, so if the window doesn't contain scroll bars you should 
erase those areas yourself after the window's size changes. For an 
inactive document window, DrawGrowIcon draws only the delimiting lines 
(again, without erasing anything). 

Mouse Location 

FUNCTION FindWindow (thePt: Point; VAR whichWindow: WindowPtr) 
INTEGER; 

When a mouse-down event occurs, the application should call FindWindow 
with thePt equal to the point where the mouse button was pressed (in 
global coordinates, as stored in the where field of the event record). 
FindWindow tells which part of which window, if any, the mouse button 
was pressed in. If it was pressed in a window, the whichWindow 
parameter is set to the window pointer; otherwise, it's set to NIL. 
The integer returned by FindWindow is one of the following predefined 
constants: 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



CONST inDesk 
inHenuBar 
inSysWindow 
inContent 
inDrag 
inGrow 
inGoAway 

WINDOW MANAGER ROUTINES 27 

0; {none of the following} 
1; {in menu bar} 
2; {in system window} 
3; {in content region (except grow, if active)} 
4; {in drag region} 
5; {in grow region (active window only)} 
6; {in go-away region (active window only)} 

InDesk usually means that the mouse button was pressed on the desktop, 
outside the menu bar or any windows; however, it may also mean that the 
mouse button was pressed inside a window frame but not in the drag 
region or go-away region of the window. Usually one of the last four 
values is returned for windows created by the application. 

Assembly-language note: If you store a pointer to a procedure 
in the global variable deskHook, it will be called when the 
mouse button is pressed on the desktop. The deskHook procedure 
will be called with -1 in D0 to distinguish this use of it from 
its use in drawing the desktop (discussed in the description of 
InitWindows). A0 will contain a pointer to the event record for 
the mouse-down event. When you use deskHook in this way, 
FindWindow does not return inDesk when the mouse button is 
pressed on the desktop; it returns inSysWindow, and the Desk 
Manager procedure SystemClick calls the deskHook procedure. 

If the window is a documentProc type of window that doesn't contain a 
size box, the application should treat inGrow the same as inContent; if 
it's a noGrowDocProc type of window, FindWindow will never return 
inGrow for that window. If the window is a documentProc, 
noGrowDocProc, or rDocProc type of window with no close box, FindWindow 
will never return inGoAway for that window. 

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point) : BOOLEAN; 

When there's a mouse-down event in the go-away region of theWindow, the 
application should call TrackGoAway with thePt equal to the point where 
the mouse button was pressed (in global coordinates, as stored in the 
where field of the event record). TrackGoAway keeps control until the 
mouse button is released, highlighting the go-away region as long as 
the mouse position remains inside it, and unhighlighting it when the 
mouse moves outside it. The exact way a window's go-away region is 
highlighted depends on its window definition function; the highlighting 
of a document window's close box is illustrated in Figure 7. When the 
mouse button is released, TrackGoAway unhighlights the go-away region 
and returns TRUE if the mouse is inside the go-away region or FALSE if 
it's outside the region (in which case the application should do 
nothing). 

5/30/84 Rose-Davis /WMGR/WINDOW.R 



28 Window Manager Programmer's Guide 

10 
Urthi gt.1 i ghted close box 

Highl ighted close box 

Figure 7. A Document Window's Close Box 

Window Movement and Sizing 

PROCEDURE MoveWindow (theWindow: WindowPtr; hGlobal,vGlobal: INTEGER; 
front: BOOLEAN); 

MoveWindow moves theWindow to another part of the screen, without 
affecting its size or plane. The top left corner of the portRect of 
the window's grafPort is moved to the screen point indicated by the 
global coordinates hGlobal and vGlobal. The local coordinates of the 
top left corner remain the same; MoveWindow saves those coordinates 
before moving the window and calls the QuickDraw procedure SetOrigin to 
restore them before returning. If the front parameter is TRUE and 
theWindow isn't the active window, MoveWindow makes it the active 
window by calling SelectWindow(theWindow). 

PROCEDURE DragWindow (theWindow: WindowPtr; startPt: Point; boundsRect: 
Rect) ; 

When there's a mouse-down event in the drag region of theWindow, the 
application should call DragWindow with startPt equal to the point 
where the mouse button was pressed (in global coordinates, as stored in 
the where field of the event record). DragWindow pulls a gray outline 
of theWindow around, following the movements of the mouse until the 
button is released. When the mouse button is released, DragWindow 
calls MoveWindow to move theWindow to the location to which it was 
dragged. If theWindow is not the active window and the Command key was 
not being held down, DragWindow makes it the active window (by passing 
TRUE for the front parameter when calling MoveWindow). 

BoundsRect is also given in global coordinates. If the mouse button is 
released when the mouse position is outside the limits of boundsRect, 
DragWindow returns without moving theWindow or making it the active 
window. For a document window, boundsRect typically will be four 
pixels in from the menu bar and from the other edges of the screen, to 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 29 

ensure that there won't be less than a four-pixel-square area of the 
title bar visible on the screen. 

Assembly-language note: By storing a pointer to a procedure in 
the global variable dragHook, you can specify a procedure to be 
executed repeatedly for as long as the user holds down the mouse 
button. (DragWindow calls DragGrayRgn, described under 
"Miscellaneous Utilities" below, and passes the pointer in 
dragHook as DragGrayRgn's actionProc parameter.) 

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; sizeRect: 
Rect) : LongInt; 

When there's a mouse-down event in the grow region of theWindow, the 
application should call GrowWindow with startPt equal to the point 
where the mouse button was pressed (in global coordinates, as stored in 
the where field of the event record). GrowWindow pulls a grow image of 
the window around, following the movements of the mouse until the 
button is released. The grow image for a document window is a gray 
outline of the entire window and also the lines delimiting the title 
bar, size box, and scroll bar areas; Figure 8 illustrates this for a 
document window containing a size box and scroll bars, but the grow 
image would be the same even if the window contained no size box, one 
scroll bar, or no scroll bars. In general, the grow image is defined 
in the window definition function and is whatever is appropriate to 
show that the window's size will change. 

~ET"···-·-"··"'''·Titie·''··--····''·········'' ......... --.~ 
,..._ ..... _................................................... .. ._ ....•. -_.: 

~ ~ ~ 
~ ! ! 

~ ~ ~ 
: ! ! 
i ! ! 

~ ~ I 
~ ~ i 
• E i 

. ~~~~~!iiiim~ ! i 
C===::~~====I\l 

si ze returned in low-order word 

size returned in 
high-order word 

Figure 8. GrowWindow Operation on a Document Window 

The application should subsequently call SizeWindow (see below) to 
change the portRect of the window's grafPort to the new one outlined by 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



30 Window Manager Programmer's Guide 

the grow image. The sizeRect parameter specifies limits, in pixels, on 
the vertical and horizontal measurements of what will be the new 
portRect. SizeRect.top is the minimum vertical measurement, 
sizeRect.left is the minimum horizontal measurement, sizeRect.bottom is 
the maximum vertical measurement, and sizeRect.right is the maximum 
horizontal measurement. 

GrowWindow returns the actual size for the new portRect as outlined by 
the grow image when the mouse button is released. The high-order word 
of the LongInt is the vertical measurement in pixels and the low-order 
word is the horizontal measurement. A return value of 0 indicates that 
the size is the same as that of the current portRect. 

(note) 
The Toolbox Utility function HiWord takes a long integer 
as a parameter and returns an integer equal to its high
order word; the function LoWord returns the low-order 
word. 

PROCEDURE SizeWindow (theWindow: WindowPtr; w,h: INTEGER; fUpdate: 
BOOLEAN) ; 

SizeWindow enlarges or shrinks the portRect of theWindow's grafPort to 
the width and height specified by wand h, or does nothing if wand h 
are 0. The window's position on the screen does not change. The new 
window frame is drawn; if the width of a document window changes, the 
title is again centered in the title bar, or is truncated at its end if 
it no longer fits. If fUpdate is TRUE, SizeWindow accumulates any 
newly created area of the content region into the update region (see 
Figure 9); normally this is what you'll want. If you pass FALSE for 
fUpdate, you'r~ responsible for the update region maintenance yourself. 
For more information, see InvalRect and ValidRect below. 

h1 

After SizeWindow(wPtr, \\11, h11 TRUE) 

I 

w1 

Area marked ~ 
is accumulated 
into update region 

Figure 9. SizeWindow Operation on a Document Window 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 31 

(note) 
You should change the window's size only when the user 
has done something specific to make it change. 

Update Region Maintenance 

PROCEDURE InvalRect (badRect: Rect); 

InvalRect accumulates the given rectangle into the update region of the 
window whose grafPort is the current port. This tells the Window 
Manager that the rectangle has changed and must be updated. The 
rectangle lies within the window's content region and is given in the 
local coordinates. 

For example, this procedure is useful when you're calling SizeWindow 
(described above) for a document window that contains a size box or 
scroll bars. Suppose you're going to call SizeWindow with 
fUpdate=TRUE. If the window is enlarged as shown in Figure 8 above, 
you'll want not only the newly created part of the content region to be 
updated, but also the two rectangular areas containing the (former) 
size box and scroll bars; before calling SizeWindow, you can call 
InvalRect twice to accumulate those areas into the update region. In 
case the window is made smaller, you'll want the new size box and 
scroll bar areas to be updated, and so can similarly call InvalRect for 
those areas after calling SizeWindow. See Figure 10 for an 
illustration of this type of update region maintenance. 

Before SizeWinctow with fUpdate = TRUE : 

The original window 

After S;zeWindow: 

The new window 

In case the window is enlarged, 

call InvalRect for ~ 
, I 

In case the window was made smeller .. 

call InvelRect for 0 
and ' ____ ' .... 1 

Figure 10. Update Region Maintenance with InvalRect 

As another example, suppose your application scrolls up text in a 
document window and wants to show new text added at the bottom of the 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



32 Window Manager Programmer's Guide 

window. You can cause the added text to be redrawn by accumulating 
that area into the update region with InvalRect. 

PROCEDURE InvalRgn (badRgn: RgnHandle); 

InvalRgn is the same as InvalRect (above) but for a region that has 
changed rather than a rectangle. 

PROCEDURE ValidRect (goodRect: Rect); 

ValidRect removes goodRect from the update region of th.e window whose 
grafPort is the current port. This tells the Window Manager that the 
application has already drawn the rectangle and to cancel any updates 
accumulated for that area. The rectangle lies within the window's 
content region and is given in local coordinates. Using ValidRect 
results in better performance and less redundant redrawing in the 
window. 

For example, suppose you've called SizeWindow (described above) with 
fUpdate=TRUE for a document window that contains a size box or scroll 
bars. Depending on the dimensions of the newly sized window, the new 
size box and scroll bar areas mayor may not have been accumulated into 
the window's update region. After calling SizeWindow, you can redraw 
the size box or scroll bars immediately and then call ValidRect for the 
areas they occupy in case they were in fact accumulated into the update 
region; this will avoid redundant drawing. 

PROCEDURE ValidRgn (goodRgn: RgnHandle); 

ValidRgn is the same as ValidRect (above) but for a region that has 
been drawn rather than a rectangle. 

PROCEDURE BeginUpdate (theWindow: WindowPtr); 

Call BeginUpdate when an update event occurs for theWindow. 
BeginUpdate replaces the visRgn of the window's grafPort with the 
intersection of the visRgn and the update region and then sets the 
window's update region to the empty region. You would then usually 
draw the entire content region, though it suffices to draw only the 
visRgn; in either case, only the parts of the window that require 
updating will actually be drawn on the screen. Every call to 
BeginUpdate must be balanced by a call to EndUpdate. (See below, and 
see "How a Window is Drawn".) 

PROCEDURE EndUpdate (theWindow: WindowPtr); 

Call EndUpdate to restore the normal visRgn of theWindow's grafPort, 
which was changed by BeginUpdate as described above. 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 33 

Miscellaneous Utilities 

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt); 

SetWRefCon sets theWindow's reference value to the given data. 

FUNCTION GetWRefCon (theWindow: WindowPtr) : LongInt; 

GetWRefCon returns theWindow's current reference value. 

PROCEDURE SetWindowPic (theWindow: WindowPtr; pic: PicHandle); 

SetWindowPic stores the given picture handle in the window record for 
theWindow, so that when theWindow's contents are to be drawn, the 
Window Manager will draw this picture rather than generate an update 
event. 

FUNCTION GetWindowPic (theWindow: WindowPtr) : PicHandle; 

GetWindowPic returns the handle to the picture that draws theWindow's 
contents, previously stored with SetWindowPic (above). 

FUNCTION PinRect (theRect: Rect; thePt: Point) : LongInt; 

PinRect "pins" thePt inside theRect: The high-order word of the 
function result is the vertical coordinate of thePt or, if thePt lies 
above or below theRect, the vertical coordinate of the top or bottom of 
theRect, respectively. The low-order word of the function result is 
the horizontal coordinate of thePt or, if thePt lies to the left or 
right of theRect, the horizontal coordinate of the left or right edge 
of theRect. 

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point; 
limitRect,slopRect: Rect; axis: INTEGER; actionProc: 
ProcPtr) : LongInt; 

Called when the mouse button is down inside theRgn, DragGrayRgn pulls a 
gray outline of the region around, following the movements of the mouse 
until the button is released. DragWindow calls this function before 
actually moving the window, and the Control Manager routine DragControl 
similarly calls it for controls. You can call it yourself to pull 
around the outline of any region, and then use the information it 
returns to determine where to move the region. 

The startPt parameter is assumed to be the point where the mouse button 
was originally pressed, in the local coordinates of the current 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



34 Window Manager Programmer's Guide 

grafPort. 

LimitRect and slopRect are also in the local coordinates of the current 
grafPort. To explain these parameters, the concept of "offset point" 
must be introduced: this is the point whose vertical and horizontal 
offsets from the top left corner of the region's enclosing rectangle 
are the same as those of startPt. Initially the offset point is the 
same as the mouse position, but they may differ, depending on where the 
user moves the mouse. DragGrayRgn will never move the offset point 
outside 1imitRect; this limits the travel of the region's outline (but 
not the movements of the mouse). SlopRect, which should completely 
enclose 1imitRect, allows the user some "slop" in moving the mouse. 
DragGrayRgn's behavior while tracking the mouse depends on the position 
of the mouse with respect to these two rectangles: 

- When the mouse is inside limitRect, the region's outline follows 
it normally. If the mouse button is released there, the region 
should be moved to the mouse position. 

- When the mouse is outside 1imitRect but inside slopRect, 
DragGrayRgn "pins" the offset point to the edge of 1imitRect. If 
the mouse button is released there, the region should be moved to 
this pinned location. 

- When the mouse is outside slopRect, the outline disappears from 
the screen, but DragGrayRgn continues to follow the mouse; if it 
moves ,back into slopRect, the outline reappears. If the mouse 
button is released outside slopRect, the region should not be 
moved from its original position. 

Figure 11 illustrates what happens when the mouse is moved outside 
limitRect but inside slopRect, for a rectangular region. The offset 
point is pinned as the mouse position moves on. 

--------------------
i--- - --- ---------i 

! [~.:::::::] ! 
I I 

__ L_-_l-----------~----f------J--
Ii mi tRect slopRect 

i-~-r"- - -- -1-- ---I 
I: : I 
I ~ ! I 
I ~ .............. j I 
I I 
, I 
I , 
I I 

_ ~-___ l---------------~~-------l--
I imitRect slopRect 

Initial offset point and mouse 
position 

Offset point "pinned" 

Figure 11. DragGrayRgn Operation on a Rectangular Region 

If the mouse button is released outside slopRect, DragGrayRgn returns 
-32768 ($8000); otherwise, the high-order word of the value returned 
contains the vertical coordinate of the ending mouse point minus that 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 35 

of startPt and the low-order word contains the difference between the 
horizontal coordinates. 

The axis parameter allows you to constrain the outline's motion to only 
one axis. It has one of the following values: 

CONST noConstraint 
hAxisOnly 
vAxisOnly 

~; {no constraint} 
1; {horizontal axis only} 
2; {vertical axis only} 

If an axis constraint is in effect, the outline will follow the mouse's 
movements along the specified axis only, ignoring motion along the 
other axis. With or without an axis constraint, the mouse must still 
be inside the slop rectangle for the outline to appear at all. 

The actionProc parameter is a pointer to a procedure that defines some 
action to be performed repeatedly for as long as the user holds down 
the mouse button; the procedure should have no parameters. If 
actionProc is NIL, DragGrayRgn simply retains control until the mouse 
button is released, performing no action while the mouse button is 
down. 

Assembly-language note: If you want the region's outline to be 
drawn in a pattern other than gray, you can store the pattern in 
the global variable dragPattern and call the above function at 
the entry point _DragTheRgn. 

Low-Level Routines 

These low-level routines are not normally used by an application but 
may be of interest to advanced programmers. 

FUNCTION CheckUpdate (VAR theEvent: EventRecord) : BOOLEAN; 

CheckUpdate is called by the Toolbox Event Manager. From the front to 
the back in the window list, it looks for a visible window that needs 
updating (that is, whose update region is not empty). If it finds one 
whose window record contains a picture handle, it draws the picture 
(doing all the necessary region manipulation) and looks for the next 
visible window that needs updating. If it ever finds one whose window 
record doesn't contain a picture handle, it stores an update event for 
that window in theEvent and returns TRUE. If it never finds such a 
window, it returns FALSE. 

5/30/84 Rose-Davis /WMGR/WINDOW.R1 



36 Window Manager Programmer's Guide 

PROCEDURE ClipAbove (window: WindowPeek); 

ClipAbove sets the clipRgn of the Window Manager port to be the desktop 
(global variable grayRgn) intersected with the current clipRgn, minus 
the structure regions of all the windows above the given window. 

PROCEDURE Save Old (window: WindowPeek); 

SaveOld saves the given window's current structure region and content 
region for the DrawNew operation (see below). It must be balanced by a 
subsequent call to DrawNew. 

PROCEDURE DrawNew (window: WindowPeek; update: BOOLEAN); 

If the update parameter is TRUE, DrawNew updates the area 

(oldStruct XOR newStruct) UNION (oldContent XOR newContent) 

where oldStruct and oldContent are the structure and content regions 
saved by the SaveOld procedure, and newStruct and newContent are the 
current structure and content regions. It paints the area white and 
adds it to the window's update region. If update is FALSE, it only 
paints the area white. 

(warning) 
Save Old and DrawNew are not nestable. 

PROCEDURE PaintOne (window: WindowPeek; clobberedRgn: RgnHandle); 

PaintOne "paints" the given window, clipped to clobberedRgn and all 
windows above it: it draws the window frame and, if some content is 
exposed, paints the exposed area white and adds it to the window's 
update region. If the window parameter is NIL, the window is the 
desktop and so is painted gray. 

PROCEDURE PaintBehind (startWindow: WindowPeek; clobberedRgn: 
RgnHandle) ; 

PaintBehind calls PaintOne (above) for startWindow and all the windows 
behind startWindow, clipped to clobberedRgn. 

PROCEDURE CalcVis (window: WindowPeek); 

CalcVis calculates the visRgn of the given window by starting with its 
content region and subtracting the structure region of each window in 
front of it. 

5/30/84 Rose-Davis /WMGR/WINDOW.Rl 



WINDOW MANAGER ROUTINES 37 

PROCEDURE CalcVisBehind (startWindow: WindowPeek; clobberedRgn: 
RgnHandle) ; 

CalcVisBehind calculates the visRgns of startWindow and all windows 
behind startWindow that intersect with clobberedRgn. It's called after 
PaintBehind (see above). 

Assembly-language note: The macro you invoke to call 
CalcVisBehind from assembly language is named CalcVBehind. 

DEFINING YOUR OWN WINDOWS 

Certain types of windows, such as the standard document window, are 
predefined for you. However, you may want to define your own type of 
window--maybe a round or hexagon-shaped window, or even a window shaped 
like an apple. QuickDraw and the Window Manager make it possible for 
you to do this. 

(note) 
For the convenience of your application's user, remember 
to conform to the Macintosh User Interface Guidelines for 
windows as much as possible. 

To define your own type of window, you write a window definition 
function and (usually) store it in a resource file. When you create a 
window, you provide a window definition ID, which leads to the window 
definition function. The window definition ID is an integer that 
contains the resource ID of the window definition function in its upper 
12 bits and a variation code in its lower four bits. Thus, for a given 
resource ID and variation code, the window definition ID is: 

16 * resource ID + variation code 

The variation code allows a single window definition function to 
implement several related types of window as "variations on a theme". 
For example, the dBoxProc type of window is a variation of the standard 
document window; both use the window definition function whose resource 
ID is 0, but the document window has a variation code of 0 while the 
dBoxProc window has a variation code of 1. 

The Window Manager calls the Resource Manager to access the window 
definition function with the given resource ID. The Resource Manager 
reads the window definition function into memory and returns a handle 
to it. The Window Manager stores this handle in the windowDefProc 
field of the window record, along with the variation code in the high
order byte of that field. Later, when it needs to perform a type
dependent action on the window, it calls the window definition function 
and passes it the variation code as a parameter. Figure 12 summarizes 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



38 Window Manager Programmer's Guide 

this process. 

(note) 

You supply the window definition 10: 

15 4 3 0 

I resource 10 I code I 
(resource 10 of window 
definition function 
and variation code) 

The Window Manager calls the Resource M8fI8ger with 

defHandle : = GetResource ('WDEF' .. resourcetD) 

and stores into the windowOefProc field of the window record: 

I code I clefHsndle 

The variation code is passed to the window definition function. 

Figure 12. Window Definition Handling 

You may find it more convenient to include the window 
definition function with the code of your program instead 
of storing it as a separate resource. If you do this, 
you should supply the window definition ID of any 
standard window type when you create the window, and 
specify that the window initially be invisible. Once the 
window is created, you can replace the contents of the 
windowDefProc field with as handle to the actual window 
definition function (along with a variation code, if 
needed, in the high-order byte of the field). You can 
then call ShowWindow to make the window visible. 

The Window Definition Function 

The window definition function may be written in Pascal or assembly 
language; the only requirement is that its entry point must be at the 
beginning. You may choose any name you wish for your window definition 
function. Here's how you would declare one named MyWindow: 

FUNCTION MyWindow (varCode: INTEGER; theWindow: WindowPtr; 
message: INTEGER; param: LongInt) : LongInt; 

VarCode is the variation code, as described above. 

TheWindow indicates the window that the operation will affect. If the 
window definition function needs to use a WindowPeek type of pointer 
more than a WindowPtr, you can simply specify WindowPeek instead of 
WindowPtr in the function declaration. 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



DEFINING YOUR OWN WINDOWS 39 

The message parameter identifies the desired operation. It has one of 
the following values: 

CaNST wDraw 0; {draw window frame} 
wHit 
wCalcRgns 
wNew 
wDispose 
wGrow 
wDrawGIcon 

1; {tell what region mouse button was pressed in} 
2; {calculate strucRgn and contRgn} 
3; {do any additional window initialization} 
4; {take any additional disposal actions} 
5; {draw window's grow image} 
6; {draw size box in content region} 

As described below in the discussions of the routines that perform 
these operations, the value passed for param, the last parameter of the 
window definition function, depends on the operation. Where it's not 
mentioned below, this parameter is ignored. Similarly, the window 
definition function is expected to return a function result only where 
indicated; in other cases, the function should return 0. 

(note) 
"Routine" here does not necessarily mean a procedure or 
function. While it's a good idea to set these up as 
subprograms inside the window definition function, you're 
not required to do so. 

The Draw Window Frame Routine 

When the window definition function receives a wDraw message, it should 
draw the window frame in the current grafPort, which will be the Window 
Manager port. (For details on drawing, see the QuickDraw manual.) 

(warning) 
Do not change the visRgn or clipRgn of the Window Manager 
port, or overlapping windows may not be handled properly. 

This routine should make certain checks to determine exactly what it 
should do. If the visible field in the window record is FALSE, the 
routine should do nothing; otherwise, it should examine the value of 
param received by the window definition function, as described below. 

If param is 0, the routine should draw the entire window frame. If the 
hi1ited field in the window record is TRUE, the window frame should be 
highlighted in whatever way is appropriate to show that this is the 
active window. If goAwayF1ag in the window record is also TRUE, the 
highlighted window frame should include a go-away region; this is 
useful when you want to define a window such that a particular window 
of that type mayor may not have a go-away region, depending on the 
situation. 

Special action should be taken if the value of param is wInGo Away (a 
predefined constant, equal to 4, which is one of those returned by the 
hit routine described below). If param is wInGoAway, the routine 
should do nothing but "toggle" the state of the window's go-away region 
from unhigh1ighted to highlighted or vice versa. The highlighting 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



40 Window Manager Programmer's Guide 

should be whatever is appropriate to show that the mouse button has 
been pressed inside the region. Simple inverse highlighting may be 
used or, as in document windows, the appearance of the region may 
change considerably. In the latter case, the routine could use a 
"mask" consisting of the unhighlighted state of the region XORed with 
its highlighted state (where XOR stands for the logical operation 
"exclusive or"). When such a mask is itself XORed with either state of 
the region, the result is the other state; Figure 13 illustrates this. 

Dx~ ,1/ Llli = 
/1' /1' 

Unhighl igtlted Highl ighted Mask 
state sta1e 

Dx~ Llli ,1/ 
= 

/1' /1' 

Figure 13. 

XOR GIa = D 
~ 

Toggling the Go-Away Region 

Typically the window frame will include the window's title, which 
should be in the system font and system font size for consistency with 
the Macintosh User Interface Guidelines. The Window Manager port will 
already be set to use the system font and system font size. 

(note) 
Nothing drawn outside the window's structure region will 
be visible. 

The Hit Routine 

When the window definition function receives a wHit message, it also 
receives as its param value the point where the mouse button was 
pressed. This point is given in global coordinates, with the vertical 
coordinate in the high-order word of the Longlnt and the horizontal 
coordinate in the low-order word. The window definition function 
should determine where the mouse button "hit" and then return one of 
these predefined constants: 

CaNST wNoHit 
wlnContent 
wlnDrag 
wlnGrow 
wlnGoAway 

5/30/84 Rose-Davis 

0; 
1 ; 
2; 

= 3; 
= 4; 

{none of the following} 
{in content region (except grow, if active)} 
{in drag region} 
{in grow region (active window only)} 
{in go-away region (active window only)} 

/WMGR/WINDOW.D 



DEFINING YOUR OWN WINDOWS 41 

Usually, wNoHit means the given point isn't anywhere within the window, 
but this is not necessarily so. For example, the document window's hit 
routine returns wNoHit if the point is in the window frame but not in 
the title bar. 

The constants wInGrow and wInGo Away should be returned only if the 
window is active, since by convention the size box and go-away region 
won't be drawn if the window is inactive (or, if drawn, won't be 
operable). In an inactive document window, if the mouse button is 
pressed in the title bar where the close box would be if the window 
were active, the hit routine should return wInDrag. 

Of the regions that may have been hit, only the content region 
necessarily has the structure of a region and is included in the window 
record. The hit routine can determine in any way it likes whether the 
drag, grow, or go-away "region" has been hit. 

The Routine to Calculate Regions 

The routine executed in response to a wCalcRgns message should 
calculate the window's structure region and content region based on the 
current grafPort's portRect. These regions, whose handles are in the 
strucRgn and contRgn fields, are in global coordinates. The Window 
Manager will request this operation only if the window is visible. 

(warning) 
When you calculate regions for your own type of window, 
do not alter the clipRgn or the visRgn of the window"s 
grafPort. The Window Manager and QuickDraw take care of 
this for you. Altering the clipRgn or visRgn may result 
in damage to other windows. 

The Initialize Routine 

After initializing fields as appropriate when creating a new window, 
the Window Manager sends the message wNew to the window definition 
function. This gives the definition function a chance to perform any 
type-specific initialization it may require. For example, if the 
content region is unusually shaped, the initialize routine might 
allocate space for the region and store the region handle in the 
dataHandle field of the window record. The initialize routine for a 
document window does nothing. 

The Dispose Routine 

The Window Manager's CloseWindow and DisposeWindow procedures send the 
message wDispose to the window definition function, telling it to carry 
out any additional actions required when disposing of the window. The 
dispose routine might, for example, release space that was allocated by 
the initialize routine. The dispose routine for a document window does 
nothing. 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



42 Window Manager Programmer's Guide 

The Grow Routine 

When the window definition function receives a wGrow message, it also 
receives a pointer to a rectangle as its param value. The rectangle is 
in global coordinates and is usually aligned at its top left corner 
with the portRect of the window's grafPort. The grow routine should 
draw a grow image of the window to fit the given rectangle (that is, 
whatever is appropriate to show that the window's size will change, 
such as an outline of the content region). The Window Manager requests 
this operation repeatedly as the user drags inside the grow region. 
The grow routine should draw in the current grafPort, which will be the 
Window Manager port, and should use the grafPort's current pen pattern 
and pen mode, which are set up (as gray and notPatXor) to conform to 
the Macintosh User Interface Guidelines. 

The grow routine for a document window draws a gray outline of the 
window and also the lines delimiting the title bar, size box, and 
scroll bar areas. 

The Draw Size Box Routine 

Thw wDrawGIcon message tells the window definition function to draw the 
size box in the content region of the window if the window is active 
(highlighted) or, if the window is inactive, whatever is appropriate to 
show that it temporarily can't be sized. For active document windows, 
this routine draws the size box icon in the bottom right corner of the 
portRect of the window's grafPort, along with the lines delimiting the 
size box and scroll bar areas; for inactive windows, it draws just the 
delimiting lines. 

(note) 
If the size box is located in the window frame rather 
than the content region, this routine should do nothing. 

FORMATS OF RESOURCES FOR WINDOWS 

The Window Manager function GetNewWindow takes the resource 10 of a 
window template as a parameter, and gets from the template the same 
infomation that the NewWindow function gets from six of its parameters. 
The resource type for a window template is 'WIND', and the resource 
data has the following format: 

5/30/84 Rose-Davis /WMGR/WINDOW.D 



Number of bytes 
8 bytes 
2 bytes 
2 bytes 
2 bytes 
4 bytes 
n bytes 

FORMATS OF RESOURCES FOR WINDOWS 43 

Contents 
Same as boundsRect parameter to NewWindow 
Same as procID parameter to NewWindow 
Same as visible parameter to NewWindow 
Same as goAwayFlag parameter to NewWindow 
Same as ref Con parameter to NewWindow 
Same as title parameter to NewWindow 
(I-byte length in bytes, followed by 
the characters of the title) 

The resource type for a window definition function is 'WDEF', and the 
resource data is simply the compiled or assembled code of the function. 

5130/84 Rose-Davis /WMGR/WINDOW.D 



44 Window Manager Programmer's Guide 

SUMMARY OF THE WINDOW MANAGER 

Constants 

CaNST { Window definition IDs } 

documentProc 0; {standard document window} 
dBoxProc 1 ; {alert box or modal dialog box} 
plainDBox 2; {plain box} 
altDBoxProc 3; {plain box with shadow} 
noGrowDocProc 4; {document window without size box} 
rDocProc 16; {rounded-corner window} 

{ Window class, in windowKind field of window record} 

dialogKind 
userKind 

2; 
8; 

{dialog or alert window} 
{window created directly by the application} 

{ Values returned by FindWindow } 

inDesk 0; {none of the following} 
inMenuBar 1 ; {in menu bar} 
inSysWindow 2; {in system window} 
inContent 3; {in content region (except grow, if active)} 
inDrag 4-, {in drag region} 
inGrow 5; {in grow region (active window only)} 
inGoAway 6; {in go-away region (active window only)} 

{ Axis constraints for DragGrayRgn } 

noConstraint 
hAxisOnly 
vAxisOnly 

0; {no constraint} 
1; {horizontal axis only} 
2; {vertical axis only} 

{ Messages to window definition function } 

wDraw 
wHit 
wCalcRgns 
wNew 
wDispose 
wGrow 
wDrawGIcon 

0; 
1 ; 
2; 

= 3; 
4; 

= 5; 
6; 

{draw the window frame} 
{tell what region mouse button was pressed in} 
{calculate strucRgn and contRgn} 
{do any additional window initialization} 
{take any additional disposal actions} 
{draw window's grow image} 
{draw size box in content region} 

{ Values returned by window definition function's hit routine} 

wNoHit 
wInContent 
wInDrag 
wInGrow 
wInGoAway 

0; 
1 ; 
2; 

= 3; 
4; 

5/30/84 Rose-Davis 

{none of the following} 
{in content region (except grow, if active)} 
{in drag region} 
{in grow region (active window only)} 
{in go-away region (active window only)} 

/WMGR/WINDOW.S 



SUMMARY OF THE WINDOW MANAGER 45 

Data Types 

GrafPtr; TYPE WindowPtr 
WindowPeek .... WindowRecord; 

WindowRecord 

Routines 

RECORD 
port: 
windowKind: 
visible: 
hilited: 
goAwayFlag: 
spareFlag: 
strucRgn: 
contRgn: 
updateRgn: 
windowDefProc: 
dataHandle: 
titleHandle: 
titleWidth: 
controlList: 
nextWindow: 
windowPic: 
ref Con: 

END; 

Initialization and Allocation 

GrafPort; {window's grafPort} 
INTEGER; {window class} 
BOOLEAN; {TRUE if visible} 
BOOLEAN; {TRUE if highlighted} 
BOOLEAN; {TRUE if has go-away region} 
BOOLEAN; {reserved for future use} 
RgnHandle; {structure region} 
RgnHandle; {content region} 
RgnHandle; {update region} 
Handle; {window definition function} 
Handle; {data used by windowDefProc} 
StringHandle; {window's title} 
INTEGER; {width of title in pixels} 
Handle; {window's control list} 
WindowPeek; {next window in window list} 
PicHandle; {picture for drawing window} 
LongInt {window's reference value} 

PROCEDURE InitWindows; 
PROCEDURE GetWMgrPort 
FUNCTION NewWindow 

(VAR wPort: GrafPtr); 

FUNCTION GetNewWindow 

PROCEDURE CloseWindow 
PROCEDURE DisposeWindow 

Window Display 

PROCEDURE SetWTitle 
PROCEDURE GetWTitle 
PROCEDURE SelectWindow 
PROCEDURE HideWindow 
PROCEDURE ShowWindow 
PROCEDURE ShowHide 

5/30/84 Rose-Davis 

(wStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEAN; procID: INTEGER; behind: 
WindowPtr; goAwayFlag: BOOLEAN; ref Con: LongInt) 
: WindowPtr; 

(windowID: INTEGER; wStorage: Ptr; behind: 
WindowPtr) : WindowPtr; 

(theWindow: WindowPtr); 
(theWindow: WindowPtr); 

(theWindow: 
(theWindow: 
(theWindow: 
(theWindow: 
(theWindow: 
(theWindow: 

WindowPtr; title: Str255); 
WindowPtr; VAR title: Str255); 
WindowPtr) ; 
WindowPtr); 
WindowPtr); 
WindowPtr; showFlag: BOOLEAN); 

/WMGR/WINDOW.S 



46 Window Hanager Programmer's Guide 

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: BOOLEAN); 
PROCEDURE BringToFront (theWindow: WindowPtr); 
PROCEDURE SendBehind (theWindow: WindowPtr; behindWindow: WindowPtr); 
FUNCTION FrontWindow: WindowPtr; 
PROCEDURE DrawGrowIcon (theWindow: WindowPtr); 

Mouse Location 

FUNCTION FindWindow (thePt: Point; VAR whichWindow: WindowPtr) : 
INTEGER; 

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point) : BOOLEAN; 

Window Movement and Sizing 

PROCEDURE MoveWindow (theWindow: WindowPtr; hGlobal,vGlobal: INTEGER; 
front: BOOLEAN) ; 

PROCEDURE DragWindow (the\-lindow: WindowPtr; startPt: Point; boundsRect: 
Rect) ; 

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; sizeRect: 
Rect) : LongInt; 

PROCEDURE SizeWindow (theWindow: WindowPtr; w,h: INTEGER; fUpdate: 
BOOLEAN) ; 

Update Region Maintenance 

PROCEDURE InvalRect 
PROCEDURE InvalRgn 
PROCEDURE ValidRect 
PROCEDURE ValidRgn 
PROCEDURE BeginUpdate 
PROCEDURE EndUpdate 

(badRec t: Rec t) ; 
(badRgn: RgnHandle); 
(goodRect: Rect); 
(goodRgn: RgnHandle); 
(theWindow: WindowPtr); 
(theWindow: WindowPtr); 

Miscellaneous Utilities 

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt); 
FUNCTION GetWRefCon (theWindow: WindowPtr) : LongInt; 
PROCEDURE SetWindowPic (theWindow: WindowPtr; pic: PicHandle); 
FUNCTION GetWindowPic (theWindow: WindowPtr) : PicHandle; 
FUNCTION PinRect (theRect: Rect; thePt: Point) : LongInt; 
FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point; limitRect, 

Low-Level Routines 

FUNCTION CheckUpdate 
PROCEDURE ClipAbove 
PROCEDURE Save Old 
PROCEDURE DrawNew 

5/30/84 Rose-Davis 

slopRect: Rect; axis: INTEGER; actionProc: 
ProcPtr) : LongInt; 

(VAR theEvent: EventRecord) BOOLEAN; 
(window: WindowPeek); 
(window: WindowPeek); 
(window: WindowPeek; update: BOOLEAN); 

/WMGR/WINDOW.S 



PROCEDURE PaintOne 
PROCEDURE PaintBehind 

PROCEDURE CalcVis 
PROCEDURE CalcVisBehind 

SUMMARY OF THE WINDOW MANAGER 47 

(window: WindowPeek; clobberedRgn: RgnHandle); 
(startWindow: WindowPeek; clobberedRgn: 
RgnHandle) ; 

(window: WindowPeek); 
(startWindow: WindowPeek; clobberedRgn: 
RgnHandle); 

Diameters of Curvature for Rounded-Corner Windows 

Window definition ID Diameters of curvature 
rDocProc 16, 16 
rDocProc + 1 4, 4 
rDocProc + 2 6, 6 
rDocProc + 3 8, 8 
rDocProc + 4 10, 10 
rDocProc + 5 12, 12 
rDocProc + 6 20, 20 
rDocProc + 7 24, 24 

Window Definition Function 

FUNCTION MyWindow (varCode: INTEGER; theWindow: WindowPtrj message: 
INTEGER; param: LongInt) : LongInt; 

Assembly-Language Information 

Constants 

j Window definition IDs 

documentProc 
dBoxProc 
plainDBox 
altDBoxProc 
noGrowDocProc 
rDocProc 

.EQU 0 

.EQU 1 

.EQU 2 

.EQU 3 

.EQU 4 

.EQU 16 

;standard document window 
jalert box or modal dialog box 
;dBoxProc without border 
jdBoxProc with shadow instead of border 
;document window without size box 
jrounded-corner window 

; Window class, in windowKind field of window record 

dialogKind 
userKind 

.EQU 2 

.EQU 8 
;dialog or alert window 
jwindow created directly by the application 

j Values returned by FindWindow 

inDesk 
inMenuBar 
inSysWindow 
inContent 
inDrag 

.EQU 0 

.EQU 1 

.EQU 2 

.EQU 3 

.EQU 4 

5/30/84 Rose-Davis 

;none of the following 
;in menu bar 
jin system window 
jin content region (except grow, if active) 
jin drag region 

/WMGR/WINDOW.S 



48 Window Manager Programmer's Guide 

inGrow 
inGoAway 

.EQU 5 

.EQU 6 
;in grow region (active window only) 
;in go-away region (active window only) 

; Axis constraints for DragGrayRgn 

noConstraint 
hAxisOnly 
vAxisOnly 

.EQU 0 

.EQU 1 

.EQU 2 

;no constraint 
;horizontal axis only 
;vertical axis only 

; Messages to window definition function 

wDrawMsg .EQU 0 ;draw the window frame 
wHitMsg .EQU 1 ;tell what region mouse button was pressed 
wCalcRgnMsg .EQU 2 ;calculate strucRgn and contRgn 
wlnitMsg .EQU 3 ;do any additional window initialization 
wDisposeMsg .EQU 4 ;take any additional disposal actions 
wGrowMsg .EQU 5 ;draw window's grow image 
wGlconMsg .EQU 6 ;draw size box in content region 

; Value returned by window definition function's hit routine 

wNoHit .EQU 0 ;none of the following 
wlnContent .EQU 1 ;in content region (except grow, if active) 
wlnDrag .EQU 2 ;in drag region 
wlnGrow .EQU 3 ;in grow region (active window only) 
wlnGoAway .EQU 4 ;in go-away region (active window only) 

Window Record Data Structure 

windowPort 
windowKind 
wVisible 
wHilited 
wGoAway 
structRgn 
contRgn 
updateRgn 
windowDef 
wDataHandle 
wTitleHandle 
wTitleWidth 
wControlList 
nextWindow 
windowPic 
wRefCon 
windowSize 

Window's grafPort 
Window class 
Flag for whether window is visible 
Flag for whether window is highlighted 
Flag for whether window has go-away region 
Handle to structure region of window 
Handle to content region of window 
Handle to update region of window 
Handle to window definition function 
Data used by window definition function 
Handle to window's title 
Width of title in pixels 
Handle to window's control list 
Pointer to next window in window list 
Picture handle for drawing window 
Window's reference value 
Length of above structure 

Special Macro Names 

Routine name 
CalcVisBehind 
DisposeWindow 

Macro name 
CalcVBehind 

_DisposWindow 

in 

5/30/84 Rose-Davis /WMGR/WINDOW.S 



DragGrayRgn 

Variables 

Name 
windowList 
saveUpdate 
paintWhite 

curActivate 
curDeactive 
grayRgn 
deskPattern 
deskHook 

wMgrPort 
ghostWindow 
dragHook 
dragPattern 

SUMMARY OF THE WINDOW MANAGER 49 

_DragGrayRgn or, after setting the global variable 
dragPattern, _DragTheRgn 

Size 
4 bytes 
2 bytes 
2 bytes 

4 bytes 
4 bytes 
4 bytes 
8 bytes 
4 bytes 

4 bytes 
4 bytes 
4 bytes 
8 bytes 

Contents 
Pointer to first window in window list 
Flag for whether to generate update events 
Flag for whether to paint window white before 
update event 
Pointer to window to receive activate event 
Pointer to window to receive deactivate event 
Handle to region to be drawn as desktop 
Pattern with which desktop is to be painted 
Pointer to procedure for painting desktop or 
responding to clicks on desktop 
Pointer to Window Manager port 
Pointer to window never to be considered frontmost 
Pointer to procedure to execute during DragWindow 
Pattern of dragged region's outline 

5/30/84 Rose-Davis /WMGR/WINDOW.S 



50 Window Manager Programmer's Guide 

GLOSSARY 

activate event: An event generated by the Window Manager when a window 
changes from active to inactive or vice versa. 

active window: The frontmost window on the desktop. 

application window: A window created as the result of something done 
by the application, either directly or indirectly (as through the 
Dialog Manager). 

content region: The area of a window that the application draws in. 

control list: A list of all the controls associated with a given 
window. 

desktop: The screen as a surface for doing work on the Macintosh. 

document window: A standard Macintosh window for presenting a 
document. 

drag region: A region in the window frame. Dragging inside this 
region moves the window to a new location and makes it the active 
window unless the Command key was down. 

go-away region: A region in the window frame. Clicking inside this 
region of the active window makes the window close or disappear. 

grow image: The image pulled around when dragging inside the grow 
region occurs; whatever is appropriate to show that the window's size 
will change. 

grow region: A window region, usually within the content region, where 
dragging changes the size of an active window. 

highlight: To display an object on the screen in a distinctive visual 
way, such as inverting it. 

inactive window: Any window that isn't the frontmost window on the 
desktop. 

invert: To highlight by changing white pixels to black and vice versa. 

invisible window: A window that's not drawn in its plane on the 
desktop. 

modal dialog: A dialog that requires the user to respond before doing 
any other work on the desktop. 

modeless dialog: A dialog that allows the user to work elsewhere on 
the desktop before responding. 

5/30/84 Rose-Davis /WMGR/WINDOW.G 



GLOSSARY 51 

plane: The front-to-back position of a window on the desktop. 

reference value: In a window record, a 32-bit field that the 
application program may store into and access for any purpose. 

structure region: An entire window; its complete "structure". 

system window: A window in which a desk accessory is displayed. 

update event: An event generated by the Window Manager when the update 
region of a window is to be drawn. 

update region: A window region consisting of all areas of the content 
region that have to be redrawn. 

variation code: A number that distinguishes closely related types of 
windows and is passed as part of a window definition ID when a window 
is created. 

visible window: A window that's drawn in its plane on the desktop (but 
may be completely overlapped by another window or object on the 
screen) • 

window: An object on the desktop that presents information, such as a 
document or a message. 

window class: An indication of whether a window is a system window, a 
dialog or alert window, or a window created directly by the 
application. 

window definition function: A function called by the Window Manager 
when it needs to perform certain type-dependent operations on a 
particular type of window, such as drawing the window frame. 

window definition ID: A number passed to window-creation routines to 
indicate the type of window. It consists of the window definition 
function's resource ID and a variation code. 

window frame: The structure region minus the content region. 

window list: A list of all windows ordered according to their front-to
back positions on the desktop. 

Window Manager port: A grafPort that has the entire screen as its 
portRect and is used by the Window Manager to draw window frames. 

window record: The internal representation of a window, where the 
Window Manager stores all the information it needs for its operations 
on that window. 

window template: A resource that contains information from which the 
Window Manager can create a window. 

5/30/84 Rose-Davis /WMGR/WINDOW.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 1 0460 Bandley Drive MIS 3-GJ Cupertino CA 9501 4. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

The Control Manager: A Programmmer's Guide /CMGR/CONTROLS 

See Also: Macintosh User Interface Guidelines 
The Memory Manager: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
QuickDraw: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
Programming Macintosh Applications in Assembly Language 

Modification History: First Draft 
Interim release 
Second Draft (ROM 2.1) 
Third Draft (ROM 7) 

Chris Espinosa 
Chris Espinosa 
Steve Chernicoff 
Caroline Rose 

8/13/82 
9/7 /82 

3/16/83 
5/3C/J/84 

ABSTRACT 

Controls are special objects on the Macintosh screen with which the 
user, using the mouse, can cause instant action with graphic results or 
change settings to modify a future action. The Macintosh Control 
Manager is the part of the User Interface Toolbox that enables 
applications to create and manipulate controls in a way that's 
consistent with the Macintosh User Interface Guidelines. This manual 
describes the Control Manager. 

Summary of significant changes and additions since last draft: 

- There's now a way to specify that you want the standard control 
definition functions to use the font associated with the control's 
window rather than the system font (page 8). 

- You can now detect when the mouse button was pressed in an 
inactive control as opposed to not in any control; see 
HiliteControl, TestControl, and FindControl (page 18). 

- The control definition function may itself contain an action 
procedure (pages 2C/J and 3C/J). 

- Assembly-language notes were added where appropriate, and the 
summary was updated to include all assembly-language information. 



2 Control Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Control Manager 
7 Controls and Windows 
8 Controls and Resources 
9 Part Codes 
10 Control Records 
11 The ControlRecord Data Type 
13 Using the Control Manager 
15 Control Manager Routines 
15 Initialization and Allocation 
17 Control Display 
18 Mouse Location 
21 Control Movement and Sizing 
22 Control Setting and Range 
24 Miscellaneous Utilities 
24 Defining Your Own Controls 
26 The Control Definition Function 
26 The Draw Routine 
27 
27 
28 
28 
29 
29 
29 
30 

The 
The 
The 
The 
The 
The 
The 
The 

Test Routine 
Routine to Calculate 
Initialize Routine 
Dispose Routine 
Drag Routine 
Position Routine 
Thumb Routine 
Track Routine 

Regions 

30 Formats of Resources for Controls 
31 Summary of the Control Manager 
36 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Control Manager of the Macintosh User 
Interface Toolbox. *** Eventually it will become a chapter in the 
comprehensive Inside Macintosh manual. *** The Control Manager is the 
part of the Toolbox that deals with controls, such as buttons, check 
boxes, and scroll bars. Using it, your application can create, 
manipulate, and dispose of controls in a way that's consistent with the 
Macintosh User Interface Guidelines. 

Like all Toolbox documentation, this manual assumes you're familiar 
with the Macintosh User Interface Guidelines, Lisa Pascal, and the 
Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

Resources, as discussed in the Resource Manager manual. 

- The basic concepts and structures behind QuickDraw, particularly 
rectangles, regions, and grafPorts. You don't need a detailed 
knowledge of QuickDraw, since implementing controls through the 
Control Manager doesn't require calling QuickDraw directly. 

- The Toolbox Event Manager. The essence of a control is to respond 
to the user's actions with the mouse; your application finds out 
about those actions by calling the Event Manager. 

- The Window Manager. Every control you create with the Control 
Manager "belongs" to some window. The Window Manager and Control 
Manager are designed to be used together, and their structure and 
operation are parallel in many ways. 

(note) 
Except for scroll bars, most controls appear only in 
dialog or alert boxes. To learn how to implement dialogs 
and alerts in your application, you'll have to read the 
Dialog Manager manual. 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Control Manager and what 
you can do with it. It then discusses some basic concepts about 
controls: the relationship between controls and windows; the 
relationship between controls and resources; and how controls and their 
various parts are identified. Following this is a discussion of 
control records, where the Control Manager keeps all the information it 
needs about a control. 

Next, a section on using the Control Manager introduces its routines 
and tells how they fit into the flow of your application program. This 
is followed by detailed descriptions of all Control Manager procedures 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



4 Control Manager Programmer's Guide 

and functions, their parameters, calling protocol, effects, side 
effects, and so on. 

Following these descriptions are sections that will not interest all 
readers: special information is provided for programmers who want to 
define their own controls, and the exact formats of resources related 
to controls are described. 

Finally, there's a summary of the Control Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

ABOUT THE CONTROL MANAGER 

The Control Manager is the part of the Macintosh User Interface Toolbox 
that deals with controls. A control is an object on the Macintosh 
screen with which the user, using the mouse, can cause instant action 
with graphic results or change settings to modify a future action. 
Using the Control Manager, your application can: 

- create and dispose of controls 

- display or hide controls 

- monitor the user's operation of a control with the mouse and 
respond accordingly 

- read or change the setting or other properties of a control 

- change the size, location, or appearance of a control 

Your application performs these actions by calling the appropriate 
Control Manager routines. The Control Manager carries out the actual 
operations, but it's up to you to decide when, where, and how. 

Controls may be of various types (see Figure 1), each with its own 
characteristic appearance on the screen and responses to the mouse. 
Each individual control has its own specific properties--such as its 
location, size, and setting--but controls of the same type behave in 
the same general way. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



( Button 1 ) 

( Button 2 ) 

t8l Check DOH 1 

~ Check BOH 2 

D Check BOH 3 

o Radio Button 1 

@ Radio Button 2 

o Radio Button 3 

ABOUT THE CONTROL MANAGER 5 

1)l1£Oi.:.·.:.a::.-.: •• :.".:. ~wZ'E=-:~"::X':-:':~'l~ _ "'r' E~~f:~;:~:i !.:.:.:-:.:::.::-:.:.:.=::::::.:::.~ ~ 

Figure 1. Controls 

Certain standard types of controls are predefined for you. Your 
application can easily create and use controls of these standard types, 
and can also define its own "custom" control types. Among the standard 
control types are the following: 

- Buttons cause an immediate or continuous action when clicked or 
pressed with the mouse. They appear on the screen as rounded
corner rectangles with a title centered inside. 

- Check boxes retain and display a setting, either checked (on) or 
unchecked (off); clicking with the mouse reverses the setting. On 
the screen, a check box appears as a small square with a title 
alongside it; the box is either filled in with an "X" (checked) or 
empty (unchecked). Check boxes are frequently used to control or 
modify some future action, instead of causing an immediate action 
of their own. 

- Radio buttons also retain and display an on-or-off setting. 
They're organized into groups, with the property that only one 
button in the group can be on at a time: clicking any button on 
turns off all the others in the group, like the buttons on a car 
radio. Radio buttons are used to offer a choice among several 
alternatives. On the screen, they look like round check boxes; 
the radio button that's on is filled with a small black circle 
instead of an "X". 

(note) 
The Control Manager doesn't know how radio buttons are 
grouped, and doesn't automatically turn one off when the 
user clicks another one on: it's up to your program to 
handle this. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



6 Control Manager Programmer's Guide 

Another important category of controls is dials. These display a 
quantitative setting or value, typically in some pseudoanalog form such 
as the position of a sliding switch, the reading on a thermometer 
scale, or the angle of a needle on a gauge; the setting may be 
displayed digitally as well. The control's moving part that displays 
the current setting is called the indicator. The user may be able to 
change a dial's setting by dragging its indicator with the mouse, or 
the dial may simply display a value not under the user's direct control 
(such as the amount of free space remaining on a disk). 

One type of dial is predefined for you: the standard Macintosh scroll 
bars. Figure 2 shows the five parts of a scroll bar and the terms used 
by the Control Manager (and this manual) to refer to them. Notice that 
the part of the scroll bar that Macintosh users know as the "scroll 
box" is called the "thumb" here. Also, for simplicity, the terms "up" 
and "down" are used even when referring to horizontal scroll bars (in 
which case "up" really means "left" and "down" means "right"). 

U~I arrow ------------

"Page up" region -------

Thumb --------

"Page down" 

Dcawn arrow ---

I 
Figure 2. Parts of a Scroll Bar 

The up and down arrows scroll the window's contents a line at a time. 
The two paging regions scroll a "page" (windowful) at a time. The 
thumb can be dragged to any position in the scroll bar, to scroll to a 
corresponding position within the document. Although they may seem to 
behave like individual controls, these are all parts of a single 
control, the scroll bar type of dial. You can define other dials of 
any shape or complexity for yourself if your application needs them. 

When clicked or pressed, a control is usually highlighted (see Figure 
3). Standard button controls are inverted, but some control types may 
use other forms of highlighting, such as making the outline heavier. 
It's also possible for just a part of a control to be highlighted: for 
example, when the user presses the mouse button inside a scroll arrow 
or the thumb in a scroll bar, the arrow or thumb (not the whole scroll 
bar) becomes highlighted until the button is released. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



ABOUT THE CONTROL MANAGER 7 

Button 

q. Check BOH 

~ Radio Button 

Figure 3. Highlighted Controls 

A control may be active or inactive. Active controls respond to the 
user's mouse actions; inactive controls don't. A control is made 
inactive when it has no meaning or effect in the current context, such 
as an "Open" button when no document has been selected to open, or a 
scroll bar when there's currently nothing to scroll to. An inactive 
control remains visible, but is highlighted in some special way, 
depending on its control type (see Figure 4). For example, the title 
of an inactive button, check box, or radio button is dimmed (drawn in 
gray rather than black). 

( Hu110n ) 

[¢I 101 
Figure 4. Inactive Controls 

CONTROLS AND WINDOWS 

Every control "belongs" to a particular window: When displayed, the 
control appears within that window's content region; when manipulated 
with the mouse, it acts on that window. All coordinates pertaining to 
the control (such as those describing its location) are given in its 
window's local coordinate system. 

(warning) 
In order for the Control Manager to draw a control 
properly, the control's window must have the top left 
corner of its grafPort's portRect at coordinates (0,0). 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



8 Control Manager Programmer's Guide 

If you change a window's local coordinate system for any 
reason (with the QuickDraw procedure SetOrigin), be sure 
to change it back--so that the top left corner is again 
at (0,0)--before drawing any of its controls. Since 
almost all of the Control Manager routines can (at least 
potentially) redraw a control, the safest policy is 
simply to change the coordinate system back before 
calling any Control Manager routine. 

Normally you'll include buttons and check boxes in dialog or alert 
windows only. You create such windows with the Dialog Manager, and the 
Dialog Manager takes care of drawing the controls and letting you know 
whether the user clicked one of them. See the Dialog Manager manual 
for details. 

CONTROLS AND RESOURCES 

The relationship between controls and resources is analogous to the 
relationship between windows and resources: just as there are window 
definition functions and window templates, there are control definition 
functions and control templates. 

Each type of control has a control definition function that determines 
how controls of that type look and behave. The Control Manager calls 
the control definition function whenever it needs to perform a type
dependent action, such as drawing the control on the screen. Control 
definition functions are stored as resources and accessed through the. 
Resource Manager. The system resource file includes definition 
functions for the standard control types (buttons, check boxes, radio 
buttons, and scroll bars). If you want to define your own, nonstandard 
control types, you'll have to write your own definition functions for 
them, as described later in the section "Defining Your Own Controls". 

When you create a control, you specify its type with a control 
definition ID, which tells the Control Manager the resource ID of the 
definition function for that control type. The Control Manager 
provides the following predefined constants for the definition IDs of 
the standard control types: 

CONST pushButProc 
checkBoxProc = 
radioButProc = 
scrollBarProc = 

O; 
1 ; 
2; 
16; 

{simple button} 
{check box} 
{radio button} 
{scroll bar} 

The title of a button, check box, or radio button normally appears in 
the system font, but you can add the following constant to the 
definition ID to specify that you instead want to use the font 
currently associated with the window's grafPort: 

CONST useWFont = 8; {use window's font} 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



CONTROLS AND RESOURCES 9 

To create a control, the Control Manager needs to know not only the 
control definition ID but also other information specific to this 
control, such as its title (if any), the window it belongs to, and its 
location within the window. You can supply all the needed information 
in individual parameters to a Control Manager routine, or you can store 
it in a control template in a resource file and just pass the 
template's resource ID. Using templates is highly recommended, since 
it simplifies the process of creating controls and isolates the control 
descriptions from your application's code. 

(note) 
You can create control templates and store them in 
resource files with the aid of the Resource Editor *** 
eventually (for now, the Resource Compiler) ***. The 
Resource Editor relieves you of having to know the exact 
format of a control template, but if you're interested, 
you'll find details in the section "Formats of Resources 
for Controls". 

PART CODES 

Some controls, such as buttons, are simple and straightforward. Others 
can be complex objects with many parts: for example, a scroll bar has 
two scroll arrows, two paging regions, and a thumb (see Figure 2). To 
allow different parts of a control to respond to the mouse in different 
ways, many of the Control Manager routines accept a part code as a 
parameter or return one as a result. 

A part code is an integer between 1 and 253 that stands for a 
particular part of a control. Each type of control has its own set of 
part codes, assigned by the control definition function for that type. 
A simple control such as a button or check box might have just one 
"part" that encompasses the entire control; a more complex control such 
as a scroll bar can have as many parts as are needed to define how the 
control operates. Some of the Control Manager routines need to give 
special treatment to the indicator of a dial (such as the thumb of a 
scroll bar). To allow the Control Manager to recognize such 
indicators, they always have part codes greater than 128. 

(note) 
The values 254 and 255 are not used for part codes 
because to some Control Manager routines they represent 
the entire control in its inactive state. 

The part codes for the standard control types are as follows: 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



10 Control Manager Programmer's Guide 

CONST inButton 
inCheckBox 
inUpButton 
inDownButton 
inPageUp 
inPageDown 
inThumb 

10; 
11 ; 
20; 
21; 
22; 
23; 
129; 

{simple button} 
{check box or radio button} 
{up arrow of a scroll bar} 
{down arrow of a scroll bar} 
{"page up" region of a scroll bar} 
{"page down" region of a scroll bar} 
{thumb of a scroll bar} 

Notice that inCheckBox applies to both check boxes and radio buttons. 

(note) 
The part code 128 is reserved for special use by the 
Control Manager and so should not be used for parts of 
your controls. 

CONTROL RECORDS 

Every control is represented internally by a control record containing 
all pertinent information about that control. The control record 
contains the following: 

- A pointer to the window the control belongs to. 

- A handle to the next control in the window's control list. 

- A handle to the control definition function. 

- The control's title, if any. 

- A rectangle that completely encloses the control, which determines 
the control's size and location within its window. The entire 
control, including the title of a check box or radio button, is 
drawn inside this rectangle. 

An indication of whether the control is currently active and how 
it's to be highlighted. 

- The current setting of the control (if this type of control 
retains a setting) and the minimum and maximum values the setting 
can assume. For check boxes and radio buttons, a setting of 0 
means the control is off and 1 means it's on. 

The control record also contains an indication of whether the control 
is currently visible or invisible. These terms refer only to whether 
the control is drawn in its window, not to whether you can see it on 
the screen. A control may be "visible" and still not appear on the 
screen, because it's obscured by overlapping windows or other objects. 

There's a field in the control record for a pointer to the control's 
default action procedure. An action procedure defines some action to 
be performed repeatedly for as long as the user holds down the mouse 
button inside the control. The default action procedure may be used by 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



CONTROL RECORDS 11 

the Control Manager function TrackControl if you call it without 
passing a pointer to an action procedure; this is discussed in detail 
in the description of TrackControl in the "Control Manager Routines" 
section. 

Finally, the control record includes a 32-bit reference value field, 
which is reserved for use by your application. You specify an initial 
reference value when you create a control, and can then read or change 
the reference value whenever you wish. 

The data type for a control record is called ControlRecord. A control 
record is referred to by a handle: 

TYPE ControlPtr = AControlRecord; 
ControlHandle = AControlPtr; 

The Control Manager functions for creating a control return a handle to 
a newly allocated control record; thereafter, your program should 
normally refer to the control by this handle. Most of the Control 
Manager routines expect a control handle as their first parameter. 

You can store into and access most of a control record's fields with 
Control Manager routines, so normally you don't have to know the exact 
field names. However, if you want more information about the exact 
structure of a control record--if you're defining your own control 
types, for instance--it's given below. 

The ControlRecord Data Type 

The type ControlRecord is defined as follows: 

TYPE ControlRecord = 
RECORD 

nextControl: 
contrlOwner: 
contrlRect: 
contrlVis: 
contrlHilite: 
contrlValue: 
contrlMin: 
contrlMax: 
contrlDefProc: 
contrlData: 
contrlAction: 
contrlRfCon: 
contrlTitle: 

END; 

ControlHandle; 
WindowPtr; 
Rect; 
BOOLEAN; 
BOOLEAN; 
INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
Handle; 
ProcPtr; 
LongInt; 
Str255 

{next control} 
{control's window} 
{enclosing rectangle} 
{TRUE if visible} 
{highlight state} 
{current setting} 
{minimum setting} 
{maximum setting} 
{control definition function} 
{data used by contrlDefProc} 
{default action procedure} 
{control's reference value} 
{control's title} 

NextControl is a handle to the next control associated with this 
control's window. All the controls belonging to a given window are 
kept in a linked list, beginning in the controlList field of the window 
record and chained together through the nextControl fields of the 
individual control records. The end of the list is marked by a NIL 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



12 Control Manager Programmer's Guide 

value; as new controls are created, they are added to the beginning of 
the list. 

ContrlOwner is a pointer to the window that this control belongs to. 

ContrlRect is the rectangle that completely encloses the control, in 
the local coordinates of the control's window. 

When contrlVis is TRUE, the control is currently visible. 

(note) 
The Control Manager sets the contrlVis field FALSE by 
storing 255 in it rather than 1. This may cause problems 
in Lisa Pascal; to be safe, you should check for the 
truth or falsity of this flag by comparing ORD of the 
flag to ~. 

ContrlHilite is an integer between ~ and 255 that specifies whether and 
how the control is to be highlighted. It's declared as BOOLEAN so that 
Pascal will put the value in a byte; if declared as Byte, it would be 
put it in a word because of Pascal's packing conventions. Storing 
directly into the contrlHilite field limits it to a Boolean value, so 
you'll probably instead want to use the Control Manager routine that 
sets it (HiliteControl). See the description of HiliteControl in the 
"Control Manager Routines" section for information about the meaning of 
this field's value. 

ContrlValue is the control's current setting. For check boxes and 
radio buttons, ~ means the control is off and 1 means it's on. For 
dials, the fields contrlMin and contrlMax define the range of possible 
settings; contrlValue may take on any value within that range. Other 
(custom) control types can use these three fields as they see fit. 

ContrlDefProc is a handle to the control definition function for this 
type of control. When you create a control, you identify its type with 
a control definition ID, which is converted into a handle to the 
control definition function and stored in the contrlDefProc field. 
Thereafter, the Control Manager uses this handle to access the 
definition function; you should never need to refer to this field 
directly. 

(note) 
The high-order byte of the contrlDefProc field contains 
some additional information that the Control Manager gets 
from the control definition ID; for details, see the 
section "Defining Your Own Controls". Also note that if 
you write your own control definition function, you can 
include it as part of your application's code and just 
store a handle to it in the contrlDefProc field. 

ContrlData is reserved for use by the control definition function, 
typically to hold additional information specific to a particular 
control type. For example, the standard definition function for scroll 
bars uses this field for a handle to the region containing the scroll 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



CONTROL RECORDS 13 

bar's thumb. If no more than four bytes of additional information are 
needed, the definition function can store the information directly in 
the contrlData field rather than use a handle. 

ContrlAction is a pointer to the control's default action procedure, if 
any. The Control Manager function TrackControl may call this procedure 
to respond to the user's dragging the mouse inside the control. 

ContrlRfCon is the control's reference value field, which the 
application may store into and access for any purpose. 

ContrlTitle is the control's title, if any. 

Assembly-language note: The global constant contrlSize equals 
the length in bytes of a control record less its contrlTitle 
field. 

USING THE CONTROL MANAGER 

This section discusses how the Control Manager routines fit into the 
general flow of an application program and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

(note) 
For controls in dialogs or alerts, the Dialog Manager 
makes some of the basic Control Manager calls for you; 
see the Dialog Manager manual for more information. 

To use the Control Manager, you must have previously called InitGraf to 
initialize QuickDraw, InitFonts to initialize the Font Manager, and 
InitWindows to initialize the Window Manager. 

Where appropriate in your program, use NewControl or GetNewControl to 
create any controls you need. NewControl takes descriptive information 
about the new control from its parameters; GetNewControl gets the 
information from a control template in a resource file. When you no 
longer need a control, call DisposeControl to remove it from its 
window's control list and release the memory it occupies. To dispose 
of all of a given window's controls at once, use KillControls. 

(note) 
The Window Manager procedures DisposeWindow and 
CloseWindow automatically dispose of all the controls 
associated with the given window. 

When the Toolbox Event Manager function GetNextEvent reports that an 
update event has occurred for a window, the application should call 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



14 Control Manager Programmer's Guide 

DrawControls to redraw the window's controls as part of the process of 
updating the window. 

After receiving a mouse-down event from GetNextEvent, do the following: 

1. First call FindWindow to determine which part of which window the 
mouse button was pressed in. 

2. If it was in the content region of the active window, next call 
FindControl for that window to find out whether it was in an 
active control, and if so, in which part of which control. 

3. Finally, take whatever action is appropriate when the user presses 
the mouse button in that part of the control, using routines such 
as TrackControl (to perform some action repeatedly for as long as 
the mouse button is down, or to allow the user to drag the 
control's indicator with the mouse), DragControl (to pull an 
outline of the control across the screen and move the control to a 
new location), and HiliteControl (to change the way the control is 
highlighted). 

For the standard control types, step 3 involves calling TrackControl. 
TrackControl handles the highlighting of the control and determines 
whether the mouse is still in the control when the mouse button is 
released. It also handles the dragging of the thumb in a scroll bar 
and, via your action procedure, the response to presses or clicks in 
the other parts of a scroll bar. When TrackControl returns the part 
code for a button, check box, or radio button, the application must do 
whatever is appropriate as a response to a click of that control. When 
TrackControl returns the part code for the thumb of a scroll bar, the 
application must scroll to the corresponding relative position in the 
document. 

The application's exact response to mouse activity in a control that 
retains a setting will depend on the current setting of the control, 
which is available from the GetCtlValue function. For controls whose 
values can be set by the user, the SetCtlValue procedure may be called 
to change the control's setting and redraw the control accordingly. 
You'll call SetCtlValue, for example, when a check box or radio button 
is clicked, to change the setting and draw or clear the mark inside the 
control. 

Wherever needed in your program, you can call HideControl to make a 
control invisible or ShowControl to make it visible. Similarly, 
MoveControl, which simply changes a control's location without pulling 
around an outline of it, can be called at any time, as can SizeControl, 
which changes its size. For example, when the user changes the size of 
a document window that contains a scroll bar, you'll call HideControl 
to remove the old scroll bar, MoveControl and SizeControl to change its 
location and size, and ShowControl to display it as changed. 

Whenever necessary, you can read various attributes of a control with 
GetCTitle, GetCtlMin, GetCtlMax, GetCRefCon, or GetCtlAction; you can 
change them with SetCTitle, SetCtlMin, SetCtlMax, SetCRefCon, or 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.2 



CONTROL MANAGER ROUTINES 15 

SetCtlAction. 

CONTROL MANAGER ROUTINES 

This section describes all the Control Manager procedures and 
functions. They're presented in their Pascal form; for information on 
using them from assembly language, see Programming Macintosh 
Applications in Assembly Language. 

Initialization and Allocation 

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect; title: 
Str255; visible: BOOLEAN; value: INTEGER; min,max: INTEGER; 
procID: INTEGER; ref Con: LongInt) : ControlHandle; 

NewControl creates a control, adds it to the beginning of theWindow's 
control list, and returns a handle to the new control. The values 
passed as parameters are stored in the corresponding fields of the 
control record, as described below. The field that determines 
highlighting is set to ~ (no highlighting) and the pointer to the 
default action procedure is set to NIL (none). 

(note) 
The control definition function may do additional 
initialization, including changing any of the fields of 
the control record. The only standard control for which 
additional initialization is done is the scroll bar; its 
control definition function allocates space for a region 
to hold the thumb and stores the region handle in the 
contrlData field of the control record. 

TheWindow is the window the new control will belong to. All 
coordinates pertaining to the control will be interpreted in this 
window's local coordinate system. 

BoundsRect, given in theWindow's local coordinates, is the rectangle 
that encloses the control and thus determines its size and location. 
Note the following about the enclosing rectangle for the standard 
controls: 

- Simple buttons are drawn to fit the rectangle exactly. (The 
control definition function calls the QuickDraw procedure 
FrameRoundRect.) To allow for the tallest characters in the 
system font, there should be at least a 20-point difference 
between the top and bottom coordinates of the rectangle. 

- For check boxes and radio buttons, there should be at least a 
16-point difference between the top and bottom coordinates. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



16 Control Manager Programmer's Guide 

- By convention, scroll bars are 16 pixels wide, so there should be 
a 16-point difference between the left and right (or top and 
bottom) coordinates. If there isn't, the scroll bar will be 
scaled to fit the rectangle. 

Title is the control's title, if any (if none, you can just pass the 
empty string as the title). Be sure the title will fit in the 
control's enclosing rectangle; if it won't, it will be truncated on the 
right for check boxes and radio buttons, or centered and truncated on 
both ends for simple buttons. 

If the visible parameter is TRUE, NewControl draws the control. 

(note) 
It does not use the standard window updating mechanism, 
but instead draws the control immediately in the window. 

The min and max parameters define the control's range of possible 
settings; the value parameter gives the initial setting. For controls 
that don't retain a setting, such as buttons, the values you supply for 
these parameters will be stored in the control record but will never be 
used. So it doesn't matter what values you give for those controls--~ 
for all three parameters will do. For controls that just retain an 
on-or-off setting, such as check boxes or radio buttons, min should be 
~ (meaning the control is off) and max should be 1 (meaning it's on). 
For dials, you can specify whatever values are appropriate for min, 
max, and value. 

ProcID is the control definition 10, which leads to the control 
definition function for this type of control. The control definition 
IDs for the standard control types are listed above under "Controls and 
Resources". Control definition IDs for custom control types are 
discussed later under "Defining Your Own Controls". 

Ref Con is the control's reference value, set and used only by your 
application. 

FUNCTION GetNewControl (controlIO: INTEGER; theWindow: WindowPtr) 
ControlHandle; 

GetNewControl creates a control from a control template stored in a 
resource file, adds it to the beginning of theWindow's control list, 
and returns a handle to the new control. ControlIO is the resource ID 
of the template. GetNewControl works exactly the same as NewControl 
(above), except that it gets the initial values for the new control's 
fields from the specified control template instead of accepting them as 
parameters. 

PROCEDURE OisposeControl (theControl: ControlHandle); 

DisposeControl removes theControl from the screen, deletes it from its 
window's control list, and releases the memory occupied by the control 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 17 

record and all data structures associated with the control. 

Assembly-Ianguage~: The macro you invoke to call 
DisposeControl from assembly language is named _DisposControl. 

PROCEDURE KillControls (theWindow: WindowPtr); 

KillControls disposes of all controls associated with theWindow by 
calling DisposeControl (above) for each. 

Control Display 

These procedures affect the appearance of a control but not its size or 
location. 

PROCEDURE SetCTitle (theControl: ControlHandle; title: Str255); 

SetCTitle sets theControl's title to the given string and redraws the 
control. 

PROCEDURE GetCTitle (theControl: ControlHandle; VAR title: Str255); 

GetCTitle returns theControl's title as the value of the title 
parameter. 

PROCEDURE HideControl (theControl: ControlHandle); 

HideControl makes theControl invisible. It fills the region the 
control occupies within its window with the background pattern of the 
window's grafPort. It also adds the control's enclosing rectangle to 
the window's update region, so that anything else that was previously 
obscured by the control will reappear on the screen. If the control is 
already invisible, HideControl has no effect. 

PROCEDURE ShowControl (theControl: ControlHandle); 

ShowControl makes theControl visible. The control is drawn in its 
window but may be completely or partially obscured by overlapping 
windows or other objects. If the control is already visible, 
ShowControl has no effect. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



18 Control Manager Programmer's Guide 

PROCEDURE DrawControls (theWindow: WindowPtr); 

DrawControls draws all controls currently visible in theWindow. The 
controls are drawn in reverse order of creation; thus in case of 
overlap the earliest-created controls appear frontmost in the window. 

(note) 
Window Manager routines such as SelectWindow, ShowWindow, 
and BringToFront do not automatically call DrawControls 
to display the window's controls. They just add the 
appropriate regions to the window's update region, 
generating an update event. Your program should always 
call DrawControls explicitly upon receiving an update 
event for a window that contains controls. 

PROCEDURE HiliteControl (theControl: ControlHandle; hiliteState: 
INTEGER) ; 

HiliteControl changes the way theControl is highlighted. HiliteState 
is an integer between ~ and 255: 

- A value of 0 means no highlighting. 

- A value between 1 and 253 is interpreted as a part code 
designating the part of the control to be highlighted. 

- A value of 254 or 255 means that the control is to be made 
inactive and highlighted accordingly. Usually you'll want to use 
254, because it enables you to detect when the mouse button was 
pressed in the inactive control as opposed to not in any control; 
for more information, see FindControl under "Mouse Location" 
below. 

HiliteControl calls the control definition function to redraw the 
control with its new highlighting. 

Mouse Location 

FUNCTION TestControl (theControl: ControlHandle; thePoint: Point) 
INTEGER; 

If theControl is visible and active, TestControl tests which part of 
the control contains thePoint (in the local coordinates of the 
control's window); it returns the corresponding part code, or 0 if the 
point is outside the control. If the control is visible and inactive 
with 254 highlighting, TestControl returns 254. If the control is 
invisible, or inactive with 255 highlighting, TestControl returns 0. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 19 

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; VAR 
whichControl: ControlHandle) : INTEGER; 

When the Window Manager function FindWindow reports that the mouse 
button was pressed in the content region of a window, and the window 
contains controls, the application should call FindControl with 
theWindow equal to the window pointer and thePoint equal to the point 
where the mouse button was pressed (in the window's local coordinates). 
FindControl tells which of the window's controls, if any, the mouse 
button was pressed in: 

If it was pressed in a visible, active control, FindControl sets 
the whichControl parameter to the control handle and returns a 
part code identifying the part of the control that it was pressed 
in. 

- If it was pressed in a visible, inactive control with 254 
highlighting, FindControl sets whichControl to the control handle 
and returns 254 as its result. 

- If it was pressed in an invisible control, an inactive control 
with 255 highlighting, or not in any control, FindControl sets 
whichControl to NIL and returns 0 as its result. 

(warning) 

(note) 

Notice that FindControl expects the mouse point in the 
window's local coordinates, whereas FindWindow expects it 
in global coordinates. Always be sure to convert the 
point to local coordinates with the QuickDraw procedure 
GlobalToLocal before calling FindControl. 

FindControl also returns NIL for whichControl and 0 as 
its result if the window is invisible or doesn't contain 
the given point. In these cases, however, FindWindow 
wouldn't have returned this window in the first place, so 
the situation should never arise. 

FUNCTION TrackControl (theControl: ControlHandle; startPt: Point; 
actionProc: ProcPtr) INTEGER; 

When the mouse button is pressed in a visible, active control, the 
application should call TrackControl with theControl equal to the 
control handle and startPt equal to the point where the mouse button 
was pressed (in the local coordinates of the control's window). 
TrackControl follows the movements of the mouse and responds in 
whatever way is appropriate until the mouse button is released; the 
exact response depends on the type of control and the part of the 
control in which the mouse button was pressed. If highlighting is 
appropriate, TrackControl does the highlighting, and undoes it before 
returning. When the mouse button is released, TrackControl returns 
with the part code if the mouse is in the same part of the control that 
it was originally in, or with 0 if not (in which case the application 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



20 Control Manager Programmer's Guide 

should do nothing). 

If the mouse button was pressed in an indicator, TrackControl drags a 
gray outline of it to follow the mouse (by calling the Window Manager 
utility function DragGrayRgn). When the mouse button is released, 
TrackControl calls the control definition function to reposition the 
control's indicator. The control definition function for scroll bars 
responds by redrawing the thumb, calculating the control's current 
setting based on the new relative position of the thumb, and storing 
the current setting in the control record; for example, if the minimum 
and maximum settings are ~ and l~, and the thumb is in the middle of 
the scroll bar,S is stored as the current setting. The application 
must then scroll to the corresponding relative position in the 
document. 

TrackControl may take additional actions beyond highlighting the 
control or dragging the indicator, depending on the value passed in the 
actionProc parameter, as described below. Here you'll learn what to 
pass for the standard control types; for a custom control, what you 
pass will depend on how the control is defined. 

- If actionProc is NIL, TrackControl performs no additional actions. 
This is appropriate for simple buttons, check boxes, radio 
buttons, and the thumb of a scroll bar. 

- ActionProc may be a pointer to an action procedure that defines 
some action to be performed repeatedly for as long as the user 
holds down the mouse button. (See below for details.) 

- If actionProc is POINTER(-l), TrackControl looks in the control 
record for a pointer to the control's default action procedure. 
If that field of the control record contains a procedure pointer, 
TrackContrql uses the action procedure it points to; if the field 
contains POINTER(-l), TrackControl calls the control definition 
function to perform the necessary action. (If the field contains 
NIL, TrackControl does nothing.) 

The action procedure in the control definition function is described in. 
the section "Defining Your Own Controls". The following paragraphs 
describe only the action procedure whose pointer is passed in the 
actionProc parameter or stored in the control record. 

If the mouse button was pressed in an indicator, the action procedure 
(if any) should have no parameters. This procedure must allow for the 
fact that the mouse may not be inside the original control part. 

If the mouse button was pressed in a control part other than an 
indicator, the action procedure should be of the form 

PROCEDURE MyAction (theControl: ControlHandle; partCode: INTEGER); 

In this case, TrackControl passes the control handle and the part code 
to the action procedure. (It passes ~ in the partCode parameter if the 
mouse has moved outside the original control part.) As an example of 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 21 

this type of action procedure, consider what should happen when the 
mouse button is pressed in a scroll arrow or paging region in a scroll 
bar. For these cases, your action procedure should examine the part 
code to determine exactly where the mouse button was pressed, scroll up 
or down a line or page as appropriate, and call SetCtlValue to change 
the control's setting and redraw the thumb. 

(warning) 
Since it has a different number of parameters depending 
on whether the mouse button was pressed in an indicator 
or elsewhere, the action procedure you pass to 
TrackControl (or whose pointer you store in the control 
record) can be set up for only one case or the other. If 
you store a pointer to a default action procedure in a 
control record, be sure it will be used only when 
appropriate for that type of action procedure. The only 
way to specify actions in response to all mouse-down 
events in a control, regardless of whether they're in an 
indicator, is via the control definition function. 

Control Movement and Sizing 

PROCEDURE MoveControl (theControl: ControlHandle; h,v: INTEGER); 

MoveControl moves theControl to a new location within its window. The 
top left corner of the control's enclosing rectangle is moved to the 
horizontal and vertical coordinates h and v (given in the local 
coordinates of the control's window); the bottom right corner is 
adjusted accordingly, to keep the size of the rectangle the same as 
before. If the control is currently visible, it's hidden and then 
redrawn at its new location. 

PROCEDURE DragControl (theControl: ControlHandle; startPt: Point; 
limitRect,slopRect: Rect; axis: INTEGER); 

Called with the mouse button down inside theControl, DragControl pulls 
a gray outline of the control around the screen, following the 
movements of the mouse until the button is released. When the mouse 
button is released, DragControl calls MoveControl to move the control 
to the location to which it was dragged. 

(note) 
Before beginning to follow the mouse, DragControl calls 
the control definition function to allow it to do its own 
"custom dragging" if it chooses. If the definition 
function doesn't choose to do any custom dragging, 
DragControl uses the default method of dragging described 
here. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



22 Control Manager Programmer's Guide 

DragControl calls the Window Manager utility function DragGrayRgn and 
then moves the control accordingly. The startPt, limitRect, slopRect, 
and axis parameters have the same meaning as for DragGrayRgn. These 
parameters are reviewed briefly below; see the description of 
DragGrayRgn in the Window Manager manual for more details. 

- StartPt parameter is assumed to be the point where the mouse 
button was originally pressed, in the local coordinates of the 
control's window. 

- LimitRect limits the travel of the control's outline, and should 
normally coincide with or be contained within the window's content 
region. 

SlopRect allows the user some "slop" in moving the mouse; it 
should completely enclose limitRect. 

- The axis parameter allows you to constrain the control's motion to 
only one axis. It has one of the following values: 

CONST noConstraint 
hAxisOnly 
vAxisOnly 

0; {no constraint} 
1; {horizontal axis only} 
2; {vertical axis only} 

PROCEDURE SizeControl (theControl: ControlHandle; w,h: INTEGER); 

SizeControl changes the size of theControl's enclosing rectangle. The 
bottom right corner of the rectangle is adjusted to set the rectangle's 
width and height to the number of pixels specified by wand h; the 
position of the top left corner is not changed. If the control is 
currently visible, it's hidden and then redrawn in its new size. 

Control Setting and Range 

PROCEDURE SetCtlValue (theControl: ControlHandle; theValue: INTEGER); 

SetCtlValue sets theControl's current setting to theValue and redraws 
the control to reflect the new setting. For check boxes and radio 
buttons, the value 1 fills the control with the appropriate mark, and 0 
clears it. For scroll bars, SetCtlValue redraws the thumb where 
appropriate. 

If the specified value is out of range, it's forced to the nearest 
endpoint of the current range (that is, if theValue is less than the 
minimum setting, SetCtlValue sets the current setting to the minimum; 
if theValue is greater than the maximum setting, it sets the current 
setting to the maximum). 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



CONTROL MANAGER ROUTINES 23 

FUNCTION GetCtlValue (theControl: ControlHandle) : INTEGER; 

GetCtlValue returns theControl's current setting. 

PROCEDURE SetCtlMin (theControl: ControlHandle; minValue: INTEGER); 

SetCtlMin sets theControl's minimum setting to minValue and redraws the 
control to reflect the new range. If the control's current setting is 
less than minValue, the setting is changed to the new minimum. 

Assembly-language note: The macro you invoke to call SetCtlMin 
from assembly language is named SetMinCtl. 

FUNCTION GetCtlMin (theControl: ControlHandle) : INTEGER; 

GetCtlMin returns theControl's minimum setting. 

Assembly-language note: The macro you invoke to call GetCtlMin 
from assembly language is named GetMinCtl. 

PROCEDURE SetCtlMax (theControl: ControlHandle; maxValue: INTEGER); 

SetCtlMax sets theControl's maximum setting to maxValue and redraws the 
control to reflect the new range. If maxValue is less than the 
control's current setting, the setting is changed to the new maximum. 

Assembly-language note: The macro you invoke to call SetCtlMax 
from assembly language is named SetMaxCtl. 

FUNCTION GetCtlMax (theControl: ControlHandle) : INTEGER; 

GetCtlMax returns theControl's maximum setting. 

Assembly-language note: The macro you invoke to call GetCtlMax 
from assembly language is named GetMaxCtl. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.R 



24 Control Manager Programmer's Guide 

Miscellaneous Utilities 

PROCEDURE SetCRefCon (theControl: ControlHandle; data: Longlnt); 

SetCRefCon sets theControl's reference value to the given data. 

FUNCTION GetCRefCon (theControl: ControlHandle) : Longlnt; 

GetCRefCon returns theControl's current reference value. 

PROCEDURE SetCtlAction (theControl: ControlHandle; actionProc: 
ProcPtr) ; 

SetCtlAction sets theControl's default action procedure to actionProc. 

FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr; 

GetCtlAction returns a pointer to theControl's default action 
procedure, if any. (It returns whatever is in that field of the 
control record.) 

DEFINING YOUR OWN CONTROLS 

In addition to the standard, built-in control types (buttons, check 
boxes, radio buttons, and scroll bars), the Control Manager allows you 
to define "custom" control types of your own. Maybe you need a three
way selector switch, a memory-space indicator that looks like a 
thermometer, or a thruster control for a spacecraft simulator--whatever 
your application calls for. Controls and their indicators may occupy 
regions of any shape, in the full generality permitted by QuickDraw. 

To define your own type of control, you write a control definition 
function and (usually) store it in a resource file. When you create a 
control, you provide a control definition ID, whi~h leads to the 
control definition function. The control definition ID is an integer 
that contains the resource ID of the control definition function in its 
upper 12 bits and a variation code in its lower four bits. Thus, for a 
given resource ID and variation code, the control definition ID is: 

16 * resource ID + variation code 

For example, buttons, check boxes, and radio buttons all use the 
standard definition function whose resource ID is 0, but they have 
variation codes of 0, 1, and 2, respectively. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



DEFINING YOUR OWN CONTROLS 25 

The Control Manager calls the Resource Manager to access the control 
definition function with the given resource ID. The Resource Manager 
reads the control definition function into memory and returns a handle 
to it. The Control Manager stores this handle in the contrlDefProc 
field of the control record, along with the variation code in the high
order byte of the field. Later, when it needs to perform a type
dependent action on the control, it calls the control definition 
function and passes it the variation code as a parameter. Figure 5 
illustrates this process. 

You supply the control definition 10: 

15 4 3 0 

I resource 10 I code I 
(resource 10 of control 
definition function 
and verietion code) 

The Control Manager calls ttle Resource Menager with 

defHendle : = GetResource (I CDEF' J resolrce 10) 

and stores into the contrlDefProc field of the control record: 

defHendle 

The variation code is pessed to the control definition function. 

Figure 5. Control Definition Handling 

Keep in mind that the calls your application makes to use a control 
depend heavily on the control definition function. What you pass to 
the TrackControl function, for example, depends on whether the 
definition function contains an action procedure for the control. Just 
as you need to know how to call TrackControl for the standard controls, 
each custom control type will have a particular calling protocol that 
must be followed for the control to work properly. 

(note) 
You may find it more convenient to include the control 
definition function with the code of your program instead 
of storing it as a separate resource. If you do this, 
you should supply the control definition ID of any 
standard control type when you create the control, and 
specify that the control initially be invisible. Once 
the control is created, you can replace the contents of 
the contrlDefProc field with a handle to the actual 
control definition function (along with a variation code, 
if needed, in the high-order byte of the field). You can 
then call ShowControl to make the control visible. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



26 Control Manager Programmer's Guide 

The Control Definition Function 

The control definition function may be written in Pascal or assembly 
language; the only requirement is that its entry point must be at the 
beginning. You can give your control definition function any name you 
like. Here's how you would declare one named MyControl: 

FUNCTION MyControl (varCode: INTEGER; theControl: ControlHandle; 
message: INTEGER; param: LongInt) : LongInt; 

VarCode is the variation code, as described above. 

TheControl is a handle to the control that the operation will affect. 

The message parameter identifies the desired operation. It has one of 
the following values: 

CONST drawCntl 0; {draw the control (or control part)} 
testCntl 
calcCRgns 
initCntl 
dispCntl 
posCntl 
thumbCntl 
dragCntl = 
autoTrack 

1 ; 
2; 
3 ; 
4-, 
5; 
6; 
7 -, 
8; 

{test where mouse button was pressed} 
{calculate control's region (or indicator's)} 
{do any additional control initialization} 
{take any additional disposal actions} 
{reposition control's indicator and update it} 
{calculate parameters for dragging indicator} 
{drag control (or its indicator)} 
{execute control's action procedure} 

As described below in the discussions of the routines that perform 
these operations, the value passed for param, the last parameter of the 
control definition function, depends on the operation. Where it's not 
mentioned below, this parameter is ignored. Similarly, the control 
definition function is expected to return a function result only where 
indicated; in other cases, the function should return 0. 

(note) 
"Routine" here does not necessarily mean a procedure or 
function. While it's a good idea to set these up as 
subprograms inside the control definition function, 
you're not required to do so. 

The Draw Routine 

The message drawCntl asks the control definition function to draw all 
or part of the control within its enclosing rectangle. The value of 
param is a part code specifying which part of the control to draw, or 0 
for the entire control. If the-control is invisible (that is, if its 
contrlVis field is FALSE), there's nothing to do; if it's visible, the 
definition function should draw it (or the requested part), taking into 
account the current values of its contrlHilite and contrlValue fields. 
The control may be either scaled or clipped to the enclosing rectangle. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



DEFINING YOUR OWN CONTROLS 27 

If param is the part code of the control's indicator, the draw routine 
can assume that the indicator hasn't moved; it might be called, for 
example, to highlight the indicator. There's a special case, though, 
in which the draw routine has to allow for the fact that the indicator 
may have moved: this happens when the Control Manager procedures 
SetCtlValue, SetCtlMin, and SetCtlMax call the control definition 
function to redraw the indicator after changing the control setting. 
Since they have no way of knowing what part code you chose for your 
indicator, they all pass 128 (the special reserved part code) to mean 
the indicator. The draw routine must detect this part code as a 
special case, and remove the indicator from its former location before 
drawing it. 

(note) 
If your control has more than one indicator, 128 should 
be interpreted to mean all indicators. 

The Test Routine 

The Control Manager function FindControl sends the message testCntl to 
the control definition function when the mouse button is pressed in a 
visible control. This message asks in which part of the control, if 
any, a given point lies. The point is passed as the value of param, in 
the local coordinates of the control's window; the vertical coordinate 
is in the high-order word of the LongInt and the horizontal coordinate 
is in the low-order word. The control definition function should 
return the part code for the part of the control that contains the 
point; it should return 254 if the control is inactive with 254 
highlighting, or 0 if the point is outside the control or if the 
control is inactive with 255 highlighting. 

The Routine to Calculate Regions 

The control definition function should respond to the message calcCRgns 
by calculating the region the control occupies within its window. 
Param is a QuickDraw region handle; the definition function should 
update this region to the region occupied by the control, expressed in 
the local coordinate system of its window. 

If the high-order bit of param is set, the region requested is that of 
the control's indicator rather than the control as a whole. The 
definition function should clear the high byte (not just the high bit) 
of the region handle before attempting to update the region. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



28 Control Nanager Programmer's Guide 

The Initialize Routine 

After initializing fields as appropriate when creating a new control, 
the Control Manager sends the message initCntl to the control 
definition function. This gives the definition function a chance to 
perform any type-specific initialization it may require. For example, 
if you implement the control's action procedure in its control 
definition function, you'll set up the initialize routine to store 
POINTER(-l) in the contrlAction field; TrackControl calls for this 
control would pass POINTER(-l) in the actionProc parameter. 

The control definition function for scroll bars allocates space for a 
region to hold the scroll bar's thumb and stores the region handle in 
the contrlData field of the new control record. The initialize routine 
for standard buttons, check boxes, and radio buttons does nothing. 

The Dispose Routine 

The Control Manager's DisposeControl procedure sends the message 
dispCntl to the control definition function, telling it to carry out 
any additional actions required when disposing of the control. For 
example, the standard definition function for scroll bars releases the 
space occupied by the thumb region, whose handle is kept in the 
control's contrlData field. The dispose routine for standard buttons, 
check boxes, and radio buttons does nothing. 

The Drag Routine 

The message dragCntl asks the control definition function to drag the 
control or its indicator around on the screen to follow the mouse until 
the user releases the mouse button. Param specifies whether to drag 
the indicator or the whole control: ~ means drag the whole control, 
while a nonzero value means just drag the indicator. 

The control definition function need not implement any form of "custom 
dragging"; if it returns a result of ~, the Control Manager will use 
its own default method of dragging (calling DragControl to drag the 
control or the Window Manager function DragGrayRgn to drag its 
indicator). Conversely, if the control definition function chooses to 
do its own custom dragging, it should signal the Control Manager not to 
use the default method by returning a nonzero result. 

If the whole control is being dragged, the definition function should 
call MoveControl to reposition the control to its new location after 
the user releases the mouse button. If just the indicator is being 
dragged, the definition function should execute its own position 
routine (see below) to update the control's setting and redraw it in 
its window. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



DEFINING YOUR OWN CONTROLS 29 

The Position Routine 

For controls that don't use the Control Manager's default method of 
dragging the control's indicator (as performed by DragGrayRgn), the 
control definition function must include a position routine. When the 
mouse button is released inside the indicator of such a control, 
TrackControl calls the control definition function with the message 
posCntl to reposition the indicator and update the control's setting 
accordingly. The value of param is a point giving the vertical and 
horizontal offset, in pixels, by which the indicator is to be moved 
relative to its current position. (Typically, this is the offset 
between the points where the user pressed and released the mouse button 
while dragging the indicator.) The vertical offset is given in the 
high-order word of the LongInt and the horizontal offset in the low
order word. The definition function should calculate the control's new 
setting based on the given offset, update the contrlValue field, and 
redraw the control within its window to reflect the new setting. 

(note) 
The Control Manager procedures SetCtlValue, SetCtlMin, 
and SetCtlMax do not call the control definition function 
with this message; instead, they pass the drawCntl 
message to execute the draw routine (see above). 

The Thumb Routine 

Like the position routine, the thumb routine is required only for 
controls that don't use the Control Manager's default method of 
dragging the control's indicator. The control definition function for 
such a control should respond to the message thumbCntl by calculating 
the limiting rectangle, slop rectangle, and axis constraint for 
dragging the control's indicator. Param is a pointer to the following 
data structure: 

RECORD 
limitRect, slopRect: Rect; 
axis: INTEGER 

END; 

On entry, paramA.limitRect.topLeft contains the point where the mouse 
button was first pressed. The definition function should store the 
appropriate values into the fields of the record pointed to by param; 
they're analogous to the similarly named parameters to DragGrayRgn. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



30 Control Manager Programmer's Guide 

The Track Routine 

You can design a control to have its action procedure in the control 
definition function. To do this, set up the control's initialize 
routine to store POINTER(-I) in the contrlAction field of the control 
record, and pass POINTER(-l) in the actionProc parameter to 
TrackControl. TrackControl will respond by calling the control 
definition function with the message autoTrack. The definition 
function should respond like an action procedure, as discussed in 
detail in the description of TrackControl. It can tell which part of 
the control the mouse button was pressed in from param, which contains 
the part code. The track routine for each of the standard control 
types does nothing. 

FORMATS OF RESOURCES FOR CONTROLS 

The GetNewControl function takes the resource ID of a control template 
as a parameter, and gets from that template the same information that 
the NewControl function gets from eight of its parameters. The 
resource type for a control template is 'CNTL', and the resource data 
has the following format: 

Number of b~tes Contents 
8 bytes Same as boundsRect parameter to NewControl 
2 bytes Same as value parameter to NewControl 
2 bytes Same as visible parameter to NewControl 
2 bytes Same as max parameter to NewControl 
2 bytes Same as min parameter to NewControl 
4 bytes Same as procID parameter to NewControl 
4 bytes Same as ref Con parameter to NewControl 
n bytes Same as title parameter to NewControl 

(I-byte length in bytes, followed by the 
characters of the title) 

The resource type for a control definition function is 'CDEF'. The 
resource data is simply the compiled or assembled code of the function. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.D 



SUMMARY OF THE CONTROL MANAGER 31 

SUMMARY OF THE CONTROL MANAGER 

Constants 

CONST { Control definition IDs } 

[JushButProc 
checkBoxProc 
radioButProc 
useWFont 
scrollBarProc 

0; {simple button} 
1; {check box} 
2; {radio button} 
8; {add to above to use window's font} 
16; {scroll bar} 

{ Part codes } 

inButton 
inCheckBox 
inUpButton 
inDownButton 
inPageUp 
inPageDown 
inThumb 

10; 
= 11; 

20; 
21; 
22; 

= 23; 
= 129; 

{simple button} 
{check box or radio button} 
{up arrow of a scroll bar} 
{down arrow of a scroll bar} 
{"page up" region of a scroll bar} 
{"page down" region of a scroll bar} 
{thumb of a scroll bar} 

{ Axis constraints for DragControl } 

noConstraint 
hAxisOnly 
vAxisOnly 

0; 
= 1; 

2; 

{no constraint} 
{horizontal axis only} 
{vertical axis only} 

{ Messages to control definition function } 

drawCntl = 
testCntl = 
calcCRgns = 
initCntl 
clispCntl = 
posCntl 
thumbCntl 
dragCntl 
autoTrack 

Data Types 

0; 
1 ; 
2; 
3; 
4; 
5; 
6; 
7 ; 
8; 

{draw the control (or control part)} 
{test where mouse button was pressed} 
{calculate control's region (or indicator's)} 
{do any additional control initialization} 
{take any additional disposal actions} 
{reposition control's indicator and update it} 
{calculate parameters for dragging indicator} 
{drag control (or its indicator)} 
{execute control's action procedure} 

TYPE ControlHandle AControlPtr; 
ControlPtr = AControlRecord; 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.S 



32 Control Manager Programmer's Guide 

ControlRecord = 

Routines 

RECORD 
nextControl: 
contrlOwner: 
contrlRect: 
contrlVis: 
contrlHilite: 
contrlValue: 
contrlMin: 
contrlMax: 
contrlDefProc: 
contrlData: 
contrlAction: 
contrlRfCon: 
contrlTitle: 

END; 

Initialization and Allocation 

ControlHandle; 
WindowPtr; 
Rect; 
BOOLEAN; 
BOOLEAN; 
INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
Handle; 
ProcPtr; 
LongInt; 
Str255 

{next control} 
{control's window} 
{enclosing rectangle} 
{TRUE if visible} 
{highlight state} 
{current setting} 
{minimum setting} 
{maximum setting} 
{control definition function} 
{data used by contrlDefProc} 
{default action procedure} 
{control's reference value} 
{control's title} 

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect; 
title: Str255; visible: BOOLEAN; value: 

FUNCTION GetNewControl 

PROCEDURE DisposeControl 
PROCEDURE KillControls 

Control Display 

PROCEDURE SetCTitle 
PROCEDURE GetCTitle 

PROCEDURE HideControl 
PROCEDURE ShowControl 
PROCEDURE DrawControls 
PROCEDURE HiliteControl 

Mouse Location 

INTEGER; min,max: INTEGER; procID: INTEGER; 
ref Con: LongInt) : ControlHandle; 

(controIID: INTEGER; theWindow: WindowPtr) : 
ControlHandle; 

(theControl: ControIHandle); 
(theWindow: WindowPtr); 

(theControl: ControlHandle; title: Str255); 
(theControl: ControlHandle; VAR title: 
Str255) ; 

(theControl: ControlHandle); 
(theControl: ControIHandle); 
(theWindow: WindowPtr); 
(theControl: ControlHandle; hiliteState: 

INTEGER) ; 

FUNCTION TestControl (theControl: ControlHandle; thePoint: Point) 
INTEGER; 

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; VAR 
whichControl: ControlHandle) : INTEGER; 

FUNCTION TrackControl (theControl: ControlHandle; startPt: Point; 
actionProc: ProcPtr) : INTEGER; 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.S 



SUMMARY OF THE CONTROL MANAGER 33 

Control Movement and Sizing 

PROCEDURE MoveControl (theControl: ControlHandle; h,v: INTEGER); 
PROCEDURE DragControl (theControl: ControlHandle; startPt: Point; 

limitRect,slopRect: Rect; axis: INTEGER); 
PROCEDURE SizeControl (theControl: ControlHandle; w,h: INTEGER); 

Control Setting and Range 

PROCEDURE SetCtlValue 
FUNCTION GetCtlValue 
PROCEDURE SetCtlMin 
FUNCTION GetCtlMin 
PROCEDURE SetCtlMax 
FUNCTION GetCtlMax 

(theControl: ControlHandle; theValue: INTEGER); 
(theControl: ControlHandle) : INTEGER; 
(theControl: ControlHandle; minValue: INTEGER); 
(theControl: ControlHandle) : INTEGER; 
(theControl: ControlHandle; maxValue: INTEGER); 
(theControl: ControlHandle) : INTEGER; 

Miscellaneous Utilities 

PROCEDURE SetCRefCon (theControl: ControlHandle; data: Longlnt); 
FUNCTION GetCRefCon (theControl: ControlHandle) : LongInt; 
PROCEDURE SetCtlAction (theControl: ControlHandle; actionProc: ProcPtr); 
FUNCTION GetCtlAction (theControl: ControlHandle) : ProcPtr; 

Action Procedure for TrackControl 

If an indicator: PROCEDURE MyAction; 
If not an indicator: PROCEDURE MyAction (theControl: ControlHandle; 

partCode: INTEGER); 

Control Definition Function 

FUNCTION MyControl (varCode: INTEGER; theControl: ControlHandle; 
message: INTEGER; param: LongInt) : LongInt; 

Assembly-Language Information 

Constants 

; Control definition IDs 

pushButProc 
checkBoxProc 
radioButProc 
useWFont 
scrollBarProc 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

5/30/84 Chernicoff-Rose 

o 
1 
2 
8 

16 

;simple button 
;check box 
;radio button 
;add to above to use window's font 
;scroll bar 

/CMGR/CONTROLS.S 



34 Control Manager Programmer's Guide 

; Part codes 

inButton 
inCheckBox 
inUpButton 
inDownButton 
inPageUp 
inPageDown 
inThumb 

.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 
.EQU 

1~ 
11 
2~ 
21 
22 
23 

129 

;simple button 
;check box or radio button 
;up arrow of scroll bar 
;down arrow of scroll bar 
;"page up" region of scroll bar 
;"page down" region of scroll bar 
;thumb of scroll bar 

; Axis constraints for DragControl 

noConstraint 
hAxisOnly 
vAxisOnly 

.EQU 

.EQU 

.EQU 

~ 
1 
2 

;no constraint 
;horizontal axis only 
;vertical axis only 

; Messages to control definition function 

drawCtlMsg 
hitCtlMsg 
calcCtlMsg 
newCtlMsg 
dispCtlMsg 
posCtlMsg 
thumbCtlMsg 
dragCtlMsg 
trackCtlMsg 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 
.EQU 
.EQU 
.EQU 
.EQU 

~ ;draw the control (or control part) 
1 ;test where mouse button was pressed 
2 ;calculate control's region (or indicator's) 
3 ;do any additional control initialization 
4 ;take any additional disposal actions 
5 ;reposition control's indicator and update it 
6 ;calculate parameters for dragging indicator 
7 ;drag control (or its indicator) 
8 jexecute control's action procedure 

Control Record Data Structure 

nextControl 
contrlOwner 
contrlRect 
contrlVis 
contrlHilite 
contrlValue 
contrlMin 
contrlMax 
contrlDefHandle 
contrlData 
contrlAction 
contrlRfCon 
contrlTitle 
contrlSize 

Handle to next control in control list 
Pointer to this control's window 
Control~s enclosing rectangle 
Flag for whether control is visible 
Highlight state 
Control's current setting 
Control's minimum setting 
Control's maximum setting 
Handle to control definition function 
Data used by control definition function 
Default action procedure 
Control's reference value 
Control's title 
Length of above structure except contrlTitle 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.S 



Special Macro Names 

Routine name 
DisposeControl 
GetCtlMax 
GetCtlMin 
SetCtlMax 
SetCtlMin 

Macro name 
_DisposControl 

GetMaxCtl 
GetMinCtl 
SetMaxCtl 
SetMinCtl 

5/30/84 Chernicoff-Rose 

SUMMARY OF THE CONTROL MANAGER 35 

/CMGR/CONTROLS.S 



36 Control Manager Programmer's Guide 

GLOSSARY 

action procedure: A procedure, used by the Control Manager function 
TrackControl, that defines an action to be performed repeatedly for as 
long as the mouse button is held down. 

active control: A control that will respond to the user's actions with 
the mouse. 

button: A standard Macintosh control that causes some immediate or 
continuous action when clicked or pressed with the mouse. (See also: 
radio button) 

check box: A standard Macintosh control that displays a setting, 
either checked (on) or unchecked (off). Clicking inside a check box 
reverses its setting. 

control: An object in a window on the Macintosh screen with which the 
user, using the mouse, can cause instant action with graphic results or 
change settings to modify a future action. 

control definition function: A function called by the Control Manager 
when it needs to perform type-dependent operations on a particular type 
of control, such as drawing the control. 

control definition ID: A number passed to control-creation routines to 
indicate the type of control. It consists of the control definition 
function's resource ID and a variation code. 

control list: A list of all the controls associated with a given 
window. 

control record: The internal representation of a control, where the 
Control Manager stores all the information it needs for its operations 
on that control. 

control template: A resource that contains information from which the 
Control Manager can create a control. 

dial: A control with a moving indicator that displays a quantitative 
setting or value. Depending on the type of dial, the user mayor may 
not be able to change the setting by dragging the indicator with the 
mouse. 

dimmed: Drawn in gray rather than black. 

inactive control: A control that will not respond to the user's 
actions with the mouse. An inactive control is highlighted in some 
special way, such as dimmed. 

indicator: The moving part of a dial that displays its current 
setting. The part code of an indicator is always greater than 128 by 
convention. 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.G 



GLOSSARY 37 

invert: To highlight by changing white pixels to black and vice versa. 

invisible control: A control that's not drawn in its window. 

part code: An integer between 1 and 253 that stands for a particular 
part of a control (possibly the entire control). Part codes greater 
than 128 represent indicators. 

radio button: A standard Macintosh control that displays a setting, 
either on or off, and is part of a group in which only one button can 
be on at a time. Clicking a radio button on turns off all the others 
in the group, like the buttons on a car radio. 

reference value: In a window record or control record, a 32-bit field 
that the application program may store into and access for any purpose. 

thumb: The Control Manager's term for the scroll box (the indicator of 
a scroll bar). 

variation code: The part of a window or control definition ID that 
distinguishes closely related types of windows or controls. 

visible control: A control that's drawn in its window (but may be 
completely overlapped by another window or other object on the screen). 

5/30/84 Chernicoff-Rose /CMGR/CONTROLS.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 1 0460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Marte up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

The Menu Manager: A Programmer's Guide /MMGR/MENUS 

See Also: Macintosh User Interface Guidelines 
Macintosh Operating System Reference Manual 
QuickDraw: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
The Toolbox Utilities: A Programmer's Guide 

Modification History: First Draft P. Stanton-Wyman 
Second Draft 
Updated (ROM 2.~) 

Third Draft (ROM 3.~) c. 
Fourth Draft (ROM 7) 

C. Espinosa 12/23/82 
C. Espinosa 1/24/83 

Espinosa & C. Rose 5/17/83 
C. Rose 11/1/83 

ABSTRACT 

The Macintosh User Interface frees the user from having to remember long 
strings of command words by placing all commands in menus. With the 
menu bar and pull-down menus. the user can at any time see all available 
menu choices. This manual describes the nature of pull-down menus and 
how to implement them with the Macintosh Menu Manager. 

Summary of significant changes and additions since last version: 

- The symbol for showing keyboard equivalents for menu items has 
changed from a solid apple to the Command key's symbol on the 
keyboard (page 6). 

- The use of the "!" meta-character to indicate a marked menu item 
has changed (page 11). 

- A new procedure. InsertResMenu. has been added (page 18). 

- The predefined constant mCa1cSize, for the menu definition 
procedure's message parameter, has been renamed mSizeMsg (page 
27) • 

- For assembly-language programmers, the unconventional macro names 
for calling several of the Menu Manager routines are now listed 
under the descriptions of those routines, and some additional 
system globa1s are discussed. 



2 Menu Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Menu Manager 
4 The Menu Bar 
5 Appearance of Menus 
7 Menus and Resources 
8 Menu Records 
9 The Menu List 
1~ Creating a Menu 
11 Separating Items 
11 Items with Icons 
11 Marked Items 
12 Character Style of Items 
12 Items with Keyboard Equivalents 
13 Disabled Items 
13 Using the Menu Manager 
15 Menu Manager Routines 
15 Initialization and Allocation 
18 Forming the Menu Bar 
2~ Choosing From a Menu 
22 Controlling Items' Appearance 
25 Miscellaneous Utilities 
26 Defining Your Own Menus 
27 The Menu Definition Procedure 
28 Formats of Resources for Menus 
29 Menus in a Resource File 
30 Menu Bars in a Resource File 
31 Summary of the Menu Manager 
35 Glossary 

Copyright (c) Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Menu Manager, a major component of the 
Macintosh User Interface Toolbox. *** Eventually it will become part 
of a comprehensive manual describing the entire Toolbox and Operating 
System. *** The Menu Manager allows you to create sets of menus, and 
allows the user to choose from the commands in those menus in a manner 
consistent with the Macintosh User Interface guidelines. 

(hand) 
This manual describes version 7 of the ROM. If you're 
using a different version, the Menu Manager may not work 
as discussed here. 

Like all documentation about the Toolbox, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

- The basic concepts and structures behind QuickDraw, particularly 
points, rectangles, and character style. 

Resources, as described in the Resource Manager manual. 

- The Toolbox Event Manager. Some Menu Manager routines should be 
called only in response to certain events. 

This manual is intended to serve the needs of both Pascal and 
assembly-language programmers. Information of interest to 
assembly-language programmers only is isolated and labeled so that 
Pascal programmers can conveniently skip it. *** Some of that 
information refers to the "Toolbox equates" file (ToolEqu.Text), which 
the reader will have learned about in an earlier chapter of the final 
comprehensive manual. *** 

The manual begins with an introduction to the Menu Manager and the 
appearance of menus on the Macintosh. It then discusses the basics of 
menus: the relationship between menus and resources, some internal 
structures related to menus, and information about how to create menus. 

Next, a section on using the Menu Manager introduces its routines and 
tells how they fit into the flow of your application. This is followed 
by detailed descriptions of all Menu Manager procedures and functions, 
their parameters, calling protocol, effects, side effects, and so on. 

Following these descriptions are sections that will not interest all 
readers: special information is provided for programmers who want to 
define their own menus, and the exact formats of resources related to 
menus are described. 

Finally, there's a summary of the Menu Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



4 Menu Manager Programmer's Guide 

ABOUT THE MENU MANAGER 

The Menu Manager supports the use of menus, an integral part of the 
Macintosh User Interface. Menus allow users to examine all choices 
available to -them at any time without being forced to choose one of 
them, and without having to remember command words or special keys. 
The Macintosh use~ simply positions the cursor in the menu bar and 
presses the mouse button over a menu title. The application then calls 
the Menu Manager, which highlights that title (by inverting it) and 
"pulls down" the menu below it. As long as the mouse button is held 
down, the menu is displayed. Dragging the mouse through the ~ items 
causes each of the items to be highlighted in turn. If the mouse 
button is released over an item, that item is "chosen". The item 
blinks briefly to confirm the choice, and the menu disappears. 

After a successful choice, the Menu Manager tells the application which 
item was chosen, and the application performs the corresponding action. 
When the application completes the action, it removes the highlighting 
from the menu title, indicating to the user that the operation is 
complete. 

If the user moves the cursor out of the menu and releases the mouse 
button, no choice is made: the menu simply disappears and the 
application takes no action. The user is never forced to choose a 
command once a menu has been pulled down. 

The Menu Bar 

The menu bar always appears at the top of the Macintosh screen, 20 
pixels high and as wide as the screen. It appears in front of all 
windows; nothing but the cursor ever appears in front of the menu bar. 
The menu bar is white and has a thin black lower border, and the menu 
titles in it are always in the system font and the system font size 
(see Figure 1). 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



ABOUT THE MENU MANAGER 5 

menu fl_ 
bar 

titles of title (If a 
enabled menus di sabled menu 

Figure 1. The Menu Bar 

In applications that support desk accessories, the first menu should be 
the standard Apple menu (the menu whose title is an Apple symbol). 
This menu contains the names of all available desk accessories. When 
the user chooses a desk accessory, the title of a menu belonging to it 
may also appear in the menu bar, for as long as the accessory is 
active, or the entire menu bar may be occupied by menus belonging to 
the desk accessory. (Desk accessories are discussed in detail in the 
Desk Manager manual.) 

A menu may temporarily be disabled, so that none of the items in the 
menu can be chosen. The title of a disabled menu and every item in it 
appear dimmed in the menu bar (that is, drawn in gray rather than 
black) • 

The maximum number of menu titles in the menu bar is 16; however, ten 
to twelve titles is usually all that will fit. If you're having 
trouble fitting your menus in the menu bar, you should review your menu 
organization and menu titles. 

Appearance of Menus 

A standard menu consists of a number of lines of text, listed 
vertically inside a shadowed rectangle (see Figure 2). Menus always 
appear in front of everything else (except the cursor); in Figure 2, 
the menu appears in front of a document window already on the screen. 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



6 Menu Manager Programmer's Guide 

menu 
with 

6 menu 
items 

(1 blank) 

Figure 2. A Standard Menu 

Each line of text is one menu item that the user can choose from that 
menu. The text always appears in the system font and the system font 
size. Each item can have a few visual variations from the standard 
appearance: 

An icon to the left of the item's text, to give a symbolic 
representation of the item's meaning or effect. 

- A check mark or other character to the left of the item's text (or 
icon, if any), to denote the status of the item or of the mode it 
controls. 

- The Command key symbol and another character to the right of the 
item's text, to show that the item may be invoked from the 
keyboard (that is, it has a keyboard equivalent). 

- A character style other than the standard, such as bold, italic, 
underline, or a combination of these. (The QuickDraw manual gives 
a full discussion of character style.) 

A dimmed appearance, to indicate that the item is disabled. 

(hand) 
Special symbols or icons may have an unusual appearance 
when dimmed; notice the dimmed Command symbol in the Cut 
and Copy menu items in Figure 2. 

The maximum number of menu items that will fit in a standard menu is 2~ 
(minus 1 for every item that contains an icon). The fewer menu items 
you have, the simpler and clearer the menu appears to the user. To 
separate groups of items, you may'use blank menu items or items 
consisting entirely of dashes. 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



ABOUT THE MENU MANAGER 7 

If the standard menu doesn't suit your needs (for example, if you want 
more graphics or perhaps a nonlinear text arrangement), you can define 
a custom menu that, although visibly different to the user, responds to 
your application's Menu Manager calls just like a standard menu. 

MENUS AND RESOURCES 

The general definition of how a certain type of menu looks and behaves 
is determined by a ~ definition procedure, which is usually stored 
as a resource in a resource file. Most applications will use the 
predefined menu definition procedure in the system resource file; 
others may write their own menu definition procedures (as described 
later in the section "Defining Your Own Menus"). 

One way to define the contents of your application's menus is to have 
your program create them manually, item by item. When you create a 
menu this way, the Menu Manager automatically sets it up to use the 
standard menu definition procedure and gets that procedure from the 
system resource file. The standard menu definition procedure has the 
capabilities described above: it lists the menu items vertically, and 
each one may have an icon, check mark, keyboard equivalent, different 
character style, or dimmed appearance. 

You can also set up your application's menus by reading them in from a 
resource file. This is strongly recommended, for two reasons: it 
makes your application smaller, and it allows the menu items to be 
edited for documentation or translated to foreign languages without 
affecting the application's source code. The Menu Manager allows you 
to read not only individual menus but also complete menu bars from a 
resource file. 

(hand) 
You can create menus and menu bars and store them in 
resource files with the aid of the Resource Editor *** 
eventually ***. The Resource Editor relieves you of 
having to know the exact formats of these resources in 
the file, but for interested programmers this information 
is given in the section "Formats of Resources for Menus". 
*** In the absence of the Resource Editor, you can write 
a small program to create your menus using the Menu 
Manager procedure AppendMenu, and store them in a 
resource file using the standard Resource Manager calls. 
You can also use the interim Resource Compiler; see the 
manual "Putting Together a Macintosh Application" for 
more information. *** 

Even if you don't store entire menus in resource files, it's a good 
idea to store the text strings they contain as resources; you can call 
the Resource Manager directly to read them in. Icons in menus are read 
from resource files; in this case, the Menu Manager calls the Resource 
Manager. 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



8 Menu Manager Programmer's Guide 

There's one other interaction between menus and resources: a Menu 
Manager procedure that scans all open resource files for resources of a 
given type and install the names of all available resources of that 
type into a given menu. This is how you fill a menu with the names of 
all available desk accessories, for example. 

MENU RECORDS 

The Menu Manager keeps all the information it needs for its operations 
on a particular menu in a ~ record. The menu record contains: 

- The ~ ID. For menus stored in resource files, this is the 
resource ID; for menus created by your application, it's any 
positive number (less than 32768) that you choose to identify the 
menu. 

- The menu title. 

- The contents of the menu; the text and other parts of each item. 

- The horizontal and vertical dimensions of the menu, in pixels. 
The menu items appear inside the rectangle formed by these 
dimensions; the black border and shadow of the menu appear outside 
that rectangle. 

- A handle to the menu definition procedure. 

- Flags telling whether each menu item is enabled or disabled, and 
whether the menu itself is enabled or disabled. 

The data type for a menu record is called Menulnfo. A menu is a 
dynamic, relocatable data structure and is referred to by a handle • 

TYPE MenuPtr 
Me nuHandIe 

.... Menulnfo; 

.... MenuPtr; 

You can store into and access all the necessary fields of a menu record 
with Menu Manager routines, so normally you don't have to know its 
exact structure. Advanced users, however--particularly those who 
define their own types of menus--may need to know some of the field 
names. 

TYPE Menulnfo = RECORD 

11/1/83 Espinosa-Rose 

menuID: 
menuWidth: 
menuHeight: 
menuProc: 
enableFlags: 
menuData: 

END; 

INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
PACKED ARRAY 
Str255 

[~ •• 31] OF BOOLEAN; 

/MMGR/MENUS.2 



MENU RECORDS 9 

The menuID field contains the menu ID. 

The menuWidth and menuHeight fields contain the menu's horizontal and 
vertical dimensions, respectively. 

The menuProc field contains a handle to the menu definition procedure 
for this type of menu. 

The 0th element of the enableFlags array is TRUE if the menu is 
enabled, or FALSE if it's disabled. The remaining elements similiarly 
determine whether each item in the menu is enabled or disabled. 

The menuData field contains the menu title followed by variable-length 
data that defines the text and other parts of the menu items. The 
Str255 data type enables you to access the title from Pascal; there's 
actually additional data beyond the title that's inaccessible from 
Pascal and is not reflected in the MenuInfo data structure. 

(eye) 
You can read the menu title directly from the menuData 
field, but do not change the title directly, or the data 
defining the menu items may be destroyed. 

Assembly-language note: The Toolbox equates file includes 
menuBlkSize, the length in bytes of all the fields of a menu 
record except menuData. 

THE MENU LIST 

The Menu ~~nager keeps a list of menu handles for all menus in the menu 
bar. The user can pull down and choose from any menu whose handle is 
in this ~ list. The menu bar shows the titles, in order, of all 
menus in the menu list. 

You can have menus that aren't in the menu list. These menus' titles 
don't appear in the menu bar, the menus can't be pulled down, and their 
items can't be chosen. Such menus are useful as "reserve" menus to 
hold items not normally available to the user; these items can be 
exchanged with items in other menus, or entire reserve menus can be 
added to the menu bar. 

The Menu Manager provides all the necessary routines for manipulating 
the menu list, so there's no need to access it yourself directly. As a 
general rule, routines that deal specifically with menus in the menu 
list use the menu ID to refer to menus; those that deal with any menus, 
whether in the menu list or not, use the menu handle to refer to menus. 
Some routines refer to the menu list as a whole, with a handle. 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



10 Menu Manager Programmer's Guide 

Assembly-language note: The system global menuList contains a 
handle to the current menu list. 

CREATING A MENU 

For an application to create menus itself, rather than read them from a 
resource file, it must call the NewMenu and AppendMenu routines of the 
Menu Manager. NewMenu creates a new menu data structure, returning a 
handle to it. AppendMenu takes a string and a handle to a menu and 
adds the items in the string to the end of the menu. 

The string passed to AppendMenu consists mainly of the text of the menu 
items (for a blank item, one or more spaces). Other characters 
interspersed in the string can have special meaning to the Menu 
Manager. These characters, called meta-characters, are used in 
conjunction with text to separate menu items or alter their appearance. 
The meta-characters do not appear in the menu. 

Meta-character 
; or Return 

< 
/ 
( 

Meaning 
Separates items 
Item has an icon 
Item has a check mark or other mark 
Item has a special character style 
Item has a keyboard equivalent 
Item is disabled 

None, any, or all of these meta-characters can appear in the AppendMenu 
string; they are described in detail below. To add one text-only item 
to a menu would require a simple string without any meta-characters: 

AppendMenu(thisMenu, 'Just Enough'); 

An extreme example could use many meta-characters: 

AppendMenu(thisMenu,'(Too Much A l<B/T'); 

This example adds to the menu an item whose text is "Too Much", which 
is disabled, has icon number 1, is boldfaced, and can be invoked by 
Command-T. Your menu items should be much simpler than this. 

(hand) 
If you want any of the meta-characters to appear in the -
text of a menu item, you can include them by changing the 
text with the Menu Manager procedure SetItem. 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



CREATING A MENU 11 

Separating Items 

Each call to AppendMenu can add one or many items to the menu. To add 
multiple items in the same call, use a semicolon (";") or a Return 
character to separate the items. The call 

AppendMenu(thisMenu,'Cut;Copy'); 

has exactly the same effect as the calls 

AppendMenu(thisMenu,'Cut'); 
AppendMenu(thisMenu,'Copy'); 

Items with Icons 

A circumflex (n .... lt) followed by a digit from 1 to 9 indicates that an 
icon should appear to the left of the menu item's text. The digit, 
which is called the icon number, yields the resource ID of the icon in 
the resource file. Resource IDs 257 through 511 are reserved for menu 
icons; thus the Menu Manager adds 256 to the icon number to get the 
proper resource ID. 

If you need to install more than nine icons, you can use the 
SetItemIcon procedure. 

(hand) 
The Menu Manager gets the icon number by subtracting 48 
from the ASCII code of the character following the It ...... 

(since, for example, the ASCII code of "1" is 49). You 
can actually follow the II ...... with any character that has 
an ASCII code greater than 48. 

Marked Items 

You can use an exclamation point ("I") to cause a check mark or any 
other character to be placed to the left of the menu item's text (or 
icon, if any). Follow the exclamation point with the character of your 
choice; note, however, that you may not be able to type a check mark or 
certain other special characters (such as the Apple symbol) from the 
keyboard. To specify one of these characters, .you need to take special 
measures: Declare a string variable to have the length of the desired 
AppendMenu string, and assign it that string with a space following the 
exclamation point. Then separately store the special character in the 
position of the space. The following predefined constants may be 
useful: 

CONST checkMark 
apple Symbol 

11/1/83 Espinosa-Rose 

= 18; 
= 20; 

{check mark} 
{Apple symbol} 

/MMGR/MENUS.2 



12 Menu Manager Programmer's Guide 

For example, suppose you want to use AppendMenu to specify a menu item 
that has the text "Word Wrap" (nine characters) and a check mark to its 
left. You can declare the string variable 

VAR s: STRING[ll]; 

and do the following: 

s := 'Word Wrap! r 

s[ll] := CHR(checkMark); 
AppendMenu(thisMenu,s); 

Character Style of Items 

The system font is the only font available for menus; however, you can 
vary the character style for clarity and distinction. The 
meta-character used to specify the character style is the left angle 
bracket, "<". With AppendMenu, you can assign one and only one of the 
stylistic variations listed below. 

<B Bold 
<I Italic 
<U Underline 
<0 Outline 
<S Shadow 

The SetItemStyle procedure allows you to assign any character style to 
an item. For a further discussion of character style, see the 
QuickDraw manual. 

Items with Keyboard Equivalents 

Any menu item that can be chosen from a menu may also be associated 
with a key on the keyboard. Pressing this key while holding down the 
Command key invokes the item just as if it had been chosen from the 
menu. 

A slash ("/") followed by a character associates that character with 
the item. The specified character (preceded by the Command key symbol) 
appears at the right of the item's text in the menu. For consistency 
between applications, the character should be uppercase if it's a 
letter. When invoking the item, the user can type the letter in either 
uppercase or lowercase. For example, if you specify 'Copy/C', the Copy 
command can be invoked by holding down the Command key and typing 
either C or c. 

An application that receives a key down event with the Command key held 
down can call the Menu Manager with the typed character and receive the 
menu ID and item number of the item associated with that character. 

11/1/83 Espinosa-Rose /MMGR/MENUS • 2 



CREATING A MENU 13 

Disabled Items 

All items in a menu are usually choosable. There will be times when 
you don't want an item to be choosable, either initially or for the 
duration of your program (perhaps due to the program's incomplete 
state). The meta-character that disables an item is the left 
parenthesis tI(tI. A disabled item cannot be chosen; it appears dimmed 
in the menu and is not highlighted when the cursor moves over it. 

Blank items in a menu should always be disabled, as should any items 
used to separate groups of items. For example, the call 

AppendMenu(thisMenu,'Undo;( ;Word Wrap'); 

adds two enabled menu items, Undo and Word Wrap, with a disabled blank 
item between them. Note that one or more spaces are required to 
specify a blank item. 

You can change the enabled or disabled state of a menu item with the 
DisableItem and EnableItem procedures. 

USING THE MENU MANAGER 

This section discusses how the Menu Manager routines fit into the 
general flow of an application program and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

To use the Menu Manager, you must have previously called InitGraf to 
initialize QuickDraw, InitFonts to initialize the Font Manager, and 
InitWindows to initialize the Window Manager. The first Menu Manager 
routine to call is the initialization procedure InitMenus. 

Your application can set up the menus it needs in any number of ways: 

- Allocate the menus with NewMenu, fill them with items using 
AppendMenu, and place them in the menu bar using InsertMenu. 

- Read the menus individually from a resource file using GetMenu, 
and place them in the menu bar using InsertMenu. 

- Read an entire prepared menu list from a resource file with 
GetNewMBar, and place it in the menu bar with SetMenuBar. 

- Allocate a menu with NewMenu, fill it with items using AddResMenu 
to get the names of all available resources of a given type, and 
place the menu in the menu bar using InsertMenu. 

You can use AddResMenu or InsertResMenu to add items from resource 
files to any menu, regardless of how you created the menu or whether it 
already contains any items. 

11/1/83 Espinosa-Rose /MMGR/MENUS.2 



14 Menu Manager Programmer's Guide 

If you call NewMenu to allocate a menu, it will store a handle to the 
standard menu definition procedure in the window record; so if you want 
the menu to be one of your own design, you must replace that handle 
with a handle to your own menu definition procedure. For more 
information, see "Defining Your Own Menus". 

At any time you can change or examine the appearance of an individual 
menu item with the SetItem and Get Item procedures (and similar 
procedures to set or get the item's icon, style, check mark, and so 
on). You can also change the number and order of menus in the menu 
list with InsertMenu and OeleteMenu, or change the entire menu list 
with ClearMenuBar, GetNewMBar, GetMenuBar, and SetMenuBar. 

When your application receives a mouse down event, and the Window 
Manager's FindWindow function returns the predefined constant 
inMenuBar, your application should call the Menu Manager's MenuSelect 
function, supplying it with the point where the mouse button was 
pressed. MenuSelect will pull down the appropriate menu, and retain 
control--tracking the mouse, highlighting menu items, and pulling down 
other menus--until the user releases the mouse button. MenuSelect 
returns a long integer to the application: the high-order word 
contains the menu 10 of the menu that was chosen, and the low-order 
word contains the menu item number of the item that was chosen. The 
menu item number is the index, starting from 1, of the item in the 
menu. The entire long integer is 0 if no item was chosen. 

- If the long integer is 0, your application should just continue to 
poll for further events. 

- If the long integer is nonzero, the application should take the 
appropriate action for when the menu item specified by the 
low-order word is chosen from the menu whose 10 is in the 
high-order word. Only after the action is completely finished 
(after all dialogs, alerts, or screen actions have been taken care 
of) should your application call HiliteMenu(0) to remove the 
highlighting from the menu bar, signaling the completion of the 
action. 

Keyboard equivalents are handled in much the same manner. When your 
application receives a key down event with the Command key held down, 
it should call the MenuKey function, supplying it with the character 
that was typed. MenuKey will return a long integer with the same 
format as that of MenuSelect, and the application can handle the long 
integer in the manner described above. 

(hand) 
You can use the Toolbox Utility routines LoWord and 
HiWord to extract the high-order and low-order words of a 
given long integer, as described in the Toolbox Utilities 
manual. 

When you no longer need a menu, call DisposeMenu if you allocated it 
with NewMenu, or call the Resource Manager procedure ReleaseResource if 
you used GetMenu. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



MENU MANAGER ROUTINES 15 

MENU MANAGER ROUTINES 

This section describes all the Menu Manager procedures and functions. 
They're presented in their Pascal form; for information on using them 
from assembly language, see "Using the Toolbox from Assembly Language" 
*** doesn't exist, but see "Using QuickDraw from Assembly Language" in 
the QuickDraw manual ***. 

Initialization and Allocation 

PROCEDURE InitMenus; 

InitMenus initializes system globals used by the Menu Manager, sets up 
its internal data structures, clears the menu list, and draws the 
(empty) menu bar. Call it once before all other Menu Manager routines. 
An application should never have to call this procedure more than once; 
to start afresh with all new menus, use ClearMenuBar. 

(hand) 
InitWindows, which you previously called to initialize 
the Window Manager, will already have drawn the menu bar; 
InitMenus also draws the menu bar just in case it does 
happen to be called in mid-application. 

FUNCTION NewMenu (menuID: INTEGER; menuTitle: Str255) : MenuHandle; 

NewMenu allocates space for a new menu with the given menu ID and 
title, and returns a handle to it. The new menu (which is created 
empty) is not installed in the menu list. To use this menu, you must 
first call AppendMenu or AddResMenu to fill it with items, InsertMenu 
to place it in the menu list, and DrawMenuBar to update the menu bar to 
include the new title. 

Application menus should always have positive menu IDs. Negative menu 
IDs are reserved for menus belonging to desk accessories. No menu 
should ever have a menu ID of 0. 

To set up the title of the Apple menu of desk accessory names, you can 
use the predefined constant appleSymbol (equal to 20, the ASCII code of 
the Apple symbol). For example, you can declare the string variable 

VAR myTitle: STRING[l]; 

and do the following: 

myTitle := , '; 
myTitle[l] := CHR(appleSymbol); 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



16 Menu Manager Programmer's Guide 

(hand) 
Once a menu is created with NewMenu, the only way to 
deallocate the memory it occupies is by calling 
DisposeMenu. 

FUNCTION GetMenu (menuID: INTEGER) : MenuHandle; 

GetMenu returns a menu handle for the menu having the given resource 
ID. If the menu isn't already in memory, GetMenu calls the Resource 
Manager to read it from the resource file into a menu record in memory. 
It stores the handle to the menu definition procedure in the menu 
record, reading the procedure from the resource file into memory if 
necessary. To use this menu, you must call InsertMenu to place it in 
the menu list and DrawMenuBar to update the menu bar to include the new 
title. 

(hand) 
To deallocate the memory occupied by a menu that you read 
from a resource file with GetMenu, use the Resource 
Manager procedure ReleaseResource. 

Assembly-language note: The macro you invoke to call GetMenu 
from assembly language is named _GetRMenu. 

PROCEDURE DisposeMenu (menu: MenuHandle); 

Call DisposeMenu to deallocate the memory occupied by a menu that you 
allocated with NewMenu. (For menus read from a resource file with 
GetMenu, use the Resource Manager procedure ReleaseResource instead.) 
This is useful if you've created temporary menus that you no longer 
need. 

(eye) 
Make sure you remove the menu from the menu list (with 
DeleteMenu) before disposing of it. Also be careful not 
to use the menu handle after disposing of the menu. 

Assembly-language note: The macro you invoke to call 
DisposeMenu from assembly language is named _DisposMenu. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



MENU MANAGER ROUTINES 17 

PROCEDURE AppendMenu (menu: MenuHandle; data: Str255); 

AppendMenu adds an item or items to the end of the given menu, which 
must previously have been allocated by NewMenu or read from a resource 
file by GetMenu. The data string consists of the text of the menu 
item; it may be blank but should not be the null string. As described 
in the section "Creating a Menu", the following meta-characters may be 
embedded in the data string: 

Meta-character 
; or Return 

< 
/ 

( 

Usage 
Separates mUltiple items 
Followed by an icon number, adds that icon to 
the item 
Followed by a character, marks the item with 
that character 
Followed by B, I, U, 0, or S, sets the character 
style of the item 
Followed by a character, associates a keyboard 
equivalent with the item 
Disables the item 

Once items have been appended to a menu, they cannot be removed or 
rearranged. AppendMenu works properly whether or not the menu is in 
the menu list. 

PROCEDURE AddResMenu (menu: MenuHandle; theType: ResType); 

AddResMenu searches all open resource files for resources of type 
theType and appends the names of all resources it finds to the given 
menu. Each resource name appears in the menu as an enabled item, 
without an icon or mark, and in the normal character style. The 
standard Menu Manager calls can be used to get the name or change its 
appearance, as described below under "Controlling Items' Appearance". 

(hand) 
So that you can have resources of the given type that 
won't appear in the menu, AddResMenu does not append any 
resource names that begin with a period ("."). 

Use this procedure to fill a menu with the names of all available fonts 
or desk accessories. For example, if you declare a variable as 

VAR fontMenu: MenuHandle; 

you can set up a menu containing all font names as follows: 

fontMenu := NewMenu(5, 'Fonts'); 
Add ResMenu ( fontMenu, 'FONT' )'; 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



18 Menu Manager Programmer's Guide 

PROCEDURE InsertResMenu (menu: MenuHandle; theType: ResType; afterItem: 
INTEGER); 

InsertResMenu is the same as AddResMenu (above) except that it inserts 
the resource names in the menu where specified by the afterItem 
parameter: if afterItem is 0, the names are inserted before the first 
menu item; if it's the item number of an item in the menu, they're 
inserted after that item; if it's equal to or greater than the last 
item number, they're appended to the menu as by AddResMenu. 

(hand) 
InsertResMenu inserts the names in the reverse of the 
order that AddResMenu appends them. For consistency in 
the appearance of menus between applications, use 
AddResMenu instead of InsertResMenu if possible. 

Forming the Menu Bar 

PROCEDURE InsertMenu (menu: MenuHandle; beforeID: INTEGER); 

InsertMenu inserts a menu into the menu list before the menu whose menu 
ID equals beforeID. If beforeID is 0 (or isn't the ID of any menu in 
the menu list), the new menu is added after all others. If the menu is 
already in the menu list, InsertMenu does nothing. Be sure to call 
DrawMenuBar to update the menu bar. 

PROCEDURE DrawMenuBar; 

DrawMenuBar redraws the menu bar according to the menu list, 
incorporating any changes since the last call to DrawMenuBar. Any 
highlighted menu title remains highlighted when drawn by DrawMenuBar. 
This procedure should always be called after a sequence of InsertMenu 
or DeleteMenu calls, and after ClearMenuBar, SetMenuBar, or any other 
routine that changes the menu list. 

PROCEDURE DeleteMenu (menuID: INTEGER); 

DeleteMenu deletes a menu from the menu list. If there's no menu with 
the given menu ID in the menu list, DeleteMenu ·has no effect. Be sure 
to call DrawMenuBar to update the menu bar; the menu titles following 
the deleted menu will move over to fill the vacancy. 

(hand) 
DeleteMenu simply removes the menu from the list of 
currently available menus; it doesn't deallocate the menu 
data structure. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



MENU MANAGER ROUTINES 19 

PROCEDURE ClearMenuBar; 

Call ClearHenuBar to remove all menus from the menu list when you want 
to start afresh with all new menus. Be sure to call DrawHenuBar to 
update the menu bar. 

(hand) 
ClearMenuBar, like DeleteMenu, doesn't deallocate the 
menu data structures; it merely removes them from the 
menu list. 

You don't have to call ClearMenuBar at the beginning of your program, 
because InitMenus clears the menu list for you. 

FUNCTION GetNewMBar (menuBarID: INTEGER) : Handle; 

GetNewHBar creates a menu list as defined by the menu bar resource 
having the given resource ID, and returns a handle to it. If the 
resource isn't already in memory, GetNewMBar reads it into memory from 
the resource file. It calls GetMenu to get each of the individual 
menus. 

To make the menu list the current menu list, call SetMenuBar. To 
dispose of the memory occupied by the menu list, use the Memory Manager 
procedure DisposHandle. 

(eye) 
You don't have to know the individual menu IDs to use 
GetNewMBar, but that doesn't mean you don't have to know 
them at all: to do anything further with a particular 
menu, you have to know its ID or its handle (which you 
can get by passing the ID to GetMHandle, as described 
below under "Miscellaneous Utilities"). 

FUNCTION GetMenuBar : Handle; 

GetMenuBar creates a copy of the current menu list and returns a handle 
to the copy. You can then add or remove menus from the menu list (with 
InsertMenu, DeleteMenu, or ClearMenuBar), and later restore the saved 
menu list with SetMenuBar. To dispose of the memory occupied by the 
saved menu list, use the Memory Manager procedure DisposHandle. 

(eye) 
GetMenuBar doesn't copy the menus themselves, only a list 
of their handles. Do not dispose of any menus that might 
be in a saved menu list! 

PROCEDURE SetMenuBar (menuBar: Handle); 

Given a handle to a menu list, SetMenuBar makes it the current menu 
list. You can use this procedure to restore a menu list previously 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



20 Menu Manager Programmer's Guide 

saved by GetMenuBar, or pass it a handle returned by GetNewMBar. Be 
sure to call DrawMenuBar to update the menu bar. 

Choosing From a Menu 

FUNCTION MenuSelect (startPt: Point) : LongInt; 

When a mouse down event occurs in the menu bar, you should call 
MenuSelect with startPt (in global coordinates) equal to the point 
where the mouse button was pressed. MenuSelect tracks the mouse, 
pulling down menus as needed and highlighting menu items under the 
cursor. When the mouse button is released over an enabled item in an 
application menu, MenuSelect returns a long integer whose high-order 
word is the menu ID of the menu, and whose low-order word is the menu 
item number for the item chosen (see Figure 3). It leaves the selected 
menu title highlighted. After performing the chosen task, your 
application should call HiliteMenu(~) to remove the highlighting from 
the menu title. 

1 

menu 
item 

numbers 

2.5 

3 
4 

menu IDs 
I 

7 10 

Undo :~: ~ 

S rnousePt .is where 
6 v'lUord Wrap the cursor is pointing 

tvienuSelect(mouseF't) or MenuKey('Z') returns: 

7 4 

high word low word 

Figure 3. MenuSelect and MenuKey 

MenuSelect returns ~ if no choice is made; this includes the case where 
the mouse button is released over a disabled menu item (such as the 
blank item in Figure 3) or over any menu title. 

If the mouse button is released over an enabled item in a menu 
belonging to a desk accessory, MenuSelect passes the menu ID and item 
number to the Desk Manager procedure SystemMenu for processing and 
returns 0 to your application. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



MENU MANAGER ROUTINES 21 

Assembly-language note: If the system global mBarEnable is 
nonzero, MenuSelect knows that every menu currently in the menu 
bar belongs to a desk accessory. (See the Desk Manager manual 
for more information.) The system global menuHook normally 
contains 0; you can store in it the address of a routine having 
no parameters, and MenuSelect will call that routine repeatedly 
while the mouse button is down. 

FUNCTION MenuKey (ch: CHAR) : LongInt; 

MenuKey maps the given character to the associated menu and item for 
that character. When you get a key down event with the Command key 
held down, call MenuKey with the character that was typed (which can be 
found in the low-order byte of the event message). MenuKey highlights 
the appropriate menu title and returns a long integer just as 
MenuSelect does. This long integer contains the menu ID in its 
high-order word and the menu item number in its low-order word (see 
Figure 3 above). After performing the chosen task, your application 
should call HiliteMenu(0) to remove the highlighting from the menu 
title. 

MenuKey returns 0 if the given character isn't associated with any 
enabled menu item currently in the menu list. 

If the given character invokes a menu item in a menu belonging to a 
desk accessory, MenuKey (like MenuSelect) passes the menu ID and item 
number to the Desk Manager procedure SystemMenu for processing and 
returns 0 to your application. 

(hand) 
There should never be more than one item in the menu list 
with the same keyboard equivalent, but if there is, 
MenuKey returns the first such item encountered (scanning 
the menus from left to right and their items from top to 
bottom). 

PROCEDURE HiliteMenu (menuID: INTEGER); 

HiliteMenu highlights the title of the given menu, or does nothing if 
the title is already highlighted. Since only one menu title can be 
highlighted at a time, it unhighlights any previously highlighted menu 
title. If menuID is 0 (or isn't the ID of any menu in the menu list), 
HiliteMenu simply unhighlights whichever menu title is highlighted. 

After MenuSelect or MenuKey, your application should perform the chosen 
task and then call HiliteMenu(0) to unhighlight the chosen menu title. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



22 Menu Manager Programmer's Guide 

Assembly-language note: The system global theMenu contains the 
menu ID of the currently highlighted menu. 

Controlling Items' Appearance 

PROCEDURE SetItem (menu: MenuHandle; item: INTEGER; itemString: 
Str2SS); 

SetItem changes the text of the given menu item to itemString. It 
doesn't recognize the meta-characters used in AppendMenu; if you 
include them in itemString, they will appear in the text of the menu 
item. The attributes already in effect for this item--its character 
style, icon, and so on--remain in effect. ItemString may be blank but 
should not be the null string. 

Use SetItem to flip between two alternative menu items--for example, to 
change "Show Clipboard" to "Hide Clipboard" when the Clipboard is 
already showing. 

(hand) 
We heartily recommend against capricious changing of menu 
items. 

PROCEDURE GetItem (menu: MenuHandle; item: INTEGER; VAR itemString: 
Str2SS) ; 

GetItem returns the text of the given menu item in itemString. It 
doesn't place any meta-characters in the string. This procedure is 
useful for getting the name of a menu item that was installed with 
AddResMenu or InsertResMenu. 

PROCEDURE DisableItem (menu: MenuHandle; item: INTEGER); 

Given a menu item number in the item parameter, DisableItem disables 
that menu item; given 0 in the item parameter,it disables the entire 
menu. 

Disabled menu items appear dimmed and are not highlighted when the 
cursor moves over them. MenuSelect and MenuKey return 0 if the user 
attempts to invoke a disabled item. Use DisableItem to disable all 
menu choices that aren't appropriate at a given time (such as a Cut 
command when there's no text selection). 

All menu items are initially enabled unless you specify otherwise (such 
as by using the U(It meta-character in a call to AppendMenu). 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



MENU MANAGER ROUTINES 23 

Every menu item in a disabled menu is dimmed. The menu title is also 
dimmed, but you must call DrawMenuBar to update the menu bar to show 
the dimmed title. 

PROCEDURE EnableItem (menu: MenuHandle; item: INTEGER); 

Given a menu item number in the item parameter, EnableItem enables the 
item; given 0 in the item parameter, it enables the entire menu. (The 
item or menu may have been disabled with the DisableItem procedure, or 
the item may have been disabled with the n(It meta-character in the 
AppendHenu string.) The item or menu title will no longer appear 
dimmed and can be chosen like any other enabled item or menu. 

PROCEDURE CheckItem (menu: HenuHandle; item: INTEGER; checked: 
BOOLEAN) ; 

CheckItem places or removes a check mark at the left of the given menu 
item. After you call CheckItem with checked=TRUE, a check mark will 
appear each subsequent time the menu is pulled down. Calling Check Item 
with checked=FALSE removes the check mark from the menu item (or, if 
it's marked with a different character, removes that mark). 

Menu items are initially unmarked unless you specify otherwise (such as 
with the n!n meta-character in a call to AppendMenu). 

PROCEDURE SetItemIcon (menu: HenuHandle; item: INTEGER; icon: INTEGER); 

SetItemIcon associates the given menu item with an icon. It sets the 
item's icon number to the given value (an integer from 1 to 255). The 
Menu Manager adds 256 to the icon number to get the icon's resource ID, 
which it passes to the Resource Manager to get the corresponding icon. 

(eye) 
If you deal directly with the Resource Manager to read or 
store menu icons, be sure to adjust your icon numbers 
accordingly. 

Menu items initially have no icons unless you specify otherwise (such 
as with the n ..... " meta-character in a call to AppendMenu). 

Assembly-Ianguage~: The macro you invoke to call 
SetItemIcon from assembly language is named SetItmIcon. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



24 Menu Manager Programmer's Guide 

PROCEDURE GetItemIcon (menu: MenuHandle; item: INTEGER; VAR icon: 
INTEGER) ; 

GetItemIcon returns the icon number associated with the given menu 
item, as an integer from 1 to 255, or ~ if the item has not been 
associated with an icon. The icon number is 256 less than the icon's 
resource 10. 

Assembly-language note: The macro you invoke to call 
GetItemIcon from assembly language is named GetItmIcon. 

PROCEDURE SetItemStyle (menu: MenuHandle; item: INTEGER; chStyle: 
Style) ; 

SetItemStyle changes the character style of the given menu item to 
chStyle. For example: 

SetItemStyle(thisMenu,l,[bold,italic]); {bold and italic} 

Menu items are initially in the normal character style unless you 
specify otherwise (such as with the "<" meta-character in a call to 
AppendMenu) • 

Assembly-language note: The macro you invoke to call 
SetItemStyle from assembly language is named _SetItmStyle. 

PROCEDURE GetItemStyle (menu: MenuHandle; item: INTEGER; VAR chStyle: 
Style) ; 

GetItemStyle returns the character style of the given menu item in 
chStyle. 

Assembly-language note: The macro you invoke to call 
GetltemStyle from assembly language is named _GetItmStyle. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



MENU MANAGER ROUTINES 25 

PROCEDURE SetltemMark (menu: MenuHandle; item: INTEGER; markChar: 
CHAR); 

SetltemMark marks the given menu item in a more general manner than 
Checkltem. It allows you to place any character in the system font, 
not just the check mark, to the left of the item. You can specify some 
useful values for the markChar parameter with the following predefined 
constants: 

CONST checkMark 
apple Symbol 
noMark 

= 18; 
= 20; 

0; 

{check mark} 
{Apple symbol} 
{nothing, to remove a mark} 

Assembly-language note: The macro you invoke to call 
SetltemMark from assembly language is named Set ItmMark. 

PROCEDURE GetItemMark (menu: MenuHandle; item: INTEGER; VAR markChar: 
CHAR); 

GetItemMark returns in markChar whatever character the given menu item 
is marked with, or the NUL character (ASCII code 0) if no mark is 
present. 

Assembly-language note: The macro you invoke to call 
GetItemMark from assembly language is named GetItmMark. 

Miscellaneous Utilities 

PROCEDURE SetMenuFlash (menu: MenuHandle; count: INTEGER); 

When the mouse button is released over an enabled menu item, the item 
blinks briefly to confirm the choice. Normally your application need 
not be concerned about the duration of the blinking, but for special 
situations SetMenuFlash allows you to control the duration for all 
items in the given menu. Calling SetMenuFlash with a count of 0 
disables blinking; calling it with a count of 2 (the default value) 
will cause items to blink for about 0.1 second. A count of 3 is 
appropriate for naive user applications. Values greater than 3 can be 
annoyingly slow. 

11/1/83 Espinosa-Rose /MMGR/MENUS.R 



26 Menu Manager Programmer's Guide 

Assembly-language note: The macro you invoke to call 
SetMenuFlash from assembly language is named SetMFlash. The 
current count is stored in the system global menuFlash. 

(hand) 
Items in both standard and nonstandard menus blink when 
chosen. The appearance of the blinking for a nonstandard 
menu depends on the menu definition procedure, as 
described under "Defining Your Own Menus". 

PROCEDURE CalcMenuSize (menu: MenuHandle); 

You can use CalcMenuSize to recalculate the horizontal and vertical 
dimensions of a menu whose contents have been changed (and store them 
in the appropriate fields of the menu record). CalcMenuSize is called 
automatically after every AppendMenu, SetItem, SetItemIcon, and 
SetItemStyle call. 

FUNCTION CountMItems (menu: MenuHandle) : INTEGER; 

CountMItems returns the number of menu items in the given menu. 

FUNCTION GetMHandle (menuID: INTEGER) : MenuHandle; 

Given the menu ID of a menu currently installed in the menu list, 
GetMHandle returns a handle to that menu; given any other menu ID, it 
re turns NIL. 

PROCEDURE FlashMenuBar (menuID: INTEGER); 

If menuID is 0 (or isn't the ID of any menu in the menu list), 
FlashMenuBar inverts the entire menu bar; otherwise, it inverts the 
title of the given menu. 

DEFINING YOUR OWN MENUS 

Normally when you create a menu you get the standard type of Macintosh 
menu, as described in this manual. You may, however, want to define 
your own type of menu, such as one with more graphics or perhaps a 
nonlinear text arrangement. QuickDraw and the Menu Manager make it 
possible for you to do this. 

To define your own type of menu, you must write a menu definition 
procedure. The menu definition procedure defines the menu by 

11/1/83 Rose /MMGR/MENUS. D 



DEFINING YOUR OWN MENUS 27 

performing basic operations such as drawing the menu. When the Menu 
Manager needs to perform one of these operations, it calls the menu 
definition procedure with a parameter that identifies the operation, 
and the menu definition procedure in turn takes the appropriate action. 

Usually you'll store the menu definition procedure as a resource in a 
resource file. If you won't be sharing it with other applications, you 
may want to include it with your application code instead. 

When you create a menu with NewMenu, it stores a handle to the standard 
menu definition procedure in the menu record's menuProc field; you must 
replace this with a handle to your own menu definition procedure. If 
your definition procedure is in a resource file, you get the handle by 
calling the Resource Manager to read it from the resource file into 
memory. 

Instead of creating menus with NewMenu, your application may read the 
menus from a resource file with GetMenu (or GetNewMBar, which calls 
GetMenu). A menu in a resource file contains the resource 10 of its 
menu definition procedure. If you store the resource ID of your own 
menu definition procedure in a menu in a resource file, GetMenu will 
take care of reading the procedure into memory and storing a handle to 
it in the menuProc field of the menu record. 

The Menu Definition Procedure 

The menu definition procedure may be written in Pascal or assembly 
language; the only requirement is that its entry point be at the 
beginning. You may choose any name you wish for the procedure. Here's 
how you would declare one named MyMenu: 

PROCEDURE MyMenu (message: INTEGER; menu: MenuHandle; menuRect: 
Re'ct; hitPt: Point; VAR whichItem: INTEGER); 

The message parameter identifies the operation to be performed. Its 
value will be one of the following predefined constants: 

CONST mDrawMsg = 0; 
mChooseMsg = 1; 

mSizeMsg = 2; 

{draw the menu} 
{tell which menu item was chosen and} 
{ highlight it} 
{calculate the menu's dimensions} 

The menu parameter indicates the menu that the .operation will affect, 
and menuRect is the rectangle (in global coordinates) in which the menu 
is located. 

The message mOrawMsg tells the menu definition procedure to draw the 
menu inside menuRect; the grafPort will be set up properly for this. 
(For details on drawing, see the QuickOraw manual.) The standard menu 
definition procedure figures out how to draw the menu items by looking 
in the menu record at the data that defines them; this data is 
described in detail under "Formats of Resources for Menus" below. For 
menus of your own definition, you may set up the data defining the menu 

11/1/83 Rose IMMGR/MENUS.D 



28 Menu Manager Programmer's Guide 

items any way you like, or even omit it altogether (in which case all 
the information necessary to draw the menu would be in the menu 
definition procedure itself). 

(eye) 
Be sure that any text in the menu is drawn in the system 
font. 

When the menu definition procedure receives the message mChooseMsg, the 
hitPt parameter is the point (in global coordinates) where the mouse 
button was pressed, and the whichItem parameter is the item number of 
the last item that was chosen from this menu. The procedure should 
test whether hitPt is inside menuRect and respond accordingly: 

- If hitPt is inside menuRect, unhighlight whichItem, highlight the 
newly chosen item, and return the item number of that item in 
which Item. 

- If hitPt isn't inside menuRect, unhighlight whichItem and return 
0. 

(hand) 
When the Menu Manager needs to make a chosen menu item 
blink, it repeatedly calls the menu definition procedure 
with the message mChooseMsg, causing the item to be 
alternately highlighted and unhighlighted. 

Finally, the message mSizeMsg tells the menu definition procedure to 
calculate the horizontal and vertical dimensions of the menu and store 
them in the menuWidth and menuHeight fields of the menu record. 

FORMATS OF RESOURCES FOR MENUS 

The resource type for a menu definition procedure is 'MDEF'. The 
standard menu definition procedure has a resource ID of 0, so your own 
such procedures must have resource IDs other than 0. The resource data 
is simply the assembled code of the procedure. 

Icons in menus must be stored in a resource file under the resource 
type 'ICON' with resource IDs from 257 to 511. Strings in resource 
files have the resource type 'STR '--but note that if you follow the 
recommendation of storing entire menus in resource files, you'll never 
have to store the strings they contain separately. 

The formats of menus and menu bars in resource files are given below. 

11/1/83 Rose /MMGR/MENUS.D 



FORMATS OF RESOURCES FOR MENUS 29 

Menus in a Resource File 

The resource type for a menu is 'MENU'. The resource ID must be 
negative for menus belonging to desk accessories and positive for other 
menus; it should never be 0. The resource data for a menu has the 
format shown below. Once read into memory, this data is stored in a 
menu record (described earlier in the "Menu Records" section). 

Number of bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
2 bytes 
4 bytes 
1 byte 
n bytes 

Contents 
Menu ID (resource ID of this menu) 
0; placeholder for menu width 
0; placeholder for menu height 
Resource ID of menu definition procedure 
o (see comment below) 
Same as enable Flags field of menu record 
Length of following title in bytes 
Characters of menu title 

For each menu item: 
1 byte Length of following text in bytes 
m bytes Text of menu item 
1 byte 
1 byte 
1 byte 
1 byte 

1 byte 

Icon number, or 0 if no icon 
Keyboard equivalent, or 0 if none 
Character marking menu item, or 0 if none 
Character style of item's text 
0, indicating end of menu items 

The four bytes beginning with the resource ID of the menu definition 
procedure serve as a placeholder for the handle to the procedure: When 
GetMenu is called to read the menu from the resource file, it also 
reads in the menu definition procedure if necessary, and replaces these 
four bytes with a handle to the procedure. The resource ID of the 
standard menu definition procedure is: 

CONST textMenuProc = 0; 

The resource data for a nonstandard menu can define menu items in any 
way whatsoever, or not at all, depending on the requirements of its 
menu definition procedure. If the appearance of the items is basically 
the same as the standard, the resource data might be as shown above, 
but in fact everything following "For each menu item" can have any 
desired format or can be omitted altogether. Similarly, all bits 
beyond the first of the enableFlags array may be set and used in any 
way desired by the menu definition procedure; the first bit applies to 
the entire menu and must reflect whether it's enabled or disabled. 

If your menu definition procedure does use the enableFlags array, 
menus of that type may contain no more than 31 items (1 per available 
bit); otherwise, the number of items they may contain is limited only 
by the amount of room on the screen. 

(hand) 
See "Using the Toolbox from Assembly Language" for the 
exact format of the character style byte. *** (Currently 

11 II 183 Rose IMMGR/MENUS.D 



30 Menu Manager Programmer's Guide 

it's in "Using QuickDraw from Assembly Language" in the 
QuickDraw manual.) *** 

(eye) 
Menus in resource files must not be purgeable. 

Menu Bars in a Resource File 

The resource type for the contents of a menu bar is 'MBAR' and the 
resource data has the following format: 

Number of bytes 
2 bytes 
For each menu: 

2 bytes 

11/1/83 Rose 

Contents 
Number of menus 

Resource ID of menu 

/MMGR/MENus.n 



SUMMARY OF THE MENU MANAGER 31 

SUMMARY OF THE MENU MANAGER 

Constants 

CONST noMark 
checkMark 
applesymbol 

(a; 
18; {check mark} 
2(a; {Apple symbol} 

(a; {draw the menu} mDrawMsg 
mChooseMsg 
mSizeMsg 

1; {tell which item was chosen and highlight it} 
2; {calculate the menu's dimensions} 

textMenuProc = (a; 

Data Structures 

TYPE MenuPtr 
MenuHandle 
MenuInfo 

Routines 

"MenuInfo; 
"MenuPtr; 
RECORD 

menuID: 
menuWidth: 
menuHeight: 
menuProc: 
enableFlags: 
menuData: 

END; 

Initialization and Allocation 

INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
PACKED ARRAY 
Str255 

[(a •• 31] OF BOOLEAN; 

PROCEDURE InitMenus; 
FUNCTION NewMenu (menuID: INTEGER; menuTitle: Str255) 

FUNCTION GetMenu 
PROCEDURE DisposeMenu 
PROCEDURE AppendMenu 
PROCEDURE AddResMenu 
PROCEDURE InsertResMenu 

Forming the Menu Bar 

MenuHandle; 
(menuID: INTEGER) : MenuHandle; 
(menu: MenuHandle); 
(menu: MenuHandle; data: Str255); 
(menu: MenuHandle; theType: ResType); 
(menu: MenuHandle; theType: ResType; afterItem: 

INTEGER) ; 

PROCEDURE InsertMenu (menu: MenuHandle; beforeID: INTEGER); 
PROCEDURE DrawMenuBar; 
PROCEDURE DeleteMenu (menuID: INTEGER); 

11/1/83 Espinosa-Rose /MMGR/MENUS.S 



32 Menu Manager Programmer's Guide 

PROCEDURE ClearMenuBar; 
FUNCTION GetNewMBar 
FUNCTION GetMenuBar 
PROCEDURE SetMenuBar 

Choosing from a Menu 

(menuBarID: INTEGER) 
Handle; 

(menuBar: Handle); 

Handle; 

FUNCTION MenuSelect (startPt: Point) : LongInt; 
FUNCTION MenuKey (ch: CHAR) : LongInt; 
PROCEDURE HiliteMenu (menuID: INTEGER); 

Controlling Items' AEEearance 

PROCEDURE SetItem (menu: MenuHandle; item: INTEGER; 
Str255) ; 

PROCEDURE Get Item (menu: MenuHandle; item: INTEGER; 
Str255) ; 

PROCEDURE DisableItem (menu: MenuHandle; item: INTEGER) ; 
PROCEDURE EnableItem (menu: MenuHandle; item: INTEGER); 
PROCEDURE CheckItem (menu: MenuHandle; item: INTEGER; 

BOOLEAN) ; 
PROCEDURE Set ItemIcon (menu: MenuHandle; item: INTEGER; 
PROCEDURE GetItemIcon (menu: MenuHandle; item: INTEGER; 

INTEGER) ; 
PROCEDURE Set ItemStyle (menu: MenuHandle; item: INTEGER; 
PROCEDURE Get ItemStyle (menu: MenuHandle; item: INTEGER; 

Style) ; 
PROCEDURE SetItemMark (menu: MenuHandle; item: INTEGER; 
PROCEDURE Get ItemMark (menu: MenuHandle; item: INTEGER; 

CHAR) ; 

Miscellaneous Utilities 

itemString: 

VAR itemString: 

checked: 

icon: INTEGER) ; 
VAR icon: 

chStyle: Style); 
VAR chStyle: 

markChar: CHAR); 
VAR markChar: 

PROCEDURE SetMenuFlash 
PROCEDURE CalcMenuSize 
FUNCTION CountMItems 
FUNCTION GetMHandle 
PROCEDURE FlashMenuBar 

(menu: MenuHandle; count: INTEGER); 
(menu: MenuHandle); 

11/1/83 Espinosa-Rose 

(menu: MenuHandle) : INTEGER; 
(menuID: INTEGER) : MenuHandle; 
(menuID: INTEGER); 

/MMGR/MENUS.S 



SUMMARY OF THE MENU MANAGER 33 

Meta-Characters for AppendMenu 

Meta-character 
; or Return 

< 

/ 

( 

Usage 
Separates mUltiple items 
Followed by an icon number, adds that icon to 
the item 
Followed by a character, marks the item with 
that character 
Followed by B, 1, U, 0, or S, sets the character 
style of the item 
Followed by a character, associates a keyboard 
equivalent with the item 
Disables the item 

Menu Definition Procedure 

PROCEDURE MyMenu (message: INTEGER; menu: MenuHandle; menRect: Rect; 
hitPt: Point; VAR whichItem: INTEGER); 

Assembly-Language Information 

Constants 

noMark 
checkMark 
apple Symbol 

mDrawMsg 
mChooseMsg 

mSizeMsg 

Menu Record Data 

menuID 
menuWidth 
menuHeight 
menuDefHandle 
menuEnable 
menu Data 
menuBlkSize 

.EQU 0 

.EQU 18 

.EQU 20 

.EQU f/J 

.EQU 1 

.EQU 2 

Structure 

Menu ID 
Menu width 
Menu height 

;check mark 
;Apple symbol 

;draw the menu 
;tell which item was chosen and 
; highlight it 
;calculate the menu's dimensions 

Handle to menu definition procedure 
Enable flags 
Menu title followed by data defining the items 
Length of all the above fields except menuData 

11/1/83 Espinosa-Rose /MMGR/MENUS.S 



34 Menu Manager Programmer's Guide 

Special Macro Names 

Routine name 
DisposeMenu 
GetItemIcon 
Ge t ItemMark 
GetItemStyle 
GetMenu 
SetItemIcon 
Set ItemMark 
Set ItemStyle 
SetMenuFlash 

System Globals 

Name 
menuList 
mBarEnable 

menuHook 

the Menu 
menuFlash 

Macro name 
_DisposMenu 

GetItmIcon 
GetItmMark 

_GetItmStyle 
GetRMenu 
SetItmlcon 
SetItmMark 

_SetItmStyle 
SetMFlash 

Size 
4 bytes 
2 bytes 

4 bytes 

2 bytes 
2 bytes 

Contents 
Handle to current menu list 
Nonzero if menu bar belongs to a desk 
accessory 
Hook for routine to be called during 
MenuSelect 
Menu ID of currently highlighted menu 
Count for duration of menu item blinking 

11/1/83 Espinosa-Rose /MMGR/MENUS.S 



GLOSSARY 35 

GLOSSARY 

character style: A set of stylistic variations, such as bold, italic, 
and underline. The empty set indicates normal text (no stylistic 
variations). 

dimmed: Drawn in gray rather than black. 

disabled: A disabled menu item or menu is one that cannot be chosen; 
the menu item or menu title appears dimmed. 

icon: A 32-by-32 bit image that graphically represents an object, 
concept, or message. 

icon number: A digit from 1 to 9 to which the Menu Manager adds 256 to 
get the resource ID of an icon associated with a menu item. 

keyboard equivalent: A way of invoking a menu item from the keyboard, 
by holding down the Command key and typing a character. 

menu: A list of menu items that appears when the user points to and 
presses a menu title in the menu bar. Dragging through the menu and 
releasing over an enabled menu item chooses that item. 

menu bar: The horizontal strip at the top of the Macintosh screen that 
contains the menu titles of all menus in the menu list. 

menu definition procedure: A procedure called by the Menu Manager when 
it needs to perform basic operations on a particular type of menu, such 
as drawing the menu. 

menu 10: For menus defined in resource files, the resource 1D of the 
menu; for application menus, a positive number that you choose to 
identify the menu. 

menu item: A choice in a menu, usually a command to the current 
application; in a standard Macintosh menu, a line containing text and 
possibly an icon. 

menu item number: The index, starting from 1, of a menu item in a 
menu. 

menu list: A list of menu handles for all menus in the menu bar, kept 
internally by the Menu Manager. 

menu record: The internal representation of a menu, where the Menu 
Manager stores all the information it needs for its operations on that 
menu. 

menu title: A word or phrase in the menu bar that designates one menu. 

meta-character: One of the characters ; A ! < / ( or Return appearing 
in the string passed to the Menu Manager routine AppendMenu, to 

11/1/83 Espinosa-Rose /MMGR/MENUS. G 



36 Menu Manager Programmer's Guide 

separate menu items or alter their appearance. 

11/1/83 Espinosa-Rose /MMGR/MENUS.G 



COMME:NTS? 
Macintosh User Education encourages. your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (Indicated on the cover 
page) at 1 0460 Bandley Drive MIS 3-G, Cupertino CA 95014. . 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

TextEdit: A Programmer's Guide 

See Also: The Macintosh User Interface Guidelines 
Macintosh Operating System Manual 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
CoreEdit: A Programmer's Guide 

Modification History: First Draft (ROM 7) 

ITEXT.EDIT/EDIT 

B. Hacker 9/28/83 

ABSTRACT 

The TextEdit package of the Macintosh User Interface Toolbox is a set of 
data types and routines for handling basic text formatting and editing 
capabilities in a Macintosh application. This manual describes TextEdit 
in detail. 



2 TextEdit Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About TextEdit 
4 The Editing Environment: Edit Record 
5 The Destination and View Rectangles 
6 The Selection Range 
8 Justification 
9 The TERec Data Type 
11 Using TextEdit 
13 TextEdit Routines 
13 Initialization 
14 Manipulating Edit Records 
14 Editing 
17 Selection Range and Justification 
17 Mice and Carets 
18 Text Display 
19 Advanced Routines 
2~ Notes for Assembly-Language Programmers 
21 Summary of TextEdit 
23 Glossary 

Copyright (c) 1983 Apple Computer, Inc. All rights reserved. 

Distribution of this draft in limited quantities does not constitute 
publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

The TextEdit package of the Macintosh User Interface Toolbox is a set 
of data types and routines for handling basic text formatting and 
editing capabilities in a Macintosh application. This manual describes 
TextEdit in detail. 

The Toolbox also includes a more sophisticated text editing package, 
called CoreEdit. You'll need to use CoreEdit instead of TextEdit if 
you want fully justified text, recognition of word boundaries during 
editing ("intelligent cut and paste"), or tabbing. Bear in mind, 
however, that CoreEdit is not in the Macintosh ROM, and occupies over 
6K of your application's available memory instead. 

(hand) 
This manual describes the TextEdit that works with 
version 7 of the ROM. If you're using a different 
version, the information presented here may not apply. 

Like all documentation about Toolbox units, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

- The basic concepts and structures behind QuickDraw, particularly 
points, rectangles, grafPorts, fonts, and character style. 

- The ToolBox Event Manager. Some TextEdit routines are called only 
in response to particular events. 

- The Window Manager, particularly update and activate events. 

The manual begins with an introduction to TextEdit and what you can do 
with it. It then discusses the edit record, the primary data structure 
used by the text editing routines. Learning about this data structure 
will give you the background you need to understand the routines 
themselves. 

Next, a section on using TextEdit introduces you to its routines and 
tells how they fit into the flow of your application. This is followed 
by detailed descriptions of all text editing procedures and functions-
their parameters, calling protocol, effects, side effects, and so on. 

Following these descriptions is a section contain"ing notes for 
programmers who will use TextEdit from assembly language. 

Finally, there's a summary of the TextEdit data structures and routine 
calls, for quick reference, and a glossary of terms used in this 
manual. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



4 TextEdit Programmer's Guide 

ABOUT TEXTEDIT 

TextEdit is a group of compact and efficient routines that provide the 
basic textedlting and formatting capabilities needed in an 
application. These routines perform.operations such as: 

- Inserting new text 

- Deleting characters that are backspaced over 

- Translating mouse activity into text selection 

- Moving text within a window 

- Deleting selected text and possibly inserting it elsewhere, or 
copying text without deleting it 

Because these routines follow the Macintosh User Interface Guidelines, 
using them ensures that your application presents a consistent, 
easy-to-Iearn interface for end users. In particular, TextEdit 
supports these standard features: 

- Selecting text by clicking and dragging with the mouse, 
double-clicking to select words instead of characters. 

- Inverse highlighting of the current text selection, or display of 
a blinking vertical bar at the insertion point. 

- Word wrap, which prevents words from being split between lines 
when text is drawn. To TextEdit, a word is any series of printing 
characters, excluding spaces (ASCII code $2~) but including 
nonbreaking spaces (ASCII code $CA). 

- Cutting (or copying) and pasting within an application via the 
Clipboard *** not currently described as "Clipboard" in the User 
Interface Guidelines, but will be ***. TextEdit puts text you cut 
or copy into a string of characters called the scrap. 

(hand) 
Cutting and pasting between applications, or between 
applications and desk accessories, is done with th~ aid 
of the Scrap Manager (see the Scrap Manager manual for 
details). 

THE EDITING ENVIRONMENT: EDIT RECORD 

To edit text on the screen, the text editing routines need to know 
where and how to display the text, where to store the text, and other 
information related to editing. This display, storage, and editing 
information is contained in an edit record that defines the complete 
editing environment. The data type of an edit record is called TERec. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



THE EDITING ENVIRONMENT: EDIT RECORD 5 

You prepare to edit text by passing, to a procedure, a destination 
rectangle in which to draw the text and a view rectangle in which the 
text will be visible. The procedure incorporates the rectangles and 
the drawing environment of the current grafPort into an edit record, 
and returns a handle to the record: 

TYPE TEPtr 
TEHandle 

ATERec; 
ATEPtr; 

Most of the text editing routines require you to pass this handle as a 
parameter. 

In addition to the two rectangles and a description of the drawing 
environment, the edit record also contains: 

- A handle to the text to be edited 

- A pointer to the grafPort 

- The current selection range, which determines exactly which 
characters will be affected by the next editing operation 

- The justification of the text, as left, right, or center 

The special terms introduced here are described in detail below. 

Most programmers won't access any of the fields of an edit record 
directly, and so don't have to know its exact structure; the necessary 
access is done with TextEdit routines. Advanced programmers, however, 
may need to know some of the field names. The structure of an edit 
record is given below. 

The Destination and View Rectangles 

The destination rectangle is the rectangle in which the text is drawn. 
The view rectangle is the rectangle within which the text is actually 
visible. In other words, the view of the text drawn in the destination 
rectangle is clipped to the view rectangle (see Figure 1). 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



6 TextEdit Programmer's Guide 

r····~·~;·:··~~~~::~~···~:······i i'Th'i;"d~~~~~;~t"i';"f~'i'i"~ 
~ full of choice ~ ~ choice bits of re8di~~ 
~ bits of reading ~ ~ material. Note that tE~ 
i materl·sl Note ~ '.= drawn wi1hin the dest~ 
~ · ~L View ~ ~ that text is drawn !'f-",-- ---7~~rectangle .. but visible~ 
~ within the ! Rectangle ~ the view rectangle. ~ 
: destination: ~ ~ 
; ~ ~ ~ 

l. .~1~~;r:'.~.~~b __ ... ..I ! ! 
~ ~ 
: .................................. -.•.•.................. : 

L Destination 
~---- ------~ 

" Rectangle / 

Figure 1. Destination and View Rectangles 

You specify both rectangles in the coordinate system of the grafPort. 
In a document window, the destination rectangle should be inset about 
four pixels from the left and right edges of the grafPort's portRect 
(20 pixels from the right edge if there's a scroll bar or size box) to 
ensure that the first and last character in each line is legible. 

Edit operations may of course lengthen or shorten the text. If the 
text becomes too long to be enclosed by the destination rectangle, it's 
simply drawn beyond the bottom. In other words, you can think of the 
destination rectangle as bottom1ess--its sides determine the beginning 
and end of each line of text, and its top determines the position of 
the first line. 

Normally, at the right edge of the destination rectangle, the text 
automatically wraps around to the left edge to begin a new line. A new 
line also begins where explicitly specified by a Return character in 
the text. Word wrap ensures that words are never split between lines 
unless they're too long to fit entirely on one line. 

The Selection Range 

In the text editing environment, a character position is an index into 
the text, with position 0 corresponding to the first character. The 
edit record includes fields for character positions that specify the 
beginning and end of the current selection range, which is the series 
of characters at which the next editing operation will occur. For 
example, the procedures that cut or copy from the text of an edit 
record do so to the current selection range. 

The selection range, which is always inversely highlighted, extends 
from the beginning character position up to but NOT including the end 
position. Figure 2 shows a selection range defined by the beginning 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



THE EDITING ENVIRONMENT: EDIT RECORD 7 

position 2 and the end position 7; it consists of five characters, 
those at positions 2 through 6. The end position may be 1 greater than 
the position of the last character of the text, so that the selection 
range can include the last character. 

T~ection range is inversely 
highlighted. 

Select ion range 
begiming at position 2 
and ending at position 7 

Thel insertion point is marted with a 
bl inking ceret. 

Figure 2. 

lmertion point 
at position 3 

Selection Range and Insertion Point 

If the beginning and end of the selection range are the same, that 
character pOSition is the text's insertion point, the position where 
characters will be inserted. By convention, it's usually marked with a 
caret that blinks (is repeatedly inverted). If, for example, the 
insertion point is as illustrated in Figure 2 and the inserted 
characters are" edit", the text will read "The edit insertion 
point ••• ". 

(hand) 
We use the word caret here generically, to mean a symbol 
indicating where something is to be inserted; the 
specific symbol is a vertical bar. TextEdit does not 
automatically change the caret to a vertical bar for you. 
(You must use the QuickDraw procedure SetCursor.) 

If you call a procedure to insert characters when there's no insertion 
point (that is, when there's a selection range of one or more 
characters), the editing procedure automatically deletes the selection 
range and replaces it with an insertion point, before inserting the 
characters. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



8 TextEdit Programmer's Guide 

Justification 

TextEdit allows you to specify the justification of the lines of text, 
that is, their horizontal placement with respect to the left and right 
edges of the destination rectangle. The different types of 
justification are illustrated in Figure 3. 

- Left justification aligns the text with the left edge of the 
destination rectangle. This is the default type of justification. 

- Center justification centers the text between the left and right 
edges of the destination rectangle. 

- Right justification aligns the text with the right edge of the 
destination rectangle. 

(hand) 

This is an example 
of left 
justification. See 
how the text is 
aligned with the 
left edge of the 
rectangle. 

This is an example 
of right 

justification. See 
how the text i $ 

aligned with the 
right edge (.f the 

rectangle. 

This is an example 
of center 

justification. See 
how the text is 

centered between 
the edges of the 

rectangle. 

Figure 3. Justification 

Trailing and leading spaces on a line are ignored for 
justification. For example, "Fred" and" Fred "will be 
aligned identically. 

TextEdit has three predefined constants for setting the 
justification: 

CONST teJustLeft 
teJustCenter 
teJus tRight 

9/28/83 Hacker 

= 

= 

~; 
1 ; 
-1 ; 

CONFIDENTIAL /TEXT.EDIT/EDIT.2 



THE EDITING ENVIRONMENT: EDIT RECORD 9 

The TERec Data Type 

For those who want to know more about the structure of an edit record, 
some (but not all) of the structure is given here. You can skip this 
section if you want and still use TextEdit as described above, but some 
TextEdit features are available only if you change fields in the edit 
record directly. 

(eye) 
The fields that are not described exist solely for 
internal use among the text editing routines; their 
contents cannot be predicted and must not be changed. 

TYPE TERec = RECORD 
destRect: Rect; {destination rectangle} 
viewRect: Rect; {view rectangle} 
lineHeight: INTEGER; {line height} 
firstBL: INTEGER; {location of first base line} 
selStart: 
selEnd: 
just: 
length: 
hText: 
txFont: 
txFace: 
txMode: 
txSize: 
inPort: 
crOnly: 
nLines: 
lineStarts: 

INTEGER; {start of selection range} 
INTEGER; {end of selection range} 
INTEGER; {justification} 
INTEGER; {length of text} 
Handle; {text to be edited} 
INTEGER; {text font} 
INTEGER; {character style} 
INTEGER; {pen mode} 
INTEGER; {type size} 
GrafPtr; {grafPort} 
INTEGER; {new line at Return only, if <0} 
INTEGER; {number of lines} 
ARRAY [0 •• 32000] OF INTEGER 

{positions of line starts} 
{some fields within the record are for internal use 
only, and aren't shown here; see the Pascal interface 
to TextEdit} 

END; 

Any of the fields in the edit record can be changed, at your 
discretion. Clearly, some fields (such as length, hText, 
inPort, and crOnly) might be changed frequently. The lineStarts 
array should be left unchanged. 

The lineHeight field specifies the line height of the text, the number 
of pixels from the base line of one line to the base line of the next 
line, as shown in Figure 4. For single-spaced lines, line height is 
the same as the type size, for double-spaced lines, line height is 
twice the type size, and so on. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



10 TextEdit Programmer's Guide 

qrSJ 

firstBL 

I ine height, 
type size 

firstBL 

efg 
line height 

qrs .. } type size 

single-spaced double-spaced 

Figure 4. Line Height and FirstBL 

The firstBL field specifies the number of pixels from the top of the 
destination rectangle to the base line of the first line of text. 
Initially the firstBL field is set for single-spaced lines, but you can 
change it for any other spacing you want. For example, to change from 
single to double spacing, use 

firstBL := firstBL + typeSize 
lineHeight := 2 * typeSize 

where typeSize is the type size of the text. 

The hText field is a handle to the text to be edited, and the length 
field contains the number of characters in the text. You can directly 
change the text of an edit record by changing these two fields. 

The crOnly field specifies whether or not text wraps around at the 
right edge of the destination rectangle, as shown in Figure 5. If 
crOnly is zero or positive, text does wrap around. If crOnly is 
negative, text does not wrap around at the edge of the destination 
rectangle, and new lines are specified explicitly by Return characters 
only. This is somewhat faster than wrap around, and is useful in 
applications such as a programming-language editor, where you don't 
want a single line of code to be split onto two or more lines. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



THE EDITING ENVIRONMENT: EDIT RECORD 11 

There's a Return 
character at the end 
of this line. 
But not at the end of 
this line. Or this line. 

New I ine at Return 
characters and edge of 
desti nat i on rectangl e. 

Figure 5. 

There's 8 Return charac 
But not at the end of tt 

New line at Return 
characters only. 

New Lines 

The nLines field contains the number of lines in the text. The 
lineStarts array contains the character position of the first character 
in each line. It's declared to have 32001 elements to comply with 
Pascal range checking; it's actually a dynamic data structure having 
only as many elements as needed. 

(hand) 
The values of the lineStarts array, selEnd, and selStart 
are stored internally as unsigned integers. Be aware 
that negative values passed from Pascal will be 
interpreted as greater than 32767. 

USING TEXTEDIT 

This section discusses how the text editing routines fit into the 
general flow of an application program and gives you an idea of what 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

Before using TextEdit, you should initialize QuickDraw, the Font 
Manager, and the Window Manager, in that order. 

The first TextEdit routine to call is the initialization procedure 
TEInit. Call TENew to allocate an edit record; it returns a handle to 
the record. Most of the text editing routines require you to pass this 
handle as a parameter. 

To make a blinking caret appear at the insertion point, call the TEIdle 
procedure as often as possible; if it's not called often enough, the 
caret will blink irregularly. 

Your application's "main loop" should call the Toolbox Event Manager 
function GetNextEvent to learn whether any events have occurred. 
Events that pertain to TextEdit need to be handled by TextEdit 
routines. Whenever a mouse down event occurs within the view 
rectangle, call the TEClick procedure. TEClick automatically controls 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



12 TextEdit Programmer's Guide 

the placement of the selection range and insertion pOint (including 
supporting use of the Shift key to make extended selections). 

There are several procedures available for editing text. Usually they 
are called in response to mouse down events and menu selections. The 
editing procedures are: 

- TEKey inserts characters at the insertion point, and deletes 
characters backspaced over. 

- TECut transfers the selection range to the scrap, removing it from 
the text, and TEPaste inserts the scrap at the insertion point. 
By calling TECut, changing the insertion point, and then calling 
TEPaste, you can perform a "cut and paste" operation, moving text 
from one place to another. 

- TECopy copies the selection range to the scrap. By calling 
TECopy, changing the insertion pOint, and then calling TEPaste, 
you can make multiple copies of text. 

- TEDelete removes the selection range (without transferring it to 
the scrap). 

- TEInsert inserts text at the insertion point. You can use this to 
combine two or more documents. TEDelete and TEInsert do not 
modify the scrap, and consequently are useful for implementing the 
Undo command (as described in the Macintosh User Interface 
Guidelines). 

After each editing procedure, the text is redrawn from the insertion 
point to the end of the destination rectangle. You never have to pass 
the selection range or insertion point to the editing procedures; the 
procedures simply access that information from the edit record. The 
editing procedures and TEClick leave the selection range or insertion 
point where it should be, according to the Macintosh User Interface 
Guidelines, so you don't have to set it yourself. But, in case you 
want to, you can modify the selection range directly by using the 
TESetSelect procedure. 

Every time GetNextEvent reports an update event for the text editing 
window, call TEUpdate (along with the Window Manager procedures 
BeginUpdate and EndUpdate), to redraw the text. 

(hand) 
Advanced programmers: you must call TEUpdate after you 
change any fields of the edit record if the fields affect 
the appearance of the text. This ensures that the screen 
accurately reflects the changed editing environment. 

The procedures TEActivate and TEDeactivate must be called each time the 
Event Manager reports an activate event for the text editing window. 
TEActivate simply highlights the selection range or displays a caret at 
the insertion point, and TEDeactivate unhighlights the selection range 
or removes the caret. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.2 



USING TEXTEDIT 13 

To specify the justification of the text, you can use TESetJust (which 
requires calling TEUpdate). 

If at any time you want to change the text being edited, you can do so 
by calling TESetText. A common technique (used in dialog boxes, for 
instance) is to allocate a single edit record for several separate 
pieces of text where only one may be edited at a time; this saves 
having to allocate an edit record for each of them. 

When you've finished working with the text of an edit record, you can 
get a handle to the text by calling TEGetText. When you're completely 
done with an edit record and want to dispose of it, call TEDispose, 
which removes the text and edit record from the heap. 

If you ever want to draw text in any given rectangle (without being 
able to edit it), use the TextBox procedure. 

Advanced programmers may wish to use the TEScroll procedure, to move 
text within the view rectangle, or TECaiText, to recalculate the 
beginning of each line after changing the text or the destination 
rectangle. 

TEXTEDIT ROUTINES 

This section describes all the procedures and functions in TextEdit. 
They are presented in their Pascal form; for information on using them 
from assembly language, see "Using the Toolbox from Assembly Language" 
*** doesn't exist, but see the QuickDraw manual *** and also "Notes 
for Assembly-Language Programmers" in this manual. 

Initialization 

PROCEDURE TEInit; 

TEInit initializes TextEdit by allocating a handle for the scrap. The 
scrap is initially empty. Call this procedure once and only once at 
the beginning of your program. 

FUNCTION TENew (destRect,viewRect: Rect) : TEHandle; 

TENew allocates a handle for the text, builds and initializes an edit 
record, and returns a handle to the new edit record. DestRect and 
viewRect are the destination and view rectangles, respectively. Both 
rectangles are specified in the current grafPort's coordinates. Call 
this procedure once for every edit record you want allocated. The edit 
record incorporates the drawing environment of the grafPort, and is 
initialized for left-justified, single-spaced text with an insertion 
point at character position 0. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R 



14 TextEdit Programmer's Guide 

Manipulating Edit Records 

PROCEDURE TESetText (text: Ptr; length: LongInt; hTE: TEHandle); 

TESetText takes the specified text and incorporates it into the edit 
record specified by hTE. The text parameter points to the text, and 
the length parameter indicates the number of characters in the text. 
The selection range is set to an insertion point at the end of the 
text. TESetText does not affect the text drawn in the destination 
rectangle, so call TEUpdate (described below) afterwards. 

FUNCTION TEGetText (hTE: TEHandle) : CharsHandle; 

TEGetText returns a handle to the text of the edit record specified by 
hTE. The CharsHandle data type is defined as: 

TYPE CharsHandle 
CharsPtr 
Chars 

ACharsPtr; 
AChars; 
PACKED ARRAY [~ •• 320~~] OF CHAR; 

PROCEDURE TEDispose (hTE: TEHandle); 

TEDispose deallocates the space allocated for the edit record and text 
specified by hTE, and returns the memory to the free memory pool. Call 
this procedure when you're completely through with an edit record. 

Editing 

PROCEDURE TEKey (key: CHAR; hTE: TEHandle); 

TEKey replaces the selection range in the text specified by hTE with 
the character given by the key parameter, and leaves an insertion point 
just past the inserted character. If the selection range is an 
insertion point, TEKey just inserts the character there. If the key 
parameter contains a Backspace character, the character immediately to 
the left of the insertion point is deleted. Call TEKey every time the 
Toolbox Event Manager function GetNextEvent reports a keyboard event 
that your application decides should be handled by TextEdit. 

(eye) 
TEKey blindly inserts every character passed in the key 
parameter, so it's up to your application to filter out 
all characters that aren't actual text (such as keys 
typed in conjunction with modifier or special keys). 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R 



TEXTEDIT ROUTINES 15 

PROCEDURE TECut (hTE: TEHandle); 

TECut removes the selection range from the text specified by hTE and 
places it in the scrap. Anything previously in the scrap is deleted. 
(See Figure 6.) If the selection range is an insertion point, the 
scrap is emptied. 

a good i lIustrat ion I 
Text Scrap 

Before TECut 

IThis is a good illustration. probably 

Texl Scrap 

After TECut 

Figure 6. Cutting 

PROCEDURE TECopy (hTE: TEHandle); 

TECopy copies the selection range from the text specified by hTE into 
the scrap. Anything previously in the scrap is deleted. The selection 
range is not deleted. If the selection range is an insertion point, 
the scrap is emptied. 

PROCEDURE TEPaste (hTE: TEHandle); 

TEPaste replaces the selection range in the text specified by hTE with 
the scrap, and leaves an insertion point just past the inserted text. 
(See Figure 7.) If the scrap is empty, the selection range is deleted. 
If the selection range is an insertion point, TEPaste just inserts the 
scrap there. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R 



16 TextEdit Programmer's Guide 

I &libefore you leap 

Text Scrap 
Before TECut 

Ilbefore you leap I look., 

Text Scrap 
After TECut 

I before you ~ eap 

Text Scrap 
Before TEPaste 

I before you look, leap 

Texl Scrap 
After TEPas1e 

Figure 7. Cutting and Pasting 

PROCEDURE TEDelete (hTE: TEHandle); 

TEDelete removes the selection range from the text specified by hTE. 
It's the same as TECut (above) except that it doesn't transfer the 
selection range to the scrap. If the selection range is an insertion 
point, nothing happens. 

PROCEDURE TEInsert (text: Ptr; length: LongInt; hTE: TEHandle); 

TEInsert takes the specified text and inserts it, just before the 
selection range, into the text indicated by hTE. The text parameter 
points to the inserted text, and the length parameter indicates the 
number of characters to be inserted. 

(eye) 
Any current selection range is not deleted. This is 
different from TEKey and TEPaste, and allows your 
application to support the Undo command (described in the 
Macintosh User Interface Guidelines) if you want. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R 



TEXTEDIT ROUTINES 17 

Selection Range and Justification 

PROCEDURE TESetSelect (selStart,seIEnd: LongInt; hTE: TEHandle); 

TESetSelect unhighlights the current selection range, and changes it to 
selStart and selEnd in the text specified by hTE. The new selection 
range is highlighted. If selStart and selEnd are equal, the selection 
range is an insertion pOint, and a caret is displayed. 

SelEnd and selStart can range from ~ to 65535. If selEnd is anywhere 
beyond the last character of the text, the position just past the last 
character is used. 

PROCEDURE TESetJust (j: INTEGER, hTE: TEHandle); 

TESetJust changes the justification of the text specified by hTE to j. 
(See "Justification" under "The Editing Environment: Edit Record".) 
Call TEUpdate (described below under "Text Display") after TESetJust to 
cause the text to be redrawn with the new justification. 

Mice and Carets 

PROCEDURE TEClick (pt: Point; extend: BOOLEAN; hTE: TEHandle); 

TEClick controls the placement and highlighting of the selection range 
as determined by mouse down events. Call TEClick whenever a mouse down 
event occurs in the view rectangle of the edit record specified by hTE. 
Pt is the mouse location (in local coordinates) at the time the button 
was pressed, obtainable from the event record. Pass TRUE for the 
extend parameter if the Event Manager indicates that the Shift key was 
held down at the time of the click (for an extended selection range). 

(eye) 
Use the QuickDraw procedure GlobalToLocal to convert the 
global coordinates of the mouse location given in the 
event record to the local coordinate system for pt. 

If the mouse moves, meaning that a drag is occurring, the selection 
range expands or shrinks accordingly. The current selection range is 
unhighlighted. in the case of a double click, meaning that word 
selection has been chosen, the word under the cursor becomes the 
selection range. 

9/28/83 Hacker CONFIDENTIAL /TEXT. EDIT/EDIT. R 



18 TextEdit Programmer's Guide 

PROCEDURE TEIdle (hTE: TEHandle); 

Call TEIdle repeatedly to make a blinking caret appear at the insertion 
point, if any, in the text specified by hTE. TextEdit observes a 
minimum blink interval: no matter how often you call TEIdle, the time 
between blinks will never be less than the minimum interval. You 
should call this procedure as often as possible to provide a constant 
frequency of blinking. 

(hand) 
The initial minimum blink interval setting is 4 ticks 
(sixtieths of a second). The user can adjust this 
setting to individual preference with the control panel 
desk accessory. 

PROCEDURE TEActivate (hTE: TEHandle); 

TEActivate highlights the selection range in the view rectangle of the 
edit record specified by hTE. If the selection range is an insertion 
point, it displays a caret there. This procedure should be called 
every time the Toolbox Event Manager function GetNextEvent reports that 
the text editing window has become active. 

PROCEDURE TEDeactivate (hTE: TEHandle); 

TEDeactivate unhighlights the selection range in the view rectangle of 
the edit record specified by hTE. If the selection range is an 
insertion point, it removes the caret. This procedure should be called 
every time the Toolbox Event Manager function GetNextEvent reports that 
the text editing window has become inactive. 

Text Display 

PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle); 

TEUpdate draws the text specified by hTE within the rectangle specified 
by rUpdate. The location of the rUpdate rectangle must be given in the 
coordinates of the grafPort. Call TEUpdate every time the Toolbox 
Event Manager function GetNextEvent reports an update event--after you 
call the Window Manager procedure BeginUpdate, and before you call 
EndUpdate. 

Normally you'll use the following when an update event occurs: 

BeginUpdate(myWindow); 
TEUpdate(myWindowA.visRgnAA.rgnBBox, hTE); 
EndUpdate(myWindow); 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R 



TEXTEDIT ROUTINES 19 

Instead of passing rUpdate as shown, you can pass the viewRect, but 
doing so may result in unnecessary drawing. 

PROCEDURE TextBox (text: Ptr; length: Longlnt; box: Rect; j: INTEGER); 

TextBox draws the specified text in the rectangle indicated by the box 
parameter, with justification j. (See "Justification" under "The 
Editing Environment: Edit Record".) The text parameter points to the 
text, and the length parameter indicates the number of characters to 
draw. TextBox does not create an edit record, nor can the text that it 
draws be edited immediately; it's used solely for drawing text. For 
example: 

str := 'Planning Procedures'; 
SetRect(r, 100, 100, 200, 200); 
TextBox(@str[l], LENGTH(str), r, teFillCenter); 
FrameRect( r); 

Advanced Routines 

These routines are useful only if you're directly accessing the fields 
of an edit record. 

PROCEDURE TEScroll (dh,dv: INTEGER; hTE: TEHandle); 

TEScroll moves ("scrolls") the text within the view rectangle of the 
specified edit record by the number of pixels specified in the dh and 
dv parameters. The edit record is specified by the hTE parameter. 
Positive dh and dv values move the text right and down, respectively, 
and negative values move the text left and up. For example, 

TEScroll(0, -lnHeight, hTE) 

scrolls the text up one line (where InHeight is the value of the 
lineHeight field in the edit record). 

PROCEDURE TECalText (hTE: TEHandle); 

TECalText recalculates the beginnings of all lines of text in the edit 
record specified by hTE, updating elements of the lineStarts array. 
Call TECalText if you've changed the destination rectangle, the hText 
field, or anything else that effects the number of characters per line. 

(hand) 
There really are two ways to specify text to be edited. 
The easiest, direct method is to use TESetText, which 
takes an existing edit record, creates a second copy of 
its text, and makes the edit record point to the copy. 
An advanced, indirect method is to change the hText field 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R 



20 TextEdit Programmer's Guide 

of the edit record directly, and then call TECalText to 
recalculate the lineStarts array to match the new text. 
If you have a lengthy text to edit, use the latter method 
to save space because it doesn't create a copy. 

NOTES FOR ASSEMBLY-LANGUAGE PROGRAMMERS 

Information about how to use the User Interface Toolbox from assembly 
language is given elsewhere *** (currently, in the QuickDraw manual) 
***. This section contains special notes of interest to programmers 
who will be using TextEdit from assembly language. 

If you use .INCLUDE to include a file named ToolEqu.Text when you 
assemble your program, the TextEdit constants and offsets into the 
fields of structured types in TextEdit will be available in symbolic 
form. 

There are hooks within TextEdit that allow you insert additional 
procedures for more sophisticated editing. They require some care 
because they pass arguments in registers and it's the application's 
responsibility to save and restore the registers. 

Two of the hooks are TEHiHook and TECarHook. If you install a nonzero 
address in either of these hooks, that address (instead of _InverRect) 
will be jumped to when a selection range is to be highlighted. The 
routine called can destroy the contents of the registers A~, Al, D0, 
Dl, and D2. AJ will be pointing to a locked edit record, and 
teSelRect(AJ) contains the rectangle enclosing the text being 
highlighted. For example, the following assembly-language fragment 
draws underlined selection ranges: 

UnderHigh 
MOVE.L 

MOVE 
MOVE 
SUBQ 
MOVE.L 

(SP)+ ,A0 

top(A~),-(SP) 
bottom(A~),top(A0) 
1I1,top(SP) 
A~ ,-(SP) 

InverRect 
MOVE (SP)+,teSelRect+top(AJ) 
RTS 

;point to rectangle to be 
highlighted 

;save existing top coordinate 
;make the top coordinate equal 
; the bottom coordinate - 1 
;invert the resulting 

rectangle 
;restore original top coordinate 

Note that the rectangle must be preserved. 

TECarHook acts analogously upon insertion points instead of selection 
ranges. It must be called with teSelRect containing the insertion 
point rectangle. 

*** The explanation of the other hooks is forthcoming. *** 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.R 



SUMMARY 

CaNST 

TYPE 

SUMMARY OF TEXTEDIT 21 

OF TEXTEDIT 

teJustLeft ~; 
teJus tCente r 1 ; 
teJus tRight -1 ; 

CharsHandle .... CharsPtr; 
CharsPtr .... Chars; 
Chars PACKED ARRAY [~ •• 32~~~] OF CHAR; 

TEPtr .... TERec; 
TEHandle .... TEPtr; 
TERec = RECORD 

destRect: Rect; {destination rectangle} 
viewRect: Rect; {view rectangle} 
lineHeight: INTEGER; {line height} 
firstBL: INTEGER; {position of first base line} 
selStart: 
selEnd: 
just: 
length: 
hText: 
txFont: 
txFace: 
txMode: 
txSize: 
inPort: 
crOnly: 
nLines: 
lineStarts: 

INTEGER; {start of selection range} 
INTEGER; {end of selection range} 
INTEGER; {justification} 
INTEGER; {length of text} 
Handle; {text to be edited} 
INTEGER; {text font} 
INTEGER; {character style} 
INTEGER; {pen mode} 
INTEGER; {type size} 
GrafPtr; {grafPort} 
INTEGER {new line at Return onlYt if <~} 
INTEGER; {number of lines} 
ARRAY [~ •• 320~~] OF INTEGER; 

{positions of lines starts} 
{more fields for internal use only} 

END; 

Initialization 

PROCEDURE TEInit; 
FUNCTION TENew (destRecttviewRect: Rect) TEHandle; 

Manipulating Edit Records 

PROCEDURE TESetText (text: Ptr; length: LongInt; hTE: TEHandle); 
FUNCTION TEGetText (hTE: TEHandle) : CharsHandle; 
PROCEDURE TEDispose (hTE: TEHandle); 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.S 



22 TextEdit Programmer's Guide 

Editing 

(key: CHAR; hTE: TEHandle); 
(hTE: TEHandle); 
(hTE: TEHandle); 
(hTE: TEHandle); 
(hTE: TEHandle); 

PROCEDURE TEKey 
PROCEDURE TECut 
PROCEDURE TECopy 
PROCEDURE TEPaste 
PROCEDURE TEDelete 
PROCEDURE TEInsert (text: Ptr; length: LongInt; hTE: TEHandle); 

Selection Range and Justification 

PROCEDURE TESetSelect (selStart,selEnd: LongInt; hTE: TEHandle); 
PROCEDURE TESetJust (j: INTEGER; hTE: TEHandle); 

Mice and Carets 

PROCEDURE TEClick (pt: Point; extend: BOOLEAN; hTE: TEHandle); 
PROCEDURE TEIdle (hTE: TEHandle); 
PROCEDURE TEActivate (hTE: TEHandle); 
PROCEDURE TEDeactivate (hTE: TEHandle); 

Text Display 

PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle); 
PROCEDURE TextBox (text: Ptr; length: LongInt; box: Rect; j: INTEGER); 

Advanced Routines 

PROCEDURE TEScroll (dh,dv: INTEGER; hTE: TEHandle); 
PROCEDURE TECalText (hTE: TEHandle); 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.S 



GLOSSARY 23 

GLOSSARY 

caret: A generic term meaning a symbol that indicates where something 
should be inserted in text. The specific symbol used is a vertical 
bar. 

character position: An index into an array containing text, starting 
at ~ for the first character. 

destination rectangle: In TextEdit, the rectangle in which the text is 
drawn. 

edit record: A complete editing environment, including the text to be 
edited, the grafPort and rectangle in which to display the text, the 
arrangement of the text within the rectangle, and other editing and 
display information. 

insertion point: An empty selection range; the character position 
where text will be inserted (marked with a blinking caret by 
convention) • 

justification: The horizontal placement of lines of text relative to 
the edges of the rectangle in which the text is drawn. 

line height: The number of pixels from the base line of one line of 
text to the base line of the next line of text. 

nonbreaking space: The character with ASCII code $CA; drawn as a 
blank, but interpreted as a nonblank character for the purposes of word 
wrap. 

scrap: A string consisting of the characters most recently cut or 
copied from text by certain TextEdit routines. 

selection range: The series of characters (inversely highlighted), or 
the character position (marked with a blinking caret), at which the 
next editing operation will occur. 

view rectangle: In TextEdit, the rectangle within which the text is 
visible. 

word: In TextEdit, any series of printing characters, excluding spaces 
(ASCII code $2~) but including nonbreaking spaces (ASCII code $CA). 

word wrap: Keeping any series of printing characters intact between 
lines when text is drawn. 

9/28/83 Hacker CONFIDENTIAL /TEXT.EDIT/EDIT.G 



COMME:NTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

The Dialog Manager: A Programmer's Guide 

See Also: Macintosh User Interface Guidelines 
QuickDraw: A Programmer's Guide 
The Font Manager: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Control Manager: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
TextEdit: A Programmer's Guide 

/DMGR/DIALOG 

Programming Macintosh Applications in Assembly Language 

Modification History: Preliminary Draft Caroline Rose 12/8/82 
Preliminary Draft Caroline Rose 1/7/83 
First Draft (ROM 2.1) Caroline Rose 3/22/83 
Second Draft (ROM 4) Caroline Rose 6/13/83 
Third Draft (ROM 7) Caroline Rose 11/16/83 
Fourth Draft Caroline Rose 7/6/84 

ABSTRACT 

The Dialog Manager is the part of the Macintosh User Interface Toolbox 
that supports dialog boxes and the alert mechanism. This manual tells 
you how to manipulate dialogs and alerts with Dialog Manager routines. 

Summary of significant changes and additions since last draft: 

- EditText and statText items can't be more than 241 characters 
long. 

- A new procedure, SetDAFont, enables Pascal programmers to change 
the font used in dialogs and alerts (page 19). 

- There are two new procedures, CouldDialog and FreeDialog, that are 
analogous to CouldAlert and FreeAlert (page 23). 

- The description of IsDia10gEvent now deals with handling keyboard 
equivalents of commands when a modeless dialog box is up (page 
25). For Pascal programmers, there are also four new routines for 
handling standard editing commands in modeless dialogs (page 26). 

- For Pascal programmers, there are now routines for checking the 
stage of an alert and setting an alert back to its first stage 
(page 32). 



2 Dialog Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
4 About the Dialog Manager 
6 Dialog and Alert Windows 
7 Dialogs, Alerts, and Resources 
9 Item Lists in Memory 
9 Item Types 
11 Item Handle or Procedure Pointer 
11 Display Rectangle 
13 Item Numbers 
13 Dialog Records 
14 Dialog Pointers 
14 The DialogRecord Data Type 
15 Alerts 
17 Using the Dialog Manager 
18 Dialog Manager Routines 
18 Initialization 
20 Creating and Disposing of Dialogs 
23 Handling Dialog Events 
27 Invoking Alerts 
30 Manipulating Items in Dialogs and Alerts 
32 Modifying Templates in Memory 
33 Dialog Templates in Memory 
33 Alert Templates in Memory 
35 Formats of Resources for Dialogs and Alerts 
35 Dialog Templates in a Resource File 
35 Alert Templates in a Resource File 
36 Items Lists in a Resource File 
38 Summary of the Dialog Manager 
43 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Dialog Manager of the Macintosh User 
Interface Toolbox. *** Eventually it will become part of the 
comprehensive Inside Macintosh manual. *** The Dialog Manager provides 
Macintosh programmers with routines for implementing dialog boxes and 
the alert mechanism, two means of communication between the application 
and the end user. 

Like all documentation about Toolbox units, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

resources, as discussed in the Resource Manager manual 

- the basic concepts and structures behind QuickDraw, particularly 
rectangles, grafPorts, and pictures 

- the Toolbox Event Manager, the Window Manager, and the Control 
Manager 

- TextEdit, to understand editing text in dialog boxes 

This manual is intended to serve the needs of both Pascal and assembly
language programmers. Information of interest to assembly-language 
programmers only is isolated and labeled so that Pascal programmers can 
conveniently skip it. 

The manual begins with an introduction to the Dialog Manager and what 
you can do with it. It then discusses the basics of dialogs and 
alerts: their relationship to windows and resources, and the 
information stored in memory for the items in a dialog or alert. 
Following this is a discussion of dialog records, where the Dialog 
Manager keeps all the information it needs about a dialog, and an 
overview of how alerts are handled. 

Next, a section on using the Dialog Manager introduces its routines and 
tells how they fit into the flow of your application program. This is 
followed by detailed descriptions of all Dialog Manager procedures and 
functions, their parameters, calling protocol, effects, side effects, 
and so on. 

Following these descriptions are sections that will not interest all 
readers. There's a discussion of how to modify definitions of dialogs 
and alerts after they've been read from a resource file, and a section 
that gives the exact formats of resources related to dialogs and 
alerts. 

Finally, there's a summary of the Dialog Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

7/6/84 Rose /DMGR/DIALOG.2 



4 Dialog Manager Programmer's Guide 

ABOUT THE DIALOG MANAGER 

The Dialog Manager is a tool for handling dialogs and alerts in a way 
that's consistent with the Macintosh User Interface Guidelines. 

A dialog box appears on the screen when a Macintosh application needs 
more information to carry out a command. As shown in Figure 1, it 
typically resembles a form on which the user checks boxes and fills in 
blanks. 

Print the document 

@) 8 1/2· H 11" paper 
o 8 1/2" H 14" paper 

( cancel) 

( OK ) 

181 stop pr-inting after each page 

Title: I Annual Reportl 

Figure 1. A Typical Dialog Box 

By convention, a dialog box comes up slightly below the menu bar, is a 
bit narrower than the screen, and is centered between the left and 
right edges of the screen. It may contain any or all of the following: 

- informative or instructional text 

- rectangles in which text may be entered (initially blank or 
containing default text that can be edited) 

- controls of any kind 

- graphics (icons or QuickDraw pictures) 

- anything else, as defined by the application 

The user provides the necessary information in the dialog box, such as 
by entering text or clicking a check box. There's usually a button 
marked "OK" to tell the application to accept the information provided 
and perform the command, and a button marked "Cancel" to cancel the 
command as though it had never been given (retracting all actions since 
its invocation). Some dialog boxes may use a more descriptive word 
than "OK"; for simplicity, this manual will still refer to the button 
as the "OK button". There may even be more than one button that will 
perform the command, each in a different way. 

Most dialog boxes require the user to respond before doing anything 
else. Clicking a button to perform or cancel the command makes the box 
go away; clicking outside the dialog box only causes a beep from the 
Macintosh's speaker. This type is called a modal dialog box because it 
puts the user in the state or "mode" of being able to work only inside 
the dialog box. It usually has the same general appearance as shown in 

7/6/84 Rose /DMGR/DIALOG.2 



ABOUT THE DIALOG MANAGER 5 

Figure 1. One of the buttons in the dialog box may be outlined boldly. 
Pressing the Return key or the Enter key has the same effect as 
clicking the outlined button or, if none, the OK button; the particular 
button whose effect occurs is called the dialog's default button and is 
the preferred ("safest") button to use in the current situation. If 
there's no boldly outlined or OK button, pressing Return or Enter will 
by convention have no effect. 

Other dialog boxes do not require the user to respond before doing 
anything else; these are called modeless dialog boxes (Figure 2). The 
user can, for example, do work in document windows on the desktop 
before clicking a button in the dialog box, and modeless dialog boxes 
can be set up to respond to the standard editing commands in the Edit 
menu. Clicking a button in a modeless dialog box will not make the box 
go away: the box will stay around so that the user can perform the 
command again. A Cancel button, if present, will simply stop the 
action currently being performed by the command; this would be useful 
for long printi~g or searching operations, for example. 

;;0 Change 

Find teHt: Guide Lines 

Change to: guidelinesl 

( Change RII ) 

(Change NeHt) 

Figure 2. A Modeless Dialog Box 

As shown in Figure 2, a modeless dialog box looks like a document 
window. It can be moved, made inactive and active again, or closed 
like any document window. When you're done with the command and want 
the box to go away, you can click its close box or choose Close from 
the File menu when it's the active window. 

Dialog boxes may in fact require no response at all. For example, 
while an application is performing a time-consuming process, it can 
display a dialog box that contains only a message telling what it's 
doing; then, when the process is complete, it can simply remove the 
dialog box. 

The alert mechanism provides applications with a means of reporting 
errors or giving warnings. An alert box is similar to a modal dialog 
box, but it appears only when something has gone wrong or must be 
brought to the user's attention. Its conventional placement is 
s'lightly farther below the menu bar than a dialog box. To assist the 
user who isn't sure how to proceed when an alert box appears, the 
preferred button to use in the current situation is outlined boldly so 
it stands out from the other buttons in the alert box (see Figure 3). 
The outlined button is also the alert's default button; if the user 
presses the Return key or the Enter key, the effect is the same as 

7/6/84 Rose /DMGR/DIALOG.2 



6 Dialog Manager Programmer's Guide 

clicking this button. 

CRUTION (cancel) 
Rre you sure ( OK ) 

'Jou wont to erase all 
changes to your document? 

Figure 3. A Typical Alert Box 

There are three standard kinds of alerts--Stop, Note, and Caution--each 
indicated by a particular icon in the top left corner of the alert box. 
Figure 3 illustrates a Caution alert. The icons identifying Stop and 
Note alerts are similar; instead of a question mark, they show an 
exclamation point and an asterisk, respectively. Other alerts can have 
anything in the the top left corner, including blank space if desired. 

The alert mechanism also provides another type of signal: sound from 
the Macintosh's speaker. The application can base its response on the 
number of consecutive times an alert occurs; the first time, it might 
~imply beep, and thereafter it may present an alert box. The sound is 
not limited to a single beep but may be any sequence of tones, and may 
occur either alone or along with an alert box. As an error is 
repeated, there can also be a change in which button is the default 
button (perhaps from OK to Cancel). You can specify different 
responses for up to four occurrences of the same alert. 

With Dialog Manager routines, you can create dialog boxes or invoke 
alerts. The Dialog Manager gets most of the descriptive information 
about the dialogs and alerts from resources in a resource file. You 
use a program such as the Resource Editor to store the necessary 
information in the resource file *** (Resource Editor doesn't exist 
yet; for now, use the Resource Compiler) ***. The Dialog Manager calls 
the Resource Manager to read what it needs from the resource file into 
memory as necessary. In some cases you can modify the information 
after it's been read into memory. 

DIALOG AND ALERT WINDOWS 

A dialog box appears in a dialog window. When you call a Dialog 
Manager routine to create a dialog, you supply the same information as 
when you create a window with a Window Manager routine. For example, 
you supply the window definition ID, which determines how the window 
looks and behaves, and a rectangle that becomes the portRect of the 
window's grafPort. You specify the window's plane (which, by 
convention, should initially be the frontmost) and whether the window 
is visible or invisible. The dialog window is created as specified. 

7/6/84 Rose /DMGR/DIALOG.2 



DIALOG AND ALERT WINDOWS 7 

You can manipulate a dialog window just like any other window with 
Window Manager or QuickDraw routines, showing it, hiding it, moving it, 
changing its size or plane, or whatever--all, of course, in conformance 
with the Macintosh User Interface Guidelines. The Dialog Manager 
observes the clipping region of the dialog window's grafPort, so if you 
want clipping to occur, you can set this region with a QuickDraw 
routine. 

Similarly, an alert box appears in an alert window. You don't have the 
same flexibility in defining and manipulating an alert window, however. 
The Dialog Manager chooses the window definition ID, so that all alert 
windows will have the standard appearance and behavior. The size and 
location of the box are supplied as part of the definition of the alert 
and are not easily changed. You don't specify the alert window's 
plane; it always comes up in front of all other windows. Since an 
alert box requires the user to respond before doing anything else, and 
the response makes the box go away, the application doesn't do any 
manipulation of the alert window. 

Figure 4 illustrates a document window, dialog window, and alert 
window, all overlapping on the desktop. 

Doclment winctow on desktop 

Dialog window 
in front of document window 

Alert \1/ indow 
in front of dialog window 

Figure 4. Dialog and Alert Windows 

DIALOGS, ALERTS, AND RESOURCES 

To create a dialog, the Dialog Manager needs the same information about 
the dialog window as the Window Manager needs when it creates a new 
window: the window definition ID along with other information specific 
to this window. The Dialog Manager also needs to know what items the 
dialog box contains. You can store the needed information as a 
resource in a resource file and pass the resource ID to a function that 

7/6/84 Rose /DMGR/DIALOG.2 



8 Dialog Manager Programmer's Guide 

will create the dialog. This type of resource, which is called a 
dialog template, is analogous to a window template, and the function, 
GetNewDialog, is similar to the Window Manager function GetNewWindow. 
The Dialog Manager calls the Resource Manager to read the dialog 
template from the resource file. It then incorporates the information 
in the template into a dialog data structure in memory, called a dialog 
record. 

Similarly, the data that the Dialog Manager needs to- create an alert is 
stored in an alert template in a resource file. The various routines 
for invoking alerts require the resource ID of the alert template as a 
parameter. 

The information about all the items (text, controls, or graphicS) in a 
dialog or alert box is stored in an item list in a resource file. The 
resource ID of the item list is included in the dialog or alert 
template. The item list in turn contains the resource IDs of any icons 
or QuickDraw pictures in the dialog or alert box, and possibly the 
resource IDs of· control templates for controls in the box. After 
calling the Resource Manager to read a dialog or alert template into 
memory, the Dialog Manager calls it again to read in the item list. It 
then makes a copy of the item list and uses that copy; for this reason, 
item lists should always be purge able resources. Finally, the Dialog 
Manager calls the Resource Manager to read in any individual items as 
necessary. 

(note) 
To create dialog or alert templates and item lists and 
store them in resource files, you can use the Resource 
Editor *** (eventually; for now, the Resource Compiler) 
***. The Resource Editor relieves you of having to know 
the exact format of these resources, but for interested 
programmers this' information is given in the section 
"Formats of Resources for Dialogs and Alerts". 

If desired, the application can gain some additional flexibility by 
calling the Resource Manager directly to read templates, item lists, or 
items from a resource file. For example, you can read in a dialog or 
alert template directly and modify some of the information in it before 
calling the routine to create the dialog or alert. Or, as an 
alternative to using a dialog template, you can read in a dialog's item 
list directly and then pass a handle to it along with other information 
to a function that will create the dialog (NewDialog, analogous to the 
Window Manager function NewWindow). 

(note) 
The use of dialog templates is recommended wherever 
possible; like window templates, they isolate descriptive 
information from your application code for ease of 
modification or translation to foreign languages. 

7/6/84 Rose /DMGR/DIALOG.2 



ITEM LISTS IN MEMORY 9 

ITEM LISTS IN MEMORY 

This section discusses the contents of an item list once it's been read 
into memory from a resource file and the Dialog Manager has set it up 
as necessary to be able to work with it. 

An item list in memory contains the following information for each 
item: 

- The type of item. This includes not only whether the item is a 
control, text, or whatever, but also whether the Dialog Manager 
should return to the application when the item is clicked. 

- A handle to the item or, for special application-defined items, a 
pointer to a procedure that draws the item. 

- A display rectangle, which determines the location of the item 
within the dialog or alert box. 

These are discussed below along with item numbers, which identify 
particular items in the item list. 

There's a Dialog Manager procedure that, given a pointer to a dialog 
record and an item number, sets or returns that item's type, handle (or 
procedure pointer), and display rectangle. 

Item Types 

The item type is specified by a predefined constant or combination of 
constants, as listed below. Figure 5 illustrates some of these item 
types. 

iconltem 
+ itemDisable 

statText 
+ itemDisable 

ctrlltem 
+btnCtrl 

I.~I Print the document (cancel) 

ctrlltem @) 8 ,/ Z" H "" paper (OK) 
+ redCtrl 0 8 1/ Z" H 1 ~ paper 

ctrlltem ......... -a Stop printing after each page 
+chlcCtrl 

Title: I Rnnuel Repor~ I 
userltem 

+itemDiseble Progress of printing 

Figure 5. Item Types 

editTex1 

7/6/84 Rose /DMGR/DIALOG.3 



10 Dialog Manager Programmer's Guide 

Item type 
ctrlItem+btnCtrl 

ctrlItem+chkCtrl 

ctrlItem+radCtrl 

ctrlItem+resCtrl 

statText 

editText 

icon Item 

picItem 

user Item 

itemDisable+<any 
of the above> 

(warning) 

Meaning 
A standard button control. 

A standard check box control. 

A standard "radio button" control. 

A control defined in a control template in a 
resource file. 

Static text; text that cannot be edited. 

(Dialogs only) Text that can be edited; the 
Dialog Manager accepts text typed by the user 
and allows editing. 

An icon (a 32-by-32 bit image). 

A QuickDraw picture. 

(Dialogs only) An application-defined item, 
such as a picture whose appearance changes. 

The item is disabled (the Dialog Manager 
doesn't report events involving this item). 

StatText and editText items must not be more than 241 
characters long. 

The text of an editText item may initially be either default text or 
empty. Text entry and editing is handled in the conventional way, as 
in TextEdit--in fact, the Dialog Manager calls TextEdit to handle it: 

- Clicking in the item displays a blinking vertical bar, indicating 
an insertion point where text may be entered. 

- Dragging over text in the item selects that text, and double
clicking selects a word; the selection is inverted and is replaced 
by what the user then types. 

- Clicking or dragging while holding down the Shift key extends or 
shortens the current selection. 

- The Backspace key deletes the current selection or the character 
preceding the in~ertion point. 

The Tab key advances to the next editText item in the item list 
(wrapping around to the first if there aren't any more). In an alert 
box or a modal dialog box (regardless of whether it contains an 
editText item), the Return key or Enter key has the same effect as 
clicking the default button; for alerts, the default button is 
identified in the alert template, whereas for modal dialogs it's always 

7/6/84 Rose /DMGR/DIALOG.3 



ITEM LISTS IN MEMORY 11 

the first item in the item list. 

If itemDisable is specified for an item, the Dialog Manager doesn't let 
the application know about events involving that item. For example, 
you may not have to be informed every time the user types a character 
or clicks in an editText item, but may only need to look at the text 
when the OK button is clicked. In this case, the editText item would 
be disabled. Standard buttons and check boxes should always be 
enabled, so your application will know when they've been clicked. 

(warning) 
Don't confuse disabling a control with making one 
"inactive" with the Control Manager procedure 
HiliteControl: When you want a control not to respond at 
all to being clicked, you make it inactive. 

Item Handle or Procedure Pointer 

The item list contains the following information for the various types 
of items: 

Item type 
any ctrlItem 
statText 
editText 
iconItem 
picItem 
userItem 

Contents 
A control handle 
A handle to the text 
A handle to the current text 
A handle to the icon 
A picture handle 
A procedure pointer 

The procedure for a userItem draws the item; for example, if the item 
is a clock, it will draw the clock with the current time displayed. 
When this procedure is called, the current port will have been set by 
the Dialog Manager to the dialog window's grafPort. The procedure must 
have two parameters, a window pointer and an item number. For example, 
this is how it would be declared if it were named MyItem: 

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: INTEGER); 

TheWindow is a pointer to the dialog window; in case the procedure 
draws in more than one dialog window, this parameter tells it which one 
to draw in. ItemNo is the item number; in case the procedure draws 
more than one item, this parameter tells it which one to draw. 

Display Rectangle 

Each item in the item list is displayed within its display rectangle: 

- For controls, the display rectangle becomes the control's 
enclosing rectangle. 

- For an editText item, it becomes TextEdit's destination rectangle 
and view rectangle. Word wrap occurs, and the text is clipped if 

7/6/84 Rose /DMGR/DIALOG.3 



12 Dialog Manager Programmer's Guide 

there's more than will fit in the rectangle. In addition, the 
Dialog Manager uses the QuickDraw procedure FrameRect to draw a 
rectangle three pixels outside the display rectangle. 

- StatText items are displayed in exactly the same way as editText 
items, except that a rectangle isn't drawn outside the display 
rectangle. 

- Icons and QuickDraw pictures are scaled to fit the display 
rectangle. For pictures, the Window Manager calls the QuickDraw 
procedure DrawPicture and passes it the display rectangle. 

- If the procedure for a userltem draws outside the item's display 
rectangle, the drawing is clipped to the display rectangle. 

(note) 
Clicking anywhere within the display rectangle is 
considered a click of that item. 

By giving an item a display rectangle that's off the screen, you can 
make the item invisible. This might be useful, for example, if your 
application needs to display a number of dialog boxes that are similar 
except that one item is missing or different in some of them. You can 
use a single dialog box in which the item or items that aren't 
currently relevant are invisible. To remove an item or make one 
reappear, you just change its display rectangle (and call the Window 
Manager procedure InvalRect to accumulate the changed area into the 
dialog window's update region). The QuickDraw procedure OffsetRect is 
convenient for moving an item off the screen and then on again later. 
Note the following, however: 

- You shouldn't make an editText item invisible, because it may 
cause strange things to happen. If one of several editText items 
is invisible, for example, pressing the Tab key may make the 
insertion point disappear. However, if you do make this type of 
item invisible, remember that the changed area includes the 
rectangle that's three pixels outside the item's display 
rectangle. 

- The rectangle for a statText item must always be at least as wide 
as the first character of the text; a good rule of thumb is to 
make it at least 20 pixels wide. 

To change text in a statText item, it's easier to use the Dialog 
Manager procedure ParamText (as described later in the "Dialog 
Manager Routines" section). 

7/6/84 Rose /DMGR/DIALOG.3 



ITEM LISTS IN MEMORY 13 

Item Numbers 

Each item in an item list is identified by an item number, which is 
simply the index of the item in the list (starting from 1). By 
convention, the first item in an alert's item list should be the OK 
button (or, if none, then one of the buttons that will perform the 
command) and the second item should be the Cancel button. The Dialog 
Manager provides predefined constants equal to the item numbers for OK 
and Cancel: 

CONST OK 
Cancel 

I" , 
2" , 

In a modal dialog's item list, the first item is assumed to be the 
dialog's default button; if the user presses the Return key or Enter 
key, the Dialog Manager normally returns item number 1, just as when 
that item is actually clicked. To conform to the Macintosh User 
Interface Guidelines, the application should boldly outline the 
dialog's default button if it isn't the OK button. The best way to do 
this is with a userItem. To allow for changes in the default button's 
size or location, the userItem should identify which button to outline 
by its item number and then use that number to get the button's display 
rectangle. The following QuickDraw calls will outline the rectangle in 
the standard way: 

PenSize(3,3); 
InsetRect(displayRect,-4,-4); 
FrameRoundRect(displayRect,16,16) 

(warning) 
If the first it~m in a modal dialog's item list isn't an 
OK button and you don't boldly outline it, you should set 
up the dialog to ignore Return and Enter. To learn how 
to do this, see ModalDialog under "Handling Dialog 
Events" in the "Dialog Manager Routines" section. 

DIALOG RECORDS 

To create a dialog, you pass information to the Dialog Manager in a 
dialog template and in individual parameters, or only in parameters; in 
either case, the Dialog Manager incorporates the information into a 
dialog record. The dialog record contains the window record for the 
dialog window, a handle to the dialog's item list, and some additional 
fields. The Dialog Manager creates the dialog window by calling the 
Window Manager function NewWindow and then setting the window class in 
.the window record to indicate that it's a dialog window. The routine 
that creates the dialog returns a pointer to the dialog record, which 
you use thereafter to refer to the dialog in Dialog Manager routines or 
even in Window Manager or QuickDraw routines (see "Dialog Pointers" 
below). The Dialog Manager provides routines for handling events in 
the dialog window and disposing of the dialog when you're done. 

7/6/84 Rose /DMGR/DIALOG.3 



14 Dialog Manager Programmer's Guide 

The data type for a dialog record is called DialogRecord. You can do 
all the necessary operations on a dialog without accessing the fields 
of the dialog record directly; for advanced programmers, however, the 
exact structure of a dialog record is given under "The DialogRecord 
Data Type" below. 

Dialog Pointers 

There are two types of dialog pointer, DialogPtr and DialogPeek, 
analogous to the window pointer types WindowPtr and WindowPeek. Most 
programmers will only need to use DialogPtr. 

The Dialog Manager defines the following type of dialog pointer: 

TYPE DialogPtr = WindowPtr; 

It can do this because the first field of a dialog record contains the 
window record for the dialog window. This type of pointer can be used 
to access fields of the window record or can be passed to Window 
Manager routines that expect window pointers as parameters. Since the 
WindowPtr data type is itself defined as GrafPtr, this type of dialog 
pointer can also be used to access fields of the dialog window's 
grafPort or passed to QuickDraw routines that expect pointers to 
grafPorts as parameters. 

For programmers who want to access dialog record fields beyond the 
window record, the Dialog Manager also defines the following type of 
dialog pointer: 

TYPE DialogPeek ""DialogRecord; 

Assembly-language note: From assembly language, of course, 
there's no type checking on pointers, and the two types of 
pointer are equal. 

The DialogRecord Data Type 

For those who want to know more about the data structure of a dialog 
record, the exact structure is given here. 

TYPE DialogRecord = RECORD 
window: 
items: 
textH: 
editField: 
editOpen: 
aDefItem: 

END; 

7/6/84 Rose 

WindowRecord; {dialog window} 
Handle; {item list} 
TEHand1e; {current editText item} 
INTEGER; {editText item number minus I} 
INTEGER; {used internally} 
INTEGER {default button item number} 

/DMGR/DIALOG.3 



DIALOG RECORDS 15 

The window field contains the window record for the dialog window. The 
items field contains a handle to the item list used for the dialog. 
(Remember that after reading an item list from a resource file, the 
Dialog Manager makes a copy of it and uses that copy.) 

(note) 
To get or change information about an item in a dialog, 
you pass the dialog pointer and the item number to a 
Dialog Manager procedure. You'll never access 
information directly through the handle to the item list. 

The Dialog Manager uses the next three fields when there are one or 
more editText items in the dialog. If there's more than one such item, 
these fields apply to the one that currently is selected or displays 
the insertion point. The textH field contains the handle to the edit 
record used by TextEdit. EditField is 1 less than the item number of 
the current editText item, or -1 if there's no editText item in the 
dialog. The editOpen field is used internally by the Dialog Manager. 

(note) 
Actually, a single edit record is shared by all editText 
items; any changes you make to it will apply to all such 
items. See the TextEdit manual for details about what 
kinds of changes you can make. 

The aDefItem field is used for modal dialogs and alerts, which are 
treated internally as special modal dialogs. It contains the item 
number of the default button. The default button for a modal dialog is 
the first item in the item list, so this field contains 1 for modal 
dialogs. The default button for an alert is specified in the alert 
template; see the following section for more information. 

Assembly-language~: The global constant dWindLen equals the 
length of a dialog record in bytes. 

ALERTS 

When you call a Dialog Manager routine to invoke an alert, you pass it 
the resource ID of the alert template, which contains the following: 

- A rectangle, given in g10bal coordinates, which determines the 
alert window's size and location. It becomes the portRect of the 
window's grafPort. To allow for the menu bar and the border 
around the portRect, the top coordinate of the rectangle should be 
at least 25 points below the top of the screen. 

- The resource ID of the item list for the alert. 

7/6/84 Rose /DMGR/DIALOG.3 



16 Dialog Manager Programmer's Guide 

- Information about exactly what should happen at each stage of the 
alert. 

Every alert has four stages, corresponding to consecutive occurrences 
of the alert: the first three stages correspond to the first three 
occurrences, while the fourth stage includes the fourth occurrence and 
any beyond the fourth. (The Dialog Manager compares the current 
alert's resource ID to the last alert's resource ID to determine 
whether it's the same alert.) The actions for each stage are specified 
by the following three pieces of information: 

- which is the default button--the OK button (or, if none, a button 
that will perform the command) or the Cancel button 

- whether the alert box is to be drawn 

- which of four sounds should be emitted at this stage of the alert 

The alert sounds are determined by a sound procedure that emits one of 
up to four tones or sequences of tones. The sound procedure has one 
parameter, an integer from 0 to 3; it can emit any sound for each of 
these numbers, which identify the sounds in the alert template. For 
example, you might declare a sound procedure named MySound as follows: 

PROCEDURE MySound (soundNo: INTEGER); 

If you don't write your own sound procedure, the Dialog Manager uses 
the standard one: sound number 0 represents no sound and sound numbers 
1 through 3 represent. the corresponding number of short beeps, each of 
the same pitch and duration. The volume of each beep depends on the 
current speaker volume setting, which the user can adjust with the 
Control Panel desk accessory. If the user has set the speaker volume 
to 0, the menu bar will blink in place of each beep. 

For example, if the second stage of an alert is to cause a beep and no 
alert box, you can just specify the following for that stage in the 
alert template: don't draw the alert box, and use sound number 1. If 
instead you want, say, two successive beeps of different pitch, you 
need to write a procedure that will emit that sound for a particular 
sound number, and specify that number in the alert template. The 
Macintosh Operating System includes routines for emitting sound; see 
the Sound Driver manual, and also the simple SysBeep procedure in the 
Operating System Utilities manual *** neither manual currently exists 
***. (The standard sound procedure calls SysBeep.) 

(note) 
When the Dialog Manager detects a click outside an alert 
box or a modal dialog box, it emits sound number 1; thus, 
for consistency with the Macintosh User Interface 
Guidelines, sound number 1 should always be a single 
beep. 

Internally, alerts are treated as special modal dialogs. The alert 
routine creates the alert window by calling NewDialog. The Dialog 

7/6/84 Rose /DMGR/DIALOG.3 



ALERTS 17 

Manager works from the dialog record created by NewDialog, just as when 
it operates on a dialog window, but it disposes of the window before 
returning to the application. Normally your application will not 
access the dialog record for an alert; however, there is a way that 
this can happen: for any alert, you can specify a procedure that will 
be executed repeatedly during the alert, and this procedure may access 
the dialog record. For details, see the alert routines under "Invoking 
Alerts" in the "Dialog Manager Routines" section. 

USING THE DIALOG MANAGER 

This section discusses how the Dialog Manager routines fit into the 
general flow of an application program and gives you an idea of which 
routines you'll need to use. The routines themselves are described in 
detail in the next section. 

Before using the Dialog Manager, you should initialize QuickDraw, the 
Font Manager, the Window Manager, the Menu Manager, and TextEdit, in 
that order. The first Dialog Manager routine to callis InitDialogs, 
which initializes the Dialog Manager. If you want the font in your 
dialog and alert windows to be other than the system font, call 
SetDAFont to change the font. 

Where appropriate in your program, call NewDialog or GetNewDialog to 
create any dialogs you need. Usually you'll call GetNewDialog, which 
takes descriptive information about the dialog from a dialog template 
in a resource file. You can instead pass the information in individual 
parameters to NewDialog. In either case, you can supply a pointer to 
the storage for the dialog record or let it be allocated by the Dialog 
Manager. When you no longer need a dialog, you'll usually call 
Close Dialog if you supplied the storage, or' DisposDialog if not. 

In most cases, you probably won't have to make any changes to the 
dialogs from the way they're defined in the resource file. However, if 
you should want to modify an item in a dialog, you can call GetDItem to 
get the information about the item and SetDItem to change it. In 
particular, SetDItem is the routine to use for installing a userItem. 
In some cases it may be appropriate to call some other Toolbox routine 
to change the item; for example, to change or move a control in a 
dialog, you would get its handle from GetDItem and then call the 
appropriate Control Manager routine. There are also two procedures 
specifically for accessing or setting the content of a text item in a 
dialog box: GetIText and SetIText. 

To handle events in a modal dialog, just call the ModalDialog procedure 
after putting up the dialog box. If your application includes any 
modeless dialog boxes, you'll pass events to IsDialogEvent to learn 
whether they need to be handled as part of a dialog, and then usually 
call DialogSelect if so. Before calling DialogSelect, however, you 
should check whether the user has given the keyboard equivalent of a 
command, and you may want to check for other special cases, depending 
on your application. You can support the use of the standard editing 

7/6/84 Rose /DMGR/DIALOG.3 



18 Dialog Manager Programmer's Guide 

commands in a mode!ess dialog's editText items with DlgCut t DlgCopy, 
DlgPaste, and DlgDelete. 

A dialog box that contains editText items normally comes up with the 
insertion point in the first such item in its item list. You may 
instead want to bring up a dialog box with text selected in an editText 
item, or to cause an insertion point or text selection to reappear 
after the user has made an error in entering text. For example, the 
user who accidentally types nonnumeric input when a number is required 
can be given the opportunity to type the entry again. The SelIText 
procedure makes this possible. 

For alerts, if you want other sounds besides the standard ones (up to 
three short beeps), write your own sound procedure and call ErrorSound 
to make it the current sound procedure. To invoke a particular alert, 
call one of the alert routines: StopAlert, NoteAlert, or CautionAlert 
for one of the standard kinds of alert, or Alert for an alert defined 
to have something other than a standard icon (or nothing at all) in its 
top left corner. 

If you're going to invoke a dialog or alert when the resource file 
might not be accessible, first call CouldDialog or CouldAlert, which 
will make the dialog or alert template and related resources unable to 
be purged from memory. You can later make them purgeable again by 
calling FreeDialog or FreeAlert. 

Finally, you can substitute text in statText items with text that you 
specify in the ParamText procedure. This means, for example, that a 
document name supplied by the user can appear in an error message. 

DIALOG MANAGER ROUTINES 

This section describes all the Dialog Manager procedures and functions. 
They're presented in their Pascal form; for information on using them 
from assembly language, see the manual Programming Macintosh 
Applications in Assembly Language. 

Initialization 

PROCEDURE InitDialogs (restartProc: ProcPtr); 

Call InitDialogs once before all other Dialog Manager routines, to 
initialize the Dialog Manager. 

- It sets a pointer to a fail-safe procedure as specified by 
restartProc; this pointer will be accessed when a system error 
(such as running out of memory) occurs. RestartProc should point 
to a procedure that will restart the application after a system 
error. If no such procedure is desired, pass NIL as the 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 19 

parameter. 

Assembly-Ianguage~: The Dialog Manager stores the address 
of the fail-safe procedure in a global variable named RestProc. 

- It installs the standard sound procedure. 

- It passes empty strings to ParamText. 

PROCEDURE ErrorSound (soundProc: ProcPtr); 

ErrorSound sets the sound procedure for dialogs and alerts to the 
procedure pointed to by soundProc; if you don't call ErrorSound t the 
Dialog Manager uses the standard sound procedure. (For details t see 
the "Alerts" section above.). If you pass NIL for soundProc t there will 
be no sound (or menu bar blinking) at all. 

Assembly-language~: The address of the sound procedure 
being used is stored in the global variable DABeeper. 

PROCEDURE SetDAFont (fontNum: INTEGER); [Pascal only] 

For subsequently created dialogs and alerts t SetDAFont sets the font of 
the dialog or alert window's grafPort to the font having the specified 
font number. If you don't call this procedure, the system font is 
used. SetDAFont affects statText and editText items but not titles of 
controls, which are always in the system font. 

Assembly-Ianguage~: Assembly-language programmers can 
simply set the global variable DlgFont to the desired font 
number. 

7/6/84 Rose /DMGR/DIALOG.R 



20 Dialog Manager Programmer's Guide 

Creating and Disposing of Dialogs 

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEAN; procID: INTEGER; behind: WindowPtr; 
goAwayFlag: BOOLEAN; ref Con: LongInt; items: Handle) : 
DialogPtr; 

NewDialog creates a dialog as specified by its parameters and returns a 
pointer to the new dialog. The first eight parameters (dStorage 
through ref Con) are passed to the Window Manager function NewWindow, 
which creates the dialog window; the meanings of these parameters are 
summarized below. The items parameter is a handle to the dialog's item 
list. You can get the items handle by calling the Resource Manager to 
read the item list from the resource file into memory. 

(note) 
Advanced programmers can create their own item lists in 
memory rather than have them read from a resource file. 
The exact format is given later under "Formats of 
Resources for Dialogs and Alerts". 

DStorage is analogous to the wStorage parameter of NewWindow; it's a 
pointer to the storage to use for the dialog record. If you pass NIL 
for dStorage, the dialog record will be allocated on the heap (which, 
in the case of modeless dialogs, may cause the heap to become 
fragmented). 

BoundsRect, a rectangle given in global coordinates, determines the 
dialog window's size and location. It becomes the portRect of the 
window's grafPort. Remember that the top coordinate of this rectangle 
should be at least 25 points below the top of the screen for a modal 
dialog, to allow for the menu bar and the border around the portRect, 
and at least 40 points below the top of the screen for a modeless 
dialog, to allow for the menu bar and the window's title bar. 

Title is the title of a modeless dialog box; pass the empty string for 
modal dialogs. 

If the visible parameter is TRUE, the dialog window is drawn on the 
screen. If it's FALSE, the window is initially invisible and may later 
be shown with a call to the Window Manager procedure ShowWindow. 

(note) 
NewDialog generates an update event for the entire window 
contents, so the items aren't drawn immediately, with the 
exception of controls. The Dialog Manager calls the 
Control Manager to draw controls, and the Control Manager 
draws them immediately rather than via the standard 
update mechanism. Because of this, the Dialog Manager 
calls the Window Manager procedure ValidRect for the 
enclosing rectangle of each control, so the controls 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 21 

won't be drawn twice. If you find that the other items 
aren't being drawn soon enough after the controls, try 
making the window invisible initially and then calling 
ShowWindow to show it. 

ProcID is the window definition ID, which leads to the window 
definition function for this type of window. The window definition IDs 
for the standard types of dialog window are dBoxProc for the modal type 
and documentProc for the modeless type. 

The behind parameter specifies the window behind which the dialog 
window is to be placed on the desktop. Pass POINTER(-1) to bring up 
the dialog window in front of all other windows. 

GoAwayFlag applies to modeless dialog boxes; if it's TRUE, the dialog 
window has a close box in its title bar when the window is active. 

Ref Con is the dialog window's reference value, which the application 
may store into and access for any purpose. 

NewDialog sets the font of the dialog window's grafPort to the system 
font or, if you previously called SetDAFont, to the specified font. It 
also sets the window class in the window record to dialogKind. 

FUNCTION GetNewDialog (dialogID: INTEGER; dStorage: Ptr; behind: 
WindowPtr) : DialogPtr; 

Like NewDialog (above), GetNewDialog creates a dialog as specified by 
its parameters and returns a pointer to the new dialog. Instead of 
having the parameters boundsRect, title, visible, procID, goAwayFlag, 
and ref Con, GetNewDialog has a single dialogID parameter, where 
dialogID is the resource ID of a dialog template that supplies the same 
information as those parameters. The dialog template also contains the 
resource ID of the dialog's item list. After calling the Resource 
Manager to read the item list into memory (if it's not already in 
memory), GetNewDialog makes a copy of the item list and uses that copy; 
thus you may have multiple independent dialogs whose items have the 
same types, locations, and initial contents. The dStorage and behind 
parameters of GetNewDialog have the same meaning as in NewDialog. 

PROCEDURE CloseDialog (theDialog: DialogPtr); 

CloseDialog removes theDialog's window from the screen and deletes it 
from the window list, just as when the Window Manager procedure 
CloseWindow is called. It releases the memory occupied by the 
following: 

- The data structures associated with the dialog window (such as the 
window's structure, content, and update regions). 

- All the items in the dialog (except for pictures and icons, which 
might be shared resources), and any data structures associated 

7/6/84 Rose /DMGR/DIALOG.R 



22 Dialog Manager Programmer's Guide 

with them. For example, it would dispose of the region occupied 
by the thumb of a scroll bar, or a similar region for some other 
control in the dialog. 

CloseDialog does not dispose of the dialog record or the item list. 
Figure 6 illustrates the effect of CloseDialog (and DisposDialog, 
described below). 

CloseDialog re leases only the 8re8$ marked m~imm 
Di sposD i slog re leases the areas marked ~mmm~ and 

If you created the dialog witt. NewDielog: 

IH:i:i:H~::~:~:i:E:~:H~:~~ : : : : : : : : : : : : : : : : : 
windo\v's :::: dialog:::: 

~i~ ~));~~~)jj) 
tt~:: t~ .. :. ~:::t~~: j~:: ~::~: ... : .:~:: ~::t~.~:. ~:::~::t: .. :. :.~:.~:.::. t~:: ~::i---7,r~~~ ~H~~~) ~~~ ;~. ~~l ~~~~) )~~ t~-~conrn!i:~l!~~~:~~~~:l~:~m:rorffi:l!l~:l!ltd~-CO-3·~~~'~~l~~~~~!!!~;!~::rrn!~[ffi:rrn:~::~ln 

~ ~ ~ ~ ~ ~ H ~ ~ H ~ ~ ~ ~ ~:-:::====~.~=::J 
,.m;:::~::=;:::::~:~:::~:m icon 

dialog record 
item list text 

If you created the dialog with GetNewDialog: 

regions 

dialog record 

Figure 6. 

D 
item I ist reed 

from resource f i Ie 

copy of item I ist text 
read from resource fi Ie 

CloseDialog and DisposDialog 

icon 

Call CloseDialog when you're done with a dialog if you supplied 
NewDialog or GetNewDialog with a pointer to the dialog storage (in the 
dStorage parameter) when you created the dialog. 

(note) 
Even if you didn't supply a pointer to the dialog 
storage, you may want to call CloseDialog if you created 
the dialog with NewDialog. You would call CloseDialog if 
you wanted to keep the item list around (since, unlike 
GetNewDialog, NewDialog does not use a copy of the item 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 23 

list). 

PROCEDURE DisposDialog (theDialog: DialogPtr); 

DisposDialog calls CloseDialog (above) and then releases the memory 
occupied by the dialog's item list and dialog record. Call 
DisposDialog when you're done with a dialog if you let the dialog 
record be allocated on the heap when you created the dialog (by passing 
NIL as the dStorage parameter to NewDialog or GetNewDialog). 

PROCEDURE CouldDialog (dialogID: INTEGER); 

CouldDialog ensures that the dialog template having the given resource 
ID is in memory and makes it unable to be purged. It does the same for 
the dialog window's definition function, the dialog's item list 
resource, and any items defined as resources. This is useful if the 
dialog box may come up when the resource file isn't accessible, such as 
during a disk copy. 

PROCEDURE FreeDialog (dialogID: INTEGER); 

Given the resource ID of a dialog template previously specified in a 
call to CouldDialog (above), FreeDialog undoes the effect of 
CouldDialog. It should be called when there's no longer a need to keep 
the resources in memory. 

Handling Dialog Events 

PROCEDURE ModalDialog (filterProc: ProcPtr; VAR itemHit: INTEGER); 

Call ModalDialog after creating a modal dialog and bringing up its 
window in the frontmost plane. ModalDialog repeatedly gets and handles 
events in the dialog's window; after handling an event involving an 
enabled dialog item, it returns with the item number in itemHit. 
Normally you'll then do whatever is appropriate as a response to an 
event in that item. 

ModalDialog gets each event by calling the Toolbox Event Manager 
function GetNextEvent. If the event is a mouse-down event outside the 
content region of the dialog window, ModalDialog emits sound number 1 
(which should be a single beep) and gets the next event; otherwise, it 
filters and handles the event as described below. 

(note) 
Once before getting each event, ModalDialog calls 
SystemTask, a Desk Manager procedure that needs to be 
called regularly if the application is to support the use 
of desk accessories. 

7/6/84 Rose /DMGR/DIALOG.R 



24 Dialog Manager Programmer's Guide 

The filterProc parameter determines how events are filtered. If it's 
NIL', the standard filterProc function is executed; this causes 
ModalDialog to return 1 in itemHit if the Return key or Enter key is 
pressed. If filterProc isn't NIL, ModalDialog filters events by 
executing the function it points to. Your filterProc function should 
have three parameters and return a Boolean value. For example, this is 
how it would be declared if it were named MyFilter: 

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: 
EventRecord; VAR itemHit: INTEGER) : BOOLEAN; 

A function result of FALSE tells ModalDialog to go ahead and handle the 
event, which either can be sent through unchanged or can be changed to 
simulate a different event. A function result of TRUE tells 
ModalDialog to return immediately rather than handle the event; in this 
case, the filterProc function sets itemHit to the item number that 
ModalDialog should return. 

(note) 
If you want it to be consistent with the standard 
filterProc function, your function should at least check 
whether the Return key or Enter key was pressed and, if 
so, return 1 in itemHit and a function result of TRUE. 

You can use the filterProc function, for example, to treat a typed 
character in a special way (such as ignore it, or make it have the same 
effect as another character or as clicking a button); in this case, the 
function would test for a key-down event with that character. As 
another example, suppose the dialog box contains a userItem whose 
procedure draws a clock with the current time displayed. The 
filterProc function can call that procedure and return FALSE without 
altering the current event. 

(note) 
ModalDialog calls GetNextEvent with a mask that excludes 
disk-inserted events. To receive disk-inserted events, 
your filterProc function can call GetNextEvent (or 
EventAvail) with a mask that accepts only that type of 
event. 

ModalDialog handles the events for which the filterProc function 
returns FALSE as follows: 

- In response to an activate or update event for the dialog window, 
ModalDialog activates or updates the window. 

- If the mouse button is pressed in an editText item, ModalDialog 
responds to the mouse activity as appropriate (displaying an 
insertion point or selecting text). If a key-down event occurs 
and there's an editText item, text entry and editing are handled 
in the standard way for such items (except that if the Command key 
is down, ModalDialog responds as though it isn't). In either 
case, Modar'Dialog returns if the editText item is enabled or does 
nothing if it's disabled. If a key-down event occurs when there's 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 25 

no editText item, ModalDialog does nothing. 

- If the mouse button is pressed in a control, ModalDialog calls the 
Control Manager function TrackControl. If the mouse button is 
released inside the control and the control is enabled, 
ModalDialog returns; otherwise, it does nothing. 

- If the mouse button is pressed in any other enabled item in the 
dialog box, ModalDialog returns. If the mouse button is pressed 
in any other disabled item or in no item, or if any other event 
occurs, ModalDialog does nothing. 

FUNCTION IsDialogEvent (theEvent: EventRecord) : BOOLEAN; 

If your application includes any modeless dialogs, call IsDialogEvent 
after calling the Toolbox Event Manager function GetNextEvent. Pass 
the current event in theEvent. IsDialogEvent determines whether 
theEvent needs to be handled as part of a dialog. If theEvent is an 
activate or update event for a dialog window, a mouse-down event in the 
content region of an active dialog window, or any other type of event 
when a dialog window is active, IsDialogEvent returns TRUE; otherwise, 
it returns FALSE. 

When FALSE is returned, just handle the event yourself like any other 
event that's not dialog-related. When TRUE is returned, you'll 
generally end up passing the event to DialogSelect for it to handle (as 
described below), but first you should do some additional checking: 

- DialogSelect doesn't handle keyboard equivalents for commands. 
Check whether the event is a key-down event with the Command key 
held down and, if so, carry out the command if it's one that 
applies when a dialog window is active. (If the command doesn't 
so apply, do nothing.) 

- In special cases, you may want to bypass DialogSelect or do some 
preprocessing before calling it. If so, check for those events 
and respond accordingly. You would need to do this, for example, 
if the dialog is to respond to disk-inserted events. 

For cases other than these, pass the event to DialogSelect for it to 
handle. 

FUNCTION DialogSelect (theEvent: EventRecord; VAR theDialog: DialogPtr; 
VAR itemHit: .INTEGER) : BOOLEAN; 

You'll normally call DialogSelect after IsDialogEvent, passing in 
theEvent an event that needs to be handled as part of a modeless 
dialog. DialogSelect handles the event as described below. If the 
event involves an enabled dialog item, DialogSelect returns a function 
result of TRUE with the dialog pointer in theDialog and the item number 
in itemHit; otherwise, it returns FALSE with theDialog and itemHit 
undefined. Normally when DialogSelect returns TRUE, you'll do whatever 

7/6/84 Rose /DMGR/DIALOG.R 



26 Dialog Manager Programmer's Guide 

is appropriate as a response to the event, and when it returns FALSE 
you'll do nothing. 

If the event is an activate or update event for a dialog window, 
DialogSelect activates or updates the window and returns FALSE. 

If the event is a mouse-down event in an editText item, DialogSelect 
responds as appropriate (displaying an insertion point or selecting 
text). If it's a key-down event and there's an editText item, text 
entry and editing are handled in the standard way. In either case, 
DialogSelect returns TRUE if the editText item is enabled or FALSE if 
it's disabled. If a key-down event is passed when there's no editText 
item, DialogSelect returns FALSE. 

(note) 
For a key-down event, DialogSelect doesn't check to see 
whether the Command key is held down; to handle keyboard 
equivalents of commands, you have to check for them 
before calling DialogSelect. Similarly, to treat a typed 
character in a special way (such as ignore it, or make it 
have the same effect as another character or as clicking 
a button), you need to check for a key-down event with 
that character before calling DialogSelect. 

If the event is a mouse-down event in a control, DialogSelect calls the 
Control Manager function TrackControl. If the mouse button is released 
inside the control and the control is enabled, DialogSelect returns 
TRUE; otherwise, it returns FALSE. 

If the event is a mouse-down event in any other enabled item, 
DialogSelect returns TRUE. If it's a mouse-down event in any other 
disabled item or in no item, or if it's any other event, DialogSelect 
returns FALSE. 

PROCEDURE DlgCut (theDialog: DialogPtr); [Pascal only] 

DlgCut checks whether theDialog has any editText items and, if so, 
applies the TextEdit procedure TECut to the currently selected editText 
item. (If the dialog record's editField is 0 or greater, DlgCut passes 
the contents of the textH field to TECut.) You can call DlgCut to 
handle the editing command Cut when a modeless dialog window is active. 

Assembly-Ianguage~: Assembly-language programmers can just 
read the dialog record's fields and call TextEdit directly. 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 27 

PROCEDURE DlgCopy (theDialog: DialogPtr); [Pascal only] 

DIgCopy is the same as DlgCut (above) except that it calls TECopy, for 
, handling the Copy command. 

PROCEDURE DlgPaste (theDialog: DialogPtr); [Pascal only] 

DlgPaste is the same as DIgCut (above) except that it calls TEPaste, 
for handling the Paste command. 

PROCEDURE DlgDelete (theDialog: DialogPtr); [Pascal only] 

DIgDelete is the same as DlgCut (above) except that it calls TEDelete, 
for handling the Clear command. 

PROCEDURE DrawDialog (theDialog: DialogPtr); 

DrawDialog draws the contents of the given dialog box. Since 
DialogSelect and ModalDialog handle dialog window updating, this 
procedure is useful only in unusual situations. You would call it, for 
example, to display a dialog box that doesn't require any response but 
merely tells the user what's going on during a time-consuming process. 

Invoking Alerts 

FUNCTION Alert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER; 

This function invokes the alert defined by the alert template that has 
the given resource ID. It calls the current sound procedure, if any, 
passing it the sound number specified in the alert template for this 
stage of the alert. If no alert box is to be drawn at this stage, 
Alert returns a function result of -1; otherwise, it creates and 
displays the alert window for this alert and draws the alert box. 

(note) 
It creates the alert window by calling NewDialog, and 
does the rest of its processing by calling ModalDialog. 

Alert repeatedly gets and handles events in the alert window until an 
enabled item is clicked, at which time it returns the item number. 
Normally you'll then do whatever is appropriate in response to a click 
of that item. 

Alert gets each event by calling the Toolbox Event Manager function 
GetNextEvent. If the event is a mouse-down event outside the content 
region of the alert window, Alert emits sound number 1 (which should be 
a single beep) and gets the next event; otherwise, it filters and 
handles the event as described below. 

7/6/84 Rose /DMGR/DIALOG.R 



28 Dialog Manager Programmer's Guide 

The filterProc parameter has the same meaning as in ModalDialog (see 
above). If it's NIL,the standard filterProc function is executed, 
which makes the Return key or the Enter key have the same effect as 
clicking the default button. If you specify your own filterProc 
function and want to retain this feature, you must include it in your 
function. You can find out what the current default button is by 
looking at the aDefItem field of the dialog record for the alert (via 
the dialog pointer passed to the function). 

Alert handles the events for which the filterProc function returns 
FALSE as follows: 

- If the mouse button is pressed in a control, Alert calls the 
Control Manager procedure TrackControl. If the mouse button is 
released inside the control and the control is enabled, Alert 
returns; otherwise, it does nothing. 

If the mouse button is pressed in any other enabled item, Alert 
simply returns. If it's pressed in any other disabled item or in 
no item, or if any other event occurs, Alert does nothing. 

Before returning to the application with the item number, Alert removes 
the alert box from the screen. (It disposes of the alert window and 
its associated data structures, the item list, and the items.) 

(note) 
The Alert function's removal of the alert box would not 
be the desired result if the user clicked a check box or 
radio button; however, normally alerts contain only 
static text, icons, pictures, and buttons that are 
supposed to make the alert box go away. If your alert 
contains other items besides these, consider whether it 
might be more appropriate as a dialog. 

FUNCTION StopAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER; 

StopAlert is the same as the Alert function (above) except that before 
drawing the items of the alert in the alert box, it draws the Stop icon 
in the top left corner of the box (within the rectangle (10,20,42,52». 
The Stop icon has the following resource ID: 

CaNST stopIcon = 0; 

If the application's resource file doesn't include an icon with that ID 
number, the Dialog Manager uses the standard Stop icon in the system 
resource file (see Figure 7). 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 29 

Stop Note Caution 

Figure 7. Standard Alert Icons 

FUNCTION NoteAlert (alertID: INTEGER; filterProc: ProcPtr) : INTEGER; 

NoteAlert is like StopAlert except that it draws the Note icon, which 
has the following resource ID: 

CONST noteIcon = 1; 

FUNCTION CautionAlert (alertID: INTEGER; filterProc: ProcPtr) 
INTEGER; 

CautionAlert is like StopAlert except that it draws the Caution icon, 
which has the following resource ID: 

CONST ctnIcon = 2; 

PROCEDURE CouldAlert (alertID: INTEGER); 

CouldAlert ensures that the alert template having the given resource ID 
is in memory and makes it unable to be purged. It does the same for 
the alert window's definition function, the alert's item list resource, 
and any items defined as resources. This is useful if the alert may 
occur when the resource file isn't accessible, such as during a disk 
copy. 

PROCEDURE FreeAlert (alertID: INTEGER); 

Given the resource ID of an alert template previously specified in a 
call to CouldAlert (above), FreeAlert undoes the effect of CouldAlert. 
It should be called when there's no longer a need to keep the resources 
in memory. 

7/6/84 Rose /DMGR/DIALOG.R 



30 Dialog Manager Programmer's Guide 

Manipulating Items in Dialogs and Alerts 

PROCEDURE ParamText (param0,paraml,param2,param3: Str255); 

ParamText provides a means of substituting text in statText items: 
param0 through param3 will replace the special strings 'A0' through 
'A3' in all statText items in all subsequent dialog or alert boxes. 
Pass empty strings for parameters not used. 

Assembly-language note: Assembly-language programmers may pass 
NIL for parameters not used or for strings that are not to be 
changed. 

For example, if the text is defined as 'Cannot open document A0' and 
docName is a string variable containing a document name that the user 
typed, you can call ParamText(docName," ,","). 

(warning) 
All strings that will need to be translated to foreign 
languages should be stored in resource files. 

Assembly-language note: The Dialog Manager stores handles to 
the four ParamText parameters in a global array named DAStrings. 

PROCEDURE GetDItem (theDialog: DialogPtr; itemNo: INTEGER; VAR type: 
INTEGER; VAR item: Handle; VAR box: Rect); 

GetDItem returns in its VAR parameters the following information about 
the item numbered itemNo in the given dialog's item list: in the type 
parameter, the item type; in the item parameter, a handle to the item 
(or, for item type userItem, the procedure pointer); and in the box 
parameter, the display rectangle·for the item. 

Suppose, for example, that you want to change the title of a control in 
a dialog box. You can get the item handle with GetDItem, convert it to 
type ControlHandle, and call the Control Manager procedure SetCTitle to 
change the title. Similarly, to move the control or change its size, 
you would call MoveControl or SizeControl. 

(note) 
To access the text of a statText or editText item, pass 
the handle returned by GetDItem to GetIText or SetIText 
(see below). 

7/6/84 Rose /DMGR/DIALOG.R 



DIALOG MANAGER ROUTINES 31 

PROCEDURE SetDItem (theDialog: DialogPtr; itemNo: INTEGER; type: 
INTEGER; item: Handle; box: Rect); 

SetDItem sets the item numbered itemNo in the given dialog's item list, 
as specified by the parameters (without drawing the item). The type 
parameter is the item type; the item parameter is a handle to the item 
(or, for item type userItem, the procedure pointer); and the box 
parameter is the display rectangle for the item. 

Consider, for example, how to install an item of type userItem in a 
dialog: In the item list in the resource file, define an item in which 
the type is set to userItem and the display rectangle to (0,0,0,0). 
Specify that the dialog window be invisible (in either the dialog 
template or the NewDialog call). After creating the dialog, convert 
the item's procedure pointer to type Handle; then call SetDItem, 
passing that handle and the display rectangle for the item. Finally, 
call the Window Manager procedure ShowWindow to display the dialog 
window. 

(note) 
Do not use SetDItem to change the text of a statText or 
editText item or to change or move a control. See the 
description of GetDItem above for more information. 

PROCEDURE GetIText (item: Handle; VAR text: Str2SS); 

Given a handle to a statText or editText item ina dialog box, as 
returned by GetDItem, GetIText returns the text of the item in the text 
parameter. 

PROCEDURE SetIText (item: Handle; text: Str2SS); 

Given a handle to a statText or editText item in a dialog box, as 
returned by GetDItem, SetIText sets the text of the item to the 
specified text and draws the item. For example, suppose the exact 
content of a dialog's text item cannot be determined until the 
application is running, but the display rectangle is defined in the 
resource file: Call GetDItem to get a handle to the item, and call 
SetIText with the desired text. 

PROCEDURE SelIText (theDialog: DialogPtr; itemNo: INTEGER; 
strtSel,endSel: INTEGER); 

Given a pointer to a dialog and the item number of an editText item in 
the dialog box, SelIText does the following: 

- If the item contains text, SelIText sets the selection range to 
extend from character position strtSel up to but not including 
character position endSel. The selection range is inverted unless 
strtSel equals endSel, in which case a blinking vertical bar is 
displayed to indicate an insertion point at that position. 

7/6/84 Rose !DMGR!DIALOG.R 



32 Dialog Manager Programmer's Guide 

- If the item doesn't contain text, SelIText simply displays the 
insertion point. 

For example, if the user makes an unacceptable entry in the editText 
item, the application can put up an alert box reporting the problem and 
then select the entire text of the item so it can be replaced by a new 
entry. (Without this procedure, the user would have to select the item 
before making the new entry.) 

(note) 
You can select the entire text by specifying 0 for 
strtSel and a very large number for endSel. For details 
about selection range and character position, see the 
TextEdit manual. 

FUNCTION GetAlrtStage : INTEGER; [Pascal only] 

GetAlrtStage returns the stage of the last occurrence of an alert, as a 
number from 0 to 3. 

Assembly-language note: Assembly-language programmers can get 
this number by accessing the global variable ACount. In 
addition, the global variable ANumber contains the resource ID 
of the alert template of the last alert that occurred. 

PROCEDURE ResetAlrtStage; [Pascal only] 

ResetAlrtStage resets the stage of the last occurrence of an alert so 
that the next occurrence of that same alert will be treated as its 
first stage. This is useful, for example, when you've used ParamText 
to change the text of an alert such that from the user's point of view 
it's a different alert. 

Assembly-Ianguage~: Assembly-language programmers can set 
the global variable ACount to -1 for the same effect. 

MODIFYING TEMPLATES IN MEMORY 

When you call GetNewDialog or one of the routines that invokes an 
alert, the Dialog Manager calls the Resource Manager to read the dialog 
or alert template from the resource file and return a handle to it. If 
the template is already in memory, the Resource Manager just returns a 

7/6/84 Rose /DMGR/DIALOG.F 



MODIFYING TEMPLATES IN MEMORY 33 

handle to it. If you want, you can call the Resource Manager yourself 
to read the template into memory (and make it unpurgeable), and then 
make changes to it before calling the dialog or alert routine. When 
called by the Dialog Manager, the Resource Manager will return a handle 
to the template as you modified it. 

To modify a template in memory, you need to know its exact structure 
and the data type of the handle through which it may be accessed. 
These are discussed below for dialogs and alerts. 

Dialog Templates in Memory 

The data structure of a dialog template is as follows: 

TYPE DialogTemplate = RECORD 
boundsRect: 
procID: 
visible: 
fillerl: 
goAwayFlag: 
filler2: 
ref Con: 
itemsID: 
title: 

END; 

Rect; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
LongInt; 
INTEGER; 
Str255 

{becomes window's portRect} 
{window definition ID} 
{TRUE if visible} 
{not used} 
{TRUE if has go-away region} 
{not used} 
{window's reference value} 
{resource ID of item list} 
{window's title} 

The fillerl and filler2 fields are there only to ensure that the 
goAwayFlag and ref Con fields begin on a word boundary. The itemsID 
field contains the resource ID of the dialog's item list. The other 
fields are the same as the parameters of the same name in the NewDialog 
function; they provide information about the dialog window. 

You access the dialog template by converting the handle returned by the 
Resource Manager to a template handle: 

TYPE DialogTHndl 
DialogTPtr 

= .... DialogTPtr; 
= .... DialogTemplate; 

Alert Templates in Memory 

The data structure of an alert template is as follows: 

TYPE AlertTemplate RECORD 
boundsRect: Rect; {becomes window's portRect} 
itemsID: INTEGER; {resource ID of item list} 
stages: StageList {alert stage information} 

END; 

BoundsRect is the rectangle that becomes the portRect of the window's 
grafPort. The itemsID field contains the resource ID of the item list 
for the alert. 

7/6/84 Rose /DMGR/DIALOG.F 



34 Dialog Manager Programmer's Guide 

The information in the stages field determines exactly what should 
happen at each stage of the alert. It's packed into a word that has 
the following structure: 

TYPE StageList = PACKED ARRAY [1 •• 4] OF 
RECORD 

boldItem: 
boxDrawn: 
sound: 

0 •• 1; {default button item number minus I} 
BOOLEAN; {TRUE if alert box to be drawn} 
0 .. 3 {sound number} 

END; 

The elements of the StageList array are stored in reverse order of the 
stages: element 1 is for the fourth stage, and element 4 is for the 
first stage. 

BoldItem indicates which button should be the default button (and 
therefore boldly outlined in the alert box). If the first two items in 
the alert's item list are the OK button and the Cancel button, 
respectively, 0 will refer to the OK button and 1 to the Cancel button. 
The reason for this is that the value of bold Item plus 1 is interpreted 
as an item number, and normally items 1 and 2 are the OK and Cancel 
buttons, respectively. Whatever the item having the corresponding item 
number happens to be, a bold rounded-corner rectangle will be drawn 
around its display rectangle. 

(warning) 
When deciding where to place items in an alert box, be 
sure to allow room for any bold outlines that may be 
drawn. 

BoxDrawn is TRUE if the alert box is to be drawn. 

The sound field specifies which sound should be emitted at this stage 
of the alert, with a number from 0 to 3 that's passed to the current 
sound procedure. You can call ErrorSound to specify your own sound 
procedure; if you don't, the standard sound procedure will be used (as 
described earlier in the "Alerts" section). 

You access the alert template by converting the handle returned by the 
Resource Manager to a template handle: 

TYPE AlertTHndl = AAlertTPtr; 
AlertTPtr = AAlertTemplate; 

Assembly-language note: Rather than offsets into the fields of 
the StageList data structure, there are masks for accessing the 
information stored for an alert stage in a stages word; they're 
listed in the summary at the end of this manual. 

7/6/84 Rose /DMGR/DIALOG.F 



FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 35 

FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 

Every dialog template, alert template, and item. list must be stored in 
a resource file, as must any icons or QuickDraw pictures in item lists 
and any control templates for items of type ctrlItem+resCtrl. The 
exact formats of a dialog template, alert template, and item list in a 
resource file are given below. For icons and pictures, the resource 
type is 'ICON' or 'PICT' and the resource data is simply the icon or 
the picture. The format of a control template is discussed in the 
Control Manager manual. 

Dialog Templates in a Resource File 

The resource type for a dialog template is 'DLOG', and the resource 
data has the same format as a dialog template in memory. 

Number of bytes 
8 bytes 
2 bytes 
I byte 
I byte 
I byte 
I byte 
4 bytes 
2 bytes 
n bytes 

Contents 
Same as boundsRect parameter to NewDialog 
Same as procID parameter to NewDialog 
Same as visible parameter to NewDialog 
Ignored 
Same as goAwayFlag parameter to NewDialog 
Ignored 
Same as ref Con parameter to NewDialog 
Resource ID of item list 
.Same as title parameter to NewDialog 
(I-byte length in bytes, followed by 
the characters of the title) 

Alert Templates in a Resource File 

The resource type for an alert template is 'ALRT', and the resource 
data has the same format as an alert template in memory. 

Number of bytes 
8 1:>ytes 
2 bytes 
2 bytes 

Contents 
Rectangle enclosing alert window 
Resource ID of item list 
Stages 

The resource data ends with a word of information about stages. As 
shown in the example in Figure 8, there are four bits of stage 
information for each of the four stages, from the four low-order bits 
for the first stage to' the four high-order bits for the fourth stage. 
Each set of four bits is as follows: 

Number of bits 
1 bit 

7/6/84 Rose 

1 bit 
2 bits 

Contents 
Item number minus 1 of default button; 
normally 0is OK and 1 is Cancel 
1 if alert box is to be drawn, 0 if not 
Sound number (0 through 3) 

/DMGR/DIALOG.F 



36 Dialog Manager Programmer's Guide 

(note) 

fOlrth stage third stage second stage first stage 

111111111011111110101110 10 10 10111 

L~; l~; L~~; L~l· 
drew drew no no 
box box box box 

outline 
-- CMlCeI 

outline 
-- OK 

(velue: hexedec imal F721) 

Figure 8. Sample Stages Word 

So that the disk won't be accessed just for an alert that 
beeps, you may want to set the resPreload attribute of 
the alert's template in the resource file. For more 
information, see the Resource Manager manual. 

Item Lists in a Resource File 

The resource type for an item list is 'DITL'. The resource data begins 
with a word containing the number of items in the list minus 1. This 
is what follows for each item: 

Number of bytes 
4 bytes 
8 bytes 
1 byte 
1 byte 
n bytes 

(n is even) 

Contents 
o (placeholder for handle or procedure 
Display rectangle (local coordinates) 

pointer) 

Item type 
Length of following 
If item type is: 

ctrlItem+resCtrl 
any other ctrlItem 
statText, editText 
iconItem, picItem 
userItem 

data in bytes 
Content is: 

Resource ID (length 2) 
Title of the control 
The text 
Resource ID (length 2) 
Empty (length 0) 

As shown here, the first four bytes serve as a placeholder for the 
item's handle or, for item type userItem, its procedure pointer; the 
handle or point~r is stored after the item list is read into memory. 
The next eight bytes define the display rectangle for the item, and the 
next byte gives the length of the data that follows: for a text item, 
it's the text itself; for an icon, picture, or control of type 
ctrlItem+resCtrl, it's the two-byte resource ID for the item; and for 
any other type of control, it's the title of the control. For 
userItems, no data follows the item type. When the data is text or a 
control title, the number of bytes it occupies must be even to ensure 
word alignment of the next item. 

7/6/84 Rose /DMGR/DIALOG.F 



FORMATS OF RESOURCES FOR DIALOGS AND ALERTS 37 

Assembly-language note: Offsets into the fields of an item list 
are available as global constants; they're listed in the 
summary. 

7/6/84 Rose /DMGR/DIALOG.F 



38 Dialog Manager Programmer's Guide 

SUMMARY OF THE DIALOG MANAGER 

Constants 

CONST {Item types } 

ctrlltem 4-, {add to following four constants} 
btnCtrl = 0; {standard button control} 
chkCtrl = 1 ; {standard check box control} 
radCtrl = 2; {standard "radio button" control} 
resCtrl = 3; {control defined in control template} 
statText 8; {static text} 
editText 16; {editable text (dialog only) } 
iconltem = 32; {icon} 
picltem 64; {QuickDraw picture} 
userltem 0; {application-defined item (dialog 
itemDisable 128; {add to any of above to disable} 

{ Item numbers of OK and Cancel buttons } 

OK 1; 
Cancel 2; 

{ Resource 

stoplcon 
notelcon 
ctnlcon 

Data Types 

TYPE DialogPtr 
DialogPeek 

IDs of alert icons } 

0; 
1 ; 
2; 

= WindowPtr; 
= ~DialogRecord; 

only) } 

DialogRecord = RECORD 
window: 
items: 
textH: 
editField: 
editOpen: 
aDefltem: 

WindowRecord; {dialog window} 

DialogTHndl 
DialogTPtr 

7/6/84 Rose 

END; 

Handle; {item list} 
TEHandle; {current editText item} 
INTEGER; {editText item number minus I} 
INTEGER; {used internally} 
INTEGER {default button item number} 

= ~DialogTPtr; 
= ~DialogTemplate; 

/DMGR/DIALOG.S 



SUMMARY OF THE DIALOG MANAGER 39 

DialogTemplate = RECORD 

AlertTHndl 
AlertTPtr 

boundsRect: 
procID: 
visible: 
fillerl: 
goAwayFlag: 
filler2: 
ref Con: 
itemsID: 
title: 

END; 

= .... AlertTPtr; 
.... AlertTemplate; 

Rect; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
Longlnt; 
INTEGER; 
Str2SS 

{becomes window's portRect} 
{window definition ID} 
{TRUE if visible} 
{not used} 
{TRUE if has go-away region} 
{not used} 
{window's reference value} 
{resource ID of item list} 
{window's title} 

AlertTemplate = RECORD 
boundsRect: Rect; {becomes window's portRect} 
itemsID: INTEGER; {resource ID of item list} 
stages: StageList {alert stage information} 

END: 

StageList PACKED ARRAY [1 •• 4] OF 
RECORD 

bold Item: 
boxDrawn: 
sound: 

0 •• 1; {default button item number minus I} 
BOOLEAN; {TRUE if alert box to be drawn} 
0 •• 3 {sound number} 

END; 

Routines 

Initialization 

PROCEDURE Ini tDialogs (restartProc: .ProcPtr); 
PROCEDURE ErrorSound (soundProc: ProcPtr); 
PROCEDURE SetDAFont (fontNum: INTEGER); [Pascal only] 

Creating and Disposing of Dialogs 

FUNCTION NewDialog 

FUNCTION GetNewDialog 

PROCEDURE CloseDialog 
PROCEDURE DisposDialog 
PROCEDURE CouldDialog 
PROCEDURE FreeDialog 

7/6/84 Rose 

(dStorage: Ptr; boundsRect: Rect; title: Str2SS; 
visible: BOOLEAN; procID: INTEGER; behind: 
WindowPtr; goAwayFlag: BOOLEAN; ref Con: Longlnt; 
items: Handle) : DialogPtr; 

(dialogID: INTEGER; dStorage: Ptr; behind: 
WindowPtr) : DialogPtr; 

(theDialog: DialogPtr); 
(theDialog: DialogPtr); 
(dialogID: INTEGER); 
(dialogID: INTEGER); 

/DMGR/DIALOG.S 



40 Dialog Manager Programmer's Guide 

Handling Dialog Events 

PROCEDURE ModalDialog 
FUNCTION IsDialogEvent 
FUNCTION DialogSelect 

PROCEDURE DlgCut 
PROCEDURE DlgCopy 
PROCEDURE DlgPaste 
PROCEDURE DlgDelete 
PROCEDURE DrawDialog 

Invoking Alerts 

FUNCTION Alert 
FUNCTION StopAlert 
FUNCTION NoteAlert 
FUNCTION CautionAlert 
PROCEDURE CouldAlert 
PROCEDURE FreeAlert 

(filterProc: ProcPtr; VAR itemHit: INTEGER); 
(theEvent: EventRecord) : BOOLEAN; 
(theEvent: EventRecord; VAR theDialog: DialogPtr; 

VAR itemHit: INTEGER) : BOOLEAN; 
(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr); [Pascal only] 
(theDialog: DialogPtr); 

(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER; filterProc: ProcPtr) 
(alertID: INTEGER) ; 
(alertID: INTEGER) ; 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 

Manipulating Items in Dialogs and Alerts 

PROCEDURE ParamText 
PROCEDURE GetDItem 

PROCEDURE SetDItem 

PROCEDURE GetIText 
PROCEDURE SetIText 
PROCEDURE SelIText 

FUNCTION GetAlrtStage 
PROCEDURE ResetAlrtStage; 

UserItem Procedure 

(param0,paraml,param2,param3: Str255); 
(theDialog: DialogPtr; itemNo: INTEGER; VAR type: 
INTEGER; VAR item: Handle; VAR box: Rect); 

(theDialog: DialogPtr; itemNo: INTEGER; type: 
INTEGER; item: Handle; box: Rect); 

(item: Handle; VAR text: Str255); 
(item: Handle; text: Str255); 
(theDialog: DialogPtr; itemNo: INTEGER; strtSel, 
endSel: INTEGER); 
INTEGER; [Pascal only] 

[Pascal only] 

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: INTEGER); 

Sound Procedure 

PROCEDURE MySound (soundNo: INTEGER); 

7/6/84 Rose /DMGR/DIALOG.S 



SUMMARY OF THE DIALOG MANAGER 41 

FilterProc Function for Modal Dialogs and Alerts 

FUNCTION MyFilter (theDialog: DialogPtr; VAR theEvent: EventRecord; 
VAR itemHit: INTEGER) : BOOLEAN; 

Assembly-Language Information 

Constants 

; Item types 

4 ;add to following four constants 
o ;standard button control 
1 ;standard check box control 
2 ;standard "radio button" control 

ctrlItem 
btnCtrl 
chkCtrl 
radCtrl 
resCtrl 
statText 
editText 
iconItem 
picItem 
userItem 
itemDisabl 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

3 ;control defined in control template 
8 ;static text 
16 ;editable text (dialog only) 
32 ;icon 
64 ;QuickDraw picture 
o ;application-defined item (dialog only) 
128 ;add to any of above to disable} 

; Item numbers of OK and Cancel buttons 

okButton 
cancelButton 

.EQU 

.EQU 
1 
2 

; Resource IDs of alert icons 

stopIcon 
noteIcon 
ctnIcon 

.EQU 
.EQU 
.EQU 

o 
1 
2 

; Masks for stages word in alert template 

;sound number 
;whether to draw box 

volBits 
alBit 
okDismissal 

.EQU 

.EQU 

.EQU 

3 
4 
8 ;item number of default button minus 1 

Dialog Record Data Structure 

dWindow 
items 
teHandle 
editField 
editOpen 
aDefItem 
dWindLen 

7/6/84 Rose 

Dialog window 
Handle to dialog's item list 
Handle to current editText item 
Item number of editText item minus 1 
Used internally 
Item number of default button 
Length of dialog record 

/DMGR/DIALOG.S 



42 Dialog Manager Programmer's Guide 

Dialog Template Data Structure 

dBounds 
dWindProc 
dVisible 
dGoAway 
dRefCon 
dItems 
dTitle 

Rectangle that becomes portRect of dialog window's grafPort 
Window definition ID 
Flag for whether dialog window is visible 
Flag for whether dialog window has a go-away region 
Dialog window's reference value 
Resource ID of dialog's item list 
Dialog window's title 

Alert Template Data Structure 

aBounds 
aItems 
aStages 

Rectangle that becomes portRect of alert window's grafPort 
Resource ID of alert's item list 
Stages word; information for alert stages 

Item List Data Structure 

dlgMaxIndex 
itmHndl 
itmRect 
itmType 
itmData 

Variables 

Name 
RestProc 
DAStrings 
DABeeper 
DlgFont 
ACount 
ANumber 

7/6/84 Rose 

Number of items minus 1 
Handle or procedure pointer for this item 
Display rectangle for this item 
Item type for this item 
Length byte followed by that many bytes of 
data for this item (must be even length) 

Size 
4 bytes 
16 bytes 
4 bytes 
2 bytes 
2 bytes 
2 bytes 

Contents 
Address of restart fail-safe procedure 
Handles to ParamText strings 
Address of current sound procedure 
Font number for dialogs and alerts 
Stage number of last alert (0 through 3) 
Resource ID of last alert 

/DMGR/DIALOG.S 



GLOSSARY 43 

GLOSSARY 

alert: A warning or report of an error, in the form of an alert box, 
sound from the Macintosh's speaker, or both. 

alert box: A box that appears on the screen to give a warning or 
report an error during a Macintosh application. 

alert template: A resource that contains information from which the 
Dialog Manager can create an alert. 

alert window: The window in which an alert box is displayed. 

default button: In an alert box or modal dialog, the button whose 
effect will occur if the user presses Return or Enter. In an alert 
box, it's boldly outlined; in a modal dialog, it's boldly outlined or 
the OK button. 

dialog: Same as dialog box. 

dialog box: A box that a Macintosh application displays to request 
information it needs to complete a command, or to report that it's 
waiting for a process to complete. 

dialog record: The internal representation of a dialog, where the 
Dialog Manager stores all the information it needs for its operations 
on that dialog. 

dialog template: A resource that contains information from which the 
Dialog Manager can create a dialog. 

dialog window: The window in which a dialog box is displayed. 

disabled: A disabled item in a dialog or alert box has no effect when 
clicked. 

display rectangle: A rectangle that determines where an item is 
displayed within a dialog or alert box. 

icon: A 32-by-32 bit image that graphically represents an object, 
concept, or message. 

item: In dialog and alert boxes, a control, icon, picture, or piece of 
text, each displayed inside its own display rectangle. 

item list: A list of information about all the items in a dialog or 
alert box. 

item number: The index, starting from 1, of an item in an item list. 

modal dialog: A dialog that requires the user to respond before doing 
any other work on the desktop. 

7/6/84 Rose /DMGR/DIALOG.G 



44 Dialog Manager Programmer's Guide 

modeless dialog: A dialog that allows the user to work elsewhere on 
the desktop before responding. 

sound procedure: A procedure that will emit one of up to four sounds 
from the Macintosh's speaker. Its integer parameter ranges from 0 to 3 
and specifies which sound. 

stage: Every alert has four stages, corresponding to consecutive 
occurrences of the alert, and a different response may be specified for 
each stage. 

7/6/84 Rose /DMGR/DIALOG.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3-GJ Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

The Desk Manager: A Programmer's Guide 

See Also: Macintosh User Interface Guidelines 
Macintosh Operating System Reference Manual 
QuickDraw: A Programmer's Guide 
The Window Manager: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Di a log Manag e r : A Prog r amme r 's Gu ide 
The Menu Manager: A Programmer's Guide 

Modification History: First Draft (ROM 2.~) 
Erratum Added 
Second Draft (ROM 4) 
Third Draft (ROM 7) 

/DSKMGR/DESK 

C. Rose 
C. Rose 
c. Rose 
C. Rose 

2/3/83 
2/28/83 
6/14/83 
9/26/83 

This manual introduces you to the Desk Manager, the part of the 
Macintosh User Interface Toolbox that handles desk accessories such as 
the Calculator. It describes the simple programmatic interface to the 
Desk Manager and tells you how to define your own desk accessories. 

Summary of significant changes and additions since last version: 

- OpenDeskAcc is now a Desk Manager routine, as is the new procedure 
CloseDeskAcc (page 7). 

- A new function, SystemEdit, processes standard editing commands in 
desk accessories (page 8). Four new messages are passed to a desk 
accessory's control routine to handle this (page 13). 

Storing the window pointer in the Device Control Entry is now 
optional for a desk accessory's open routine, and setting the 
windowKind field to the driver's reference number is required 
(page 13). 

- A desk accessory may be displayed in a window created by the 
Dialog Manager; if so, its control routine must respond to the 
"cursor" message in a special way (page 14). Applications 
allowing access to desk accessories must initialize TextEdit and 
the Dialog Manager. 



2 Desk Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Desk Manager 
5 Using the Desk Manager 
6 Desk Manager Routines 
7 Opening and Closing Desk Accessories 
7 Handling Events in Desk Accessories 
8 Performing Periodic Actions 
9 Advanced Routines 
l~ Defining Your Own Desk Accessories 
12 The Device Control Entry 
12 The Driver Routines 
1.5 A Sample Desk Accessory 
16 Summary of the Desk Manager 
17 Glossary 

Copyright (c) 1983 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Desk Manager, the part of the Macintosh User 
Interface Toolbox that supports the use of desk accessories from an 
application; the Calculator, for example, is a standard desk accessory 
available to any application. *** Eventually this will become part of 
a large manual describing the entire Toolbox. *** You'll learn how to 
use the Desk Manager routines and how to define your own accessories. 

(hand) 
This manual describes version 7 of the ROM. If you're 
using a different version, the Desk Manager may not work 
as discussed here. 

Like all documentation about Toolbox units, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

- The Toolbox Event Manager, the Window Manager, the Menu Manager, 
and the Dialog Manager. 

- The basic concepts behind the Resource Manager. 

- I/O drivers, as discussed in the Macintosh Operating System 
Reference Manual. 

This manual begins with an introduction to the Desk Manager and desk 
accessories. Next, a section on using the Desk Manager introduces you 
to its routines and tells how they fit into the flow of your 
application. This is followed by the detailed descriptions of all Desk 
Manager procedures and functions, their parameters, calling protocol, 
effects, side effects, and so on. 

Following these descriptions is a section for programmers who want to 
define their own desk accessories. 

Finally, there's a summary of the Desk Manager routine calls, for quick 
reference, and a glossary of terms used in this manual. *** The 
glossary will eventually be merged with the glossaries from the other 
Toolbox documentation. The many Operating System terms have not been 
included in the glossary in this manual. *** 

ABOUT THE DESK MANAGER 

The Desk Manager enables your application to support desk accessories, 
which are "mini-applications" that can be run at the s:;me time as a 
Macintosh application. The standard Calculator desk accessory is shown 
in Figure 1. *** The method of highlighting an active desk accessory 
is currently different from what's shown here and will probably change. 
*** 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2 



4 Desk Manager Programmer's Guide 

O ,- < ~.,' ~ ',r 
_ 1..J.i. '.14 II. .I. calculator 

~r·······················~I~ 

~t£:ittE1El 
~i!lt!ltD8~ 
~[ffi)lOOJ 
jl!llDlD[J 
J~ .... : .. Jq ... ~ ... ~ 

Active Inactive 

Figure 1. The Calculator Desk Accessory 

The Macintosh user opens desk accessories by choosing them from the 
standard Apple menu (the menu whose title is an Apple symbol), which by 
convention is the first menu in the menu bar. When a desk accessory is 
chosen from this menu, it's usually displayed in a window on the 
desktop, and that window becomes the active window. (See Figure 2.) 

An accessory is chosen 
from the Apple menu. 

The accessory's window 
appears as the active 
window. 

Figure 2. Opening a Desk Accessory 

After being selected, the accessory may be used as long as it's active. 
The user can activate other windows and then reactivate the desk 
accessory by clicking inside it. Whenever a standard desk accessory is 
active, it has a close box in its title bar. Clicking the close box 
makes the accessory disappear, and the window that's then the frontmost 
becomes active. 

The window associated with a desk accessory usually resembles a 
rounded-corner document window, as shown above. It also may look and 
behave like a dialog window; the accessory can calIon the Dialog 
Manager to create the window and then use Dialog Manager routines to 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2 



ABOUT THE DESK MANAGER 5 

operate on it. In either case, the window will be a system window, as 
indicated by its window class. 

Many applications will have an Edit menu that includes the standard 
commands Cut, Copy, Paste, and Undo, which may be useful in desk 
accessories as well as in the application's windows. The Desk Manager 
provides a mechanism that lets those commands be applied to a desk 
accessory when it's active. Even if the commands aren't particularly 
useful for editing within the accessory, they may be useful for cutting 
and pasting between the accessory and the application or even another 
accessory. For example, the result of a calculation made with the 
Calculator desk accessory can be copied into a document prepared in 
MacWrite *** eventually ***. 

A desk accessory may also have its own menu. When the accessory 
becomes active, the title of its menu is added to the menu bar and menu 
items may be chosen from it. Any of the application's menus or menu 
items that no longer apply are disabled. A desk accessory can even 
have an entire menu bar full of its own menus, which will completely 
replace the menus already in the menu bar. When an accessory that has 
its own menu or menus becomes inactive, the menu bar is restored to 
normal. 

Although desk accessories are usually displayed in windows (one per 
accessory), this is not necessarily so. It's possible for an accessory 
to have only a menu (or menus) and not a window. The menu includes a 
command to close the accessory. Also, a desk accessory that's 
displayed in a window may create any number of additional windows while 
it's open. 

You can define your own desk accessories. A desk accessory is actually 
a special type of I/O driver--special in that it may have its own 
windows and menus for interacting with the user. Desk accessories and 
other I/O drivers used by Macintosh applications are stored in resource 
files. 

USING THE DESK MANAGER 

This section introduces you to the Desk Manager routines and how they 
fit into the general flow of an application program. The routines 
themselves are described in detail in the next section. 

To allow access to desk accessories, your application must do the 
following: 

- Initialize TextEdit and the Dialog Manager, in case any desk 
accessories are displayed in windows created by the Dialog Manager 
(which uses TextEdit). 

- Set up the Apple menu as the first menu in the menu bar. You can 
put the names of all currently available desk accessories in a 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.2 



6 Desk Manager Programmer's Guide 

menu by using the Menu Manager routine AddResMenu (see the Menu 
Manager manual for details). 

When the user chooses a menu item from the Apple menu, you should call 
the Menu Manager procedure Get Item to get the name of the corresponding 
desk accessory, and then the Desk Manager function OpenDeskAcc to open 
and display the accessory. You can close the desk accessory with the 
CloseDeskAcc procedure. 

When the Toolbox Event Manager function GetNextEvent reports that a 
mouse down event has occurred, the application calls the Window Manager 
function FindWindow to find out where the mouse button was pressed. If 
FindWindow returns the predefined constant inSysWindow, which means 
that the mouse button was pressed in a system window, you should call 
the Desk Manager procedure SystemClick. SystemClick handles mouse down 
events in system windows, routing them to desk accessories where 
appropria te. 

(hand) 
The application need not be concerned with exactly which 
desk accessories are currently open, except when it wants 
to use the accessory directly itself (such as the 
Mini-Finder accessory). 

When the active window changes from an application window to a system 
window, the application should disable any of its menus or menu items 
that don't apply while an accessory is active. It should enable them 
again when one of its own windows becomes active. 

When a mouse down event occurs in the menu bar, or a key down event 
occurs when the Command key is held down, and the application 
determines that one of the four standard editing commands Cut, Copy, 
Paste, and Undo has been invoked, it should call SystemEdit. Only if 
SystemEdit returns FALSE should the application process the editing 
command itself; if the active window belongs to a desk accessory, 
SystemEdit passes the editing command on to that accessory and returns 
TRUE. 

Certain periodic actions may be defined for desk accessories. To see 
that they're performed, you need to call the SystemTask procedure at 
least once every time through your main event loop. 

The two remaining Desk Manager routines--SystemEvent and 
SystemMenu--are never called by the application, but are described in 
this manual because they reveal inner mechanisms of the Toolbox that 
may be of interest to advanced Macintosh programmers. 

DESK MANAGER ROUTINES 

This section describes all the Desk Manager procedures and functions. 
They're presented in their Pascal form; for information on using them 
from assembly language, see "Using the Toolbox from Assembly Language" 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK. R 



DESK MANAGER ROUTINES 7 

*** doesn't exist, but see "Using QuickDraw from Assembly Language" in 
the QuickDraw manual ***. 

Opening and Closing Desk Accessories 

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER; 

OpenDeskAcc opens the desk accessory having the given name, displays 
its window (if any) as the active window, and returns its reference 
number (or ~ if the accessory can't be opened). The name is the 
accessory's resource name, which you get from the Apple menu by calling 
the Menu Manager procedure Get Item. OpenDeskAcc calls the Resource 
Manager to read the desk accessory from the resource file. 

PROCEDURE CloseDeskAcc (refNum: INTEGER); 

CloseDeskAcc closes the desk accessory having the given reference 
number. Usually, though, the application won't close the desk 
accessory; instead, it will be closed when the user clicks its close 
box (or, if there's a menu instead ofa window, when the user chooses 
the command to close the accessory). Also, since the application heap 
is deallocated when the application terminates, every desk accessory 
goes away at that time. 

Handling Events in Desk Accessories 

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr); 

When a mouse down event occurs and the Window Manager routine 
FindWindow reports that the mouse button was pressed in a system 
window, the application should call SystemClick with the event record 
and the window pointer. If the given window belongs to a desk 
accessory, SystemClick sees that the event gets handled properly. 

SystemClick determines which part of the desk accessory's window the 
mouse button was pressed in, and responds accordingly (similar to the 
way your application responds to mouse activities in its own windows). 

- If the mouse button was pressed in the content region of the 
window and the window was active, SystemClick sends the mouse down 
event to the desk accessory, which processes it as appropriate. 

- If the mouse button was pressed in the content region and the 
window was inactive, SystemClick makes it the active window. 

- If the mouse button was pressed in the drag region, SystemClick 
calls the Window Manager routine DragWindow to pull an outline of 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



8 Desk Manager Programmer's Guide 

the window across the screen and move the window to a new 
location. If the window was inactive, DragWindow also makes it 
the active window (unless the Command key was pressed along with 
the mouse button). 

If the mouse button was pressed in the go-away region, SystemClick 
calls the Window Manager routine TrackGoAway to determine whether 
the mouse is still inside the go-away region when the click is 
completed: if so, it tells the desk accessory to close itself; 
otherwise, it does nothing. 

FUNCTION SystemEdit (editCmd: INTEGER) : BOOLEAN; 

Call SystemEdit when the user invokes the editing command specified by 
editCmd, which may be one of the following predefined constants: 

CONST cutCmd ~; 
copyCmd 1; 
pasteCmd = 2; 
undoCmd 3; 

{Cut command} 
{Copy command} 
{Paste command} 
{Undo command} 

If the active window doesn't belong to a desk accessory, SystemEdit 
returns FALSE; the application should then process the editing command 
as usual. If the active window does belong to a desk accessory, 
SystemEdit asks that accessory to process the command and returns TRUE; 
in this case, the application should ignore the command. 

(hand) 
It's up to the application to make sure desk accessories 
get their editing commands. In particular, make sure 
your application doesn't disable the Edit menu or any of 
the four commands when a des~ accessory is activated. 

Performing Periodic Actions 

PROCEDURE SystemTask; 

For each open desk accessory, SystemTask causes the accessory to 
perform the periodic action defined for it, if any such action has been 
defined and if the proper time period has passed since the action was 
last performed. For example, a clock accessory can be defined such 
that the second hand is to move once every second; the periodic action 
for the accessory will be to move the second hand to the next position, 
and SystemTask will alert the accessory every second to perform that 
action. 

You should call SystemTask as often as possible, usually once every 
time through your main event loop. Call it more than once if your 
application does an unusually large amount of processing each time 
through the loop. 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



(hand) 

DESK MANAGER ROUTINES 9 

Preferably SystemTask would be called at least every 60th 
of a second. 

Advanced Routines 

FUNCTION SystemEvent (theEvent: EventRecord) : BOOLEAN; 

SystemEvent is called only by the Toolbox Event Manager routine 
GetNextEvent when it receives an event, to determine whether the event 
should be handled by the application or by the system. If the given 
event should be handled by the application, SystemEvent returns FALSE; 
otherwise, it calls the appropriate system code to handle the event and 
returns TRUE. 

In the case of a null, abort, or mouse down event, SystemEvent does 
nothing but return FALSE. Notice that it responds this way to a mouse 
down event even though the event may in fact have occurred in a system 
window (and therefore may have to be handled by the system). The 
reason for this is that the check for exactly where the event occurred 
(via the Window Manager routine FindWindow) is made later by the 
application and so would be made twice if SystemEvent were also to do 
it. To avoid this duplication, SystemEvent passes the event on to the 
application and lets it make the sole call to FindWindow. Should 
FindWindow reveal that the mouse down event did occur in a system 
window, the application can then call SystemClick, as described above, 
to get the system to handle it. 

If the given event is a mouse up, key down, key up, or auto-key event, 
SystemEvent checks whether the active window belongs to a desk 
accessory and whether that accessory can handle this type of event. If 
so, it sends the event to the desk accessory and returns TRUE; 
otherwise, it returns FALSE. 

If SystemEvent is passed an activate or update event, it checks whether 
the window it occurred in is a system window belonging to a desk 
accessory and whether that accessory can handle this type of event. If 
so, it sends the event to the desk accessory and returns TRUE; 
otherwise, it returns FALSE. 

(hand) 
It's unlikely that a desk accessory would not be set up 
to handle activate and update events. 

Finally, if the given event is a disk inserted event, SystemEvent does 
some low-level processing (by calling the Operating System routine 
MountVolume) but passes the event on to the application by returning 
FALSE, in case the application wants to do further processing. 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



10 Desk Manager Programmer's Guide 

PROCEDURE SystemMenu (menuResult: LongInt); 

SystemMenu is called only by the Menu Manager routines MenuSelect and 
MenuKey, when an item in a menu belonging to a desk accessory has been 
chosen. The menuResult parameter has the same format as the value 
returned by MenuSe1ect and MenuKey: the menu ID in the high-order word 
and the menu item number in the low-order word. (The menu ID will be 
negative.) SystemMenu directs the desk accessory to perform the 
appropriate action for the given menu item. 

DEFINING YOUR OWN DESK ACCESSORIES 

To define your own desk accessories, you must 
I/O driver and include it in a resource file. 
accessories are stored in the system resource 
specific to an application are rare; if there 
in the application's resource file. 

create the corresponding 
Standard or shared desk 

file. Accessories 
are any, they're stored 

The resource type for I/O drivers is 'DRVR'. The resource ID for a 
desk accessory is the driver's unit number and should be between 12 and 
31 inclusive. The resource name should be whatever you want to appear 
in the Apple menu, but should also include a nonprinting character; by 
convention, the name should begin with a NUL character (ASCII code ~). 
The nonprinting character is needed to avoid conflict with file names 
that are the same as the names of desk accessories. 

The structure of an I/O driver is described in the Macintosh Operating 
System Reference Manual. The rest of this section reviews some of that 
information and presents additional details pertaining specifically to 
I/O drivers that are desk accessories. 

(hand) 
Usually drivers are created entirely from assembly 
language, but you can use an assembly 1anguage-to-Pasca1 
interface that will enable you to write the body of the 
driver routines in Pascal. An interface named ProtoOrn 
has been created for this purpose at Apple; for more 
information, see your Macintosh software coordinator. 

As illustrated in Figure 3, the I/O driver begins with a few words of 
flags and other data for the driver, followed by offsets to the 
routines that do the work of the driver, an optional title, and finally 
the routines themselves. 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



o 
2 
4 
6 
a 

10 
12 
14 
16 
18 
19 

DEFINING YOUR OWN DESK ACCESSORIES 11 

Flags/ descr iptor 
Tick COlIlt 
Event mask 

Menu 10 
Offset to open routine 1 word esch 

Offset to prime routine 
Offset to control routine 
Offset to status routine 
Offset to close routine 

Title length (1 byte) 
Title 

} optional 

.j~ I-.ctual code of the driver ~~ 

Figure 3. Desk Accessory I/O Driver 

The first four words of the driver for a desk accessory contain the 
following: 

1. A flags/descriptor word. Bits ~ through 7 and bit 12 are relevant 
only to ROM-based drivers; they're ignored for desk accessories. 
Bits 8 through 11 are the enable flags for the driver routines. 
The following flags are especially for desk accessories: 

Flag 
bit 13 

bit 14 

Name 
dNeedTime 

dNeedLock 

Meaning if set 
Driver needs time for performing a 
periodic action for the desk accessory 
Driver will be locked in memory as soon 
as it's opened 

If you want to test one of these flags with the assembly-language 
instruction BTST, remember that when the destination of BTST is a 
memory location, the operation is performed on a byte read from 
that location. 

2. If the dNeedTime flag is set, a tick count indicating how often 
the periodic action should occur. A tick count of ~ means it 
should happen as often as possible, 1 means it should happen every 
6~th of a second, 2 means every 3~th of a second, and so on. The 
action itself is performed by the control routine in the driver 
when it's called by the SystemTask procedure. 

3. An event mask specifying which events the desk accessory can 
handle. This should especially include update and activate events 
and usually will include mouse down events. 

4. If the desk accessory has its own menu (or menus), the ID of the 
menu (or of any of the menus); otherwise,~. The menu ID will be 
negative. For menus defined in resource files, it's the resource 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK. R 



12 Desk Manager Programmer's Guide 

ID; for menus created by the desk accessory, it's any negative 
number (between -1 and -32767) that you choose to identify this 
accessory's menu. It must be different from the menu ID stored 
here for other desk accessories. 

Following these four words are the offsets to the driver routines and, 
optionally, a title for the desk accessory (preceded by its length in 
bytes). You can use the title in the driver as the title of the 
accessory's window, or just as a way of identifying the driver in 
memory. 

The Device Control Entry 

When any of the routines in the I/O driver is called, a pOinter to the 
driver's Device Control Entry is passed in AI. Most of the data in the 
Device Control Entry is stored and accessed only by the Operating 
System, but in some cases the driver routines themselves must store 
into it. The structure of the Device Control Entry, which is discussed 
in detail in the Operating System manual, is illustrated in Figure 4. 
Notice that some of the data is taken from the first four words of the 
I/O driver. 

o I~ Pointer to start of dr ;ver 
4 w~d Flags (from driver .. plus some dynamic flags) 
6 ~d Driver input queue header: flags 
8 long Dr iver input queue header: QHead 

12 long Driver input queue header: QTai I 
16 long Position pointer (position in fi Ie) 
20 long Handle to driver's private storage (optional) 
24 ~d Reference number for this driver 
26 long Counter for SystemTask timing 
30 long Pointer to driver's window (optional) 
34 ~d T iet count (from driver) 
36 ~d Event mask (from driver) 
38 word Menu 10 (from driver) 

Figure 4. Device Control Entry 

The Driver Routines 

Of the five possible driver routines, only three need to exist for desk 
accessories: the open, close, and control routines. The other 
routines (prime and status) may be used if desired for a particular 
accessory. 

The open routine opens the desk accessory. 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



DEFINING YOUR OWN DESK ACCESSORIES 13 

- It creates the window to be displayed when the accessory is 
opened t if anYt specifying that it be invisible (since OpenDeskAcc 
will display it). The window can be created with the Dialog 
Manager routine NewDialog (or GetNewDialog) if desired; the 
accessory will look and respond like a dialog box, and subsequent 
operations may be performed on it with Dialog Manager routines. 
In any case t the open routine sets the windowKind field in the 
window record to the reference number for the driver, which it 
gets from the Device Control Entry. (The reference number will be 
negative.) It also may store the window pointer in the Device 
Control Entry if desired. 

- If the driver has any private storage, it allocates the storage, 
stores a handle to it in the Device Control Entry,and initializes 
any local variables. It might, for example, create a menu or 
menus for the accessory. 

The close routine closes the desk accessoryt disposing of its window 
(if any) and replacing the window pointer in the Device Control Entry 
with NIL (if one was stored there by the open routine). If the driver 
has any private storage, the close routine also disposes of that 
storage. 

The action taken by the control routine depends on information passed 
in the parameter block pointed to by A0. A message is passed in the 
"op code" field (a word located at 26(A0»; this message is simply a 
number that tells the routine what action to take. There are eight 
such messages: 

Messase Name Action to be taken bI control routine 
64 accEvent Handle a given event 
65 accRun Take the periodic action, if any, for 

this desk accessory 
66 accCursor Change the cursor shape if appropriate; 

generate a null event if the window was 
created by the Dialog Manager 

67 accMenu Handle a given menu item 
68 accCut Handle the Cut command 
69 accCopy Handle the Copy command 
7~ accPaste Handle the Paste command 
71 accUndo Handle the Undo command 

Along with the accEvenf message, the control routine receives as a 
parameter a pointer to an event record (a long integer located at 
28(A~». It responds by handling the given event in whatever way is 
appropriate for this desk accessory. SystemClick and SystemEvent call 
the control routine with this message to send the driver an event that 
it should handle--for example, an activate event that makes the desk 
accessory active or inactive. When a desk accessory becomes active, 
its control routine might install a menu in the menu bar. If the 
accessory becoming active has more than one menu, the control routine 
should respond as follows: 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



14 Desk Manager Programmer's Guide 

Store the accessory's unique menu ID in the system global 
mBarEnable. (This is the negative menu ID in the I/O driver and 
the Device Control Entry.) 

- Call the Menu Manager routines GetMenuBar to save the current menu 
list and ClearMenuBar to clear the menu bar. 

- Install the accessory's own menus in the menu bar. 

Then, when the desk accessory becomes inactive, the control routine 
should call SetMenuBar to restore the former menu list, call 
DrawMenuBar to draw the menu bar, and set mBarEnable to ~. 

The accRun message tells the control routine to perform the periodic 
action for this desk accessory. For every open driver that has the 
dNeedTime flag set, the SystemTask procedure calls the control routine 
with this message if the proper time period has passed since the action 
was last performed. 

The accCursor message makes it possible for the cursor to have a 
special shape when it's inside an active desk accessory. The control 
routine is called repeatedly with this message as long as the desk 
accessory is active. If desired, the control routine may respond by 
checking whether the mouse position is in the desk accessory's window 
and then changing the shape of the cursor if so. Furthermore, if the 
desk accessory is displayed in window created by the Dialog Manager, 
the control routine should respond to the accCursor message by 
generating a null event (storing the event code for a null event in an 
event record) and passing it to DialogSelect. This enables the Dialog 
Manager to blink the vertical bar in editText items. 

(hand) 
In assembly language, the code might look like this: 

CLR.L 
PEA 
CLR.L 
CLR.L 

-SP 
2(SP) 
-SP 
-SP 

DialogSelect 
ADDQ.L #4,SP 

event code for null event is 0 
pass null event 
pass NIL dialog pointer 
pass NIL pointer 
invoke DialogSelect 
pop off result and null event 

When the accMenu message is sent to the control routine, the following 
information is passed in the parameter block: the menu ID of the desk 
accessory's menu in a word at 28(A~), and a menu item number in a word 
at 3~(A0). The control routine takes the appropriate action for when 
the given menu item is chosen from the menu, and then makes the Menu 
Manager call HiliteMenu(0) to remove the highlighting from the menu 
bar. 

Finally, the control routine should respond to one of the last four 
messages--accCut through accUndo--by processing the corresponding 
editing command in the desk accessory window if appropriate. 
SystemEdit calls the control routine with these messages. For 
information on cutting and pasting between a desk accessory and the 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



DEFINING YOUR OWN DESK ACCESSORIES 15 

application, or between two desk accessories, see the *** forthcoming 
*** Scrap Manager manual. 

(hand) 
If you use .I~CLUDE to include a file named SysEqu.Text 
when you assemble your program, the messages sent to .the 
driver's control routine will be available in symbolic 
form, as will offsets into the fields of the I/O driver 
and Device Control Entry. 

A Sample Desk Accessory 

*** to be supplied; meanwhile, see your Macintosh software coordinator 
*** 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.R 



16 Desk Manager Programmer's Guide 

SUMMARY OF THE DESK MANAGER 

CONST cutCmd 
copyCmd 
pasteCmd 
undoCmd 

= ~; 
= 1; 

2; 
= 3; 

{Cut command} 
{Copy command} 
{Paste command} 
{Undo command} 

Opening and Closing Desk Accessories 

FUNCTION OpenDeskAcc (theAcc: Str255) INTEGER; 
PROCEDURE CloseDeskAcc (refNum: INTEGER); 

Handling Events in Desk Accessories 

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr); 
FUNCTION SystemEdit (editCmd: INTEGER) : BOOLEAN; 

Performing Periodic Actions 

PROCEDURE SystemTask; 

Advanced Routines 

FUNCTION SystemEvent (theEvent: EventRecord) 
PROCEDURE SystemMenu (menuResult: LongInt); 

9/26/83 Rose CONFIDENTIAL 

BOOLEAN; 

/DSKMGR/DESK.S 



GLOSSARY 17 

GLOSSARY 

desk accessory: A "mini-application" t implemented as an I/O driver. 
that can be run at the same time as a Macintosh application. 

tick: A 6~th of a second. 

9/26/83 Rose CONFIDENTIAL /DSKMGR/DESK.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to. the author (indicated on the cover 
page) at 10460 Bandley Drive M/S3·G, Cupertino CA 95014. . 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 



MACINTOSH USER EDUCATION 

The Scrap Manager: A Programmer's Guide 

See Also: Macintosh User Interface Guidelines 
Macintosh Operating System Reference Manual 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Event Manager: A Programmer's Guide 
The Segment Loader: A Programmer's Guide 
The Desk Manager: A Programmer's Guide 
Putting Together a Macintosh Application 

Modification History: First Draft (ROM 7) 
Erratum Added 

C. Rose 
C. Rose 

/SMGR/SCRAP 

1~/21/83 
11/16/83 

ABSTRACT 

The Scrap Manager is a set of simple routines and data types that help 
Macintosh applications manipulate the Clipboard for cutting and pasting 
between applications, desk accessories, or an application and a desk 
accessory. This manual describes the Scrap Manager in detail. 

Erratum: 

The 'TEXT' type of data in the desk scrap is simply a series of ASCII 
characters, without a character count or an optional comment. If you 
want to know the count, you can get it by passing a NIL handle to the 
GetScrap function. 



2 Scrap Manager Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 About the Scrap Manager 
4 Overview of the Desk Scrap 
7 Desk Scrap Data Types 
9 Using the Scrap Manager 
1~ Scrap Manager Routines 
1~ Getting Scrap Information 
11 Keeping the Scrap on the Disk 
12 Reading from the Scrap 
12 Writing to the Scrap 
13 Format of the Desk Scrap 
15 Summary of the Scrap Manager 
17 Glossary 

Copyright (c) 1983 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Scrap Manager, a new part of the Macintosh 
User Interface Toolbox in ROM version 7. *** Eventually it will become 
part of a comprehensive manual describing the entire Toolbox. *** The 
Scrap Manager supports cutting and pasting between applications, desk 
accessories, or an application and a desk accessory. 

Like all documentation about Toolbox units, this manual assumes you're 
familiar with the Macintosh User Interface Guidelines, Lisa Pascal, and 
the Macintosh Operating System's Memory Manager. You should also be 
familiar with the following: 

- QuickDraw pictures 

Resources, as discussed in the Resource Manager manual 

- The Toolbox Event Manager 

This manual is intended to serve the needs of both Pascal and 
assembly-language programmers. Information of interest only to 
assembly-language programmers is isolated and labeled so that Pascal 
programmers can conveniently skip it. 

The manual begins with an introduction to the Scrap Manager, an 
overview of the scrap that you manipulate with it, and a discussion of 
the types of data that the scrap may contain. 

Next, a section on using the Scrap Manager introduces its routines and 
tells how they fit into the flow of your application. This is followed 
by detailed descriptions of all Scrap Manager routines, their 
parameters, calling protocol, effects, side effects, and so on. 

Following these descriptions is a section that gives the exact format 
of the scrap, for those programmers who are interested; you don't have 
to read this section to be able to use the Scrap Manager routines. 

Finally, there's a summary of the Scrap Manager, for quick reference, 
followed by a glossary of terms used in this manual. 

ABOUT THE SCRAP MANAGER 

The Scrap Manager is a set of simple routines and data types that help 
Macintosh applications manipulate the desk scrap, which is where data 
that's cut (or copied) and pasted between applications is stored. An 
application can also use the desk scrap for storing data that's cut and 
pasted within the application, but usually it will have its own private 
scrap for this purpose. The format of the private scrap may be 
whatever the application likes, since no other application will use it. 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2 



4 Scrap Manager Programmer's Guide 

From the user's point of view, there's a single place where all cut or 
copied data resides, and it's called the Clipboard. The Cut command 
deletes data from a document and places it in the Clipboard; the Copy 
command copies data into the Clipboard without deleting it from the 
document. The next Paste command--whether applied to the same document 
or another, in the same application or another--inserts the contents of 
the Clipboard at a specified place. An application that offers these 
editing commands will usually also have a special window for displaying 
the current Clipboard contents; it may show the Clipboard window at all 
times or only when requested (via the Show Clipboard and Hide Clipboard 
commands). 

The desk scrap is the vehicle for transferring data not only between 
two applications but also between an application and a desk accessory, 
or even between two desk accessories. Desk accessories that display 
text will commonly allow the text to be cut or copied. The user might, 
for example, use the Calculator accessory to do a calculation and then 
copy the result into a document. It's also possible for a desk 
accessory to allow something to be pasted into it. 

(hand) 
The Scrap Manager is optimized for transferring small 
amounts of data; attempts to transfer very large amounts 
of data may fail due to lack of memory. 

The nature of the data to be transferred varies according to the 
application. For example, for the Calculator or a word processor the 
data is text, and for a graphics application it's a picture. The 
amount of information retained about the data that's transferred also 
varies. Between two text applications, text can be cut and pasted 
without any loss of information; however, if the user of a graphics 
application cuts a picture consisting of text and then pastes it into a 
document created with a word processor, the text in the picture may not 
be editable in the word processor, or it may be editable but not look 
exactly the same as in the graphics application. The Scrap Manager 
allows for a variety of data types and provides a mechanism whereby 
applications have control over how much information is retained when 
data is transferred. 

Like any scrap, the desk scrap can be kept on the disk (in the scrap 
file) if there's not enough room for it in memory. It may remain on 
the disk throughout the use of the application but must be read back 
into memory when the application terminates, since the user may then 
remove that disk and insert another. The Scrap Manager provides 
routines for writing the desk scrap to the disk and for reading it back 
into memory. 

OVERVIEW OF THE DESK SCRAP 

The desk scrap is initially located in the application heap, with a 
handle to it in low memory. When starting up an application, the 
Segment Loader temporarily moves the scrap out of the heap into the 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2 



OVERVIEW OF THE DESK SCRAP 5 

stack, reinitializes the heap, and puts the scrap back in the heap. 
(See Figure 1.) For a short time while it does this, two copies of the 
scrap exist in the memory allocated for the stack and the heap; for 
this reason, the desk scrap cannot be bigger than half that amount of 
memory. 

Initially: 

old { 
heap 

................ ~ 
~~~~t~~.~~~~.~~~}:~:~ 

Then: 

: rest of stacie ~ ~ . 
~deSk screpj ~ 

Finally: 

} 
new 
heap 

Figure 1. The Desk Scrap at Application Start-up 

The application can get the size of the desk scrap by calling a Scrap 
Manager function named InfoScrap. An application concerned about 
whether there's room for the desk scrap in memory might be set up so 
that a small initial segment of the application is loaded in just to 
check out the scrap size. After a decision is made about whether to 
keep the scrap in memory or on the disk, the remaining segments can be 
loaded in as needed. 

There are certain disadvantages to keeping the desk scrap on the disk. 
The disk may be write-protected, may not have enough room for the 
scrap, or may be removed during use of the application. If the 
application can't write the scrap to the disk, it should put up an 
alert box informing the user, who may want to abort the application at 
that point. 

The application must use the desk scrap for any Paste command given 
before the first Cut or Copy command (that is, the first since the 
application started up or since a desk accessory was deactivated); this 
requires copying the desk scrap to the private scrap, if any. Clearly 
the application must keep the contents of the desk scrap intact until 
the first Cut or Copy command is given. Thereafter it can ignore the 
desk scrap until a desk accessory is activated or the application is 
terminated; in either of these cases, it must copy its private scrap to 
the desk scrap. Thus whatever was last cut or copied within the 
application will be pasted if a Paste command is then given in a desk 
accessory or in the next application. 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2 



6 Scrap Manager Programmer's Guide 

1. User enters word processor after cutting a picture in the previous application. 

I pic1~e I EJ 
desk scrap pr i vate scrap 

2. User gives Paste comroand in word processor (without a previous Cut or Copy). 

picture 
' converted , picture 

desk scrap pr ivate scrap 

3a. User cuts text in word processor. 

I picnwe I o 
desk scrap pr; \/ate scrap 

3b. User I eaves word processor. 

text 
I
converted 1 .. (---1 

text L..-___ _ 

desk scrap pr ivate scrap 

-~ , pasted where specif ied 

OR: 

3. U~er I eaves word proce~sor 
(without a previous Cut or Copy). 

I pic1~e I 
desk scrap 

converted 
pictlH'e 

pr i vate scrap 

Figure 2. Interaction between Scraps 

Figure 2 illustrates how the interaction between the desk scrap and the 
application's private scrap might occur when the user gives a Paste 
command in a word processor after cutting a picture in a graphics 
application. As the picture that was cut gets copied to the private 
scrap, it's converted to the format of that scrap. If the user leaves 
the word processor after cutting or copying text, the text first goes 
into the private scrap and then gets copied to the desk scrap. On the 
other hand, if the user never gives a Cut or Copy command, the 
application won't copy the private scrap to the desk scrap, so the 
original contents of the desk scrap will be retained. 

Suppose the word processor in Figure 2 displays the contents of the 
Clipboard. Normally it will display its private scrap; however, to 
show the Clipboard contents at any time before step 2, it will have to 
display the desk scrap instead, or first copy the desk scrap to its 
private scrap. It can instead simply copy the desk scrap to its 
private scrap at start-up (step 1), so that showing the Clipboard 
contents will always mean displaying the private scrap. 

A similar scheme to that shown in Figure 2 must be followed when the 
user reenters an application after using a desk accesory, since the 
user may have done cutting or copying in the accessory. The 
application can in fact check whether any such cutting or copying was 
done, by looking at a count that's returned by InfoScrap. If this 
count changes during use of the desk accessory, it means the contents 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2 



OVERVIEW OF THE DESK SCRAP 7 

of the desk scrap have changed; the application will have to copy the 
desk scrap to the private scrap, if any, and update the contents of the 
Clipboard window, if there is one and if it's visible. If the count 
returned by InfoScrap hasn't changed, however, the application won't 
have to take either of these actions. 

If the application encounters problems in trying to copy one scrap to 
another, it should alert the user. The desk scrap may be too large to 
copy to the private scrap, in which case the user may want to leave the 
application or just proceed with an empty Clipboard. If the private 
scrap is too large to copy to the desk scrap, either because it's 
disk-based and too large to copy into memory or because it exceeds the 
maximum size allowed for the desk scrap, the user may want to stay in 
the application and cut or copy something smaller. 

DESK SCRAP DATA TYPES 

From the user's point of view there can be only one thing in the 
Clipboard at a time, but internally there may be more than one data 
item in the desk scrap, each representing the same Clipboard contents 
in a different form. For example, text cut with a word processor may 
be stored in the desk scrap both as text and as a QuickDraw picture. 

Desk scrap data types are like resource types. As defined in the 
Resource Manager, their Pascal type is as follows: 

TYPE ResType = PACKED ARRAY [1 •• 4] OF CHAR; 

The Scrap Manager recognizes two standard types of data in the desk 
scrap. 

'TEXT': a series of ASCII characters, preceded by a long word 
containing the number of characters and optionally followed by a 
comment, as described below. 

- 'PICT': a QuickDraw picture, which is a saved sequence of drawing 
commands that can be played back with the DrawPicture command and 
may include picture comments. (See the QuickDraw manual for 
details.) 

Applications must write at least one of these standard types of data to 
the desk scrap and must be able to read both types. Most applications 
will prefer one of these types over the other; for example, a word 
processor prefers text while a graphics application prefers pictures. 
An application should at least write its preferred standard type of 
data to the desk scrap, and ideally will write both types (to pass the 
most information possible on to the receiving application, which may 
prefer the other type). 

An application reading the desk scrap will look for its preferred data 
type. If its preferred type isn't there, or if it's there but was 
written by an application having a different preferred type, some 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2 



8 Scrap Manager Programmer's Guide 

information may be lost in the transfer process. For example, consider 
the user of a graphics application who cuts a picture consisting of 
text and then goes into a word processor and pastes it (as illustrated 
in Figure 3). 

- If the graphics application writes only its preferred data type, 
picture, to the desk scrap (like application A in Figure 3), the 
text in the picture will not be editable in the word processor, 
because it will be seen as just a series of drawing commands and 
not a sequence of characters. 

- On the other hand, if the graphics application takes the trouble 
of recognizing which characters have been drawn in the picture, 
and also writes them out to the desk scrap as text (like 
application B in Figure 3), the word processor will be able to 
treat them like any text, with editing or whatever. In this case, 
however, any part of the picture that isn't text will be lost. 

Graphics Appl ication A Word Processor 

.................. .................. 
picture Cut Peste pic'h.re 

consisting -~ picture I ,: 
consisting /1 j /: 

of text desk scrap of text .................. ................................ 

Graphics Appl ication B Word Processor 

.................. Cut .. " ............................ -. 
picture 

, 
picture ., 

Peste editable 
consisting 

text 
,: text . 

of text ': . 
-.............................. -

desk scrap 
-.............................. -

Figure 3. Inter-Application Cutting and Pasting 

In addition to the two standard data types, the desk scrap may also 
contain application-specific types of data. If several applications 
are to support the transfer of a private type of data, each one will 
write and read that type--clearly its preferred type--but still must 
write at least one of the standard types and be able to read both 
standard types. 

(eye) 
There should never be more than one of each type of data 
in the desk scrap at a time. 

The order in which data is written to the desk scrap is important: the 
application should write out the different types in order of 
preference. For example, if it's a word processor that writes out a 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2 



DESK SCRAP DATA TYPES 9 

private type of data as well as text and pictures, it should do so in 
that order. 

Since the size of the desk scrap is limited, it may be too costly to 
write out both an application-specific type of data and one (or both) 
of the standard types. If so, the comments that can accompany text or 
pictures might be useful. Instead of creating an application-specific 
data type, you may b~ able to encode additional information in these 
comments. For example, instead of having a data type that consists of 
text and formatting information combined in an application-specific 
way, you can encode the formatting information in the text comment. 
Applications that are to process that information can do so, while 
others can ignore it. 

A text comment follows the last character in the text and must begin 
with the application ID, a four-character sequence that you choose to 
uniquely identify your application when you build it. *** (This ID 
will be discussed further in a future revision of the manual "Putting 
Together a Macintosh Application".) *** Any data that you like can 
follow the application ID. 

As described in the QuickDraw manual, picture comments may be stored in 
the definition of a picture with the QuickDraw procedure PicComment. 
The DrawPicture procedure passes any such comments to a special routine 
set up by the application for that purpose. 

USING THE SCRAP MANAGER 

This section discusses how the Scrap Manager routines fit into the 
general flow of an application program and gives you an idea of which 
ones you'll need to use. The routines themselves are described in 
detail in the next section. 

The application should inquire as early as possible about the size of 
the desk scrap to determine whether there will be enough room for 
itself and the scrap to coexist in the heap; it can do so by calling 
the InfoScrap function. If there won't be enough room for the desk 
scrap in the heap, the application should call the UnloadScrap 
procedure to write the scrap from memory onto the disk. InfoScrap also 
provides a handle to the desk scrap if it's in memory, its file name on 
the disk, and a count that's useful for testing whether the contents of 
the desk scrap have changed during the use of a desk accessory. 

If a Paste command is given before the first Cut or Copy command after 
the application starts up, the application must copy the contents of 
the desk scrap to its private scrap, if any. It can do this either 
upon starting up or when the Paste command that needs to use the desk 
scrap is given. The latter method usually suffices, but applications 
that support display of the Clipboard will benefit from copying the 
desk scrap at start-up. The Scrap Manager routine that gets data from 
the desk scrap is called GetScrap. 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.2 



10 Scrap Manager Programmer's Guide 

When the user gives a command that terminates the application, the 
application's private scrap will usually have to be copied to the desk 
scrap. If the desk scrap is on the disk, it must first be read into 
memory with the LoadScrap function. The application must call 
ZeroScrap to reinitialize the desk scrap and clear its previous 
contents, and then PutScrap to put data in the scrap. 

(eye) 
Do not copy the private scrap to the desk scrap unless a 
Cut or Copy command was given that changed the contents 
of the Clipboard. 

The same kind of scrap interaction that occurs at application start-up 
also applies to returning to the application from a desk accessory 
(that is, an activate event that activates an application window after 
deactivating a system window). Similarly, the interaction when an 
application terminates also applies to accessing a desk accessory from 
the application (as reported by an activate event that deactivates an 
application window and activates a system window). Note, however, that 
a desk accessory shouldn't concern itself with writing or reading the 
desk scrap from the disk. 

Cutting and pasting between two desk accessories follows an analogous 
scenario. As described in the Desk Manager manual, the way a desk 
accessory learns it must respond to an editing command is that its 
control routine receives a message telling it to perform the command; 
the application needs to call the Desk Manager function SystemEdit to 
make this happen. 

SCRAP MANAGER ROUTINES 

This section describes all the Scrap Manager routines. They are 
presented in their Pascal form; for information on using them from 
assembly language, see "Using the Toolbox from Assembly Language" *** 
for now, see "Using QuickDraw from Assembly Language" in the QuickDraw 
manual ***. ' 

Getting Scrap Information 

FUNCTION InfoScrap : PScrapStuff; 

InfoScrap returns a pointer to information about the desk scrap. The 
PScrapStuff data type is defined as follows: 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R 



TYPE PScrapStuff 
ScrapStuff 

= AScrapStuff; 
= RECORD 

scrapSize: 
scrapHandle: 
scrapCount: 
scrapState: 
scrapName: 

E~; 

SCRAP MANAGER ROUTINES 11 

LongInt; 
Handle; 
INTEGER; 
INTEGER; 
StringPtr 

ScrapSize is the size of the entire desk scrap in bytes. ScrapHandle 
is a handle to the scrap if it's in memorYt or NIL if not. ScrapCount 
is a count that changes every time ZeroScrap is called and is useful 
for testing whether the contents of the desk scrap have changed during 
the use of a desk accessory (see ZeroScrap under "Writing to the 
Scrap"t below). ScrapState is positive if the desk scrap is in memory 
or 0 if it's on the'disk. ScrapName is a pointer to the name of the 
scrap filet usually DeskScrap. 

Keeping the Scrap on the Disk 

FUNCTION UnloadScrap : LongInt; 

UnloadScrap writes the desk scrap from memory to the scrap file. If 
the desk scrap is already on the disk t it does nothing. If no error 
occurs t UnloadScrap returns 0; otherwise t it returns an appropriate 
Operating System error code. 

Assembly-Ianguage~: The macro you invoke to call 
UnloadScrap from assembly language is named _UnlodeScrap. 

FUNCTION LoadScrap : LongInt; 

LoadScrap reads the desk scrap from the scrap file into memory. If the 
desk scrap is already in memorYt it does nothing. If no error occurs t 
LoadScrap returns 0; otherwise t it returns an appropriate Operating 
System error code. 

Assembly-Ianguage~: The macro you invoke to call LoadScrap 
from assembly language is named _LodeScrap. 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R 



12 Scrap Manager Programmer's Guide 

Reading from the Scrap 

FUNCTION GetScrap (hDest: Handle; theType: ResType; VAR offset: 
LongInt) : LongInt; 

GetScrap reads the data of type theType from the desk scrap (whether in 
memory or on the disk), makes a copy of it in memory, and sets up the 
hDest handle to point to the copy. Usually you'll pass an empty handle 
in hDest. In the offset parameter, GetScrap returns the location of 
the data as an offset (in bytes) from the beginning of the desk scrap. 
If no error occurs, the function result is the length of the data in 
bytes; otherwise, it's either an appropriate Operating System error 
code (which will be negative) or the following predefined constant: 

CONST noTypeErr = -102; {there's no data of the requested type} 

For example, given an empty handle declared as 

VAR pHndl: PicHandle 

you can make the following calls: 

GetScrap(POINTER(ORD(pHndl)),'PICT'); 
DrawPicture(pHndl); 

Your application should pass its preferred data 
it doesn't prefer one data type over any other, 
different types until the offset returned is 0. 
that data was the first to be written out and so 
preferred type of the application that wrote it. 

type to GetScrap. If 
it should try getting 

An offset of 0 means 
should be the 

If you pass NIL in hDest, GetScrap will not read in the data. This is 
useful if you want to be sure the data is there before allocating space 
for its handle, or if you just want to know the size of the data. If 
there isn't enough room in memory for a copy of the data, as may be the 
case for a complicated picture, you can customize QuickDraw'spicture 
retrieval so that DrawPicture will read from the picture directly from 
the scrap file. (QuickDraw also lets you customize how pictures are 
saved so you can save them in a file; see the QuickDraw manual for 
details about customizing.) 

Writing to the Scrap 

FUNCTION ZeroScrap : LongInt; 

ZeroScrap initializes the desk scrap, clearing -its contents; you must 
call it before the first time you call PutScrap (described below). If 
no error occurs, ZeroScrap returns 0; otherwise, it returns an 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R 



SCRAP MANAGER ROUTINES 13 

appropriate Operating System error code. 

ZeroScrap also changes the scrapCount field of the record of 
information provided by InfoScrap. This is useful for testing whether 
the contents of the desk scrap have changed during the use of a desk 
accessory. The application can save the value of the scrapCount field 
when one of its windows is deactivated and a system window is 
activated. Then, each time through its event loop, it can check to see 
whether the value of the field has changed. If so, it means the desk 
accessory called ZeroScrap (and, presumably, PutScrap) and thus changed 
the contents of the desk scrap. 

FUNCTION PutScrap (length: LongInt; theType: ResType; source: Ptr) 
LongInt; 

PutScrap writes the data pointed to by the source parameter to the desk 
scrap (whether in memory or on the disk). The length parameter 
indicates the number of bytes to write, and theType is the data type 
(which should be different from the type of any data already in the 
desk scrap). If no error occurs, the function result is 0; otherwise, 
it's an appropriate Operating System error code. 

(eye) 
Don't forget to call ZeroScrap (above) to clear the scrap 
before your first call to PutScrap. 

FORMAT OF THE DESK SCRAP 

In general, the desk scrap consists of a series of data items that have 
the following format: 

Number of bytes 
4 bytes 
4 bytes 
n bytes 

Contents 
Type (a sequence of four characters) 
Length of following data in bytes 
Data; n must be even (if the above length 
is odd, include an extra byte) 

The standard types are 'TEXT' and 'PICT'. You may use any other 
four-character sequence for types specific to your application. 

The format of the data for the 'TEXT' type is as follows: 

Number of bytes 
4 bytes 
n bytes 
m bytes 

Contents 
Number of characters in the text 
The characters in the text 
Optional comment: the 4-byte application 
ID followed by any information desired 

The data for the 'PICT' type is a QuickDraw picture, which consists of 
the size of the picture in bytes, the picture frame, and the picture 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R 



14 Scrap Manager Programmer's Guide 

definition data (which may include picture comments). See the 
QuickDraw manual for details. 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.R 



SUMMARY OF THE SCRAP MANAGER 15 

SUMMARY OF THE SCRAP MANAGER 

Constants 

CONST noTypeErr -102; {there's no data of the requested type} 

Data Structures 

TYPE PScrapStuff 
ScrapStuff 

Routines 

= "'ScrapStuff; 
RECORD 

scrapSize: 
scrapHandle: 
scrapCount: 
scrapState: 
scrapName: 

END; 

Getting Scrap Information 

FUNCTION InfoScrap : PScrapStuff; 

Keeping the Scrap on the Disk 

FUNCTION UnloadScrap 
FUNCTION LoadScrap : 

Reading from the Scrap 

LongInt; 
LongInt; 

LongInt; 
Handle; 
INTEGER; 
INTEGER; 
StringPtr 

FUNCTION GetScrap (hDest: Handle; theType: ResType; VAR offset: LongInt) 
: LongInt; 

Writing to the Scrap 

FUNCTION ZeroScrap 
FUNCTION PutScrap 

10/21/83 Rose 

LongInt; 
(length: LongInt; theType: ResType; source: Ptr) 
LongInt; 

CONFIDENTIAL /SMGR/SCRAP.S 



16 Scrap Manager Programmer's Guide 

Assembly-Language Information 

Constants 

noTypeErr .EQU -102 ;there's no data of the requested type 

Scrap Information Data Structure 

scrap Size 

scrapHandle 
scrapCount 
scrapState 
scrapName 

Size of desk scrap in bytes *** (currently named 
scrapInfo) *** 
Handle to desk scrap in memory 
Count changed by ZeroScrap 
Positive if desk scrap in memory, 0 if on disk 
Pointer to name of scrap file 

Special Macro Names 

Routine name 
LoadScrap 
UnloadScrap 

10/21/83 Rose 

Macro name 
_Lode Scrap 
_UnlodeScrap 

CONFIDENTIAL / SMGR/ SCRAP. S 



GLOSSARY 17 

GLOSSARY 

application ID: A four-character sequence that you choose to identify 
your application when you you build it. 

desk scrap: The place in memory or on the disk where data that's cut 
(or copied) and pasted between applications is stored. 

scrap file: The file containing the desk scrap. 

10/21/83 Rose CONFIDENTIAL /SMGR/SCRAP.G 



COMMENTS? 
Macintosh User Education encourages your comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (indicated on the cover 
page) at 10460 Bandley Drive MIS 3-G, Cupertino CA 95014. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Than,ks for your helpl 



MACINTOSH USER EDUCATION 

The Toolbox Utilities: A Programmer's Guide 

See Also: Macintosh Operating System Reference Manual 
QuickDraw: A Programmer's Guide 
The Resource Manager: A Programmer's Guide 
The Memory Manager: A Programmer's Guide 

Modification History: First Draft 
Second Draft (ROM 7) 
Erratum Added 

/TOOLUTIL/UTIL 

C. Rose 
C. Rose 
C. Rose 

5/16/83 
1/4/84 
2/8/84 

ABSTRACT 

This manual describes the Toolbox Utilities, a set of routines and data 
types in the User Interface Toolbox that perform generally useful 
operations such as fixed-point arithmetic, string manipulation, and 
logical operations on bits. 

Erratum: 

When the Munger function does a replacement operation, it returns the 
offset of the first byte past where the replacement occurred. 



2 Toolbox Utilities Programmer's Guide 

TABLE OF CONTENTS 

3 About This Manual 
3 Fixed-Point Numbers 
4 Toolbox Utility Routines 
4 Fixed-Point Arithmetic 
4 String Manipulation 
5 Byte Manipulation 
7 Bit Manipulation 
8 Logical Operations 
8 Other Operations on Long Integers 
9 Graphics Utilities 
11 Summary of the Toolbox Utilities 
13 Glossary 

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution 
of this draft in limited quantities does not constitute publication. 



ABOUT THIS MANUAL 3 

ABOUT THIS MANUAL 

This manual describes the Toolbox Utilities, a set of routines and data 
types in the User Interface Toolbox that perform generally useful 
operations such as fixed-point arithmetic, string manipulation, and 
logical operations on bits. *** Eventually it will become part of a 
comprehensive manual describing the entire Toolbox and Operating 
System. *** 

You should already be familiar with Lisa Pascal. Depending on which 
Toolbox Utilities you're interested in using, you may also need to know 
about the Macintosh Operating System's Memory Manager, the Resource 
Manager, and the basic concepts and structures behind QuickDraw. 

This manual begins with a discussion of fixed-point numbers. This is 
followed by the detailed descriptions of all Toolbox Utility procedures 
and functions, their parameters, calling protocol, effects, side 
effects, and so on. Finally, there's a summary of the Toolbox 
Utilities, for quick reference, followed by a glossary of terms used in 
this manual. *** The glossary has only two entries, but eventually it 
will be merged with the glossaries from the other Toolbox and Operating 
System documentation. *** 

FIXED-POINT NUMBERS 

The Toolbox Utilities include routines for operating on fixed-point 
numbers. A fixed-point number is a 32-bit quantity containing an 
integer part in the high-order word and a fractional part in the 
low-order word (see Figure 1). Since these numbers occupy the same 
number of bits as long integers, they could be given the data type 
LongInt; however, to reflect the different interpretation the bits have 
as fixed-point numbers, the following data type is defined in the 
Toolbox Utilities: 

TYPE Fixed = LongInt; 

lS 

15 
1 
2 

1 
4 

1/4/84 Rose 

1 
8 

4 

integer (high order) 

fraction (low order) 

Figure 1. Fixed-Point Numbers 

CONFIDENTIAL 

o 
2 1 

o 

/TOOLUTIL/UTIL.2 



4 Toolbox Utilities Programmer's Guide 

As described in the following section, there are Toolbox Utility 
routines for converting an integer numerator and denominator into a 
fixed-point number, multiplying two fixed-point numbers, and rounding a 
fixed-point number to the nearest integer. You can also use the 
general-purpose function HiWord (or LoWord) to extract the integer (or 
fractional) part of a fixed-point number. 

TOOLBOX UTILITY ROUTINES 

This section describes all the Toolbox Utility procedures and 
functions. They're presented in their Pascal form; for information on 
using them from assembly language, see "Using the Toolbox from Assembly 
Language" *** doesn't exist, but see "Using QuickDraw from Assembly 
Language" in the QuickDraw manual ***. 

Fixed-Point Arithmetic 

See also HiWord and LoWord under "Other Operations on Long Integers" 
below. 

FUNCTION FixRatio (numerator ,denominator: INTEGER) : Fixed; 

FixRatio returns the fixed-point number having the given numerator and 
denominator (either of which may be any signed integer). 

FUNCTION FixMul (a,b: Fixed) : Fixed; 

FixMul mUltiplies the given fixed-point numbers and returns the result. 

FUNCTION FixRound (x: Fixed) : INTEGER; 

FixRound rounds the given fixed-point number to the nearest integer and 
returns the result. 

String Manipulation 

These routines use the StringHandle data type, which is defined in the 
Toolbox Utilities as follows: 

TYPE StringPtr 
StringHandle 

1/4/84 Rose 

= .... Str255; 
= .... StringPtr; 

CONFIDENTIAL !TOOLUTIL/UTIL.R 



TOOLBOX UTILITY ROUTINES 5 

FUNCTION NewString (s: Str255) : StringHandle; 

NewString allocates the string specified by s as a relocatable object 
on the heap and returns a handle to it. 

PROCEDURE SetString (h: StringHandle; s: Str255); 

SetString sets the string whose handle is passed in h to the string 
specified by s. 

FUNCTION GetString (stringID: INTEGER) : StringHandle; 

GetString returns a stringHandle to the string having the given 
resource ID, reading it from the resource file if necessary. It calls 
the Resource Manager function GetResource('STR ',stringID). 

Byte Manipulation 

FUNCTION Munger (h: Handle; offset: LongInt; ptr1: Ptr; len1: LongInt; 
ptr2: Ptr; len2: LongInt) : LongInt; 

*** There's currently no Pascal interface to this routine; declare it 
as EXTERNAL in your program. *** 

Munger manipulates bytes in the string of bytes (the "destination 
string") to which h is a handle. The offset parameter specifies a byte 
offset into the destination string. The exact nature of the operation 
done by Munger depends on the values of the remaining parameters, two 
pointer/length pairs. In general, (ptrl,len1) defines a substring to 
be replaced by the second substring (ptr2,len2). If these four 
parameters are all positive and nonzero, Munger looks for (ptr1,len1) 
in the destination string, starting from the given offset and ending at 
the end of the string; the first occurrence it finds is replaced by 
(ptr2,len2), and the offset at which the replacement occurred is 
returned. Figure 2 illustrates this; the bytes represent ASCII 
characters as shown. 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R 



6 Toolbox Utilities Programmer's Guide 

(3iven: offset = 4 

master pointer 

'---_i=_ltr_' ____ H t Ihlel 
the dest inat i on sir ing 

the substr i ng to be rep I aced (ptr1 J I en1 ) 
L-......,,---' 

len1 =3 

~ _____ p_t_r2_} ______ ~ the repl seement substr i og (ptr2J le02) 

'--' 
len2=2 

Munger(h, offset, ptr1 , len 1 J ptr2, I en2) y i e Ids: 
returned value = 8 

'---__ t_1 _~H master pointer H t Ihlel riel' I 31 talnl lalplpiliel 
Figure 2. Munger Function 

Different operations occur if any of the pointers or lengths is 0: 

If ptr1 is 0, the substring of length lenl starting at the given 
offset is replaced by (ptr2,len2). If len1 is negative, the 
substring from the given offset to the end of the destination 
string is replaced by (ptr2,len2). 

If len1 is 0, the substring (ptr2,len2) is simply inserted at the 
given offset. 

- If ptr2 is 0, the destination string isn't changed; Munger just 
returns the offset at which it found (ptrl,len1). 

If len2 is 0, the replacement substring is empty, so (ptr1,len1) 
is deleted rather than replaced. 

Munger returns the offset at which the operation occurred--whether 
replacement, insertion, deletion, or just location of a substring. It 
returns a negative value if it can't find (ptr1,len1) in the 
destination string. 

(eye) 
Be careful not to specify an offset that's greater than 
the length of the destination string, or unpredictable 
things may happen. 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R 



TOOLBOX UTILITY ROUTINES 7 

Bit Manipulation 

These routines manipulate a bit in data pointed to by a given pointer. 
A bit number indicates which bit; it starts at 0 for the high-order bit 
of the first byte pointed to and may be any positive long integer 
specifying an offset from that bit (see Figure 3). 

thisPtr 
pOints 
here 

(hand) 

BitTst (thisPtr .• 7) tests this bit 

'
~~~~~~~--~~--+-~--~~~~~~--~~~ 

BitSet (thisPtr .. 25) sets this bit 

Figure 3. Bit Numbering for Utility Routines 

Note that this bit numbering is the opposite of the 
MC68000 bit numbering. 

FUNCTION BitTst (bytePtr: Ptr; bitNum: LongInt) : BOOLEAN; 

BitTst tests whether a given bit is set and returns TRUE if so or FALSE 
if not. The bit is specified by bitNum, an offset from the high-order 
bit of the byte pointed to by bytePtr. 

PROCEDURE BitSet (bytePtr: Ptr; bitNum: Longlnt); 

BitSet sets the bit specified by bitNum, an offset from the high~order 
bit of the byte pointed to by bytePtr. 

PROCEDURE BitClr (bytePtr: Ptr; bitNum: LongInt); 

BitSet clears the bit specified by bitNum, an offset from the high
order bit of the byte pointed to by bytePtr. 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R 



8 Toolbox Utilities Programmer's Guide 

Logical Operations 

FUNCTION BitAnd (long1,long2: LongInt) : LongInt; 

BitAnd returns the result of the AND logical operation on the bits 
comprising the given long integers (long1 AND long2). 

FUNCTION BitOr (long1,long2: LongInt) : LongInt; 

BitOr returns the result of the OR logical operation on the bits 
comprising given long integers (long1 OR long2). 

FUNCTION BitXor (long1,long2: LongInt) : LongInt; 

BitXor returns the result of the XOR logical operation on toe bits 
comprising the given long integers (long1 XOR long2). 

FUNCTION BitNot (long: LongInt) : LongInt; 

BitXor returns the result of the NOT logical operation on the bits 
comprising the given long integer. 

FUNCTION BitShift (long: LongInt; count: INTEGER) : LongInt; 

BitShift logically shifts the bits of the given long 
specifies the direction and extent of the shift, and 
31. If count is positive, BitShift shifts that many 
left; if count is negative, it shifts to the right. 
into empty positions at either end •. 

Other Operations on Long Integers 

FUNCTION HiWord (x: LongInt) : INTEGER; 

integer. Count 
is taken modulo 
positions to the 
Zeros are shifted 

HiWord returns the high-order word of the given long integer. One use 
of this function is to extract the integer part of a fixed-point 
number. 

FUNCTION LoWord (x: LongInt) : INTEGER; 

LoWord returns the low-order word of the given long integer. One use 
of this function is to extract the fractional part of a fixed-point 
number. 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R 



TOOLBOX UTILITY ROUTINES 9 

PROCEDURE LongMul (a,b: Longlnt; VAR dest: Int64Bit); 

LongMul multiplies the given long integers and returns the result in 
dest, which has the following data type: 

TYPE Int64Bit = RECORD 
hiLong: 
loLong: 

END; 

Graphics Utilities 

Longlnt; 
Longlnt 

FUNCTION Getlcon (iconID: INTEGER) : Handle; 

Get Icon returns a handle to the icon having the given resource ID, 
reading it from the resource file if necessary. It calls the Resource 
Manager function GetResource('ICON',iconID). 

PROCEDURE Plotlcon (theRect: Rect; thelcon: Handle); 

*** There's currently no Pascal interface to this routine; declare it 
as EXTERNAL in your program. *** 

Plot Icon draws the icon whose handle is the Icon in the rectangle 
theRect, which is in the local coordinates of the current grafPort. It 
calls the QuickDraw procedure CopyBits and uses the srcCopy transfer 
mode. (You must have initialized QuickDraw before calling Plotlcon.) 

FUNCTION GetPattern (patID: INTEGER) : PatHandle; 

Getlcon returns a handle to the pattern having the given resource ID, 
reading it from the resource file if necessary. It calls the Resource 
Manager function GetResource('PAT ',patID). The PatHandle data type is 
*** not yet, but soon will be *** defined in the Toolbox Utilities as 
follows: 

TYPE PatPtr 
PatHandle 

~Pattern; 

= ~PatPtr; 

FUNCTION GetCursor (cursorID: INTEGER) : CursHandle; 

GetIcon returns a handle to the cursor having the given resource ID, 
reading it from the resource file if necessary. It calls the Resource 
Manager function GetResource('CURS',cursorID). The CursHandle data 
type is *** not yet, but soon will be *** defined in the Toolbox 
Utilities as follows: 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R 



10 Toolbox Utilities Programmer's Guide 

TYPE CursPtr 
CursHandle 

. - .... Cursor; 
.... CursPtr; 

PROCEDURE ShieldCursor (left,top,right,bottom: INTEGER); 

Given the global coordinates of a rectangle, ShieldCursor removes the 
cursor from the screen if the cursor and the rectangle intersect. 

FUNCTION GetPicture (pictureID: INTEGER) : PicHandle; 

GetPicture returns a handle to the picture having the given resource 
ID, reading it from the resource file if necessary. It calls the 
Resource Manager function GetResource('PICT',pictureID). The PicHandle 
data type is defined in QuickDraw. 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.R 



SUMMARY OF THE TOOLBOX UTILITIES 11 

SUMMARY OF THE TOOLBOX UTILITIES 

TYPE Fixed = LongInt; 

Int64Bit = RECORD 
hiLong: 
loLong: 

END; 

LongInt; 
LongInt 

StringPtr 
StringHandle 

.... Str255; 

CursPtr 
CursHandle 

PatPtr 
PatHandle 

.... StringPtr; 

.... Cursor; 

..... CursPtr; 

.... Pattern; 

.... PatPtr; 

Fixed-Point Arithmetic 

FUNCTION FixRatio (numerator ,denominator: INTEGER) 
FUNCTION FixMul (a,b: Fixed) : Fixed; 

Fixed; 

FUNCTION FixRound (x: Fixed) : INTEGER; 

String Manipulation 

FUNCTION NewString (s: Str255) : StringHandle; 
PROCEDURE SetString (h: StringHandle; s: Str255); 
FUNCTION GetString (stringID: INTEGER) : StringHandle; 

Byte Manipulation 

FUNCTION Munger (h: Handle; offset: LongInt; ptrl: Ptr; lenl: LongInt; 
ptr2: Ptr; len2: LongInt) : LongInt; 

Bit Manipulation 

FUNCTION BitTst (bytePtr: Ptr; bitNum: LongInt) : BOOLEAN; 
PROCEDURE BitSet (bytePtr: Ptr; bitNum: LongInt); 
PROCEDURE BitClr (bytePtr: Ptr; bitNum: LongInt); 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.S 



12 Toolbox Utilities Programmer's Guide 

Logical Operations 

FUNCTION BitAnd 
FUNCTION BitOr 
FUNCTION BitXor 
FUNCTION BitNot 
FUNCTION BitShift 

(longl,long2: LongInt) LongInt; 
(long1,long2: LongInt) LongInt; 
(longl,long2: Longlnt) Longlnt; 
(long: Longlnt) : Longlnt; 
(long: Longlnt; count: INTEGER) : 

Other Operations on Long Integers 

FUNCTION HiWord (x: Longlnt) : INTEGER; 
FUNCTION LoWord (x: Longlnt) : INTEGER; 

Longlnt; 

PROCEDURE LongMul (a,b: Longlnt; VAR dest: Int64Bit); 

Graphics Utilities 

FUNCTION 
PROCEDURE 
FUNCTION 
FUNCTION 
PROCEDURE 
FUNCTION 

Getlcon 
Plot Icon 
GetPattern 
GetCursor 
ShieldCursor 
GetPicture 

1/4/84 Rose 

(iconID: INTEGER) : Handle; 
(theRect: Rect; thelcon: Handle); 
(patID: INTEGER) : PatHandle; 
(cursorID: INTEGER) : CursHandle; 
(left,top,right,bottom: INTEGER); 
(pictureID: INTEGER) : PicHandle; 

CONFIDENTIAL /TOOLUTIL/UTIL.S 



GLOSSARY 13 

GLOSSARY 

fixed-point number: A 32-bit quantity containing an integer part in 
the high-order word and a fractional part in the low-order word. 

icon: A 32-by-32 bit image that represents an object, concept, or 
message. 

1/4/84 Rose CONFIDENTIAL /TOOLUTIL/UTIL.G 



COMMENTS? 
Macintosh User Education encourages your. comments on this manual. 

- What do you like or dislike about it? 

- Were you able to find the information you needed? 

- Was it complete and accurate? 

- Do you have any suggestions for improvement? 

Please send your comments to the author (Indicated on the cover 
page) at 10460 Bandley Drive MIS 3·G, CupertinoCA 95014 .. 
Mark up a copy of the manual or note your remarks separately. 
(We'll return your marked-up copy if you like.) 

Thanks for your helpl 


	000
	001
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	02-65
	02-66
	02-67
	02-68
	02-69
	02-70
	02-71
	02-72
	02-73
	02-74
	02-75
	02-76
	02-77
	02-78
	02-79
	02-80
	02-81
	02-82
	02-83
	02-84
	02-85
	02-86
	02-87
	02-88
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	06-81
	06-82
	06-83
	06-84
	06-85
	06-86
	06-87
	06-88
	06-89
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14

