

ð

Developer Note

Developer Press

 Apple Computer, Inc. 1995

ð

Developer Note

Macintosh 630 DOS Compatible
Computers

Macintosh LC 630 DOS Compatible Computer
Macintosh Quadra 630 DOS Compatible Computer
Macintosh Performa 640 DOS Compatible Computer

ð

Apple Computer, Inc.

 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
Macintosh Quadra, and Performa are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Apple SuperDrive and Power
Macintosh are trademarks of Apple
Computer, Inc.
Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered service
mark of Quantum Computer Services,
Inc.
Brooktree is a registered trademark
of Brooktree Corporation.
Centronics is a registered trademark of
Centronics Data Computer Corporation.
CompuServe is a registered service
mark of CompuServe, Inc.
Cx486DX2 is a trademark of Cyrix
Corporation.
Cyrix is a registered trademark of Cyrix
Corporation.

FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
IBM and PS/2 are registered
trademarks, and XT is a trademark, of
International Business Machines
Coporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Sound Blaster is a registered trademark
of Creative Labs, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace the
media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE OF
THE ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Figures and Tables vii

Preface About This Note ix

Contents of This Note ix
Supplementary Documents ix

Obtaining Information From APDA x
Conventions and Abbreviations x

Typographical Conventions xi
Standard Abbreviations xi

Chapter 1 Introduction 1

Features 2
How the DOS Compatibility Subsystem Works 4

Outline of Operation 5
I/O Capabilities 6

Floppy Disk 6
Hard Disk 6
Serial Ports 6
Parallel Printer Port 7
Keyboard and Mouse 7
Sound 8
Video Monitor 8
Game Controller Port 8

Chapter 2 Hardware Design 11

Processor and Memory Components 13
Cx486DX2 Microprocessor 13

PC System Bus and Devices 14
Cache Snooping 14
Byte Order 14
Misaligned Transfers 15
Interrupts 16

Bus Arbitration 17
Expansion 18
84031 Memory Controller 18

DRAM Control 19
BIOS Control 19
iii

Clock Generation 19
ISA Bus Control 20

84035 Data Path Controller 20
Clocks 20
System Reset 20
Interrupt Control 21

Portola Bus Adapter IC 21
Burst Transfers 21

Video Components 21
Sharing a Monitor 22
Monitors Supported 22

Monitor Sense Lines 23
Video Timing 23

Video Components 25
82C450 VGA Controller 25
MU9C9760 SynDAC 25

I/O Components 26
Pretzel Logic I/O Controller IC 26

DMA Channels 26
Address Translation 27
Serial Port Support 27
Printer Port Support 27
Keyboard and Mouse Emulation 28
Message Mailbox 28
Power-on Reset 28
Autoconfiguration 28

Game Adapter Card 29
Sound Expansion Card 29

CT2501 Sound System IC 29
YMF262 FM Synthesizer IC 30
YAC512 Sound DAC IC 30

Subsystem Connectors 30
The 68040 Microprocessor Socket 30
The I/O Expansion Slot 31
Audio and Video Connector 32

Chapter 3 The PC Interface Driver 33

Initializing the Driver 34
Open 34
Close 34

Configuring the PC 34
rsSetMemoryConfig 35
rsSetDriveConfig 35
rsGetNetDriveConfig 36
rsSetNetDriveConfig 37
iv

rsSetComPortConfig 37
rsSetParallelPortConfig 38
rsSetDeactivateKey 39

Control and Status Calls 39
rsPCStatus 40
rsBootPC 41
rsResetPC 41
rsEnableVideo 41
rsDisableVideo 42
rsMountDisks 42
rsDontMountDisks 42
rsActivateKB 43
rsDeactivateKB 43
rsBeginMouseTracking 43
rsEndMouseTracking 43
rsEndPrintJob 44

Detecting Errors 44
rsSetNotificationProc 44
rsLastError 45

Passing Messages 45
Message Conventions 45

Macintosh Interface 45
PC Interface 46

Registering Messages 46
On the Mac OS 46
On the PC 46

Sending a Message 47
On the Mac OS 47
On the PC 48

Installing a Message Handler 48
On the Mac OS 49
On the PC 50

Removing a Message Handler 50
On the Mac OS 50
On the PC 51

Header File for PC Interface 51

Index 63

Beatrice Developer Note 1
v

Figures and Tables

Preface About This Note ix

Chapter 1 Introduction 1

Table 1-1 Comparison with a midrange PC 3
Figure 1-1 The DOS compatibility subsystem 4
Figure 1-2 Simplified block diagram 5
Table 1-2 Corresponding serial-port signals 6
Figure 1-3 Installing the joystick 9

Chapter 2 Hardware Design 11

Figure 2-1 Detailed block diagram 13
Table 2-1 Microprocessor transfer comparison 16
Table 2-2 Definitions of PC interrupts 16
Table 2-3 Arbitration priorities 18
Table 2-4 Monitors and display modes 22
Table 2-5 VIdeo timing parameters for supported monitors 23
Figure 2-2 Video timing parameters 24
Table 2-6 Signals connected to the I/O expansion slot 31
Table 2-7 Signals on the audio and video connector 32

Chapter 3 The PC Interface Driver 33

Table 3-1 Bits in the PC status word 40
vii

P R E F A C E

About This Note

This developer note describes the Macintosh 630 DOS compatible computer, a
Macintosh computer with a built-in 486-type microprocessor. This developer
note describes the DOS compatibility features of this computer and the way
DOS software can communicate with Mac OS software.

Note
This developer note applies to the Macintosh LC 630 DOS Compatible,
the Macintosh Quadra 630 DOS Compatible, and the Macintosh
Performa 640 DOS Compatible computers. ◆

This developer note is intended to help hardware and software developers
design products that are compatible with the Macintosh product described in
the note. If you are not already familiar with Macintosh computers or if you
would simply like more technical information, you may wish to read the
supplementary reference documents described in this preface.

Contents of This Note 0

This developer note has three chapters.

■ Chapter 1, “Introduction,” presents a summary of the features of the
Macintosh 630 DOS Compatible computer and a brief description of the
way it operates.

■ Chapter 2, “Hardware Design,” describes the design of the DOS
Compatibility Card and the interface devices that allow DOS programs
to operate in a Macintosh 630 DOS Compatible computer.

■ Chapter 3, “The PC Interface Driver,” describes the system software that
allows DOS programs to communicate with Mac OS programs on the
Macintosh 630 DOS Compatible computer.

Supplementary Documents 0

For installation and operating instructions, refer to the user’s manual that
accompanies the product.

For information about the unmodified Macintosh LC 630 and Macintosh
Quadra 630 computers, refer to Macintosh Developer Note Number 10, APDA
catalog number R0568LL/A. Developer notes for the individual Macintosh
models are also published electronically in the quarterly Reference Library
Edition of the Developer CD series, available through APDA.
ix

P R E F A C E

For information about the Cx486DX2 microprocessor, refer to Cx486DX/DX2
3 and 5 Volt Microprocessors published by Cyrix Corporation.

For a general description of big-endian and little-endian byte addressing,
please refer to Appendix A, “Overview of PowerPC Technology,” in
Macintosh Developer Note Number 8, APDA catalog number R0566LL/A.

Developers may also need copies of the appropriate Apple reference books.
You should have the relevant books of the Inside Macintosh series, particularly
Inside Macintosh: Processes.

Obtaining Information From APDA 0
The Apple publications listed above are available from APDA. APDA is
Apple’s worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com
x

P R E F A C E

Typographical Conventions 0
Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Courier font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the
hexadecimal equivalent of decimal 16 is written as $10.

Note
A note like this contains information that is interesting but not essential
for an understanding of the text. ◆

IMPORTANT

A note like this contains important information that you should read
before proceeding. ▲

Standard Abbreviations 0
When unusual abbreviations appear in this book, the corresponding terms are
also spelled out. Standard units of measure and other widely used
abbreviations are not spelled out. Here are the standard units of measure
used in this developer note:

Other abbreviations used in this note include

A amperes mA milliamperes

dB decibels µA microamperes

GB gigabytes MB megabytes

Hz hertz MHz megahertz

in. inches mm millimeters

k 1000 ms milliseconds

K 1024 µs microseconds

KB kilobytes ns nanoseconds

kg kilograms Ω ohms

kHz kilohertz sec. seconds

kΩ kilohms V volts

lb. pounds W watts

$n hexadecimal value n

ADB Apple Desktop Bus

API application program interface

A/V audiovisual

BIOS basic input/output system

CAS column address strobe (a memory control signal)
xi

P R E F A C E

CGA Color Graphics Adapter

CLUT color lookup table

codec coder/decoder

CPU central processing unit

DAC digital-to-analog converter

DC direct current

DMA direct memory access

DOS disk operating system

DRAM dynamic RAM

EGA Enhanced Graphics Adapter

FIFO first in, first out

FM frequency modulation

GND ground

IC integrated circuit

I/O input and output

IRQ interrupt request

ISA Industry Standard Architecture

Mac OS Macintosh Operating System

MDA Monochrome Display Adapter

n.c. no connection

OS operating system

PC personal computer

PDS processor-direct slot

PRAM parameter random-access memory

RAM random-access memory

RAS row address strobe

RGB red-green-blue, a video signal format with separate red,
green, and blue color components

ROM read-only memory

RTC real-time clock

SCSI Small Computer System Interface

SIMM Single Inline Memory Module

SVGA super video graphics adapter

TCP/IP Transport Control Protocol/Interface Program

UART universal asynchronous receiver-transmitter

VCO voltage-controlled oscillator

VGA video graphics adapter
xii

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0
Introduction 1

C H A P T E R 1

Introduction

The Macintosh 630 DOS Compatible computers are modified Macintosh LC 630,
Macintosh Quadra 630, and Macintosh Performa 640 computers with additional
hardware that provides IBM-compatible PC functionality. The added hardware includes
a 486-type microprocessor and interface devices that allow it to use the I/O capabilities
of the host computer. The Macintosh 630 DOS Compatible computer provides a
cost-effective system with DOS performance equivalent to a stand-alone PC.

Features 1

The Macintosh 630 DOS Compatible computer is a Macintosh 630–series computer with
the following additional hardware components:

■ the main compatibility card, installed in the Macintosh 630 computer’s 68040 socket

■ the sound expansion card, installed on the main compatibility card

■ the game adapter card, installed in the Macintosh 630 computer’s I/O expansion slot

Collectively, those components make up the DOS compatibility subsystem.

Note
A Macintosh 630 DOS Compatible computer retains all the features of a
Macintosh 630-series computer, including the ability to accept optional
video, tuner, and communications cards. ◆

The main card replaces the host’s 68040 microprocessor, which is installed in a socket on
the card. The game adapter card is installed in the host computer’s I/O expansion slot
(PDS) and provides a 15-pin connector for a joystick. In addition, a 16-pin ribbon cable
carries the audio and video signals between the main card and the host computer.

The following list is a summary of the features of the DOS compatibility subsystem. Each
of these features is described later in this developer note.

■ Processor. The main compatibility card has a Cx486DX2 or 80486DX2 microprocessor
operating at a clock speed of 66 MHz.

■ Expansion RAM. The main compatibility card accepts one standard 72-pin DRAM
SIMM containing either 2, 4, 8, 16, or 32 MB. Recommended DRAM speed is 80 ns
or less.

■ Shared RAM. The DOS compatibility subsystem can use part of the DRAM in the
Macintosh host computer. The user can select a memory size of 2, 4, 8, 16, or 32 MB,
provided the Macintosh computer has enough memory installed.

■ Direct memory access. A DMA channel supports I/O transfers when memory is
installed on the main compatibility card; when using shared memory, DMA is
provided through the Macintosh system.

■ Video support. A VGA video system on the main compatibility card supports
Macintosh monitors from 13-inch through 20-inch size and all available VGA
monitors.

■ Sound card. The DOS compatibility subsystem provides standard PC sound output
through a sound expansion card that produces 16-bit sound output compatible with
2 Features

C H A P T E R 1

Introduction

Sound Blaster cards. Sounds are played through the host computer’s sound output
jack and built-in speaker.

■ Serial ports. The DOS compatibility subsystem uses the host computer’s two serial
ports by way of serial port interfaces emulated in hardware.

■ Parallel port. The DOS compatibility subsystem has access to a printer on the host
computer by way of a parallel port interface emulated in hardware.

■ Floppy disk. The DOS compatibility subsystem uses the host computer’s 3.5-inch
internal floppy drive.

■ Hard disk. The DOS compatibility subsystem has access to the host computer’s
internal hard drive and external SCSI devices.

■ Keyboard and mouse. The DOS compatibility subsystem uses the host computer’s
keyboard and mouse through hardware emulation.

■ Joystick. The game adapter card includes a DB-15 connector that supports a standard
PC-style joystick.

The DOS compatibility subsystem in the Macintosh 630 DOS Compatible computer
provides performance and features comparable with midrange 80486DX computers
currently available. Table 1-1 compares the features of the Macintosh 630 DOS
Compatible computer with a midrange PC computer.

Table 1-1 Comparison with a midrange PC

Feature
Macintosh 630 DOS
Compatible computer Midrange PC computer

Processor 66 MHz Cx486DX2 or
80486DX2

Same

Network support IPX and TCP/IP available Optional

Onboard RAM None 4 MB

Expansion RAM 1 SIMM (up to 32 MB) 8 SIMMs (up to 64 MB)

Video support VGA, EGA, CGA, MDA Same

Video RAM 512 KB DRAM Same

Sound card Sound out only Optional

Serial ports 2 (COM1 and COM2) Same

Parallel port 1 (emulated,
XT/AT compatible)

1

Keyboard AT compatible Same

Mouse PS/2 compatible Same

Floppy disk 3.5-inch 3.5-inch and 5.25-inch

AT expansion None 3 slots

External SCSI Yes No
Features 3

C H A P T E R 1

Introduction

Notice that the Macintosh 630 DOS Compatible computer has greater sound and
networking capabilities than a midrange PC. In addition, the Macintosh 630 DOS
Compatible computer provides external SCSI expansion (for hard drives and removable-
media devices only).

How the DOS Compatibility Subsystem Works 1

The DOS compatibility subsystem occupies both the 68040 microprocessor socket and
the I/O expansion slot of the host Macintosh 630–series computer. Figure 1-1 shows the
interior of a Macintosh 630 DOS Compatible computer; the heavy outlines identify the
DOS compatibility subsystem.

Figure 1-1 The DOS compatibility subsystem

Note
The main logic board in the Macintosh 630 DOS Compatible computer
has two RAM SIMM slots and an audio and video connector, making it
different from the logic board in other Macintosh 630–series
computers. ◆
4 How the DOS Compatibility Subsystem Works

C H A P T E R 1

Introduction
Outline of Operation 1
Figure 1-2 shows a simplified block diagram of the DOS compatibility subsystem
installed in a Macintosh 630–series computer.

Figure 1-2 Simplified block diagram

The diagram shows some of the hardware devices on the main compatibility card: the
memory controller and DRAM SIMM, and the VGA controller and video RAM. It also
shows the Pretzel Logic IC, which acts as a bus converter between the compatibility card
and the Macintosh computer and provides the interface to Macintosh devices that
emulate PC devices. Chapter 2, “Hardware Design,” gives more information about the
devices on the DOS compatibility subsystem and the way they operate in conjunction
with the Macintosh host computer.

CPU
Cx486DX2

RAM SIMM

VGA
controller

Video
DRAM

Keyboard
controller

Sound
card

Memory
and bus

controllers

Pretzel
Logic IC

CPU
Socket

I/O
expansion
slot

AT bus

Portola
bus

adapter

Declaration
ROM

Video out

Serial
ports

SCSI
port

CPU
68040

I/O
controller

Video
controller

RAM

Memory
controller
and bus
interface

ADB

Floppy disk

DOS compatibility
subsystem

Macintosh host
computer

Video
DRAM
How the DOS Compatibility Subsystem Works 5

C H A P T E R 1

Introduction
I/O Capabilities 1
The DOS compatibility subsystem uses I/O devices built into or connected to the
Macintosh host computer. This section describes the I/O capabilities; for more
information on their operation, see “I/O Components” on page 26.

Floppy Disk 1

The DOS compatibility subsystem has access to the Macintosh host computer’s 3.5-inch
internal floppy drive, which can read and write DOS-formatted floppy disks. When
RAM SIMM is installed on the main compatibility card, I/O data transfers use the DMA
channel. When the DOS subsystem is using shared memory, I/O data transfers are
handled by the disk drivers in the Macintosh Operating System (Mac OS).

Hard Disk 1

The DOS compatibility subsystem has access to the host computer’s internal IDE hard
drive and external SCSI devices. I/O data transfers use the DMA channel when RAM
SIMM is installed on the main compatibility card. When using shared memory, I/O data
transfers are handled by the disk drivers in the Mac OS.

Serial Ports 1

The DOS compatibility subsystem has access to the serial ports on the Macintosh host
computer. To provide software compatibility, an IC on the main compatibility card
emulates the registers of the standard serial port ICs found in most PC/AT computers.
For more information on register emulation, see “Serial Port Support” on page 27.

An adapter cable is necessary to connect a PC serial device to a Macintosh serial port.
Table 1-2 shows the signals on the 9-pin connector on the Macintosh serial ports and
the corresponding connections on the 25-pin and 9-pin connectors used with a PC
serial port.

Table 1-2 Corresponding serial-port signals

Pin number
on Macintosh
serial port

RS-422
signal name

Pin number
on 25-pin PC
serial port

Pin number
on 9-pin PC
serial port

RS-232 signal
name

1 HSKo 20 4 DTR

2 HSKi 5, 8 8, 1 CTS, DCD

3 TXD– 2 3 TXD

4 GND 7 5 GND

5 RXD– 3 2 RXD

6 TXD+ n.c. none

continued
6 How the DOS Compatibility Subsystem Works

C H A P T E R 1

Introduction
The Macintosh serial ports are RS-422 ports and do not support all the RS-232 signals. In
particular, the Carrier Detect (CD), Data Set Ready (DSR), Request To Send (RTS), and
Ring Indicator (RI) signals are not available. Not all RS-232 devices will work using the
RS-422 protocol.

Note
The 9-pin sockets on the Macintosh serial ports
accept either 9-pin or 8-pin connectors. ◆

Parallel Printer Port 1

A custom IC on the main compatibility card emulates a compatible parallel port interface
and enables the driver software to send printer data to a printer through the Macintosh
host computer. The printer may be connected directly to the Macintosh computer’s serial
port or it may be on a network and selected by means of the Chooser. The IC provides
register compatibility only; for more information, see “Printer Port Support” on page 27.

Keyboard and Mouse 1

The main compatibility card includes hardware that emulates a PC keyboard and mouse
using inputs from the keyboard and mouse on the Macintosh host computer. The
software protocols for the keyboard and mouse are the same as on a standard PC.

Note
The DOS compatibility subsystem can work with another user input
device, such as a trackball, but the device must be connected to the
Macintosh host computer by way of the ADB port. ◆

The PC Setup control panel allows the user to define a key command (hot key) to switch
operation of the user interface devices (the keyboard, the mouse, and the monitor)
between the DOS compatibility subsystem and the Macintosh host computer. The key
command consists of the Command key () and at least one other key. Chapter 5 in the
user’s manual gives instructions for setting the key command.

7 GPi n.c. none

8 RXD+ 7 5 GND

9 +5V n.c. none

Table 1-2 Corresponding serial-port signals (continued)

Pin number
on Macintosh
serial port

RS-422
signal name

Pin number
on 25-pin PC
serial port

Pin number
on 9-pin PC
serial port

RS-232 signal
name
How the DOS Compatibility Subsystem Works 7

C H A P T E R 1

Introduction
Sound 1

Sound is generated on the DOS compatibility subsystem either by the 8254 interval timer
on the main compatibility card or by the sound expansion card. The 8254 interval timer
is responsible for the standard system beep (square wave output) and sound effects. The
sound expansion card provides 16-bit stereo sound output only and is software
compatible with the Sound Blaster register model.

Sounds generated by the DOS compatibility subsystem are routed to the host computer’s
main logic board where they are mixed with sounds from other sources in the system.

Video Monitor 1

The DOS compatibility subsystem shares the video monitor used with the Macintosh
host computer. The monitors that can be shared are

■ Apple Color Plus 14-inch Display

■ Macintosh Color Display (14-inch)

■ Apple Multiple Scan 15 Display (15-inch)

■ VGA (640 by 480 pixels)

■ SVGA (800 by 600 pixels)

Note
The DOS compatibility subsystem does not support all the available
resolutions on a Macintosh multiple scan monitor. ◆

Video signals generated by the DOS compatibility subsystem are routed to the host
computer’s motherboard where they are mixed with the computer’s video signals and
sent to the video monitor. System software turns off the video from one video source
when the other is selected. See “Sharing a Monitor” on page 22.

The host computer detects the type of video monitor at startup time by interrogating the
monitor sense lines. For more information about the monitor sense lines, see the section
“Video Components” on page 21.

Game Controller Port 1

The game controller port is a DB-15 connector on the game adapter card. It is accessible
at the I/O expansion slot at the rear of the computer and is used to connect a PC/AT
compatible game controller (joystick). Figure 1-3 shows the back of a Macintosh 630 DOS
Compatible computer with the game controller installed. The game controller can be
used only with programs running on the PC.
8 How the DOS Compatibility Subsystem Works

C H A P T E R 1

Introduction
Figure 1-3 Installing the joystick
How the DOS Compatibility Subsystem Works 9

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
Hardware Design 2

C H A P T E R 2

Hardware Design

The DOS compatibility subsystem contains three printed circuits cards: the main
compatibility card, the game adapter card, and the sound expansion card. The
main compatibility card contains the processor and memory components, the video
display components, and the I/O components. The game adapter card contains the
slot declaration ROM and the game controller port. The sound expansion card contains
the sound generation ICs. The individual ICs are

■ processor and memory components
n Cx486DX2 or 80486DX2 microprocessor
n 84031 memory controller
n 84035 data path controller
n Portola bus adapter IC
n 68040 microprocessor (from main logic board)

■ video display components
n 82C450 VGA controller
n MU9C9760 SynDAC (video DAC, CLUT, and clock synthesizer)

■ I/O components
n 8242 keyboard and mouse controller
n Pretzel Logic I/O interface controller

■ game adapter card
n slot declaration ROM

■ sound expansion card
n CT2501 sound system IC (combination bus interface, codec, and audio mixer)
n YMF262 digitally controlled FM synthesizer
n YAC512 audio DAC for the YMF262

All the ICs in the DOS compatibility subsystem are commercially available parts except
the Pretzel Logic IC and the Portola IC, which are Apple custom parts. The individual
ICs are described later.

The block diagram in Figure 2-1 shows the main components of the main compatibility
card and the game adapter card.

The main compatibility card has a high-speed processor bus linking the 80486 micro-
processor to the RAM SIMM by way of the 84031 memory controller. The main
compatibility card also has an I/O bus: the XD (data) bus. The XD bus is used for devices
on the card: the keyboard controller, the game controller, the VGA controller, and the
sound card. The 84031 memory controller acts as the I/O bus controller that isolates the
XD bus from the processor bus. The XD bus is 8 bits wide and operates synchronously
with the processor bus at a fraction of its speed. The 84035 data path controller provides
additional PC/AT-compatible I/O ports that are accessible through the I/O controller.
12

C H A P T E R 2

Hardware Design
Figure 2-1 Detailed block diagram

Processor and Memory Components 2

The processor and memory components includes the Cx486DX2 or 80486DX2 micro-
processor and the control devices for the onboard memory: the 84031 memory controller
and the 84035 data path controller.

Cx486DX2 Microprocessor 2
The DOS compatibility subsystem has a Cx486DX2 or 80486DX2 microprocessor running
at 66 MHz (33 MHz processor bus clock). The microprocessor supports 32-bit data paths
and 32-bit addresses; that allows up to 4 GB of physically addressable memory.

Sound
expansion
connector

CPU
Cx486DX2

Sound
output
card

D(31:0) XA(15:0)

72-pin RAM SIMM

XD(7:0)

A(31:2)

Video and
audio out

Game
port

8242
Keyboard
controller

558
Game
timer

512KB
DRAM

84035
data path
controller

84031
Memory
controller

Pretzel
Logic

I/O
interface

82C450
VGA

controller

Socket for
68040 CPU

Header for
CPU socket

Header
for I/O
expansion
slot

CLUT

Portola
bus

adapter

Declaration
ROM
Processor and Memory Components 13

C H A P T E R 2

Hardware Design
Some of the key features of the Cx486DX2 are listed below. Please refer to Cx486DX/DX2
3 and 5 Volt Microprocessors from Cyrix Corporation for further information.

■ full 32-bit addressing architecture with 32-bit data interface

■ internal 8 KB unified instruction and data cache

■ internal cache operation in either write-back or write-through mode

■ instruction prefetch mechanism during idle bus activity

■ internal FPU that is faster than the FPU in a standard 80486DX

■ internal memory management unit supporting both memory segmentation
and paging

■ internal write buffer (1 longword deep) to support posted writes

■ dynamic bus sizing to support 8-bit and 16-bit peripherals

■ support for synchronous 16-byte block reads

■ backward compatible with existing 80x86 code

The Cx486DX2 IC in the DOS compatibility subsystem is in a 168-pin ceramic PGA
package. With a clock speed of 66 MHz, this package requires a heat sink.

PC System Bus and Devices 2

The PC system bus is defined as the unbuffered microprocessor pins that are required to
support slave and alternate bus masters. This bus operates synchronously at the same
clock speed as the processor bus clock (33 MHz). The bus supports burst reads and
compelled writes (due to the write-through cache). The key devices attached to this bus
are the memory and bus controller IC and the Pretzel Logic bus interface IC.

Cache Snooping 2

The cache in the 80486 microprocessor supports bus snooping to track activity on the bus
that alters the memory represented in the internal cache. In the DOS compatibility
subsystem, even though the sound card operates as an alternate bus master, the snoop
control lines are deactivated.

The memory space reserved for the PC (whether local or shared memory) cannot be
cached or modified by the Mac OS, so it presents no coherency issues.

The interface provides no hooks to support bus snooping in either the PC environment
or the Macintosh environment.

Byte Order 2

Big-endian and little-endian are two ways of defining the order in which bytes are
addressed. Big-endian means that the most significant byte corresponds to the lowest
address and the least significant byte corresponds to the highest address. Little-endian
means that the most significant byte corresponds to the highest address and the least
significant byte corresponds to the lowest address.
14 Processor and Memory Components

C H A P T E R 2

Hardware Design
The 680x0 microprocessors use big-endian byte addressing and the 80x86 microprocessors
use little-endian byte addressing. This disparity poses a problem for the DOS compati-
bility subsystem because its 80486-type microprocessor is dependent on the Mac OS to
load applications and data from peripheral devices. When the Mac OS loads PC data
from floppy disk, it stores that data at addresses that match the big-endian convention.
To allow the PC to function properly, it must be able to read the data the same way as the
Mac OS; that is, the transfer must be address invariant. To make that possible with the
disparity in addressing modes, the interface IC (Pretzel Logic) performs a byte swapping
operation.

Byte swapping is performed for all PC data resident on the Macintosh host computer,
that is, for both shared memory data and DMA (I/O) data. The interface IC also swaps
the bytes of data in one of the message mailbox data registers. The other data register
does not provide for byte swapping and thus provides data invariance.

For a general description of big-endian and little-endian byte addressing, please refer to
Appendix A, “Overview of PowerPC Technology,” in Macintosh Developer Note Number 8.

Misaligned Transfers 2

Data misalignment occurs when the DOS compatibility subsystem is configured for
shared memory. The problem arises because of differences in the lengths of data
transfers on the two types of microprocessors.

All memory read and write operations in the Macintosh environment are longword
(4 byte) aligned: the low-order 2 bits of the address are zeros. Each time the 80486
performs a 1-, 2-, 3-, or 4-byte memory read operation, the Macintosh host computer
performs a 4-byte access. The full 32 bits of data are presented on the PC side and the
80486 accepts the required byte lanes. When the 80486 requests multiple bytes of data
from a nonaligned address (that is, when the data extends across a longword address),
the 80486 splits the access into two separate transfers.

When the 80486 performs a misaligned write operation, the interface IC (Pretzel Logic)
first checks to see if the transfer is an aligned transfer on the Macintosh host computer. If
it is, the transfer is allowed to proceed. If the write is misaligned with respect to the host
computer (for example, a 3-byte transfer, or a 2-byte transfer that does not fall on a word
boundary), the interface IC forces the 80486 to break the transfer into several single-byte
operations. This ensures that misaligned transfers on the PC side get mapped to the
proper addresses in the host computer’s memory.

Table 2-1 on page 16 shows the byte order of the different transfer sizes supported by the
68040 and 80486 microprocessors.
Processor and Memory Components 15

C H A P T E R 2

Hardware Design
Interrupts 2

The 84031 and 84035 ICs, described in later sections, are responsible for generating all
interrupt requests to the Cx486DX2 microprocessor. The 84035 data path controller IC
generates the maskable interrupt resulting from the various IRQ sources. For interrupt
functions, the 84035 is equivalent to two cascaded 8259 interrupt controllers (PIC) as
found in the original PC/AT computer. Table 2-2 shows the interrupt definitions for the
DOS compatibility subsystem.

Table 2-1 Microprocessor transfer comparison

Transfer size
Bytes enabled on a
68040 microprocessor

Bytes enabled on a
80486 microprocessor

1 byte 3 0

2 1

1 2

0 3

2 bytes 3, 2 0, 1

1, 0 1, 2

2, 3

3 bytes Not supported 1, 2, 3

0, 1, 2

4 bytes 3, 2, 1, 0 0, 1, 2, 3

Table 2-2 Definitions of PC interrupts

Interrupt
number Description

0 Interval timer

1 Keyboard

2 PIC 2

3* COM2 port*

4* COM1 port*

5 Sound expansion card

6* Message mailbox*

7* Parallel port 1*

8 Real-time clock

12 Mouse

NOTE Asterisk (*) indicates interrupt requests with source in
the interface (Pretzel Logic) IC.
16 Processor and Memory Components

C H A P T E R 2

Hardware Design
The source of the Macintosh interrupt (SLOT_E signal) is the Pretzel Logic IC (described
on page 26). With the exception of transfers in which the Pretzel Logic IC becomes
bus master, all service between the PC side and the Macintosh host computer is
interrupt driven.

The master interrupt status register in the Pretzel Logic IC contains the state of all
interrupt sources on the card. Each of these interrupt sources can be individually masked
by an accompanying master interrupt enable register. Additionally, higher resolution
into the cause of the interrupt can be determined by use of the secondary interrupt status
registers for COM1 and COM2 ports, keyboard and mouse port, and DMA channel.

The interrupt and status registers in the Pretzel Logic IC are accessible from the
Macintosh environment only. From the PC environment, the registers for the COM1
and COM2 ports and for the printer port match their standard definitions.

Bus Arbitration 2
The PC system bus supports the Cx486DX2 microprocessor (as bus master) and the two
8-bit DMA channels on the sound expansion connector. Sound DMA cycles use the DMA
controllers in the 84035 data path controller IC, but hard disk and floppy disk DMA
cycles between the PC and Macintosh memory or peripherals do not. Instead, the disk
DMA cycles require the processor to poll the DMA status register and perform I/O reads
and writes to the DMA data register in the Pretzel Logic IC.

On the PC system bus, the 84031 memory controller IC and the Pretzel Logic IC respond
as slave devices.

The HOLD signal to the Cx486DX2 microprocessor is formed by the logical OR of the
DMA controller’s output with the autoconfiguration control output. The HOLD signal is
used by the DMA controller to hold off the processor for DMA transfer. It’s also used at
startup time to tristate the processor address bus and allow the Pretzel Logic IC to
autoconfigure.

Because there is no way of signaling a bus error to the Cx486DX2 microprocessor, no bus
timers exist on the PC side to monitor the PC system bus activity and terminate faulty
cycles. For an address outside the decoded range, the 84031 bus controller signals
completion and operation continues.

A bus error on the PC system bus will cause the PC to hang. When that happens, the
Macintosh environment is not affected, so it can be used to restart the PC, either by the
Ctl-Alt-Del key sequence if the PC keyboard is still responding or by the Cmd-Ctl-Alt-Del
key sequence if not.

The 84031 memory controller IC acts as the master of the XD(ISA) bus on the PC side.
The 8242 keyboard and mouse controller and the 82C450 VGA controller respond only as
slave devices on this bus.
Processor and Memory Components 17

C H A P T E R 2

Hardware Design
The Macintosh system bus on the Macintosh Quadra 630 computer can support three
bus masters. Table 2-3 summarizes the priorities assigned to the fixed arbitration devices.

A secondary DMA arbitration circuit in the Portola IC arbitrates between the 68040 and
the Pretzel Logic DMA transfers to the host computer’s memory and I/O devices. When
performing DMA cycles to the PC, the Pretzel Logic IC becomes a 68040 bus master.

The DOS compatibility subsystem relies on the host computer to maintain a watchdog
timer for the I/O expansion slot. This timer is necessary to prevent the host computer
from hanging while waiting for a response from the Pretzel Logic IC.

Expansion 2
The DOS compatibility subsystem does not provide any way to add ISA or EISA
expansion boards. The local ISA bus (XD) is closed and supports only the 8242 keyboard
and mouse controller, the 80450 VGA controller, the 558 game timer, and the sound
expansion card. The COM1, COM2, and LPT1 peripherals usually found on the AT-ISA
bus are directly accessible from the Pretzel Logic IC through the processor system bus.

A 50-pin connector on the main compatibility card provides access to a subset of the ISA
signals for the sound expansion card.

84031 Memory Controller 2
The 84031 memory controller IC performs the following system-level functions:

■ DRAM control

■ ROM control

■ system clock generation

■ ISA bus control

■ VL (local) bus arbitration

Table 2-3 Arbitration priorities

Priority Device

Highest DRAM refresh

Network DMA

Lowest Pretzel Logic and the 68040
18 Processor and Memory Components

C H A P T E R 2

Hardware Design
DRAM Control 2

The DRAM on the card is directly interfaced to the local data bus. The /RAS, /CAS,
/DWE, and MA lines are driven directly from the 84031 memory controller IC without
external buffers.

The DRAM controller in the 84031 supports page mode operation. For memory read
operations, the page hit cycles are either 3-2-2-2 or 4-2-2-2 bursts. For write operations,
the page hits are 1-wait-state accesses. Both read and write operations are designed for
DRAM devices with 80 ns access time and have RAS-CAS delays of two T states.

The main compatibility card has a slot for one 32-bit-wide SIMM that supports up to two
banks of DRAM (for double-sided modules). No system DRAM is soldered on the card.
A single-sided SIMM can hold 1 MB, 4 MB, or 16 MB using 1, 4, or 16 Mbit DRAM
devices, respectively. Double-sided SIMM modules can hold double those amounts
of memory.

The DOS compatibility subsystem does not require a DRAM SIMM with parity.

The presence of a DRAM SIMM on the card is sensed by the Pretzel Logic IC at startup
and stored in a register in the IC. Upon reading this register bit, the startup software
determines the size of the memory and programs the 84031’s configuration registers
with starting and ending addresses for each bank. If a DRAM SIMM is not present,
shared memory is assumed and the software disables all local DRAM banks in the 84031.

BIOS Control 2

The DOS compatibility subsystem has no ROM except for the declaration ROM common
to all Macintosh expansion cards. The basic input/output system (BIOS) is stored in the
host computer’s RAM and accessed by way of the shared memory channel in the Pretzel
Logic IC.

Note
The BIOS and the BIOS extensions in the host computer’s memory are
always accessed by way of the shared memory interface, regardless of
whether a DRAM SIMM is installed on the card. ◆

At reset the Cx486DX2 microprocessor issues the starting reset-vector address from
within the address range of the BIOS image in the upper 64 KB of shared system
memory. The Pretzel Logic IC remaps this address range down to the lower 1 MB
region where the BIOS actually resides. The Pretzel Logic IC also performs the
address translation between the BIOS addresses on the PC side and the correspond-
ing addresses in shared memory on the Macintosh host computer.

Clock Generation 2

The 84031 memory controller IC receives a 2X clock and generates a low-skew 1X and
2X clock for the system and the Cx486DX2 processor. In addition, it divides down the 2X
clock to generate the BUSCLK signal for the ISA bus.
Processor and Memory Components 19

C H A P T E R 2

Hardware Design
ISA Bus Control 2

The 84031 memory controller IC handles all accesses to the ISA bus by the Cx486DX2. In
addition, the memory controller performs data buffering to form the XD bus for local
peripherals such as the keyboard, joystick, and VGA controllers. The memory controller
also provides support for local bus slaves such as the Pretzel Logic IC.

84035 Data Path Controller 2
The 84035 data path controller IC performs the following system-level functions:

■ system reset

■ interrupt control

■ speaker drive

In addition, the data path controller IC contains the PC/AT-compatible DMA channels
and the system arbitration logic for DMA masters and local bus masters. Those functions
are needed by the sound expansion card.

Clocks 2

The data path controller IC receives a 14.31818 MHz clock signal and divides it by 12 to
form the 1.19 MHz clock used by the 8254 timers. In addition, the data path controller
receives a 32.768 kHz clock signal for the internal real-time clock. All CPU related
functions are based on the 1X clock generated by the memory controller IC.

System Reset 2

The data path controller IC generates the reset signals for the DOS compatibility
subsystem. The data path controller generates the SYSRESET and CPURESET signals
based on the /PWRGOOD signal from the Pretzel Logic IC. The CPURESET signal is
also affected by soft reset requests received over the control link from the memory
controller IC.

The /PWRGOOD signal controls several other signals. It disables all outputs and gates
off all inputs to the 84035 except for the /PWRSTB signal (PRAM, RTC power), the
14 MHz clock (14.31818 MHz input), the 32 kHz clock (32.768 kHz input), and the
/PWRGOOD signal itself. When the /PWRGOOD signal goes high, the outputs are
enabled and the SYSRESET and CPURESET signals are driven high. The data path
controller holds the SYSRESET and CPURESET signals high for 8 million cycles of the
SCLK clock to ensure proper startup of the 14.31818 MHz oscillator and to allow time for
the VCO in the Cx486DX2 to stabilize.

The SYSRESET and CPURESET signals are generated as follows: The SYSRESET signal is
generated based on the /PWRGOOD signal alone. The CPURESET signal is generated
based on /PWRGOOD but is also generated for soft resets. Soft resets can occur due to a
keyboard controller reset, a CPU shutdown cycle, or the transition of bit 0 of port 92 in
the 84035 from 0 to 1.
20 Processor and Memory Components

C H A P T E R 2

Hardware Design
Keyboard reset and shutdown are sent to the 84035 data path controller through the
control link from the 84031 memory controller, which decodes shutdown cycles and
receives keyboard reset from the 8242 keyboard and mouse controller.

The 84035 data path controller IC generates the /A20M signal to the Cx486DX2
microprocessor. The 84035 generates the /A20M signal by ORing together the GATEA20
signal from the keyboard controller and bit 1 of port 92 in the 84035. The keyboard
controller’s GATEA20 information comes from the 84031 memory controller through the
control link.

Interrupt Control 2

The 84035 data path controller IC contains two 8259-compatible interrupt controllers.
The interrupt numbers are listed in Table 2-2 on page 16.

Portola Bus Adapter IC 2
The Portola bus adapter is a custom IC that provides some signal modification and bus
arbitration between the Pretzel Logic IC and the 68040 bus. The main functions of the
Portola bus adapter are:

■ generating the device select for the declaration ROM

■ generating the handshake signals for the PDS

■ remapping the slave registers in the Pretzel Logic IC to an unused portion of the host
computer’s memory

■ providing bus arbitration between the Pretzel Logic IC and the 68040

Burst Transfers 2
The Macintosh host computer and the DOS compatibility subsystem perform burst
transfers in similar ways. The Pretzel Logic IC supports burst memory transfers of
16-byte length (4 longwords). Those transfers are translated to MOVE16 transfers on the
68040 microprocessor.

Video Components 2

The DOS compatibility subsystem includes a complete video system to support PC
video. The video components consist of a DRAM-based frame buffer and a VGA
controller with an integrated color lookup table (CLUT), triple digital-to-analog
converter (DAC), and clock generator.
Video Components 21

C H A P T E R 2

Hardware Design
Sharing a Monitor 2
Video output from the DOS compatibility subsystem is displayed on a monitor shared
with the host Macintosh computer. A ribbon cable carries the video signals from the
main compatibility card to the main logic board in the host computer.

The user can switch the monitor (along with the keyboard and mouse) from one
computer subsystem to the other by typing a programmable command key sequence
(hot key). When the user switches the monitor to the Mac OS, the software sets a bit
in port A of the interface IC. This bit is connected directly to the blanking input of the
SynDAC IC (described on page 25) and causes the PC’s video to be blanked (held at
0.0 V). The port A bit also controls a multiplexer between the PC and Macintosh sync
lines so that the video signal from the Macintosh host computer is sent to the monitor.

When the user switches the interface to the PC, the software on the Macintosh host
computer writes black RGB values into all entries of the CLUT and sets the DC offset
register in the DAC to make the black and blank levels equal (0.0 V). The port A bit is
then switched so that the SynDAC unblanks the PC’s video signal and the video
multiplexer sends the PC’s video signal to the monitor.

Monitors Supported 2
The main compatibility card has 512 KB of DRAM soldered on that provides all the
standard VGA modes and some extended SVGA modes. No video DRAM expansion
is provided because none is needed to meet full VGA compatibility. The VGA controller
supports the 14-inch and 15-inch RGB Apple monitors as well as the standard VGA
monitors. Table 2-4 summarizes the monitor sizes and display modes supported by the
DOS compatibility subsystem.

Table 2-4 Monitors and display modes

Monitor size Modes supported

Apple 14-inch All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h)

VGA All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h)

SVGA All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h) and
800 by 600 pixels (6Ah, 70h)

Apple multiple-scan
15-inch

All VGA (modes 0–7, D–13h);
SVGA 640 by 480 pixels (79h) and
800 by 600 pixels (6Ah, 70h)
22 Video Components

C H A P T E R 2

Hardware Design
Monitor Sense Lines 2

The host computer detects the monitor type by way of sense lines in the video cable.
Information about the monitor type is made available to the VGA driver so that it can
program the card’s video control registers appropriately.

Video Timing 2

Table 2-5 and Figure 2-2 on page 24 define the video monitors and timings supported by
the Macintosh host computer that are also supported by DOS compatibility subsystem.
For Macintosh monitors that are fixed frequency (the 14-inch and 16-inch monitors),
the VGA controller on the card needs to be configured for this horizontal and vertical
retrace rate.

Table 2-5 VIdeo timing parameters for supported monitors

Parameter 14-inch RGB 16-inch RGB VGA SVGA

Display size (pixels) 640 by 480 832 by 624 640 by 480 800 by 600

Pixel clock 30.24 MHz 57.28 MHz 25.18 MHz 36.00 MHz

Pixel time 33.07 ns 17.46 ns 39.72 ns 27.78 ns

Line rate 35.00 kHz 49.73 kHz 31.47 kHz 35.16 kHz

Line time 28.57 µs
(864 pixels)

20.11 µs
(1152 pixels)

31.78 µs
(800 pixels)

28.44 µs
(1024 pixels)

Horizontal active video 640 pixels 832 pixels 640 pixels 800 pixels

Horizontal blanking 224 pixels 320 pixels 160 pixels 224 pixels

Horizontal front porch 64 pixels 32 pixels 16 pixels 16 pixels

Horizontal sync pulse 64 pixels 64 pixels 96 pixels 112 pixels

Horizontal back porch 96 pixels 224 pixels 48 pixels 96 pixels

Frame rate 66.72 Hz 74.55 Hz 59.94 Hz 52.71 Hz

Frame time 15.01 ms
(525 lines)

13.41 ms
(667 lines)

16.68 ms
(525 lines)

18.97 ms
(667 lines)

Vertical active video 480 lines 624 lines 480 lines 600 lines

Vertical blanking 45 lines 43 lines 45 lines 28 lines

Vertical front porch 3 lines 1 line 10 lines 1 line

Vertical sync pulse 3 lines 3 lines 2 lines 4 lines

Vertical back porch 39 lines 39 lines 33 lines 23 lines
Video Components 23

C H A P T E R 2

Hardware Design
Note
The DOS compatibility subsystem can operate with a 17-inch
(or larger) monitor. With a large monitor, the user can open the
Monitors control panel and set the display to either 640 by 480 pixels
or 832 by 624 pixels. ◆

Figure 2-2 Video timing parameters

Video

H sync space H image space

H line length

H back porch

H sync pulse

H front porch

HBLANK

/HSYNC

Black

Horizontal timing

Video

V sync space V image space

V line length

V back porch

V sync pulse

V front porch

VBLANK

/VSYNC

���
���

������������
������������

�����
�����

Vertical timing

White

Black

White
24 Video Components

C H A P T E R 2

Hardware Design
To accommodate the various VGA and SVGA modes on the Macintosh monitors, the
video controller must have its timing parameters changed by the BIOS. To do that, the
Macintosh software reads the video sense lines and loads the appropriate values for
the video BIOS before starting up the PC. (Remember that system and video BIOS reside
in Macintosh system memory and are modifiable by the software.)

IMPORTANT

With a shared monitor, modifying the video parameters by writing
directly to the video control registers of the VGA controller can cause
loss of video synchronization. ▲

Video Components 2
Two ICs provide the video support for the PC:

■ 82C450 VGA controller

■ MU9C9760 SynDAC

82C450 VGA Controller 2

The 82C450 is an integrated VGA video controller that is backward compatible with
EGA, CGA, and MDA video modes. With the card’s 512 KB of video DRAM (four
256K-by-4 DRAM ICs), the SynDAC supports all standard VGA modes as well as 800 by
600 pixels at 4 bits per pixel (noninterlaced), 640 by 480 pixels at 8 bits per pixel, and
132-column text mode.

The video controller is connected to the system through the ISA bus (the XD bus on the
main compatibility card).

MU9C9760 SynDAC 2

Most of the video logic on the main compatibility card in provided by a device called the
SynDAC: an IC (MU9C9760) that combines a lookup table, a triple video DAC, and a
dual clock synthesizer. The SynDAC IC drives the video output line directly and is
compatible with the Brooktree BT475 CLUT/DAC IC. The SynDAC IC provides
256 colors from a palette of 256K colors. The SynDAC IC also provides an internal pixel
clock with eight programmable frequencies.
Video Components 25

C H A P T E R 2

Hardware Design
I/O Components 2

The I/O components in the DOS compatibility subsystem are the Pretzel Logic IC and
the 8242 keyboard and mouse controller.

Pretzel Logic I/O Controller IC 2
The main I/O component in the DOS compatibility subsystem is the Pretzel Logic IC. It
acts as a bus converter between the PC processor bus and the Macintosh processor bus.
The Pretzel Logic IC integrates many of the I/O functions required to support the PC
and also helps support the communication between the PC and the Macintosh host
computer. The Pretzel Logic IC has the following features:

■ two DMA channels (one for shared memory and one for disk I/O)

■ address translation logic for 32-bit addresses and block sizes up to 64 MB

■ two serial ports (16C450 compatible)

■ one Centronics parallel printer port

■ keyboard and mouse controller (8047 compatible)

■ a64-bit message mailbox with a 32-bit command port

■ power-on reset logic

■ autoconfiguration logic

The Pretzel Logic IC functions as a slave device on the PC system bus. On the Macintosh
system bus, the Pretzel Logic IC functions both as a slave and as an alternate bus master.

To the Macintosh host computer, the DOS compatibility subsystem appears as an I/O
expansion card capable of generating slot $E interrupts to the 68040 and either
responding as a system bus slave or becoming a system bus master. The Pretzel Logic IC
communicates with the host computer as a bus master when the PC is performing floppy
disk or hard disk accesses or when sharing Macintosh memory. The Pretzel Logic IC
responds as a system bus slave on the Macintosh host computer during interrupt
acknowledge cycles, keyboard and mouse accesses, and message mailbox accesses.

DMA Channels 2

When the DOS compatibility subsystem is configured to operate in shared memory
mode (that is, when no SIMM is installed), the Pretzel Logic IC uses one of its DMA
channels for access to memory in the Macintosh host computer. The DMA channel
incorporates separate FIFOs for read and write operations; each FIFO is four longwords
deep. The write FIFO allows the Cx486DX2 to post up to four longword writes before
forcing the processor to wait.
26 I/O Components

C H A P T E R 2

Hardware Design
The second DMA channel is used to perform I/O data transfers between Macintosh
peripherals and PC memory. This I/O DMA channel is used when a DRAM SIMM is
installed on the main compatibility card.

Address Translation 2

The address translation register provides 32-bit address translation between the PC and
the host computer. This feature supports block sizes of 2 to 64 MB and allows the PC
memory to be relocated anywhere within the unreserved memory area on the Macintosh
host computer.

Note
The Pretzel Logic IC is not involved with address decoding
for the declaration ROM; that decoding is provided by the
Portola bus adapter. ◆

Serial Port Support 2

To support serial ports, the Pretzel Logic IC contains two identical sets of UART
emulation registers. These registers emulate the hardware of the standard 16C450
serial port ICs found in many PC/AT computers. When the PC accesses these registers,
interrupts are generated in the Macintosh host computer that cause the serial driver
in the Mac OS to route the data to the Macintosh serial ports.

The Macintosh serial ports are RS-422 ports and do not support all RS-232 signals. In
particular, the Carrier Detect (CD), Data Set Ready (DSR), Request To Send (RTS), and
Ring Indicator (RI) signals are not available. Table 1-2 (in Chapter 1) shows the
corresponding signals on the two types of serial ports.

Note
Not all RS-232 devices work properly using the RS-422 protocol. ◆

Printer Port Support 2

The Pretzel Logic IC implements all the registers of the standard Centronics parallel port
found on a PC. When the PC accesses these registers, interrupts are generated in the
Macintosh host computer that cause the driver software in the Mac OS to send data to a
print spooler file. The spooler file is then sent to whatever printer is selected by the user
in the Macintosh environment.

Note
The parallel port interface does not control printer hardware signals
and does not support bidirectional data transfer. ◆
I/O Components 27

C H A P T E R 2

Hardware Design
Keyboard and Mouse Emulation 2

The Pretzel Logic IC emulates in hardware the PC’s keyboard and mouse. The 8242
keyboard and mouse controller is configured to support a PS/2 mouse making the
protocol identical for the keyboard and mouse. The Pretzel Logic IC generates the
appropriate serial clock protocol and serial bit stream to communicate with the 8242.

Message Mailbox 2

The message-passing interface in the Pretzel Logic IC supports simple interrupt-driven
communication between the PC and the Macintosh host computer. The message-passing
interface contains two data registers and one command register. One of the data registers
incorporates byte swapping to allow address-invariant data to be moved between the
two systems. The interface uses a semaphore mechanism of arbitration and grants to
control the direction of the message passing. See “Passing Messages” beginning on
page 45 for a description of the software API for message passing.

Power-on Reset 2

The Pretzel Logic IC contains the reset logic that allows the Macintosh host computer to
start up the PC. Reset of the PC is controlled through the /PWRGOOD signal to the
84035 data path controller IC. Power for the PRAM on the PC is provided by the
Macintosh computer, so the PRAM is not invalidated when the PC is reset. When the
host computer is turned off, the PRAM becomes invalid; the next time the computer is
turned on, software on the Macintosh side reloads the PRAM on the PC side before the
PC system BIOS is executed.

Soft reset of the PC by way of the keyboard (Ctl-Alt-Del keys) is handled by the 8242
keyboard controller once the proper key code is sent by the Pretzel Logic IC through the
keyboard port.

Autoconfiguration 2

The Pretzel Logic IC performs autoconfiguration each time the PC is reset. The following
configurations are sensed and set upon reset:

■ Presence of local DRAM (SIMM installed on the card)

■ Card ID (001)

The card ID for the DOS compatibility subsystem in the Macintosh 630 DOS Compatible
Computer is 001.
28 I/O Components

C H A P T E R 2

Hardware Design
Game Adapter Card 2

The game adapter card contains the declaration ROM and the game controller port. The
game adapter card occupies the I/O expansion slot.

The game controller port is a DB-15 connector for connecting a standard PC-style game
controller (joystick). The game controller port occupies the I/O expansion opening in the
back of the computer.

The declaration ROM is similar to the standard declaration ROM used for Macintosh
expansion cards. The device used for the declaration ROM is a 32 KB ROM IC with
an access time of 150 ns. The address decoding and the device select signal for the
declaration ROM are provided by the Portola bus adapter IC.

Sound Expansion Card 2

The sound expansion card is plugged into the main compatibility card through a
connector that provides a subset of the unbuffered XD bus.

The sound expansion card provides MPC level 1 and level 2 sound output capability.
The card does not provide sound input capability; instead, the Macintosh host computer
provides sound input and record features. The sound expansion card is compatible
with the Sound Blaster register set and uses the standard ISA bus interface and 8-bit
DMA channel.

The sound expansion card is designed around three ICs:

■ CT2501 sound system IC

■ YMF262 FM synthesizer IC

■ TAC512 DAC IC

CT2501 Sound System IC 2
The CT2501 is a single IC that incorporates all the functions of a 16-bit PC sound system
except FM synthesis and output filtering. The CT2501 sound system IC, also known as
the Vibra 16, includes the following features:

■ an 8-bit ISA bus interface including DMA support and interrupt generation

■ FIFO buffers and control logic for digital audio playback and format conversion for
the DAC

■ a 16-bit stereo codec
Game Adapter Card 29

C H A P T E R 2

Hardware Design
■ a Sound Blaster–compatible mixer with AGC

■ a control interface for the FM synthesizer IC

The CT2501 sound system IC allows analog mixing of audio from the PC and from the
FM synthesizer IC. The audio signal from the sound card is then mixed with the square
wave sounds generated on the main compatibility card. The resulting sound signal is
sent to the Macintosh host computer where it is mixed with the Macintosh computer’s
sound signals and sent to the sound outputs.

YMF262 FM Synthesizer IC 2
The YMF262 IC, a type I3 (OPL3) device, uses FM synthesis to generate sounds. The
YMF262 IC includes the following features:

■ 24 operators configurable in four-operator mode for 6 channels

■ 36 operators configurable in two-operator mode for either 18 channels or 15 channels
with 5 rhythm channels

■ 8 selectable FM source waveforms

■ 4 channels of sound output

■ hardware vibrato and tremolo effects

■ 2 programmable timers capable of generating interrupt requests

The YMF262 IC interfaces directly to the 8-bit ISA data and address bus; the CT2501 IC
provides the chip select signal.

YAC512 Sound DAC IC 2
The YAC512 IC is a two-channel, 16-bit digital-to-analog converter that interfaces with
the YMF262 FM synthesizer IC to provide analog sound output signals.

Subsystem Connectors 2

The DOS compatibility subsystem is connected to the host computer’s main logic board
by three connectors:

■ the 68040 microprocessor socket

■ the I/O expansion slot (PDS)

■ the audio and video connector

The 68040 Microprocessor Socket 2
Most of the connections between the DOS compatibility subsystem and the host
computer are made by way of the host computer’s 68040 microprocessor socket. Most of
30 Subsystem Connectors

C H A P T E R 2

Hardware Design
the signals on the card’s 68040 socket are connected directly to the corresponding pins on
the 68040 header on the card. A few of the signals from the 68040 are qualified by the
Portola bus adapter and then sent on to the pins of the 68040 header.

The I/O Expansion Slot 2
Only 33 of the signals on the I/O expansion slot are used by the DOS compatibility
subsystem. Those signals include

■ the /PDS.DSACK0 handshaking signal, which is generated by the Portola bus adapter

■ the address lines and the upper byte of the data bus, which are connected to the
declaration ROM in the DOS compatibility subsystem

Note
The I/O expansion slot in the Macintosh 630–series computers is not a
true PDS (processor-direct slot) because it is not connected directly to
the computer’s main processor. ◆

Table 2-6 shows the signals connected to the I/O expansion slot.

Table 2-6 Signals connected to the I/O expansion slot

Pin number Signal name Pin number Signal name

A-2 /SLOTIRQ B-10 D27

A-3 /PDS.AS B-11 D24

A-9 D31 B-25 A2

A-10 D28 B-26 A12

A-11 D25 B-27 A13

A-18 A1 B-28 A8

A-25 A4 B-32 GND

A-26 A6 C-4 /PDS.SACK0

A-27 A11 C-9 D29

A-28 A9 C-10 D26

A-32 +12V C-17 A0

B-3 +5V C-25 A3

B-4 +5V C-26 A5

B-6 GND C-27 A7

B-7 CLK16M C-28 A10

B-8 GND C-32 -5V

B-9 D30
Subsystem Connectors 31

C H A P T E R 2

Hardware Design
Audio and Video Connector 2
A ribbon cable carries the audio and video signals from the main compatibility card to
the main logic board in the host computer. Table 2-7 gives the signal assignments on the
ribbon cable’s 16-pin connector.

Note
The audio and video connector is a feature of the Macintosh 630
DOS Compatible Computer that is not present on other
Macintosh 630–series computers. ◆

Table 2-7 Signals on the audio and video connector

Pin number Signal Pin number Signal

1 Sound out R 2 Sound GND

3 Sound out L 4 GND

5 Video out red 6 GND

7 Video out green 8 GND

9 Video out blue 10 GND

11 CSYNC 12 GND

13 HSYNC 14 GND

15 VSYNC 16 RGB_Select
32 Subsystem Connectors

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
The PC Interface Driver 3

C H A P T E R 3

The PC Interface Driver
The PC Interface driver provides communication and control between the Macintosh
Operating System (Mac OS) and the DOS compatibility subsystem. Programs running
on the Mac OS can use the driver to configure and control the card. Programs in both
environments can use the driver to exchange messages; see the section “Passing
Messages” beginning on page 45.

Initializing the Driver 3

The PC interface driver is named .Symbiosis. Before you can use the driver, your
application must initialize it by calling the open routine. Both opening and closing
the driver are performed only from programs running on the Mac OS.

Open 3

When you call the open routine, it allocates and initializes the driver’s memory, installs
the interrupt handler, and makes patches to the system needed by the driver. The open
routine initializes all devices to the null device and puts the PC into the reset state.

The open routine fails if the driver cannot allocate enough memory or if it cannot find
the DOS compatibility subsystem.

Close 3

When you call the close routine, it releases all memory allocated to the PC Interface
driver, removes the driver’s interrupt handler, removes any patches installed by the
open routine, and puts the PC into the reset state.

Configuring the PC 3

A program running on the Mac OS can use the PC Interface driver to configure the PC
on the DOS compatibility subsystem. You can use calls to the driver to perform the
following operations:

■ setting the memory available to the PC

■ configuring the disk drives available to the PC

■ setting and reading the status of the network driver

■ configuring the communications port

■ configuring the parallel port

■ defining the key combination that deactivates the PC

The routines that perform those configuration tasks are defined here.
34 Initializing the Driver

C H A P T E R 3

The PC Interface Driver
rsSetMemoryConfig 3

You can use the rsSetMemoryConfig control call to make memory on the Macintosh
computer available for the PC. The calling program first allocates the memory and sets it
locked and contiguous. The control call sets the base address and length of the memory.

 This call is needed only when no RAM SIMM is installed for the PC. The calling
program can determine whether a RAM SIMM is installed by calling the rsPCStatus
status routine (described below).

Parameter block

rsSetDriveConfig 3

You can use the rsSetDriveConfig control call to configure each of the PC’s fixed disk
drives (A:, B:, C:, and D:) as a floppy drive, Macintosh file, or SCSI partition, or as having
no corresponding drive.

Parameter block

The csParam contains a pointer to an RSFixedDriveConfig data structure.

typedef struct{
short type; // Type of device this drive is
short vRefNum; // Volume refNum or SCSI ID
long dirID; // Directory ID or starting sector number on hard drive
long fileNamePtr;// Filename or number of sectors on hard drive

} RSFixedDriveConfig[4], *RSFixedDriveConfigPtr;

RSFixedDriveConfig[0] contains the configuration for drive A:,
RSFixedDriveConfig[1] contains the configuration for drive B:,
RSFixedDriveConfig[2]contains the configuration for drive C:, and
RSFixedDriveConfig[3] contains the configuration for drive D:.

The type field specifies what type the drive is configured as (rsFloppyDrive,
rsFileDrive, rsPartitionDrive, or rsNULLDrive).

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSetMemoryConfig
→ csParam+0 long Logical base address of PC memory
→ csParam+4 long Physical base address of PC memory
→ csParam+6 long Length of PC memory

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSetDriveConfig
→ csParam+0 long Pointer to RSFixedDriveConfig
Configuring the PC 35

C H A P T E R 3

The PC Interface Driver
If the value of type is rsNULLDrive, the corresponding drive does not exist to the PC
and no other fields need to be filled in.

If the value of type is rsFloppyDrive, the corresponding drive on the PC is connected
to one of the Macintosh computer’s floppy drives.

If the value of type is rsFileDrive, the corresponding drive is connected to a
Macintosh file system file. The vRefNum field contains the volume the file is on, dirID
contains the directory ID of the file, and fileNamePtr contains a pointer to the file
name. The driver opens and closes the file as needed.

If the value of type is rsPartitionDrive, the corresponding drive is connected to a
SCSI drive partition. The vRefNum field contains the SCSI ID, dirID contains the
starting sector number of the partition, and fileNamePtr contains the number of
sectors in the partition.

If the value of type is set to rsIgnore, the configuration of the corresponding drive is
not changed.

The program on the Macintosh computer should call rsSetDriveConfig at least once
before starting the PC. The routine can also be called after the PC has been started to
change the drive configuration. In that case, the new drive configuration does not take
effect until the PC is restarted.

rsGetNetDriveConfig 3

You can use the rsGetNetDriveConfig status call to obtain drive configuration data.
This call returns a pointer to an array of 22 RSNetDriveConfig data structures, one for
each drive letter from E through Z.

Parameter block

typedef struct {
char status; // 0 = unused, -1 = in use, 1 = cannot be used
char changed; // Used by the driver, do not use
short vRefNum; // Reference number of volume containing shared drive
long dirID; // Directory ID

} RSNetDriveConfig[26], *RSNetDriveConfigPtr;

The RSNetDriveConfig data structure contains the current configuration for folder
sharing for each PC drive letter. If the PC has its LASTDRIVE parameter set to less than Z
or if other block device drivers are loaded on the PC, not all drive letters will be
available. The data structures for drives that are not available have their status
parameters set to 1 by the PC Interface driver.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsGetNetDriveConfig
← csParam+0 long Pointer to RSNetDriveConfig
36 Configuring the PC

C H A P T E R 3

The PC Interface Driver
The caller can use the returned pointer to modify an entry in the RSNetDriveConfig
data structure and then call the rsSetNetDriveConfig control call.

rsSetNetDriveConfig 3

You can use the rsSetNetDriveConfig control call to establish links between
Macintosh directories and PC drive letters.

Parameter block

This call simply notifies the PC Interface driver that an entry in the RSNetDriveConfig
data structure has been modified.

rsSetComPortConfig 3

You can use the rsSetComPortConfig control call to set the configurations of the two
communication ports (COM1 and COM2) on the PC. Each communication port can have
a virtual connection to either the modem port, the printer port, a communication tool
box port, a spool file, or the null device.

Parameter block

A pointer to an RSComConfig data structure is passed in the csParam field.

typedef struct{
short type; // Port type (rsModemComPort, rsPrinterComPort, etc.)
short vRefNum; // Volume reference number for serial spool file
long dirID; // Directory ID
long fileNamePtr;// Pointer to the filename

} RSComConfig[2], *RSComConfigPtr;

RSComConfig[0] contains the configuration for COM1 and RSComConfig[1] contains
the configuration for COM2. The type field specifies what type of connection to make
(either rsNULLComPort, rsModemComPort, rsPrinterComPort, rsSpoolComPort,
rsComToolBoxComPort, or rsIgnore). The value of the vRefNum parameter is the
volume reference number, dirID is the directory ID, and fileNamePtr is the pointer to
the name of the spool file.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSetNetDriveConfig
→ csParam+0 word Entry number of RSNetDriveConfig (0=E)

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSetComPortConfig
→ csParam+0 long Pointer to RSComConfig
Configuring the PC 37

C H A P T E R 3

The PC Interface Driver
When a PC port is connected to the null device, any output from the PC is ignored.

When a PC port is connected to the modem or printer port, the PC controls the port
by means of the UART emulation register in the DOS compatibility subsystem. For
example, when the PC sets the baud rate divisor in the UART emulation register, the PC
Interface driver intercepts the operation and translates the action to a control call to the
driver for the modem or printer port.

When a PC port is connected to a spool file, all output from the PC is captured and
written to the specified file. The driver opens and closes the file as needed.

The rsSetComPortConfig routine should be called at least once before the PC is
started up. It can also be called after the PC has been started; in that case, the change
in configuration takes effect immediately.

If the type field is set to reIgnore, the port’s configuration does not change.

rsSetParallelPortConfig 3

You can use the rsSetParallelPortConfig function to set the configuration of the
parallel port emulation. A pointer to an RSParallelConfig data structure is passed
in csParam.

Parameter block

typedef struct{
short eojTimeOut; // End of job after n seconds of no data
short vRefNum; // Volume RefNum
long spoolDirID; // RefNum for spool directory

} RSParallelConfig, *RSParallelConfigPtr;

The spoolDirID field is the ID of the directory where the spool files will be stored. The
vRefNum field contains the reference number of the volume that contains the directory.
The eojTimeOut field specifies the number of seconds the parallel port must be inactive
before the driver will force an end of job. If this field is set to 0, the driver does not force
the end of job based on time.

When a print job has been completed, the driver notifies the application by means of the
rsSetNotificationProc procedure (defined on page 44). The driver also notifies the
application if it has trouble saving the spool data.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSetParallelPortConfig
→ csParam long Pointer to RSParallelConfig
38 Configuring the PC

C H A P T E R 3

The PC Interface Driver
rsSetDeactivateKey 3

You can use the rsSetDeactivateKey control call to set the deactivate key along with
its modifiers and a user-defined task. When the PC has control of the keyboard, the
driver monitors the keyboard input data for the deactivate key combination and calls the
user-defined task when that key combination occurs.

Parameter block

Upon return, the parameter block is set as follows:

The user-defined task is called during NeedTime after the deactivate key and modifiers
are pressed. If the user-defined task is null, no task is called. The modifiers are specified
as they appear in the KeyMap+6. The value of the deactivate key is the Macintosh key
code of the desired key.

Control and Status Calls 3

A program running on the Mac OS can use the PC Interface driver to make control and
status calls to the PC running on the DOS compatibility subsystem. You can perform the
following functions:

■ getting the status of the PC

■ booting (starting) the PC

■ resetting the PC

■ enabling and disabling the video display of the PC

■ enabling and disabling disk mounting on the PC

■ activating and deactivating keyboard operation by the PC

■ activating and deactivating mouse tracking by the PC

■ terminating print spooling from the PC

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSetDeactivateKey
→ csParam+0 long Pointer to user-defined task
→ csParam+4 word Modifiers
→ csParam+6 word The deactivate key

← csParam+0 long Pointer to the previous
user-defined task

← csParam+4 word The previous modifiers
← csParam+6 word The previous deactivate key
Control and Status Calls 39

C H A P T E R 3

The PC Interface Driver
rsPCStatus 3

You can use the rsPCStatus status call to get information about the state of the PC
hardware. This call returns the current state of the PC.

Parameter block

Table 3-1 shows the meanings of the bits in the status word.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsPCStatus
← csParam+4 long The status word

Table 3-1 Bits in the PC status word

Bit Meaning

0 1 = PC is running (rsBooted)

1 1 = VGA screen is enabled (rsVGAEnabled)

2 1 = keyboard is enabled (rsKeyboardEnabled)

3 1 = mouse is enabled (rsMouseEnabled)

4 1 = disk mounting is enabled (rsDiskMountEnabled)

5 1 = shared memory is enabled (rsSharedEnabled)

6 1 = DMA is enabled (rsDMAEnabled)

7 1 = video cable is enabled (rsCableInstalled)

8 1 = modem port is used by COM1

9 1 = printer port is used by COM1

10 1 = modem port is used by COM2

11 1 = printer port is used by COM2

24–27 0000–1111 = video identification

28–31 0000–1111 = type of expansion card (0001 = this card)
40 Control and Status Calls

C H A P T E R 3

The PC Interface Driver
rsBootPC 3

You can use the rsBootPC control call to start up the PC. This call resets the PC’s
processor and boots the PC’s system BIOS. If the PC is already running, this call resets it.

Parameter block

The calling program must set up the PC’s configuration before booting the PC. You can
use the following control calls (defined previously) to set the configuration:

■ rsSetMemoryConfig

■ rsSetDriveConfig

■ rsSetComPortConfig

■ rsSetParallelConfig

rsResetPC 3

You can use the rsResetPC control call to put the PC into a reset state. This call stops
the PC from running; any programs or data in the PC’s memory are lost. The calling
program must use the rsBootPC control call to start the PC running again.

Parameter block

rsEnableVideo 3

You can use the rsEnableVideo control call to enable the VGA display output. You use
the call when switching the video monitor from the Mac OS to the PC.

Parameter block

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsBootPC

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsResetPC

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsEnableVideo
Control and Status Calls 41

C H A P T E R 3

The PC Interface Driver
rsDisableVideo 3

You can use the rsDisableVideo control call to disable the VGA display output when
the Macintosh video output is selected.

Parameter block

rsMountDisks 3

You can use the rsMountDisks call to enable the mounting and unmounting of PC
disks. After the call has been made, the PC Interface driver monitors all disk-insertion
events, looking for possible PC formatted disks. If the inserted disk is not a Macintosh
formatted disk, it is considered a PC disk and is made available to the PC if the PC is
active. The mounting and unmounting of the PC disks happens automatically; the
rsMountDisks call merely enables the process.

Parameter block

rsDontMountDisks 3

You can use the rsDontMountDisks control call to stop the PC Interface driver from
monitoring disk-insertion events. If the PC Interface driver has already mounted a PC
disk before you make this call, the PC disk remains in the drive and available to the PC.

Parameter block

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsDisableVideo

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsMountDisks

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsDontMountDisks
42 Control and Status Calls

C H A P T E R 3

The PC Interface Driver
rsActivateKB 3

You can use the rsActivateKB control call to direct the data from the computer’s
keyboard to the PC side. All keys except the Command key are trapped; key codes are
translated and transmitted to the PC.

Parameter block

rsDeactivateKB 3

You can use the rsDeactivateKB control call to stop the transmission of keyboard data
to the PC and direct the keyboard data to the Mac OS.

Parameter block

rsBeginMouseTracking 3

You can use the rsBeginMouseTracking control call to cause the mouse movements
and button presses to be directed to the PC. This call also causes the driver to hide the
Macintosh cursor.

Parameter block

rsEndMouseTracking 3

You can use the rsEndMouseTracking control calls to cause the mouse movements
and button presses to be directed to the Mac OS. This call also causes the driver to show
the Macintosh cursor.

Parameter block

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsActivateKB

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsDeactivateKB

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsBeginMouseTracking

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsEndMouseTracking
Control and Status Calls 43

C H A P T E R 3

The PC Interface Driver
rsEndPrintJob 3

You can use the rsEndPrintJob control call to end the current print job and close
the spool file (if any). Any subsequent data from the PC to the parallel port starts a new
spool file.

Parameter block

Detecting Errors 3

Programs on the Mac OS can use the next two procedures to detect error conditions or
other special events on the PC.

rsSetNotificationProc 3

You can use the rsSetNotificationProc control call to install a user-defined
procedure that is called whenever a special event happens within the driver. The
procedure can be called at interrupt time; it is responsible for deferring handling of the
event until noninterrupt time.

Parameter block

Upon return, the parameters are set as follows:

The caller passes a pointer to the user-defined procedure and a parameter to be passed to
that procedure in A1. The control call returns the previous values. Calling
rsSetNotificationProc with a NULL pointer disables the notification procedure.

When the user-defined procedure is called, the D0.w register contains the event and A1
contains the A1Param value. The procedure can use registers D0–D2 and A0–A1.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsEndPrintJob

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSetNotificationProc
→ csParam+0 long Pointer to the notification procedure
→ csParam+4 long A1Param value

← csParam+0 long Pointer to the previous notification procedure
← csParam+4 long Previous A1Param value
44 Detecting Errors

C H A P T E R 3

The PC Interface Driver
The events are

rsPrintSpoolErr = problem opening or writing to a print spool file

rsCOM1SpoolErr = problem opening or writing to the COM1 spool file

rsCOM2SpoolErr = problem opening or writing to the COM2 spool file

rsDiskFileErr = problem reading the disk file

rsLastError 3

You can use the rsLastError status call to obtain the last nonzero error code returned
by the driver.

Parameter block

Passing Messages 3

Programs on the Mac OS and the PC can send messages to each other by calling the PC
Interface driver. Programs can also install a receive procedure for receiving messages.
When the PC Interface driver receives a message intended for your program, the driver
calls your receive procedure. Your procedure decides whether or not to accept the
message’s data and, if so, where to store the data.

Message Conventions 3
Before communications can take place, a program on the Mac OS and a program on the
PC must have the same definitions of the messages they transfer. A message consists of a
16-bit command, two 32-bit parameters, and up to 64 KB of data. The parameters and the
data can consist of any data in any format. The command must be a unique value
recognized by the programs on the Mac OS and the PC that are sending and receiving
messages. The programs on both the PC and the Mac OS must request command
numbers from the PC Interface driver before sending messages.

Macintosh Interface 3

Programs on the Mac OS communicate with the PC Interface driver through driver calls.
Your program should first open the driver using the open call and then use the control
calls defined in the next section to register, send, and receive messages.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsLastError
← csParam+4 long Pointer to the last error routine
Passing Messages 45

C H A P T E R 3

The PC Interface Driver
PC Interface 3

Programs on the PC communicate with the PC Interface driver through a software
interrupt interface. The program loads registers with appropriate values, including a
function selector in register AH, and calls the PC Interface driver with an INT 5Fh call.
PC programs can determine whether the PC Interface driver interface is available by
calling INT 5Fh with register AH = 0. If the PC Interface driver is installed, it returns
0A5h in register AH and the highest implemented function code (currently 4) in
register AL.

Registering Messages 3
For a program on the Mac OS to send messages to a program on the PC, both programs
must register their messages with the PC Interface driver. This is done by calling the
driver with a 32-bit selector defined in both programs and a count of the number of
messages to be used by the programs. The PC Interface driver allocates a range of
messages for that selector and returns the base command number to the caller. The PC
Interface driver makes sure that both the PC program and the Macintosh program
registering messages under the same selector will receive the same base command
number.

On the Mac OS 3

To register your messages from a Macintosh program, make an rsRegisterMessage
control call with the message selector in csParam+0 and the number of message
commands to allocate in csParam+4.

Parameter block

The PC Interface driver returns the base command number in csParam+0. If the PC
Interface driver cannot allocate the messages, an error code is returned in ioResult.

On the PC 3

To register your messages from a PC program, load the 32-bit selector into register EBX
and the message count in register CX; then call INT 5Fh with AH = 4. The PC Interface
driver returns the base command number in register BX. Register AH contains an error
code if the messages could not be allocated.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsRegisterMessage
↔ csParam+0 long 32-bit message selector
→ csParam+4 long Number of message commands to allocate
46 Passing Messages

C H A P T E R 3

The PC Interface Driver
Sending a Message 3
To send a message, you must pass a message parameter block (MsgPBlk) to the PC
Interface driver. The rsSendMessage routine is always asynchronous; it simply queues
the message parameter block and returns to the caller. The msgResult field is set to
1 (busy) until the message has been sent.

After the message has been sent, the msgResult field is set to 0 (no error) or
–3 (MsgTimeout). The msgActCount field contains the number of bytes actually
sent. If you have specified a completion routine, it is then called.

On the Mac OS 3

The MsgPBlk data structure for programs on the Mac OS has the following format:

MsgPBlk RECORD 0

msgQLink DS.l 1 ; Next queue element

msgQType DS.w 1 ; Queue flags

msgCmd DS.w 1 ; The message type or command

msgParam1 DS.l 1 ; Message parameter 1

msgParam2 DS.l 1 ; Message parameter 2

msgBuffer DS.l 1 ; Pointer to the message data buffer

msgReqCount DS.l 1 ; Requested data length

msgActCount DS.l 1 ; Actual data length

msgCompletion DS.l 1 ; Pointer to completion routine or
NULL

msgResult DS.w 1 ; The result of any message operation

msgFlags DS.w 1 ; Message Flags (Swap and Shared)
Set to zero!

msgUserData DS.l 1 ; For the callers use

MsgPBlkSize Equ * ; Size of record

ENDR

To send a message, build a MsgPBlk and then pass the pointer to the MsgPBlk to the PC
Interface driver in an rsSendMessage control call.

Parameter block

Your completion routine is called at Deferred time and can use registers D0–D2 and
A0–A1. You must save all other registers. Upon return, A0 contains a pointer to the
MsgPBlk structure.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsSendMessage
→ csParam+0 long Pointer to MsgPBlk
Passing Messages 47

C H A P T E R 3

The PC Interface Driver
On the PC 3

The MsgPBlk data structure on the PC has the following format. Please note that the
sizes of some of the fields are different from the Mac OS equivalent.

MsgPBlk STRUCT

link DWORD ? ; Link to next queue element

msgCmd WORD ? ; The message command or type

msgParam1 DWORD ? ; Param 1

msgParam2 DWORD ? ; Param 2

msgBuffer DWORD ? ; Pointer to the data buffer

msgReqCount DWORD ? ; Length of the data

msgActCount DWORD ? ; # of bytes actually transferred

msgCompletion DWORD ? ; Pointer to the completion routine

msgResult BYTE ? ; The error code after complete or 1

msgFlags BYTE ? ; Msg flags (Shared and Swapped)
set to zero!

msgUserData DWORD ? ; For the caller's use

msgVXD DWORD ? ; Reserved for driver use

MsgPBlk ENDS

To send a message on the PC, build a MsgPBlk structure and call the PC Interface driver
with AH = 1 (rsSendMessage) and ES:BX = the pointer to the MsgPBlk structure.
When you execute an INT 5Fh, the message is queued, msgResult is set to 1 (busy),
and control returns to your program.

Your completion routine is called with a FAR call and it should return with an RETF.
Also, your routine may use registers AX, BX, CX,DX, DI,SI, ES, and DS. When your
completion routine is called, ES:BX is a pointer to the MsgPBlk structure.

Installing a Message Handler 3
Before you can receive messages, you must install a message handler. The PC Interface
driver calls the message handler when the driver receives a message with a command
value greater than or equal to recCmdBase and less than recCmdBase + recCmdCount
in the MsgRecElem data structure. The driver passes the message’s 16-bit command and
the two 32-bit parameters to your message handler.

The message handler examines the command and parameters and determines whether
there is any data to be received. If there is, the handler passes back a pointer to a
MsgPBlk. The PC Interface driver then receives the data and puts it into the buffer
pointed to by msgBuffer. The driver then updates msgActCount with the number
of bytes of data received and sets msgResult to 0 (no error), –1 (MsgOverrun),
–2 (MsgUnderrun), or –3 (MsgTimeout). The driver then calls your completion routine,
if there is one.
48 Passing Messages

C H A P T E R 3

The PC Interface Driver
A message handler is described by a MsgRecElem record. The recProc field points to
the handler procedure; the values of recBaseCmd and recCmdCount are the values
allocated by rsRegisterMessage.

IMPORTANT

Before your program terminates, you must remove your message
handler so that the PC Interface driver will not call it after you are gone.
See the section “Removing a Message Handler” on page 50. ▲

On the Mac OS 3

The MsgRecElem data structure for programs on the Mac OS has the following format:

MsgRecElem RECORD 0

recQLink DS.l 1 ; Next queue element

recQType DS.w 1 ; Queue flags

recFlags DS.w 1 ; Not used...yet...set to zero

recProc DS.l 1 ; Pointer to the receive procedure

recCmdBase DS.w 1 ; First command received by this
procedure

recCmdCount DS.w 1 ; Number of commands allocated for
this procedure

recUserData DS.l 1 ; For caller’s use (could be A5...)

MsgRecElemSize Equ *

ENDR

To install a message handler on the Mac OS, build a MsgRecElem record and pass a
pointer to it in a control call to the PC Interface driver.

Parameter block

When your message handler procedure is called, D0.w contains the message command,
D1.l contains the msgParam1 value, D2.l contains the msgParam2 value, and A1 contains
a pointer to the MsgRecElem record. Your routine must pass back a pointer to a
MsgPBlk structure in A0 if you wish to receive the message data; otherwise, return 0 in
A0. The handler procedure is called at interrupt time with interrupts masked at the slot
interrupt level. It can use registers D0–D2 and A0–A1.

The completion routine for the MsgPBlk returned by the receive procedure is called at
deferred time and can use registers D0–D2 and A0–A1. You must save all other registers.
Upon return, A0 contains a pointer to the MsgPBlk structure.

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsInstallMsgHandler
→ csParam+0 long Pointer to MsgRecElem
Passing Messages 49

C H A P T E R 3

The PC Interface Driver
On the PC 3

For a program on the PC, the MsgRecElem data structure has the following format:

MsgRecElem STRUCT

Link DWORD ? ; Pointer to next link

Code DWORD ? ; Pointer to the code for this link

cmdBase WORD ? ; Base message number for this
procedure

cmdCount WORD ? ; Number of message numbers for this
procedure

userData DWORD ? ; For caller’s use

msgVXD DWORD ? ; Reserved for driver use

MsgRecElem ENDS

To install a message handler on the PC, build a MsgRecElem record and call INT 5Fh
with AH = 2 and ES:BX containing a pointer to the MsgRecElem structure.

When your message handler is called, AX contains the message command, ECX contains
msgParam1, EDX contains msgParam2, and ES:DI contain a pointer to the MsgRecElem
record. Your program must pass a pointer to a MsgPBlk structure in ES:BX if you wish
to receive the message data; otherwise, it must return 0 in BX. The handler is called at
interrupt time with interrupts turned off. It can use registers AX, BX, CX,DX, DI, SI, ES,
and DS.

The completion routine for the MsgPBlk structure returned by the receive procedure is
called at interrupt time and can use registers AX, BX, CX,DX, DI, SI, ES, and DS. You
must save all other registers. Also, ES:BX contain a pointer to the MsgPBlk structure.

Removing a Message Handler 3
Message handlers can be called until they are removed. Before your program terminates,
you must remove the handler so that the PC Interface driver will not call it after your
program is gone.

On the Mac OS 3

To remove a message handler on the Mac OS, your program makes an appropriate
control call to the PC Interface driver and passes it a pointer to the handler.

Parameter block

→ ioCompletion long Pointer to the completion routine
← ioResult word
→ ioRefNum word
→ csCode word Equals rsRemoveMsgHandler
→ csParam+0 long Pointer to MsgRecElem
50 Passing Messages

C H A P T E R 3

The PC Interface Driver
On the PC 3

To remove a message handler on the PC, your program makes a call to INT 5Fh with
AH = 3 and with a pointer to the MsgRecElem record in registers ES:BX.

Header File for PC Interface 3

Here is a sample header file for access to the PC interface driver.

/*

File: PCCardCalls.h

Contains:This file contains the data structures and equates needed to

call the PC Card driver on the Macintosh side.

Copyright: 1994 by Apple Computer, Inc., all rights reserved.

*/

#ifndef __PCCARDCALLS__

#define __PCCARDCALLS__

/

*--

; Other Header Files

;--*/

#ifndef __TYPES__

#include <Types.h>

#endif

#ifndef __OSUTILS__

#include <OSUtils.h>

#endif

#ifndef __EVENTS__

#include <Events.h>

#endif
Header File for PC Interface 51

C H A P T E R 3

The PC Interface Driver
/

*--

; Misc. Equates

;--*/

#defineRSDriverName"\p.RoyalScam"// The name of the driver

/

*--

; Error Codes Returned from Control/Status Calls

;--*/

enum{

rsFirstErr = 0x7000, // first error code

rsAlreadyBooted = 0x7001, // PC is already booted, can't complete

operation

rsLastErr = 0x7001 // last error code

};

/

*--

; Notifications Codes Sent to Notification Proc

;--*/

enum{

rsPrintSpoolErr = 0x7F00, // Having trouble opening/writting the

print spool file

rsPrintSpoolFileReady = 0x7F01, // at least 1 spool file is ready to

be printed

rsCOM1SpoolErr = 0x7F01, // Having trouble opening/writting the

serial spool file

rsCOM2SpoolErr = 0x7F02 // Having trouble opening/writting the

serial spool file

};

/

*--

; Control/Status ParamBlock Record

;--*/

typedefstruct { // PC Card driver Control/Status ParamBlock Record

QElemPtr qLink; // queue link in header

short qType; // type byte for safety check

short ioTrap; // FS: the Trap

Ptr ioCmdAddr; // FS: address to dispatch to
52 Header File for PC Interface

C H A P T E R 3

The PC Interface Driver
ProcPtr ioCompletion; // completion routine addr (0 for synch calls)

OSErr ioResult; // result code

StringPtr ioNamePtr; // ptr to Vol:FileName string

short ioVRefNum; // volume refnum (DrvNum for Eject and MountVol)

short ioCRefNum; // refNum for I/O operation

short csCode; // The operation code

void * csPtr; // pointer to proceedure or data

long csData; // data

long csData2; // data

} RSParamBlockRec, *RSParamBlockRecPtr;

/

*--

; PC Control

;--*/

// Control Codes

enum{

rsBootPC = 701, // Boots the PC

rsResetPC = 702, // Resets the PC

rsWriteCMOS = 703, // Writes the CMOS RAM values

rsReadCMOS = 704, // Reads current CMOS RAM values

rsEnableVideo = 705, // Enables the VGA output

rsDisableVideo = 706, // Disables the VGA output

rsSetMemoryConfig = 707, // Sets the shared memory config

rsHaltPC = 708, // Stops the PC

rsResumePC = 709 // Allows PC to continue

};

// Status Codes

enum{

rsPCStatus = 701, // Returns driver state information

rsLastError = 702 // Returns the last non-zero error

};

// PC Status Masks

enum{

rsBooted = 1, // Mask for boot state

rsVGAEnabled = 2, // Mask for VGA output state

rsKeyboardEnabled = 4, // Mask for keyboard state

rsMouseEnabled = 8, // Mask for mouse tracking state

rsDiskMountEnabled = 16, // Mask for Disk Mounting state
Header File for PC Interface 53

C H A P T E R 3

The PC Interface Driver
rsSharedEnabled = 32, // Mask for Shared Memory Enabled

rsDMAEnabled = 64, // Mask for DMA Enabled

rsCableInstalled = 128, // Mask for video Cable Installed

rsModemUsedByCom1 = 256, // Mask for modem use by com1

rsPrinterUsedByCom1 = 512, // Mask for printer use by com1

rsModemUsedByCom2 = 1024, // Mask for modem use by com2

rsPrinterUsedByCom2 = 2048, // Mask for printer use by com2

rsSoundEnabled = 4096, // Mask for Sound Enabled

rsBIOSModified = 8192 // Mask for Bios modified by Driver

};

/

*--

; Keyboard

;--*/

// Control Codes

enum{

rsActivateKB = 102, // Tells the driver keyboard is now active

rsDeactivateKB = 103, // Tells the driver keyboard is no longer

active

rsSetDeactivateKey = 104, // Sets the key that causes the deactivate

routine to be called

rsSetKeyMap1 = 105, // Sets the scan code map #1

rsSetKeyMap2 = 106, // Sets the scan code map #2

rsSetKeyMap3 = 107, // Sets the scan code map #3

rsSetKeyMap = 108 // Sets the Mac to PC map

};

// Data Structures

typedef char RSKeyMap[128]; // KeyMap data structure

typedef char *RSKeyMapPtr;

typedefstruct { // Scan Code Map data structure

char length; // Length of the scan code (# of bytes)

char code[6]; // Scan code

} RSScanCodeMap[128], *RSScanCodeMapPtr, **RSScanCodeMapHdl;
54 Header File for PC Interface

C H A P T E R 3

The PC Interface Driver
/

*--

; Mouse

;--*/

// Control Codes

enum{

rsSetMouseButtonKey = 200, // Sets which key to use as the

second mouse button

rsBeginMouseTracking = 201, // Tells the driver to track the

mouse movement

rsEndMouseTracking = 202 // Releases control of the mouse

};

/

*--

; Serial IO

;--*/

// Com port Indexs

enum{

rsCom1 = 0, // Index for Com1

rsCom2 = 1 // Index for Com2

};

// Device Types

enum{

rsNULLComPort = 0, // Com port is connected to NULL (bit bucket)

rsModemComPort = 1, // Com port is connected to Modem port

rsPrinterComPort = 2, // Com port is connected to Printer port

rsSpoolComPort = 3, // Com port data dumped into a file

rsComToolBoxComPort = 4, // Com port is connected to Com Tool Box port

rsIgnore = -1 // Do not change this port

};

// Control Codes

enum{

rsSetComPortConfig = 300 // Sets the connection and flow control for

a port

};
Header File for PC Interface 55

C H A P T E R 3

The PC Interface Driver
// Parameter Block data structures

typedefstruct{

short type; // The port type (rsModemComPort,

rsPrinterComPort, etc..)

short vRefNum; // Volume reference number for serial spool file

long dirID; // Directory ID for the file

long fileNamePtr; // Pointer to the file name

} RSComConfig[2], *RSComConfigPtr;

/

*--

; Parallel IO

;--*/

// Control Calls

enum{

rsSetParallelConfig = 400,// Sets the configuration for the parallel port

rsEndPrintJob = 401 // forces an end to the current print job

};

// Parameter Block Data Structures

typedef struct{

short eojTimeOut; // Signal End of job after n seconds of no data

short vRefNum; // Volume RefNum of the Mac Volume the dir is on

long spoolDirID; // RefNum for spool directory

} RSParallelConfig, *RSParallelConfigPtr;

/

*--

; Fixed Drive IO

;--*/

// Fixed Drive Types

enum{

rsNullDrive = 0, // No drive available

rsFloppyDrive = 1, // Drive is a super drive

rsFileDrive = 2, // Drive is a FS file

rsPartitionDrive = 3 // Drive is a partition defined elsewhere

rsIgnore = -1 // Don't change this drive

};
56 Header File for PC Interface

C H A P T E R 3

The PC Interface Driver
// Fixed Drive Array Index Numbers

enum{

rsDriveA = 0, // Floppy Drive A:

rsDriveB = 1, // Floppy Drive B:

rsDriveC = 2, // Hard Drive C:

rsDriveD = 3 // Hard Drive D:

};

// Control Codes

enum{

rsSetDriveConfig = 500, // Initialize the Drive Configuration

rsMountDisks = 501, // Mount any disk that is inserted

rsDontMountDisks = 502 // Do not mount any disk that is inserted

};

// Fixed Disk Data Structures

typedef struct{

short type; // what type of device this drive is

short vRefNum; // Volume refNum or SCSI ID

long dirID; // Directory ID or starting sector number

for SCSI

long fileNamePtr; // Ptr to file name or # of sectors if SCSI

} RSFixedDriveConfig[4], *RSFixedDriveConfigPtr;

/

*--

; Network Disk IO

;--*/

// Control Codes

enum{

rsSetNetDriveConfig = 600 // Set Net Drive config

};

// Status Codes

enum{

rsGetNetDriveConfig = 650 // Get Drive Letter Info

};
Header File for PC Interface 57

C H A P T E R 3

The PC Interface Driver
// Data Structure

typedef struct{

char status; // 0 = unusable, - = inuse, + = can be used

char changed; // Used by driver!

short vRefNum; // which mac volume (0 = no net drive)

long dirID; // the Directory ID

} RSNetDriveConfig[26], *RSNetDriveConfigPtr;

/

*--

; Messaging

;--*/

// Message control codes

enum{

rsSendMessage = 800, // Send a message

rsInstallMsgHandler = 801, // Install a message handler

rsRemoveMsgHandler = 802, // Remove message handler

rsRegisterMessage = 803 // Register message type

};

// Message Results (in msgResult field of MsgPBlk)

enum {

msgNoError = 0, // No error, completed

msgOverrun = -1, // More data was available

msgUnderrun = -2, // Less data was available

msgTimeout = -3 // Timeout error

};

typedef struct MsgPBlk {

struct MsgPBlk* msgQLink; // Pointer to next queue element

short msgQType; // Queue Flags

short msgCmd; // The message type or command

long msgParam1; // Message parameter 1

long msgParam2; // Message parameter 2

void* msgBuffer; // Ptr to the message data buffer

long msgReqCount; // Requested data length

long msgActCount; // Actual data length

ProcPtr msgCompletion;` // Ptr to completion routine or NULL

short msgResult; // The result of message operation

short msgFlags; // Message flags (swap and shared)

long msgUserData; // For use by caller (a5, etc…)

} MsgPBlk, *MsgPBlkPtr;
58 Header File for PC Interface

C H A P T E R 3

The PC Interface Driver
typedef struct MsgRecElem {

struct MsgRecElem* recQLink; // Next queue element

short recQType; // queue flags

short recFlags; // Not used...Yet...Set to zero

ProcPtr recProc; // Ptr to the receive proceedure

short recCmdBase; // first command received by this proc

short recCmdCount; // # of commands allocated for this proc

long recUserData; // For caller's use (could be A5...)

} MsgRecElem, *MsgRecElemPtr;

/

*--

; Sound

;--*/

enum{

rsEnableSound = 1000, // Enable sound emulation

rsDisableSound = 1001 // Disable sound emulation

};

/

*--

; Notification Proc

;--*/

// Control Codes

enum{

rsSetNotificationProc = 900 // Sets the address of the Notification

proceedure

};

/

*--

; Event Notification

;--*/

// Control Codes

enum{

rsEventInstall = 1100, // Install and event handler

rsEventRemove = 1101, // Remove an event handler

rsEventNotify = 1102 // Notify event chain of an event

};
Header File for PC Interface 59

C H A P T E R 3

The PC Interface Driver
// Status Codes

enum{

rsEventSample = 1100 // Sample data on an event

};

/

*--

; NotifyUPP definition

;--*/

/*

pcCardNotificationProcs cannot be written in or called from a high-level

language without the help of mixed mode or assembly glue because they

use the following parameter-passing convention:

typedef pascal void (*PCCardNotifyProcPtr)(short event, long a1Param);

In:

event D0.W

a1Param A1.L

Out:

none

*/

enum {

uppPCCardNotifyProcInfo= kRegisterBased

|REGISTER_ROUTINE_PARAMETER(1,kRegisterD0,kTwoByteCode)

|REGISTER_ROUTINE_PARAMETER(2,kRegisterA1,kFourByteCode)

};

#if USESROUTINEDESCRIPTORS

typedef pascal void (*PCCardNotifyProcPtr)(short event, long a1Param);

typedef UniversalProcPtr PCCardNotifyUPP;

#define CallPCCardNotifyProc(userRoutine, event, a1Param) \

CallUniversalProc((UniversalProcPtr)(userRoutine),

uppPCCardNotifyProcInfo, (event, a1Param))

#define NewPCCardNotifyProc(userRoutine) \

(PCCardNotifyUPP) NewRoutineDescriptor((ProcPtr)(userRoutine), \

uppPCCardNotifyProcInfo, GetCurrentISA())

#else

typedef ProcPtr PCCardNotifyUPP;
60 Header File for PC Interface

C H A P T E R 3

The PC Interface Driver
#define NewPCCardNotifyProc(userRoutine) \

(PCCardNotifyUPP)((userRoutine))

#endif

/

*--

; function prototypes

;--*/

OSErr OpenPCCardDriver(short *refNum);

OSErr CallrsBootPCSync(short refNum);

OSErr CallrsResetPCSync(short refNum);

OSErr CallrsPCStatusSync(short refNum, long *status);

OSErr CallrsEnableVideoSync(short refNum);

OSErr CallrsDisableVideoSync(short refNum);

OSErr CallrsMountDisksSync(short refNum);

OSErr CallrsDontMountDisksSync(short refNum);

OSErr CallrsActivateKBSync(short refNum);

OSErr CallrsDeactivateKBSync(short refNum);

OSErr CallrsBeginMouseTrackingSync(short refNum);

OSErr CallrsEndMouseTrackingSync(short refNum);

OSErr CallrsEndPrintJobSync(short refNum);

OSErr CallrsSetNotifcationProcSync(short refNum, PCCardNotifyUPP

*pcCardNotifyUPPPtr, long *a1ParamPtr);

OSErr CallrsSetMemoryConfigSync(short refNum, long logBaseAddr,

long physBaseAddr, long memlen);

#endif// __PCCARDCALLS__
Header File for PC Interface 61

Index
Numerals

16C450 serial port IC 27
68040 microprocessor 2, 18
80486DX2 microprocessor 2, 14
8242 keyboard and mouse controller IC 28
8254 interval timer 8
8259 interrupt controller 21
82C450 VGA controller IC 25
84031 memory controller IC 16, 17, 18–20
84035 data path controller IC 16, 20–21

reset logic in 20

A

abbreviations xi–xii
address translation 27
APDA x
AT/ISA bus 12
audio signals 30
autoconfiguration of the PC 28

B

big-endian addressing 14
BIOS 19
block diagrams

detailed 12
simplified 5

burst transfers 21
bus arbitration 17–18
bus errors, on the PC 17
byte order 14
byte swapping 15

C

cache, in the Cx486DX2 14
cache snooping 14
card connectors 30
clock signals 19, 20
clock speed 2, 13
close routine 34

command key, to switch to PC operation 7
comparison with a PC 3
configuring the PC 34
connectors

68040 socket 31
audio and video 32
I/O expansion slot 31
joystick 8, 29
serial port 6

CT2501 sound system IC 29
custom ICs

Portola 21
Pretzel Logic 17, 18, 26, 28

Cx486DX2 microprocessor 2
features of 14

D

data misalignment 15
declaration ROM 29
DMA 2, 17, 26, 27
DMA channels

for I/O transfers 27
for memory access 26

DMA data register 17
DOS compatibility subsystem 12
DRAM

access time of 19
control of 19

F

features, compared with a PC 3
features, summary of 2–3
floppy disk 6

G

game adapter card 29
game controller port 8, 29
63

I N D E X
H

hard disk 6
hot key, to switch to PC operation 7

I

interrupt control 21
interrupts 16
interrupt status register 17
I/O components 26–28
I/O devices 6
I/O expansion slot 31
ISA bus control 20

J

joystick 8, 29
joystick connector 8, 29

K

keyboard 7
keyboard emulation 28

L

little-endian addressing 14
location of PC memory 27

M

Macintosh 630–series computers 4
Macintosh cursor 43
main compatibility card 12
memory

shared 2, 15
memory, for the PC 27
memory, shared 26
memory controller IC 18
message passing 45–51

message conventions 45
message handler

installing 48
removing 50

MsgPBlk data structure 47, 48

MsgRecElem data structure 49, 50
registering messages 46
rsRegisterMessage control call 46
rsSendMessage routine 47
sending messages 47

message-passing hardware 28
microprocessor 2, 13
microprocessor clock speed 2, 13
misalignment of data 15
monitor sense lines 23
monitors. See video monitors
mouse 7
mouse emulation 28
MOVE16 instruction 21
MsgPBlk data structure

on the Mac OS 47
on the PC 48

MsgRecElem data structure
on the Mac OS 49
on the PC 50

MU9C9760 SynDAC IC 25

O

open routine 34

P

parallel port 7
PC, comparison with 3
PC Interface driver 34, 51
close routine 34
configuring the PC 34
control and status calls 39
rsActivateKB routine 43
rsBeginMouseTracking routine 43
rsBootPC routine 41
rsDeactivateKB routine 43
rsDisableVideo routine 42
rsDontMountDisks routine 42
rsEnableVideo routine 41
rsEndMouseTracking routine 43
rsEndPrintJob routine 44
rsMountDisks routine 42
rsPCStatus routine 40
rsResetPC routine 41

initializing 34
notifications and errors 44
rsLastError routine 45
rsSetNotificationProc routine 44

open routine 34
64

I N D E X
rsGetNetDriveConfig routine 36
rsSetComPortConfig routine 37
rsSetDeactivateKey routine 39
rsSetDriveConfig routine 35
rsSetMemoryConfig routine 35
rsSetNetDriveConfig routine 37
rsSetParallelPortConfig routine 38

PC system bus 14
PDS. See I/O expansion slot
Portola bus adapter IC 21
Power Manager software

dispatching 51
power-on reset 28
Pretzel Logic IC 17, 26–28

as bus master 18, 26
as bus slave 26
DMA data register 17
interrupt status register 17
reset logic 28

printer port 7, 27

R

RAM, shared 2, 26
RAM SIMM

device speed 2
sizes 2, 19

reference documents ix
reset logic 28
ROM 19

declaration ROM 29
RS-232 signals 7, 27
RS-232 signals not supported 27
RS-422 signals 7, 27
rsActivateKB routine 43
rsBeginMouseTracking routine 43
rsBootPC routine 41
RSComConfig data structure 37
rsDeactivateKB routine 43
rsDisableVideo routine 42
rsDontMountDisks routine 42
rsEnableVideo routine 41
rsEndMouseTracking routine 43
rsEndPrintJob routine 44
RSFixedDriveConfig data structure 35
RSGetNetDriveConfig routine 36
rsLastError routine 45
rsMountDisks routine 42
RSNetDriveConfig data structure 36
RSParallelConfig data structure 38
rsPCStatus routine 40
rsRegisterMessage control call 46
rsResetPC routine 41

rsSendMessage routine 47
rsSetComPortConfig routine 37
rsSetDeactivateKey routine 39
rsSetDriveConfig routine 35
rsSetMemoryConfig routine 35
rsSetNetDriveConfig routine 37
rsSetNotificationProc routine 44
rsSetParallelPortConfig routine 38

S

serial ports 6, 27
adapters 6

shared memory 2, 26
soft reset 28
sound, output to host computer 8
Sound Blaster compatibility 8, 29
sound expansion card 3, 8, 29–30
standard abbreviations xi–xii
SynDAC IC 25
system reset logic 20

T

trackball, use with ADB port 7

V

video components 21, 25
video DAC IC 25
video monitors

monitor sense lines 23
sharing 22
switching the monitor 22
types supported 8, 22

video RAM 22

X

XD bus 12

Y

YAC512 sound DAC IC 30
YMF262 FM synthesizer IC 30
65

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages and final pages were created
on an Apple LaserWriter Pro printer.
Line art was created using
Adobe Illustrator and
Adobe Photoshop . PostScript , the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino and display type
is Helvetica . Bullets are ITC Zapf
Dingbats . Some elements, such as
program listings, are set in Apple Courier.

WRITER
Allen Watson III

DEVELOPMENTAL EDITOR
Jeanne Woodward

ILLUSTRATORS
Deb Dennis and Shawn Morningstar

Special thanks to Richard Kubota, Tom
Llewellyn, and Jim Stockdale.

	Macintosh 630 DOS Compatible Computers
	Contents
	Figures and Tables
	About This Note
	Contents of This Note
	Supplementary Documents
	Obtaining Information From APDA

	Conventions and Abbreviations
	Typographical Conventions
	Standard Abbreviations

	Introduction
	Features
	Table 1-1 Comparison with a midrange PC�

	How the DOS Compatibility Subsystem Works
	Figure 1-1 The DOS compatibility subsystem
	Outline of Operation
	Figure 1-2 Simplified block diagram

	I/O Capabilities
	Floppy Disk
	Hard Disk
	Serial Ports
	Table 1-2 Corresponding serial-port signals (conti...

	Parallel Printer Port
	Keyboard and Mouse
	Sound
	Video Monitor
	Game Controller Port
	Figure 1-3 Installing the joystick

	Hardware Design
	Figure 2-1 Detailed block diagram
	Processor and Memory Components
	Cx486DX2 Microprocessor
	PC System Bus and Devices
	Cache Snooping
	Byte Order
	Misaligned Transfers
	Table 2-1 Microprocessor transfer comparison�

	Interrupts
	Table 2-2 Definitions of PC interrupts

	Bus Arbitration
	Table 2-3 Arbitration priorities

	Expansion
	84031 Memory Controller
	DRAM Control
	BIOS Control
	Clock Generation
	ISA Bus Control

	84035 Data Path Controller
	Clocks
	System Reset
	Interrupt Control

	Portola Bus Adapter IC
	Burst Transfers

	Video Components
	Sharing a Monitor
	Monitors Supported
	Table 2-4 Monitors and display modes �
	Monitor Sense Lines
	Video Timing
	Figure 2-2 Video timing parameters

	Video Components
	82C450 VGA Controller
	MU9C9760 SynDAC

	I/O Components
	Pretzel Logic I/O Controller IC
	DMA Channels
	Address Translation
	Serial Port Support
	Printer Port Support
	Keyboard and Mouse Emulation
	Message Mailbox
	Power-on Reset
	Autoconfiguration

	Game Adapter Card
	Sound Expansion Card
	CT2501 Sound System IC
	YMF262 FM Synthesizer IC
	YAC512 Sound DAC IC

	Subsystem Connectors
	The 68040 Microprocessor Socket
	The I/O Expansion Slot
	Table 2-6 Signals connected to the I/O expansion s...

	Audio and Video Connector
	Table 2-7 Signals on the audio and video connector...

	The PC Interface Driver
	Initializing the Driver
	Configuring the PC
	Control and Status Calls
	Table 3-1 Bits in the PC status word�

	Detecting Errors
	Passing Messages
	Message Conventions
	Macintosh Interface
	PC Interface

	Registering Messages
	On the Mac OS
	On the PC

	Sending a Message
	On the Mac OS
	On the PC

	Installing a Message Handler
	On the Mac OS
	On the PC

	Removing a Message Handler
	On the Mac OS
	On the PC

	Header File for PC Interface

	Index

