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About This Book

This book describes the Macintosh implementation of the Peripheral
Component Interconnect (PCI) local bus established by the PCI Special
Interest Group. The PCI local bus standard defines a high-performance
interconnection method between plug-in expansion cards, integrated I/ O
controller chips, and a computer’s main processing and memory system.

The first generation of Power Macintosh computers—the Power Macintosh
6100, 7100, and 8100 models—supported NuBus" expansion cards.
Subsequent Power Macintosh models support the PCI standard. This book
contains useful information for product developers who want to design PCI
expansion cards and their associated software to be compatible with the
newer computers.

The information in this book is general. You should also refer to the developer
notes that accompany each Macintosh product release for exact details of that
product’s PCI implementation.

This document is written for professional hardware and software engineers.
You should be generally familiar with existing Macintosh technology,
including Mac OS (the Macintosh system software) and the Apple RISC
technology based on the PowerPC microprocessor. For recommended reading
material about Macintosh and PowerPC technology, see the documents listed
in “Supplementary Documents” beginning on page xxi.

Contents of This Book

This book is divided into three parts and contains 13 chapters.

PCI Bus Overview

Part 1, “The PCI Bus,” describes the PCI bus and tells you how it works with
Power Macintosh computers:

s Chapter 1, “Overview,” describes the PCI standard and summarizes the
ways that Power Macintosh computers comply with it.

= Chapter 2, “Data Formats and Memory Usage,” defines the formats in
which data moves over the PCI bus and the memory spaces reserved for
PCI use.

= Chapter 3, “Data Transfers,” describes the processes of data movement
over the PCI bus.

Xix
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System Startup by Open Firmware

Part 2, “The Open Firmware Process,” describes the startup process in Power
Macintosh computers that support the PCI bus and run Mac OS:

s Chapter 4, “Startup and System Configuration,” describes how PCI-
compatible Macintosh computers recognize and configure peripheral
devices connected to the PCI bus.

s Chapter 5, “PCI Open Firmware Drivers,” discusses Open Firmware drivers,
which control PCI devices during the Open Firmware startup process.

Native PowerPC Drivers

Part 3, “Native PCI Card Drivers,” tells you how to design and write run-time
PCI card drivers for the second generation of Power Macintosh computers.
These drivers are called native because they are written for execution by

the native instruction set of the PowerPC microprocessor. Part 3 consists of
these chapters:

= Chapter 6, “Native Driver Overview,” presents the general concepts and
framework applicable to PCI drivers for PowerPC Macintosh computers.

s Chapter 7, “Writing Native Drivers,” gives you details of native driver
design and coding, including how to use services provided by the
Macintosh Driver Loader Library.

= Chapter 8, “Macintosh Name Registry,” describes the Mac OS data
structure that stores device information extracted from the PCI device tree.

= Chapter 9, “Driver Services Library,” details the general support that
Mac OS provides for device drivers, including interrupt and timing services.

s Chapter 10, “Expansion Bus Manager,” discusses a collection of PCI bus-
specific system services available to native device drivers.

s Chapter 11, “Graphics Drivers,” describes the calls serviced by typical
display drivers.

s Chapter 12, “Network Drivers,” describes the construction of a sample
network driver.

s Chapter 13, “SCSI Drivers,” describes the construction of a sample native
SCSI Interface Module (SIM) compatible with Macintosh SCSI Manager 4.3.

Appendixes

Five appendixes follow the main part of this book, beginning on page 389:

= Appendix A, “Development Tools,” describes the developer’s kit that
Apple supplies for designing PCI cards and related software compatible
with Power Macintosh computers.
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= Appendix B, “Big-Endian and Little-Endian Addressing,” discusses the
theory and problems of handling mixed-endian formats.

= Appendix C, “Graphic Memory Formats,” describes the ways that graphic
information and video frames are stored in PCI-based Power Macintosh
computers.

s Appendix D, “PCI Header Files,” describes the PCI header files and lists all
the routines and data structures documented in this book.

= Appendix E, “Abbreviations,” lists the abbreviations and acronyms used in
this book.

Supplementary Documents

The documents described in this section provide information that complements
or extends the information in this book.

Apple Publications

Apple Developer Press publishes a variety of books and technical notes
designed to help third-party developers design hardware and software
products compatible with Apple computers.

Inside Macintosh is a collection of books, organized by topic, that describe the
system software of Macintosh computers. Together, these books provide the
essential reference for programmers, software designers, and engineers. They
include the following titles:

Inside Macintosh: AOCE Application Interfaces
Inside Macintosh: AOCE Service Access Modules
Inside Macintosh: Devices

Inside Macintosh: Files

Inside Macintosh: Imaging With QuickDraw
Inside Macintosh: Interapplication Communication
Inside Macintosh: Macintosh Toolbox Essentials
Inside Macintosh: Memory

Inside Macintosh: More Macintosh Toolbox

Inside Macintosh: Networking

Inside Macintosh: Operating System Utilities
Inside Macintosh: Overview

Inside Macintosh: PowerPC Numerics

Inside Macintosh: PowerPC System Software
Inside Macintosh: Processes

Inside Macintosh: QuickDraw GX Environment and Utilities
Inside Macintosh: QuickDraw GX Graphics

Inside Macintosh: QuickDraw GX Objects

Inside Macintosh: QuickDraw GX Printing

xxi
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Inside Macintosh: QuickDraw GX Printing Extensions and Drivers
Inside Macintosh: QuickDraw GX Environment and Utilities
Inside Macintosh: QuickTime

Inside Macintosh: QuickTime Components

Inside Macintosh: Sound

Inside Macintosh: Text

Inside Macintosh: Devices documents the last version of the Device Manager
before its enhancements to support PowerPC native drivers. It also contains a
full description of SCSI Manager 4.3.

Inside Macintosh: PowerPC System Software covers in detail the changes and
extensions to Macintosh system software version 7.1 for Power Macintosh
computers, including new Macintosh Toolbox managers and the run-time
architecture that supports the PowerPC microprocessor.

Building Programs for Macintosh With PowerPC is a general discussion for
developers of the development and building of application software for
PowerPC microprocessor-based Macintosh systems, including Power
Macintosh computers that use the PCI bus.

Technical Introduction to the Macintosh Family, second edition, surveys the
complete Macintosh family of computers from the developer’s point of view.

Macintosh Human Interface Guidelines provides authoritative information on
the theory behind the Macintosh “look and feel” and Apple’s standard ways
of using individual interface components. A companion CD-ROM disk,
Making It Macintosh, illustrates the Macintosh human interface guidelines
through interactive, animated examples.

Macintosh Developer Note Number 8 contains two documents: Power Macintosh
Computers describes the Power Macintosh 6100/60, 7100/66, and 8100/80
models; Macintosh DAV Interface for NuBus Expansion Cards contains hardware
details of the DAV interface provided for NuBus-based Macintosh computers,
including the Macintosh Quadra 660AvV and 840Av and the Power Macintosh
7100/66Av and 8100/80Av. Macintosh Developer Note Number 13 and later
developer notes provide details of other Power Macintosh DAV interface
implementations.

Display Device Driver Guide describes device support for the Macintosh
Display Manager. It was published in electronic form on the December 1994
Developer CD.

Macintosh New Technical Notes HW-30 describes Apple’s revisions to the way
that Macintosh computers automatically sense video display characteristics.

Technical Note 144 (Macintosh Color Monitor Connections), Technical Note 326
(M.HW.SenseLines), and Macintosh New Technical Note HW-30 provide technical
details of the interfaces to various Apple and third-party monitors.

Most of the Apple publications just listed are available from APDA. APDA is
Apple’s worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone interested in
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developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Other Publications

This book cites several documents that are not published by Apple. They are
available from the organizations listed below.

American National Standards Institute

ANSI has prepared a standard called ANSI/IEEE X3.215-199x Programming
Languages— Forth. It is a useful reference for the Forth language used in the
Open Firmware process. You can contact ANSI at

American National Standards Institute
11 West 42nd Street

New York, NY 10036

Phone 212-642-4900

Fax 212-302-1286

FirmWorks

FirmWorks has issued a book, Writing FCode Programs for PCI, that provides
essential information for programmers designing Open Firmware drivers for
PCI cards. This book is published by FirmWorks and is available by writing to

FirmWorks

480 San Antonio Road, Suite 230
Mountain View, CA 94040-1218
Email info@firmworks.com
Phone 415-917-0100

Fax 415-917-6990
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Institute of Electrical and Electronic Engineers

The essential IEEE document for designers of Macintosh-compatible PCI card
firmware is 1275-1994 Standard for Boot (Initialization, Configuration) Firmware,
IEEE part number DS02683. It is referred to in this book as IEEE Standard
1275. You can order it from

IEEE Standards Department

445 Hoes Lane, P.O. Box 1331

Piscataway, NJ 08855-1331

Phone 800-678-4333 (U.S.)
908-562-5432 (International)

Note

The P1275 Working Group continues to work on new PCI bus and
processor bindings, as well as extensions to IEEE Standard 1275. Current
documents, including PCI Bus Binding to IEEE 1275-1994, are available
on an anonymous Internet FTP site, donated by Sun Microsystems, at
playground.sun.com/pub/p1275. O

PCI Special Interest Group
The essential PCI standard document for designers of Macintosh-compatible
PCI cards is PCI Local Bus Specification, Revision 2.0. It is available from

PCI Special Interest Group

P. O. Box 14070

Portland, OR 97214

Phone 800-433-5177 (U.S.)
503-797-4207 (International)

Fax 503-234-6762

The PCI SIG also publishes PCI Multimedia Design Guide and the PCI to PCI
Bridge Architecture Specification.

SunSoft Press

SunSoft Press has issued a book, Writing FCode Programs, that provides useful
background information about FCode. Its ISBN number is 0-13-107236-6. This
book is published by PTR Prentice Hall and is available at most computer
bookstores.

Conventions and Abbreviations

XXiv

This book uses the following typographical conventions and abbreviations.

Typographical Conventions

New terms appear in boldface where they are first defined. These terms also
appear in the glossary that begins on page 421.

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Cour i er font.
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Hexadecimal numbers are preceded by 0x. For example, the hexadecimal
equivalent of decimal 16 is written as 0x10.

Notes

The following three types of notes in this book are set apart from the text:

Note
A general note like this contains information that is interesting but not
essential for an understanding of the subject. O

IMPORTANT
Important notes call your attention to information
that you should not ignore. a

WARNING
Warnings tell you about potential problems that could
result in system failure or loss of data. a

Abbreviations

Wherever possible, this book uses standard abbreviations for units of
measure. It also supports readability by using acronyms for many technical
terms. Appendix E, “Abbreviations,” contains a complete list of the
abbreviations and acronyms used in this book.

XXV






PART O N E

The PCI Bus

This part of Designing PCI Cards and Drivers for Power Macintosh Computers
describes the PCI bus and tells you how it works with Power Macintosh
computers. It contains three chapters:

Chapter 1, “Overview,” describes the PCI standard and summarizes the
ways that Power Macintosh computers comply with it.

Chapter 2, “Data Formats and Memory Usage,” defines the formats in
which data moves over the PCI bus and the memory spaces reserved for
PCI use.

Chapter 3, “Data Transfers,” describes the processes of data movement
over the PCI bus.

Later parts of this book cover the following topics:

Part 2, “The Open Firmware Process,” describes the startup process in
Power Macintosh computers that support the PCI bus and run Mac OS.
Part 2 begins on page 27.

Part 3, “Native PCI Card Drivers,” tells you how to design and write
run-time PCI card drivers for the second generation of Power Macintosh
computers. Part 3 begins on page 57.
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Overview

The PCI local bus standard defines a method for connecting both ASIC chips and
plug-in expansion cards to a computer’s main memory and processing circuitry. The
second generation of Power Macintosh computers, containing PowerPC micro-
processors, uses PCI buses to communicate both with internal I/O chips and with
plug-in expansion cards. This book discusses Apple’s implementation of the PCI bus for
expansion cards.

Apple’s underlying policy is to support the PCI standard, as expressed in PCI Local Bus
Specification, Revision 2.0, referred to here as the PCI specification. This standard
specifies the logical, electrical, and mechanical interface for expansion cards, so that any
card that conforms to it should be compatible with any computer that supports it. Hence
expansion cards designed to be compliant with the PCI specification are generally
hardware compatible with Power Macintosh computers and with other computers that
comply with PCI, including computers that do not use Mac OS. The PCI specification is
listed under “Supplementary Documents,” in the preface.

Buses conforming to the PCI standard include the following main features:

operation independent of any particular microprocessor design
= 32-bit standard bus width with a compatible 64-bit upgrade path
= either 5V or 3.3 V signal levels

= bus clock rate up to 33 MHz

= up to 132 MB per second transfer rate over the 32-bit bus

APCIbus is typically connected to the computer’s processor and RAM system by an
ASIC chip called a PCI bridge. Power Macintosh computers contain a proprietary bridge
chip to connect their PCI buses to the PowerPC processor bus.

Benefits of PCI

PCI represents a needed standard in the desktop computer industry. Because the PCI bus
uses the same architecture and protocols to communicate with I/O chips and with plug-

in expansion cards, it reduces the cost and complexity of computer hardware. It lets CPU
manufacturers provide expandability at minimum cost.

The establishment of the PCI bus standard has benefits for developers of peripheral
equipment, too. These benefits include

» delivering a high level of bus performance, enough for most current I/ O needs

= letting peripheral equipment developers produce expansion cards that can operate
with both Macintosh computers and computers that use other operating systems

= encouraging the large-scale marketing of chips compatible with PCI, which tends to
reduce the component cost of peripheral equipment

= providing a relatively simple method for automatically configuring external devices
into the user’s system during system startup

4 Benefits of PCI



CHAPTER 1

Overview

PCI and NuBus

The PCI bus exhibits a number of fundamental differences from NuBus", the previous
Macintosh bus standard. The most important of these differences are listed in Table 1-1.

Table 1-1 Comparison of NuBus and the PCI bus

Feature NuBus PCl bus

Bus clock rate 10 MHz 33 MHz

Addressing Geographic Dynamic

Signal loading No enforced rules One load per signal
Transaction length Determined at start Determined at end
determination of transaction of transaction

Bus termination Resistor network Not required

Bus control arbitration Distributed Centralized

Addressing spaces Memory only Memory, I/O, and configuration
Wait-state generators Slave only Slave and master

Kinds of expansion Cards only Cards and ASIC chips
Timeout 255 bus clocks 5 bus clocks

Burst capability 8,16, 32, or 64 bytes Any number of bytes
Power allocation 15 W per card 7.5,15, or 25 W per card

The Macintosh Implementation of PCI

To achieve maximum compatibility with PCI-compliant devices and plug-in cards, the
second generation of Power Macintosh computers is designed to comply with the PCI
Local Bus Specification, Revision 2.0. This support includes, as a minimum, the following

general areas:

= signal types and pin assignments

= bus protocols, including arbitration

» signal electrical characteristics and timing

= configuration data and card expansion ROM formats

» plug-in card mechanical specifications

PCI and NuBus
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As explained in “Address Allocations” on page 16, a Power Macintosh computer may
contain as many as four separate PCI buses for expansion cards, although initial models
contain fewer than four.

The next sections contain clarifications and interpretations of the PCI specification that
more fully specify the Macintosh implementation of PCI for expansion cards.

Power Macintosh PCI System Architecture

The first implementation of the PCI bus on Power Macintosh computers supports up to
four peer PCI bridge connections to the main processor bus. Figure 1-1 presents a
general block diagram of the Power Macintosh system architecture with the PCI bus.

Figure 1-1 PCI system architecture for Power Macintosh
PowerPC
microprocessor
RAM Memory
controller
ARBuUs |
Optional Optional Optional Optional
PCI host PCI host PCI host PCI host
bridge 0 bridge 1 bridge 2 bridge 3
PCI PCI PCI PCI
peer peer peer peer
bus 0 bus 1 bus 2 bus 3
Expansion
Reserved car% slots Reserved Reserved
for expansion for expansion for expansion
(slots or devices) (slots or devices) (slots or devices)
Macintosh
I/0 ASICs

The ARBus shown in Figure 1-1 is Apple’s implementation of the PowerPC processor
bus for Power Macintosh computers.

PCI Bus Characteristics

The PCI bus on Power Macintosh follows the requirements of the PCI specification
described on page xxiv. However, the PCI specification allows certain options. Table 1-2
shows the specification options chosen for the first implementation of the PCI bus in
Power Macintosh computers.

The Macintosh Implementation of PCI
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Table 1-2 PCI options chosen for Power Macintosh
Option Power Macintosh implementation
PCI clock rate 33 MHz (30 ns cycle time)
Address/data bus width 32 bits
Signal voltage 5V
PCI address spaces supported Memory,! I/O, and configuration
Minimum power supplied 5V rail: 3 A (15 W) per slot?
3.3 V rail: 2 A (6.6 W) per slot?
PCI bus arbitration Fair, round-robin, all slots master-capable
Mechanical bracket ISA style
Plug-in card expansion ROM Highly recommended?®
IDSEL signals Provided by resistive connections to AD lines
Interrupt routing INTA#, INTB#, INTC#, INTD# wires combined

by OR per slot to provide a unique slot interrupt
for each card

LOCK# Not used by the Macintosh system*

PERR#, SERR# Not used by the Macintosh system

SBO#, SDONE Not used by the Macintosh system. No cache
coherency (snooping) across the PCI bus

JTAG Not used by the Macintosh system

Notes

I The Power Macintosh implementation does not support devices that address memory
space below 1 MB.

2 The PCI specification allocates power per slot, but the Macintosh implementation
contains one power allocation for all slots. For example, a three-slot Power Macintosh
computer has 9 A of 5 V power or 6 A of 3.3 V power available for PCI cards, which can
be installed in any combination among the slots. Apple recommends that cards stay
within the proportional allotment: 3 A for 5V and 2 A for 3.3 V cards. However,
configurations with fewer cards or lower-power cards can support other cards that need
more power. These figures are minimum power allocations; some Power Macintosh
models may provide more power for PCI cards.

3 While expansion ROMs are optional in the PCI specification, Apple strongly
recommends their inclusion on plug-in cards. True “plug-and-play” operation (plug it in,
turn it on, it works) can be provided only when an expansion ROM contains both startup
firmware and run-time driver code. See Chapter 4, “Startup and System Configuration,”
for more information on expansion ROM benefits, contents, and data formats.

4 LOCK# is an optional pin in the PCI specification.

The Macintosh Implementation of PCI 7
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Semaphores must be maintained in main system memory through processor control,
using the PowerPC | war x and st wex instructions. C programs can access semaphores
by using the routines described in “Atomic Memory Operations” beginning on page 275.
Power Macintosh does not support the use of semaphores in PCI memory space.

PCI Topology

The Power Macintosh PCI implementation supports a PCI subsystem with the following
general restrictions:

= Not more than one PCI-to-ISA bridge can be implemented.

= In systems with two host bridges, ISA bus DMA masters located behind a PCI-to-ISA
bridge may target only main memory for DMA transactions, not PCI space.

= In systems with two host bridges, PCI masters located behind one host bridge may
not access PCI locations that are mapped behind a PCI-to-PCI bridge located behind
the second host bridge.

PCI Host Bridge Operation

The most basic function of the PCI host bridge is to translate between PowerPC
processor bus cycles and PCI bus cycles. The bridge in the first implementation of PCI
on Power Macintosh provides the following features:

» It supports asynchronous clock operation up to 50 MHz on the PowerPC bus and up
to 33 MHz on the PCI bus.

» [t supports split-transaction PowerPC bus implementations.

= It provides dual alternating 32-byte data transaction buffers, one set for bus master
transactions initiated by the PowerPC processor bus and one set for bus master
transactions initiated by the PCI bus.

s The PowerPC bus can be used in big-endian or little-endian modes. PCI data is
always little-endian, and is correctly translated by the PCI host bridge to and from the
PowerPC bus in conformance to the PowerPC mode setting. Mac OS is big-endian, so
the PowerPC mode setting is big-endian while running Mac OS. For information on
translating big-endian and little-endian data formats, see “Addressing Modes”
beginning on page 17.

» [t supports concurrent PowerPC bus and PCI bus activity.
» Posted writes are always enabled from both PowerPC and PCI masters.
» It supports a 32-byte cache line size.

» It supports and optimizes for the cycle types memory read line and memory write
and invalidate. The bridge also accepts memory read multiple cycles from PCI
masters and treats them the same as memory read line cycles.

s The longest burst generated as a master or accepted before disconnecting as a target is
32 bytes, the Power Macintosh cache line size.

» It uses medium device select (DEVSEL) timing when operating as a PCI target.

The Macintosh Implementation of PCI
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Table 1-3 lists the commands that the Macintosh PCI host bridge supports for all PCI
cycle types (all encodings of lines C/BE#[3:0]). The third and fourth columns show
whether the bridge can generate the cycle on the PCI bus as a master and whether it can
respond to the cycle as a target.

Table 1-3 Bridge support for PCI cycle types

Lines Supported as Supported as
C/BE#[3:0] Command PCI master PCl target
0000 (0x0) Interrupt acknowledge Yes No

0001 (0x1) Special cycle Yes No

0010 (0x2) I/0 read Yes No

0011 (0x3) I/O write Yes No

0100 (0x4) Reserved n.a. n.a.

0101 (0x5) Reserved n.a. n.a.

0110 (0x6) Memory read Yes Yes

0111 (0x7) Memory write Yes Yes

1000 (0x8) Reserved n.a. n.a.

1001 (0x9) Reserved n.a. n.a.

1010 (0xA) Configuration read Yes Yes

1011 (0xB) Configuration write Yes Yes

1100 (0xC) Memory read multiple No Yes

1101 (0xD) Dual address cycle No No

1110 (OxE) Memory read line Yes Yes

1111 (OxF) Memory write and invalidate Yes Yes

PCI memory space is supported through the bridge transparently—it requires no
software abstraction layer to provide functionality. Because the PCI specification defines
cycle types that are not directly supported by the PowerPC processor, the Macintosh PCI
host bridge provides means to create I/O, configuration, interrupt acknowledge, and
special cycles. The bridge generates these cycles in response to the system interface
routines described in “PCI Nonmemory Space Cycle Generation” beginning on page 299.
To ensure compatibility with future Power Macintosh computers, software must use
these routines to access PCI spaces other than PCI memory space.

I/O Space

The PCI Specification requires a 16-bit minimum width I/O space. The first implementa-
tion of the PCI bus for Power Macintosh provides a 23-bit I/ O space, although the
Macintosh address allocation software tries to fit all I/ O address space requests within

The Macintosh Implementation of PCI 9
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the 16-bit minimum width. The interface to I/O space uses a memory-mapped section in
each PCI host bridge’s control space. The system determines which PCI host bridge and
bridge area to use when accessing each specific card.

Note

In the first PCI implementation for Power Macintosh computers, the
bridge posts all PCI write transactions. If the target is in PCI memory
space, the bridge writes data directly; otherwise, the bridge generates
the necessary /O, configuration, or special cycle to provide write
access. The bridge acknowledges cycle completion even though the
transaction may not have been completed at its destination. To check for
final write completion, a driver may request a read transaction for the
destination device. Verifying that the read transaction has finished will
establish that the previous write cycle was flushed from the bridge,
without the need to compare data. O

Because PCI allocations in I/ O space are highly fragmented, high-performance interfaces
should try to use the PCI memory space instead of I/ O space. The system programming
interface for I/O cycles is described in “I/O Space Cycle Generation” beginning on

page 300.

Configuration Space

The PCT host bridge generates configuration cycles in an indirect manner, similar to
mechanism #1 suggested in the PCI specification, using configuration address and
configuration data registers to create a single configuration cycle on the PCI bus. The
system determines which PCI host bridge and bridge area to use when accessing each
specific card. Because configuration cycles must go through a system programming
interface, high performance interfaces should try to use the PCI memory space instead of
configuration space. The system programming interface for configuration cycles is
described in “Configuration Space Cycle Generation” beginning on page 304.

Interrupt Acknowledge Cycles

Mac OS does not use interrupt acknowledge cycles, but the Macintosh software supports
their generation in case some PCI bus chips require them. If a driver needs interrupt
acknowledge transactions to control its PCI device, it can use a system programming
interface that invokes an interrupt acknowledge (read) cycle on the PCI bus. The data
returned will be the device’s response, traditionally an Intel-style interrupt vector
number. The system programming interface for interrupt acknowledge cycles is
described in “Interrupt Acknowledge Cycle Generation” beginning on page 309.

Special Cycles

Special cycles are generated by using a system programming interface that causes a
special cycle (write) on the PCI bus. The special cycle transmits the data message passed
to the interface. The system programming interface for special cycles is described in
“Special Cycle Generation” beginning on page 310.

The Macintosh Implementation of PCI
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Maximizing Bus Performance

The guidelines in this section can help you maximize your PCI card’s performance on
the Power Macintosh platform. As a PCI target, your card should

» minimize the number of wait states

= accept burst transactions of cache line size without disconnecting

= support 8-byte burst transactions if it cannot support cache line size burst transactions
Note

The current PowerPC architecture has a cache line size of 32 bytes. O

As a PCI master, your card should

» minimize the number of wait states for transactions and arbitration

» support linear burst ordering and be able to read or write at least one whole cache line
of data

» support the memory read line or memory read multiple cycle types for read
transactions

» support the memory write and invalidate cycle type for write transactions

PCI Transaction Error Responses

The PCI host bridge responds to system error and exception conditions in a manner that
prevents the system from hanging. The bridge tries to signal the error or exception and
terminate the transaction gracefully. Buffers are made available for use after the
exception or error. Error translations when the PCI host bridge acts as a PCI master (that
is, as an agent for the PowerPC bus master) are shown in Table 1-4.

Table 1-4 Bridge master errors
PCl target

Transaction response Result

Write No DEVSEL Data discarded after posting. Received master abort
(master abort) error interrupt generated.

Write Target abort Data discarded after posting. Received target abort

error interrupt generated.

Read No DEVSEL Machine check exception (bus error) generated.
(master abort) Received master abort error interrupt generated.

Read Target abort Machine check exception (bus error) generated.

Received target abort error interrupt generated.

Maximizing Bus Performance 11



CHAPTER 1

Overview

Error translations when the PCI host bridge acts as a PCI target (that is, as an agent for
the PowerPC bus target) are shown in Table 1-5.

Table 1-5 Bridge target errors

PowerPC bus
Transaction target response Result

Write Bus error Data discarded after posting. Signaled target abort
error interrupt generated (though target abort is
not signaled because the write was already posted).

Read Bus error Generate target abort. Signaled target abort error
interrupt generated.

Expansion Card Characteristics

12

Every PCI expansion card should contain code in its expansion ROM conforming to
IEEE Standard 1275. Among other tasks, this code helps build a configuration structure
called a device tree. The requirements for this code (and the benefits of its inclusion in
expansion ROMs) are discussed in “The Open Firmware Startup Process” beginning on
page 30.

Frame buffers in PCI video cards must support the existing Macintosh big-endian pixel
ordering. If accessible in more than one data format, frame buffers on cards should also
support multiple views (called apertures) by being mapped in different formats to

separate areas of memory. These concepts are described in “Frame Buffers” on page 20.

PCI video display cards in Power Macintosh computers should define certain properties
in the device tree to let the cards function during system startup. These properties are
discussed in Chapter 5, “PCI Open Firmware Drivers.”

PCI video display devices should provide an interrupt to mark vertical blanking
intervals. Mac OS utilizes this interrupt to do cursor and screen updates to avoid flicker.
If the hardware interrupt for vertical blanking is not provided, a Time Manager task may
be installed. For more information on this subject, see Chapter 11, “Graphics Drivers.”

Power Macintosh computers support the ISA bracket for PCI expansion cards.

WARNING

Expansion cards should follow the mechanical specifications given in

PCI Local Bus Specification, Revision 2.0, exactly. In particular, short PCI
cards for Macintosh computers should not be longer than the 6.875-inch
(174.63 mm) dimension specified. In some Macintosh models, 6.875 inches
represents the maximum length for a PCI card, while in other models
cards may be any length up to 12.283 inches. a

Expansion Card Characteristics
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Hard Decoding

Hard decoding is a practice in which a PCI device does not employ the fully relocatable
PCI base address method for defining its address spaces. Instead, it chooses an address
space and decodes accesses to it, with no indication to the system that it has done so.

While hard decoding is not recommended by the PCI specification, certain designs based
on Intel microprocessor architecture have used it—for example, VGA and IDE
applications. Hard decoding cripples the ability of system software to resolve address
conflicts between devices. A problem exists when multiple devices that hard decode the
same address space are plugged into a system, or when a device does not notify the
system that it has hard decoded portions of the address space. If the system knows the
range of addresses that a device hard decodes, addresses can be assigned to fully
relocatable devices around the spaces already taken. However, if two devices that hard
decode the same space are installed in the system, address conflicts can be resolved only
by the system turning off one of the devices.

You can never hard decode addresses below 1 MB (for example, VGA addresses A0000
through BFFFF) because the Power Macintosh implementation of PCI does not support
devices that address this space. Moreover, it is very common for a user to plug in
multiple display cards to use multiple monitors. If more than one of these cards hard
decodes the VGA addresses, only one will be enabled, and it cannot be guaranteed
which device that will be. It is essential, therefore, that devices which hard decode
address spaces after reset provide a method to turn off their hard-decoding logic. The
result of turning off hard decoding must mean that the device responds to accesses only
in the address spaces that are assigned to it through the PCI base register interface. This
method can be executed in FCode during startup, before the device enters its r eg
property into the device tree. See Chapter 4, “Startup and System Configuration,” for
more details.

To summarize, avoid hard decoding to ensure that your card will always be allocated
address space. If a device cannot turn off hard decoding, its FCode must enter a fixed
address r eg property entry into the device tree.

Nonvolatile RAM

Power Macintosh computers that support the PCI bus contain nonvolatile RAM
(NVRAM) chips with a minimum capacity of 4 KB. A typical allocation of NVRAM
space is described in “Typical NVRAM Structure” on page 291.

An important use of the Power Macintosh NVRAM is to store the | i t t | e- endi an?
variable, discussed in “Addressing Mode Determination” on page 20.

Hard Decoding 13
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Access to Apple AV Technologies

14

Certain PCI-based Power Macintosh models are equipped with a group of advanced
audio and video I/O features called Apple AV technologies. These features include

= versatile access to voice, fax, and data services through the Apple GeoPort interface

» video input and output capabilities compatible with both S-video and composite
video in NTSC, PAL, and SECAM formats

= broadcast-quality 16-bit stereo sound input and output

» speech recognition and synthesis

Power Macintosh computers with these features include a connector, available to PCI
expansion cards, that supports the Macintosh digital audio/video (DAV) interface. The
DAYV interface gives a PCI card direct access to the Macintosh system’s unscaled YUV
video input signal and audio data stream. PCI cards that use the DAV connector can
exchange audio and video signals with the Macintosh system without having to pass
these data through the PCI bus.

The Macintosh DAV interface for PCI expansion cards, including its control software, is
described in the developer notes that cover the second generation of Power Macintosh
computers. For information about Macintosh developer notes see “Apple Publications”
beginning on page xxi.

Access to Apple AV Technologies
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Data Formats and Memory Usage

This chapter describes the memory allocations that Power Macintosh computers reserve
for PCI use and defines the data formats used with PCI buses. It discusses PCI bus
cycles, big-endian and little-endian addressing modes, and the storage of data in frame
buffers. The processes of data transfer over PCI buses are described in Chapter 3, “Data
Transfers.”

Address Allocations

16

The first implementation of Power Macintosh computers that uses the PCI bus reserves
specific areas of the overall 32-bit address space for use by PCI expansion cards. Address
allocation in the first Macintosh PCI system follows these general principles:

= A Power Macintosh system may contain up to four peer PowerPC—to—PCI host
bridges. The functions of these bridges are described in “PCI Host Bridge Operation”
beginning on page 8.

= After each PCI host bridge, PCI-to-PCI bridges may be added in any configuration
to create up to 256 PCI buses in the Power Macintosh hardware, the maximum that
the PCI specification allows. However, properties that must be stored on disk or in
NVRAM between startups can be addressed only to five levels of PCI-to-PCI bridges
behind each host bridge. Therefore the number of hardware PCI buses that the system
software supports fully is limited to six times the number of host bridges, or 24 buses
maximum.

= More than 1.8 GB of address space is allocated for PCI memory space.

= Remaining regions of the Macintosh 32-bit address space are allocated to system
RAM, ROM, and control.

The general memory allocation scheme for the first implementation of Power Macintosh
computers with PCI buses is shown in Table 2-1.

Table 2-1 Power Macintosh memory allocations

Address range Usage

0h0000 0000-Oh7FFF FFFF System RAM

0h8000 0000-OhEFFF FFFF Available to PCI expansion cards
0hF000 0000-OhF1FF FFFF PCT host bridge 0 control

0hF200 0000-OhF3FF FFFF PCTI host bridge 1 control

0hF400 0000-OhF5FF FFFF PCTI host bridge 2 control

0hF600 0000-OhF7FF FFFF PCTI host bridge 3 control

OhF800 0000—0hF8FF FFFF System control

0hF900 0000-OhFEFF FFFF Available to PCI expansion cards
OhFF00 0000-OhFFFF FFFF System ROM

Address Allocations
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PCI Bus Cycles

Besides defining cycles for PCI memory space, which is directly addressable by the
PowerPC processor, the PCI specification supports four other types of cycles—I/O space,
configuration space, interrupt acknowledge, and special—which are not directly
supported by the PowerPC architecture. To provide a PCI-compliant interface,
Macintosh bridges create these additional address spaces and cycle types by accessing
memory-mapped regions of the bridge control space shown in Table 2-1. Because the
additional spaces and cycle types are manufactured by the bridge, they are abstracted
from driver code and expansion card firmware by the interface routines defined in
Chapter 10, “Expansion Bus Manager.” Using these routines, you can create all types

of data transactions on Macintosh PCI buses in a hardware-independent way.

Addressing Modes

There are two ways that multibyte data fields may be addressed:

= big-endian addressing, where the address for the field refers to its most
significant byte

= little-endian addressing, where the address for the field refers to its least
significant byte

These two types of data organization are illustrated in Figure 2-1, which shows a region
of memory containing successive fields that are 3, 4, and 2 bytes long. MSB and LSB
indicate the most significant and least significant bytes in each field, respectively.

Figure 2-1 Big-endian and little-endian addressing
Big-endian
MSB LSB | MSB LSB | MSB | LSB
Pointer to Pointer to Pointer to
field A field B field C
Little-endian
MSB LSB | MSB LSB | MSB | LSB

PCI Bus Cycles 17
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Since data fields are normally stored in RAM by writing from lower to higher addresses,
big-endian addressing also means that the field’s lowest address in physical memory
contains its most significant byte; little-endian addressing means that the field’s lowest
address contains its least significant byte.

If the Macintosh system always wrote and read multibyte data fields in one operation, it
wouldn’t matter whether the fields were addressed in big-endian or little-endian mode.
For example, if the hardware always transferred an 8-byte field in a single transaction,
using 64 bit-lines, it would be immaterial whether the location of the field were defined
by referencing its most significant byte or its least significant byte. But when data fields
are transferred over buses of limited width, they must often be divided into subfields
that fit the capacity of the bus. For a more detailed discussion of endian issues, see
Appendix B, “Big-Endian and Little-Endian Addressing.”

Addressing Mode Conversion

With the PCI bus (in the 32-bit version that Power Macintosh uses), fields more than

4 bytes long must be transferred in multiple operations. When writing a field from

one location to another by means of multiple transfers, the bus must take into account
the addressing modes of both the source and destination of the data so that it can
disassemble and reassemble the field correctly. One way to convert data from one
addressing mode to the other is to reverse the order of bytes within each field, so that a
pointer to the most significant byte of a field will point to the least significant byte, and
vice versa. Note that the addresses of the data bytes do not change. This technique,
called address-invariant byte swapping, maintains the address invariance of data bytes.
It is illustrated in Figure 2-2.

Figure 2-2 Big-endian to big-endian bus transfer
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Note

The difference between big-endian and little-endian formats applies
only to data; the Macintosh system always transfers addresses as
unbroken 32-bit quantities. O
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PowerPC processors and processors of the Motorola 68000 family use big-endian
addressing; Intel processors and the PCI bus use little-endian addressing. Different I/O
chips, expansion card memories, and peripheral devices may use one addressing mode
or the other, so data in versatile computing systems such as Power Macintosh must often
be accessed in either form.

Figure 2-2 illustrates what happens when data from a big-endian source passes over the
little-endian PCI bus and is written to a big-endian destination. The bytes in the source
and destination are numbered from 0 to 7.

The Power Macintosh hardware supports both big-endian and little-endian addressing.
To accommodate various combinations of source and destination byte formats, Power
Macintosh systems contain two mechanisms that translate between these addressing
modes:

» A group of byte-reversed indexed load and store actions are included in the PowerPC
instruction set—for example, the | wbr x (load word byte-reversed index) instruction.
These instructions can convert either big-endian or little-endian data to the other
format, because the two formats are complementary. C programs can perform the
same operations by using endian swap routines.

» The PowerPC processor supports a little-endian addressing mode that changes the
way in which real addresses are used to access physical storage. It applies a logical
exclusive-OR operation with a constant to the lowest 3 bits of the address, using a
different constant for each size of data. This modifies each address to the value it
would have if the PowerPC processor used little-endian addressing.

The PowerPC system software also contains a pair of utility routines that convert 16- and
32-bit values into the other endian format by means of byte swapping. These utilities are
described in “Byte Swapping Routines” on page 311.

For more detailed information about endian conversion, see Appendix B, “Big-Endian
and Little-Endian Addressing.”

Programs and subsystems that exchange data only internally can usually adopt either
big-endian or little-endian addressing without taking into account the difference
between the two. As long as they operate consistently, they will always store and retrieve
data correctly. Systems that exchange data with other devices or subsystems, however,
including those that communicate over the PCI bus, may need to determine the
addressing mode of the external system and adapt their data formats accordingly.

When designing PCI cards for Power Macintosh computers, including their associated
software, observe the following general cautions about byte formats:

= The PowerPC microprocessor and the PCI host bridges are set for big-endian
addressing when running a big-endian operating system such as Mac OS.

= Most compilers do not provide support for switching data from one addressing mode
to another or for using the PowerPC mechanisms that switch modes. Such support
can be provided, for example, by a set of C macros that redefine the access
mechanisms for basic data types.

= Frame buffers for video and graphics must support the Macintosh big-endian pixel
format, as described in “Frame Buffers,” later in this chapter.
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Addressing Mode Determination

It is possible to determine whether a system uses big-endian or little-endian addressing
by comparing the way it arranges bytes in order of significance with the way it addresses
fields. For example, the code shown in Listing 2-1 makes this test.

Listing 2-1 Endian addressing mode test

t ypedef unsigned short half;
t ypedef unsi gned char byt e;

uni on {
hal f H;
byte B[ 2];
} hal fTrick;

hal f Trick ht;

ht. H = 0x2223;

if (ht.B[0] == 0x22)
printf("l'mbig-endian");

el se
printf("lI"'mlittle-endian");

An important global variable that the Power Macintosh startup firmware stores in
nonvolatile RAM is called | i t t | e- endi an?. It contains a value of 0 if the last operating
system run on the computer used big-endian addressing or -1 if the last operating
system used little-endian addressing. Each time the Power Macintosh startup firmware
loads an operating system, it checks to see whether the system’s big-endian or little-
endian operation matches the valueinl i t t | e- endi an?. If the match fails, the Power
Macintosh startup firmware changes the valuein |l i tt | e- endi an? and begins the
Open Firmware startup process again. The Power Macintosh nonvolatile RAM is
described in “Nonvolatile RAM” on page 13.

Frame Buffers

Frame buffers in PCI video and graphics cards must support the existing ways that
Power Macintosh computers handle graphical data, including the storage of pixel
information in memory and the presentation of that information in various formats.
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Pixel Storage

The Macintosh pixel storage format is big-endian. This format has the following general
characteristics:

= All the bits that define any single pixel on the screen (ranging from 1 to 32 bits) are
adjacent in memory.

s The bit groups that define each pixel are successive and contiguous in memory,
starting with the pixel at the upper-left corner of the screen and ending with the pixel
in the lower-right corner of the screen.

For example, a frame buffer that defines a screen 640 pixels wide by 480 pixels high
(307,200 pixels), using 1 bit per pixel, contains 38,400 bytes. The most significant bit of
the first byte corresponds to pixel 0, located in the upper-left corner of the screen. The
least significant bit of the last byte corresponds to pixel 307199. This example is
diagrammed in Figure 2-3.

Figure 2-3 Sample frame buffer format
* e o o
Bit that defines
pixel 0
e o o
L]
L]
e o o

)

Bit that defines
pixel 307199

If the same frame buffer had a color depth of 8 bits (thereby containing 307,200 bytes), all
of the first byte would be used to store information about pixel 0 and all of the last byte
would be used to store information about pixel 307199.
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For a description of how frame buffer data is transported over the PCI bus, see “Data
Flow” on page 24. For further information about Macintosh pixel formats, see Appendix
C, “Graphic Memory Formats.”

Note

Data in PCI control, status, and configuration registers for PCI video
cards on Power Macintosh computers must be in little-endian format. O

Frame Buffer Apertures

In some situations, a frame buffer on a PCI expansion card may need to support data
accesses in more than one format. For example, a frame buffer may need to store frame
buffer data from a big-endian source in three different formats—RGB, a little-endian
source in RGB, and a YUV data format. To provide multiple formats on the fly, a PCI
card can create multiple apertures of its frame buffer.

An aperture is a logical view of the data in a frame buffer, organized in a specific way.
The PCI card converts its frame buffer contents into the required format for each
aperture, and maps each aperture into a different range of memory addresses.

Each aperture is defined by specifying its starting address in memory, its width and
height in pixels, and the format and size of each pixel description. The aperture
definition may also include a row bytes value, giving the address offset between
successive rows. Although each aperture normally has a different pixel description, the
arrangement of pixels in the frame is the same for all apertures; this arragement starts
with the upper-left pixel and proceeds as described in the previous section. An aperture
may represent the whole frame buffer or any region within it.

One important use for apertures is to provide both big-endian and little-endian views of
a frame buffer. Providing both views can eliminate the need for the byte-swapping
operations described in “Data Flow” on page 24. For example, in a PCI card’s memory
space of 16 MB, 8 MB could be allocated for a big-endian aperture and registers and

8 MB could be allocated for a little-endian aperture and registers. Mac OS running

on the PowerPC processor would access the big-endian aperture, while a frame-grabber
PCI master card that supported a little-endian pixel format would access the little-
endian aperture.

Apertures are supported by the device drivers associated with a PCI card, which must
respond to calls that query and select the card’s aperture capabilities. Each aperture can
be treated as a virtual device, to be opened and closed separately from other apertures. A
driver can treat the physical organization of the frame buffer as an aperture as well,
without subjecting it to mapping or format conversion.

For more information on apertures see PCI Multimedia Design Guide, published by the
PCI SIG. You can contact the PCI SIG at the address given on page xxiv.

Frame Buffers



CHAPTER 3

Data Transfers




CHAPTER 3
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This chapter explains how Power Macintosh computers accomplish the processes of data
movement described in the PCI specification, including the ways that PCI bus cycles
work in the Power Macintosh environment.

Data Flow

As discussed in Chapter 2, the PowerPC processor bus in Power Macintosh computers
uses big-endian addressing when running a big-endian operating system such as

Mac OS. The PCI bridge chip that interconnects the PowerPC processor bus and the
little-endian PCI bus performs the necessary byte swapping, using the mechanisms
described in “Addressing Modes” beginning on page 17. Based on the addressing mode
of the operating system, the bridge chip can be configured by system software to be run
with the PowerPC set in either big-endian or little-endian mode. In either setting, the
bridge correctly maintains address invariance with respect to the little-endian PCI bus.

Open Firmware configures the processor and PCI bridges to match the endian mode of
the current operating system, so driver or other code does not need to perform any
explicit configuration. In general, endian issues are important when accessing hardware
registers or constructing direct memory access (DBDMA) descriptors. When accessing
graphic data, software must also handle GIB-endian formats and perform hardware byte
swapping when necessary. For a discussion of GIB-endian format, see Appendix C,
“Graphic Memory Formats.”

Figure 3-1 shows the data transfer pattern that takes place in big-endian processor mode,
where the numbers in the boxes identify both byte ordering and physical (hardware)
byte lanes. The figure shows how the PCI bridge swaps multibyte scalar data bytes to
maintain address invariance. When accessing memory other than frame buffers via the
PCI bus, software must explicitly swap data bytes. For write actions it must swap bytes
before the bus access; for read actions it must do it after.

24

Figure 3-1 Big-endian data transfers

0 63
PowerPC ol 1|2 |3]|4]|5|6]7
processor bus
PCI bus 3 2 1 0 3 2 1 0

31 Cycle 0 0 31 Cycle 1 0

Figure 3-2 shows the equivalent data transfer pattern in little-endian processor mode.
This mode is shown only for completeness; it is not used when Macintosh computers
run Mac OS. In little-endian mode, multibyte scalars maintain their original byte
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ordering. In effect the processor renumbers the physical byte lanes as they are viewed by
software, using the process described in “Address Swizzling” on page 399.

Figure 3-2 Little-endian data transfers

PowerPC
processor bus

PClI bus 3 2 1 0 3 2 1 0

31 Cycle 0 0 31 Cycle 1 0

When interpreting Figures 3-1 and 3-2, remember these points:

s The PowerPC architecture consistently uses big-endian bit ordering. Bit 0 is always
the most significant bit in both big-endian and little-endian modes, regardless of byte
order.

» To maintain address invariance in both big-endian and little-endian modes, values
that the processor writes to address n always appear in byte lane n.

When accessing video and graphics frame buffers, Mac OS assumes that they store data
in the big-endian pixel format described in “Frame Buffers” on page 20. Figure 3-3 shows
Mac OS RGB and grayscale formats after the PCI host bridge has performed big-endian
to little-endian byte swapping.

Figure 3-3 Mac OS frame buffer contents byte swapped to the PCI bus

24-bit RGB with alpha—32 bits per pixel, 1 pixel per bus transfer
a1 16115 0

B[7:0] G[7:0] R[7:0] A[7:0]

15-bit RGB with alpha—16 bits per pixel, 2 pixels per bus transfer
31 Pixel n+1 16115 Pixel n 0

G[2:0] B4o0] |A| R0 |cl4:3]]| G20 B40] |A| RM0] |G[4:3)

8-bit pseudocolor or grayscale—8 bits per pixel, 4 pixels per bus transfer
31 Pixel n+3 Pixel n+2 16515 Pixel n+1 Pixel n 0

P[7:0] P[7:0] P[7:0] P[7:0]
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Endian issues are discussed further in Appendix B, “Big-Endian and Little-Endian
Addressing.” Frame buffer organization is discussed in Appendix C, “Graphic Memory
Formats.”

Data Transfer Cycles

The PCI bus transfers data by means of memory, I/O, configuration, interrupt
acknowledge, and special cycles, in accordance with the PCI specification. Power
Macintosh computers generate PCI memory cycles for all the address spaces listed as
available to PCI expansion cards in Table 2-1 on page 16. They also generate I/O,
configuration, interrupt acknowledge, and special cycles through reserved memory-
mapped spaces in the PCI host bridge control spaces. The Power Macintosh
implementation of these cycles is discussed in more detail in the next sections.

Note

To ensure future compatibility, designers of drivers and expansion card
firmware must use the calls described in Chapter 10 to create I/O,
configuration, interrupt acknowledge, and special cycles. O

The PCI Bus and Open Firmware

26

Adopting the PCI bus gives Power Macintosh computers a new level of compatibility
with third-party hardware devices. To provide equivalent software compatibility, Power
Macintosh computers that implement the PCI bus also support the IEEE standard Open
Firmware process of system startup.

During the Open Firmware process, startup firmware in the Macintosh computer’s ROM
searches the PCI buses and generates a data structure that lists all available peripheral
devices. This data structure also stores the support software, including drivers, provided
by each PCI expansion card. The startup firmware then finds an operating system in
ROM or on a mass storage device, loads it, and starts it running. The operating system
does not need to be Mac OS. Hence it is possible for PCI-compatible Power Macintosh
computers to operate PCI peripheral devices using either Macintosh or third-party
system software.

The Open Firmware process in the second generation of Power Macintosh computers is
described in the next part of this book.

Data Transfer Cycles
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The Open Firmware Process

This part of Designing PCI Cards and Drivers for Power Macintosh Computers
describes the Open Firmware process and tells you how it works with Power
Macintosh computers running Mac OS. It contains two chapters:

s Chapter 4, “Startup and System Configuration,” describes how PCI-
compatible Macintosh computers recognize and configure peripheral
devices connected to the PCI bus.

s Chapter 5, “PCI Open Firmware Drivers,” discusses Open Firmware
drivers, which control PCI devices during the Open Firmware start-
up process.
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This chapter describes the Open Firmware startup process by which PCI-compatible
Power Macintosh computers recognize and configure peripheral devices connected to
the PCI expansion card bus. As explained in “The PCI Bus and Open Firmware” on
page 26, the Open Firmware process provides flexibility in system software to match
the flexibility that the PCI bus provides for expansion hardware.

The PCI bus architecture described in the PCI standard supports the autoconfiguration
concept of system configuration because it includes mechanisms for configuring devices
during system startup and defines expansion ROMs for plug-in expansion cards. The
two code types currently defined for PCI expansion card ROMs are an Intel-compatible
BIOS code type and the Open Firmware type. Apple has chosen the Open Firmware type
because it has wide industry acceptance and will let Power Macintosh computers run
nearly any operating system.

A PCI card that wants to participate in the startup process of any operating system must
include an expansion ROM containing Open Firmware FCode. Cards that need to
operate I/ O devices during the Open Firmware startup process, before an operating
system is running, require more than the minimum level of FCode support. The
alternatives are described in “Open Firmware FCode Options” beginning on page 32.

The Open Firmware Startup Process

30

The Open Firmware startup process in PCI-compatible Power Macintosh computers
conforms to IEEE Standard 1275 and to the PCI Bus Binding to IEEE 1275-1994
specification. These standards evolved from the OpenBoot firmware architecture
introduced by Sun Microsystems. The PCI Bus Binding to IEEE 1275-1994 specification is
currently available on request from AppleLink address DEVSUPPORT; IEEE Standard
1275 is described in “Supplementary Documents” beginning on page xxi.

Note

The P1275 Working Group continues to update the PCI Bus Binding to
IEEE 1275-1994 specification. For latest information, you can access the
FTP site listed in the note under “Institute of Electrical and Electronic
Engineers” on page xxiv. O

Startup Firmware

The Open Firmware startup process is driven by startup firmware (also called boot
firmware) in the Power Macintosh ROM and in memory chips on PCI cards, called
expansion ROMs. While the startup firmware is running, the Power Macintosh
computer starts up and configures its hardware (including peripheral devices)
independently of any operating system. The computer then finds an operating system
in ROM or on a mass storage device, loads it into RAM, and terminates the Open
Firmware startup process by giving the operating system control of the PowerPC
processor. The operating system may be Mac OS or a different system, provided it
uses the PowerPC instruction set.

The Open Firmware Startup Process
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The Open Firmware startup process includes these specific features:

= Startup firmware is written in the Forth language, as defined by IEEE Standard 1275.
Firmware code is stored in an abbreviated representation called FCode, a version of
Forth in which most Forth words are replaced by single bytes or 2-byte groups. The
startup firmware in the Power Macintosh ROM provides an FCode loader that installs
FCode in system RAM so that drivers can run on the PowerPC main processor.
Expansion card firmware can modify the Open Firmware startup process by
supplying FCode that the computer’s startup firmware loads and runs before
launching an operating system.

= The startup firmware creates a data structure of nodes called a device tree, in which
each device is described by a property list. The device tree is stored in system RAM.
The operating system that is ultimately installed and launched can search the device
tree to determine what hardware is available. For example, Mac OS extracts
information from the device tree to create the device portion of the Macintosh Name
Registry, described in Chapter 8. The full list of standard device tree properties is
given in IEEE Standard 1275; the properties that Mac OS uses are listed in Table 8-1 on
page 193. An example of the device part of a device tree is given in Listing 8-1 on
page 164.

= Device drivers that are required during system startup (called Open Firmware
drivers) are also written in FCode. Plug-in expansion cards for startup devices must
contain all the driver code required during startup in the expansion ROM on the card
and may also need to provide drive support resources such as fonts. The startup
firmware in the Power Macintosh ROM installs Open Firmware drivers in system
RAM and lets them execute on the PowerPC main processor. Examples of devices
needed during system startup include display, keyboard, and mouse devices; storage
devices such as SCSI, IDE, floppy disk, and magneto-optical drives; and network
interfaces if the target OS supports network booting.

= The startup firmware in the Power Macintosh ROM contains debugging facilities for
both FCode and some kinds of operating system code. These facilities can help expan-
sion card designers develop the firmware for new peripheral devices compatible with
Macintosh computers.

You can write PCI expansion ROM code in standard Forth words and then reduce the
result to FCode by using an FCode tokenizer, a program that translates Forth words into
FCodes one to one. The Forth vocabulary that you can use is presented in IEEE Standard
1275. For a list of some of the Apple and third-party tools available to help you write PCI
card firmware in Forth, see Appendix A, “Development Tools.”

Device Drivers

The Open Firmware startup process and all possible operating systems constitute
separate device environments. A separate driver is normally required for each device
environment in which a device is expected to work. In rare cases, an operating system
may be written so that it uses an Open Firmware driver or a driver for another operat-
ing system.
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The following rules govern the requirements for device drivers in Power Macintosh
computers that support the Open Firmware startup process:

= As explained in the previous section, Open Firmware drivers must be stored as FCode
in a card’s expansion ROM and must conform to IEEE Standard 1275.

= A card’s expansion ROM should also contain all the run-time drivers for different
operating systems that might use or support the card.

= If an operating system preserves and uses the Open Firmware device tree or a data
structure derived from it, it should store all device drivers specific to that environ-
ment in the device tree as properties of the devices they support. Otherwise the
operating system must load device drivers as part of its initialization.

s Drivers that work with Mac OS must be compiled to native PowerPC code. For
further information, see Chapter 7, “Writing Native Drivers.”

Chapter 5, “PCI Open Firmware Drivers,” provides guidelines for writing device drivers
to operate with the Open Firmware startup process.

PowerPC Addressing and Alignment

In general, PCI expansion cards that run code directly on PowerPC processors in Power
Macintosh computers must use 32-bit mode even when the processor supports 64-bit
mode. PCI cards must observe the access sizes and byte alignments shown in Table 4-1.

Table 4-1 PowerPC processor addressing
Access size Alignment

Address type (bits) (bytes)

a- addr 32 4

g- addr 32 4

w addr 16 2

Device Configuration

32

PCI cards should supply Open Firmware boot code in PCI type 1 containers in their
expansion ROMs, as defined in the PCI specification. This section describes how the
contents of PCI expansion ROMs contribute to the Open Firmware startup process.

Open Firmware FCode Options

Cards that may be required during Open Firmware startup include display, keyboard,
and mouse devices, storage devices such as SCSI, IDE, floppy disk, and magneto-optical
drives, and network interfaces. But if Open Firmware boot code is not included in such a

Device Configuration
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card’s expansion ROV, the card will not be usable until the operating system loads its
supporting software from a mass storage device after startup.

This section describes the possible ways that a device with a valid PCI expansion ROM
can be configured. They range from full Open Firmware support, in which the card is
usable during startup, to no support.

Full Open Firmware Support

The recommended option is for every PCI card to include an expansion ROM containing
run-time drivers and full Open Firmware support, including Open Firmware properties
and software that supports the startup process. With this option, the associated device
can be used at startup time by Open Firmware and by any operating system for which
the PCI card’s expansion ROM provides a run-time driver. This option is mandatory if a
PCI card is to work during system startup with versions of Mac OS after version 7.5. It
delivers these benefits:

» full plug-and-play performance with any operating system for which the card
provides a run-time driver

» unambiguous matching of each run-time driver to its device

Support for Mac OS 7.5 and Open Firmware

Aless desirable option is for the PCI card to include an expansion ROM containing a
Mac OS run-time driver and minimum Open Firmware support, including Open
Firmware properties. This option lets the card work during startup with Mac OS 7.5
running on the first PCI-based Power Macintosh computers, where startup is controlled
by the Macintosh ROM. The card will not work during startup on future Power
Macintosh models or with future Mac OS versions. This option delivers these benefits:

» full plug-and-play performance with Mac OS version 7.5

» unambiguous matching of the Mac OS run-time driver to the device

Minimum Open Firmware Support

A possible option is for the PCI card to include an expansion ROM that provides
minimum Open Firmware support, including Open Firmware properties. This option
gives the device a name property that is guaranteed to be unique, so Mac OS can match
it unambiguously to a run-time driver that it loads from the Extensions folder in the
System Folder.

No Open Firmware Support

The least desirable option is for the PCI card to include an expansion ROM with no
FCode or even no expansion ROM at all. At system startup time, the card is recognized
and address space is allocated for the device, but no peripheral initialization or driver
code is loaded. The operating system must load driver code from a mass storage device
before the card can be used. Most importantly, there is no distinct name property for the
device; this makes unambiguous run-time driver matching less certain when several
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card manufacturers support the same device. Driver matching issues are discussed in
“Matching Drivers With Devices” beginning on page 142.

Note

Because future Macintosh computers will run a variety of operating
systems, full Open Firmware support is particularly important for
PClI-based graphics devices. If a PCI device is the user’s only display, it
should operate during the Open Firmware startup process and should
deliver plug-and-play performance with the user’s choice of operating
system. The Open Firmware driver does not need to be sophisticated; if
it can initialize the device to 8-bit mode and publish the frame buffer
address, Open Firmware in the Macintosh ROM will control the device
and perform the required image rendering. O

Open Firmware Driver Support

As explained in “Startup Firmware” on page 30, Open Firmware drivers are stored as
FCode in expansion ROMs and copied into system RAM during the Open Firmware
startup process. When the startup firmware in the Power Macintosh ROM opens an
Open Firmware driver, it acquires a handle to the driver code so it can communicate
directly with it. The Power Macintosh firmware provides three kinds of memory for the
driver to use:

» The device tree stores properties and routines that are intrinsic to the driver; these
permanent attributes are always available to the driver and other code.

» FEach node of the device tree has its own static variables, available to drivers, which
are preserved throughout the Open Firmware startup process.

» Memory for buffers and other driver requirements is allocated each time a driver is
opened and is maintained until the driver is closed.

Open Firmware drivers are expected to perform their work (such as drawing characters
on a screen) without operating-system support. In addition, the Macintosh startup
firmware does not provide hardware interrupts; Open Firmware drivers must detect
external events by polling devices. However, the startup firmware in some Power
Macintosh ROMs may contain hardware-specific support packages that Open Firmware
drivers can use for common tasks.

Startup Sequence

34

Although the startup sequence for PCI-based Power Macintosh computers is different
for each model, a typical sequence for a Power Macintosh computer running Mac OS can
be summarized as follows, starting with power coming on:

1. System-specific firmware performs initialization and self-testing on memory and
other hardware systems.

Startup Sequence
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2. The startup firmware in the Power Macintosh ROM probes each PCI bus, generates a
device tree node for each device, and executes the FCode (if any) found in each PCI
card’s expansion ROM.

3. The startup firmware in the Power Macintosh ROM finds an operating system in
ROM or on a mass storage device; it loads it into RAM and transfers processor control
to it.

4. Mac OS completes the startup sequence.

The rest of this section describes these steps in more detail.

Initializing the Hardware

In response to power coming on, firmware in the Power Macintosh ROM performs
initialization and self-testing on the basic system memory, including RAM and
cache memory.

Running Open Firmware

The Open Firmware Process begins as the startup firmware builds the device tree for
built-in I/O devices and then searches expansion areas for other devices. The firmware
polls the computer’s PCI buses, interrogating addresses where devices might be found.
Each time it finds an Open Firmware expansion ROV, it copies the FCode from that
ROM into system RAM and executes it, using the system’s FCode loader. As it runs, the
FCode program from the PCI card enters the properties of the device it represents into
the current device tree node established by the Open Firmware program and stored in
system RAM. These properties always include the device name and usually also include
some or all of the information specified by IEEE Standard 1275.

An important set of device tree properties include Open Firmware drivers for PCI
devices. Run-time drivers, which are stored as properties of the device node in the
device tree, may be required for the startup process and for each operating system that
may be launched. Other properties include operating characteristics of video cards and
information used to install interrupt handlers.

Open Firmware queries PCI cards that contain no FCode to create basic entries for them
in the device tree. These entries contain only the properties that can be generated by
accessing a card’s standard PCI configuration registers. Open Firmware creates r eg and
assi gned- addr esses properties, making the card accessible to operating-system code
(although not to Open Firmware). These properties provide the card’s unit address and
permit address space allocation based on the card’s PCI base register support. PCI
properties are discussed in “Standard Properties” beginning on page 193.
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Starting the Operating System

After constructing the device tree in system RAM, the Power Macintosh startup firmware
selects some or all of the following startup devices, based on an order of priority stored
in the system hardware and on the presence of suitable device properties in the

device tree:

= a keyboard (or other input device)
= adisplay (or other output device)

= aboot device (mass storage or ROV, indicated by the boot path environment
variable) that contains operating-system code

The Open Firmware code normally loads the operating system into memory and starts it
going, using the Forth go command. In the case of Mac OS it transfers processor control
to the Macintosh ROM, which begins the Mac OS startup process. If the Open Firmware
user interface is invoked, however, the Open Firmware code will continuously poll the
input device for characters and write output characters to the display, using the FCode
drivers previously installed. This can let the user choose an operating system or perform
other OS-independent configuration tasks. For further details, see “Open Firmware User
Interface” beginning on page 53.

For further details of the normal Macintosh startup sequence, see Chapter 10 of Technical
Introduction to the Macintosh Family, described in “Supplementary Documents,” in
the preface.

PCI Bus Configuration
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This section describes how the Power Macintosh Open Firmware code configures the
computer’s PCI buses during the Open Firmware startup process.

Configuration Tasks

Macintosh Open Firmware code performs the following tasks to help the PCI system
support the devices previously found by the Open Firmware startup process:

» It programs certain configuration bits in the 64-byte standard PCI header portion of
PCI configuration space.

» It determines the resource requirements (memory and I/O space) of each device,
based on the device’s r eg property created by executing the FCode in its card’s
expansion ROM. If FCode is not present, the system Open Firmware code creates a
r eg property for the device by querying the device’s PCI configuration base registers.

» After accumulating the resource requirements for all devices in the system, the system
Open Firmware code constructs a conflict-free address map and adds the resulting
assi gned- addr esses property to each PCI device’s node in the device tree.

PCI Bus Configuration
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Configuration Registers

Figure 4-1 presents a map of the PCI configuration registers that system firmware reads

or writes to during the Open Firmware startup process. In Figure 4-1, read-only registers

are shaded; all other registers are read / write. The next section describes the actions

taken for each register.

Figure 4-1 PCI configuration register map
31 16 15
Device ID Vendor ID
Status Command
Class code Revision ID
BIST Header type | Latency timer |Cache line size

Base address registers

Cardbus CIS pointer

Subsystem ID Subsystem Vendor ID
Expansion ROM base address
Reserved
Reserved
Max_Lat | M n_Gnt | Interrupt pin | Interrupt line

Register Actions

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

This section describes the actions that the Macintosh system firmware performs on the
PCI configuration registers listed in Figure 4-1 during Open Firmware startup.

Vendor ID

The Vendor ID register is read and its value stored in the property vendor - i d. If the

card has no FCode and no subsystem vendor ID, the Vendor ID value makes up the xxxx

portion of the " pci xxxx,yyyy" default name property for the node.

Device ID

The Device ID register is read and its value stored in the property devi ce- i d. If the

card has no FCode and no subsystem ID, the Device ID value makes up the yyyy portion

of the " pci xxxx,yyyy" default name property for the node.

PCI Bus Configuration
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Command

The following bits in the Command register are set with the meanings shown:

Bit 9, Fast Back-to-Back Enable, is set to 1 if all PCI devices are fast back-to-back
capable (if all devices have a fast-back-to-back property stored in their device node);
otherwise, it is cleared to 0.

Bit 8, SERR Enable, is cleared to 0 for all devices because the Power Macintosh system
doesn’t respond to SERRs.

Bit 7, Wait Cycle Control, is cleared to 0 for all devices.
Bit 6, Parity Error Response, is cleared to 0 for all devices.
Bit 5, VGA Palette Snoop, is cleared to O for all devices.

Bit 4, Memory Write and Invalidate Enable, is set to 1 for all devices because the
Power Macintosh system fully supports this command type and optimizes for it.

Bit 3, Special Cycle Enable, is set to 1 for all devices because the Power Macintosh
system can generate special cycles.

Bit 2, Bus Master Enable, is set to 1 for all devices because the Power Macintosh
system supports masters in all PCI locations.

Bit 1, Memory Space Enable, is cleared to 0 for all devices before an operating system
is loaded. Hence, the initialization routines of all run-time drivers must set this bit to 1
if they wish to access their device in memory space. However, the decision to write a 1
in this location must be made after checking that the memory resources required for
correct operation appear in the device’s assi gned- addr esses property; otherwise,
the driver should leave this bit to cleared to 0.

Bit 0, I/O Space Enable, is cleared to 0 for all devices before an operating system is
loaded. Hence, the initialization routines of all run-time drivers must set this bit to 1 if
they wish to access their device in I/ O space. However, the decision to write a 1 in
this location must be made after checking that the I/O space resources required for
correct operation appear in the device’s assi gned- addr esses property; otherwise,
the driver should leave this bit to cleared to 0.

Status

The following bits are read in the Status register:

The value of bits 10-9, DEVSEL Speed, is stored in the node’s devsel - speed property.

The value of bit 7, Fast Back-to-Back Capable, is noted for each PCI device. If the value is
nonzero, the property f ast - back- t o- back is created for the node. See the previous
section for information about the Fast Back-to-Back Enable bit.

No specific action is taken for the remaining bits in the Status register.

Revision ID

The Revision ID register is read and its value stored in the property r evi si on-i d.

PCI Bus Configuration
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Class Code

The Class Code register is read and its value stored in the property cl ass- code.

Cache Line Size

The Cache Line Size register is written 0x08 for all devices. This value corresponds to the
PowerPC family cache line size of 32 bytes.

Latency Timer

The Latency Timer register is written 0x20 for all devices. This value corresponds to 32
PCI clocks.

Header Type

The Header Type register is read, starting with bits 6-0. If the value of bits 6-0 is

0x00, the configuration space has a standard header layout for configuration addresses
0x10 through 0x3F; if the value is 0x01, it has a PCI-to-PCI bridge header layout for
that section.

Note
The PCI bus behavior described in this section is that
corresponding to a standard header. O

If bit 7 of the Header Type register is set to 1, the system Open Firmware probes for
multiple functions; otherwise, it assumes the device is a single-function device.

BIST

No action is taken on the BIST register.

Base Registers

If FCode is present in the card’s expansion ROM, the system Open Firmware creates
an assi gned- addr esses property for the node, provided the card’s FCode presents
ar eg property with entries referencing at least one base register and the system was
able to provide the resources requested in the r eg property corresponding to the base
registers referenced. For each base register that has a corresponding entry in the

assi gned- addr esses property, the system Open Firmware programs that base
register with the address value stored in the assi gned- addr esses property.

If FCode is not present for the node, the system Open Firmware creates a r eg property
for the device. To create a r eg entry for each base register that is implemented, the
system Open Firmware writes all 1s to each base register location. It then reads the
locations to see how many of the 1s are still there. If the register reads back as all 0s, then
the register is not implemented and a r eg entry is not made for it. If the register contains
a value other than 0, the system Open Firmware notes which bits are 1s and thereby
determines whether the register is of type memory or I/O, the amount of address space
required, whether it is a 64-bit address, whether it is prefetchable, and whether it must
be located below 1 MB. This information is then encoded appropriately into the r eg
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entry for the base register. After all base registers are queried in this manner, the full r eg
property is stored in the device’s node. Refer to the PCI specification and PCI Bus Binding
to IEEE 1275-1994 (described in “Other Publications” beginning on page xxiii) for more
details. Once the r eg property is stored in the node, Open Firmware clears the Base
registers to all 0s. It then follows the process of writing the registers with

assi gned- addr esses values, as described above for devices that have FCode.

Subsystem Vendor ID

If the value of the Subsystem Vendor ID register is nonzero, a subsyst em vendor -i d
property is created with the register’s value. If the property is created and no FCode is
present on the card, the Subsystem Vendor ID value makes up the xxxx portion of the

" pci xxxx,yyyy" default name property for the node.

The Subsystem Vendor ID register is described in Revision 2.1 of the PCI Specification.

Subsystem ID

If the value of the Subsystem ID register is nonzero and a subsyst em vendor - i d
property exists for the device, a subsyst em i d property is created with the register’s
value. If the property is created and no FCode is present on the card, the Subsystem
Vendor ID value makes up the yyyy portion of the " pci xxxx,yyyy" default name
property for the node.

The Subsystem ID register is described in Revision 2.1 of the PCI Specification.

Expansion ROM Base

The system Open Firmware uses the Expansion ROM Base register at probe time to
determine whether a card has FCode present. It queries the register to see whether the
register is implemented, following the procedure described above for other base
registers. If the register is implemented, Open Firmware temporarily maps in an amount
of memory space equal to the requirement found from the base register query and then
programs that value into the base register. It also enables the expansion ROM by an OR
operation with 1 on bit 0 of the register and enables the card’s memory space by writing
a 1 to the correct bit in the Command register. It then reads the expansion ROM’s first
locations, by accessing the space temporarily mapped in, looking for the PCI signature
(0x55AA). If it finds the signature, it continues to look for an Open Firmware ROM
image signature. If it finds that signature, it locates the FCode, copies it to RAM, and
executes it. After the card’s FCode has finished executing, or if it was determined that
there was no FCode, the system Open Firmware disables the card’s memory space and
expansion ROM and clears the Expansion ROM Base register to 0s.

If FCode was present in the card’s expansion ROM and the FCode presented ar eg
property with an entry for the Expansion ROM Base register, and if the system was able
to provide the resources for this entry, then the system Open Firmware creates a
corresponding entry in the assi gned- addr esses property and writes the address
value to the Expansion ROM Base register.

PCI Bus Configuration
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If FCode is not present for the node, the system Open Firmware creates a r eg property
for the device and determines whether to create an entry for the Expansion ROM Base
register following the procedure for other base registers described above. The procedure
for writing the register if FCode is present is the same as that in the preceding paragraph.

IMPORTANT

Bit 0 of the Expansion ROM Base register, which is defined as the
Expansion ROM Enable bit, is left as 0 (disabled) by the system

Open Firmware. If the run-time driver is interested in accessing

the PCI Expansion ROM, it must first check that it has received an

assi gned- addr esses entry, and then it must enable both its memory
space (Memory Space Enable bit of the Command register) and its ROM
(Expansion ROM Enable bit of the Expansion ROM Base register).

As with all writable configuration registers, such operations must be
performed with read-modify-write code sequences so as not to disturb
the existing values of other bits in the registers. a

Interrupt Line

No action is taken on the Interrupt Line register. It has no meaning for Power Macintosh
computers because interrupts are OR-combined per slot in hardware, creating a unique
interrupt for each PCI card accessible to the system interrupt controller. This register
contains no useful information for drivers.

Interrupt Pin

The Interrupt Pin register is read. If its value is nonzero, the value appears in the
property i nt er r upt s. This register contains no useful information for drivers for
the reasons explained in the previous section.

Min_Gnt

The Min_Gnt register is read and its value stored in the property mi n- gr ant .

Max_Lat

The Max_Lat register is read and its value stored in the property max- | at ency.

PCI-To-PCI Bridges

The second generation of Power Macintosh computers implements PCI-to-PCI bridges
in conformance with the PCI specification listed in “PCI Special Interest Group” on
page xxiv.
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Configuration Header

For PCI-to-PCI bridges, the standard PCI configuration header (the first 64 bytes of PCI
configuration space) is different from that of standard PCI devices. Figure 4-2 gives a
map of the registers in the portion of a PCI-to-PCI bridge’s configuration space defined
by the PCI specification. In Figure 4-2, read-only registers are shaded; all other registers
are read / write.

Figure 4-2 PCI-to-PCI bridge register map

31 16 15 0
Device ID Vendor ID 00h
Status Command 04h
Class code Revision ID 08h
BIST Header type | Latency timer |Cache line size | 0Ch
Base address registers 10h
14h
Secondary Subordinate Secondary Primary 18h

latency timer | bus number bus number bus number

Secondary status 1/O limit I/O base 1Ch
Memory limit Memory base 20h
Prefetchable memory limit Prefetchable memory base 24h
Prefetchable base upper 32 bits 28h
Prefetchable limit upper 32 bits 2Ch
1/O limit upper 16 bits | 1/0 base upper 16 bits 30h
Reserved 34h
Expansion ROM base address 38h
Bridge control | Interrupt pin Interrupt line | 3Ch

Register Settings

PCI-to-PCI bridges have specific configuration needs that are different from those of
standard PCI devices. The system Open Firmware code is responsible for configuring the
PCI-to-PCI bridge components. The following field descriptions list the standard settings
for the registers shown in Figure 4-2.

Field descriptions

Vendor ID Read by system Open Firmware and stored in property vendor - i d.
The nane property for PCI-to-PCI bridges defaults to pci - bri dge,
based on the class code matching PCI-to-PCI bridge encoding. This
is unlike standard PCI devices, whose default name property is
pci xxxx,yyyy. See “Vendor ID” on page 37.

Device ID Read by system Open Firmware and stored in property devi ce-i d.

PCI-To-PCI Bridges
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Command

Status

Revision ID

Class Code

Cache Line Size

Latency Timer

PCI-To-PCI Bridges

Written by system Open Firmware. Bit specifics:

Bit 9, Fast Back to Back Enable, is written 1 if all PCI devices are Fast
Back to Back capable (if all devices have a f ast - back-t o- back
property stored in their device nodes); otherwise written 0.

Bit 8, SERR Enable, is written 0 for all devices; the Power Macintosh
system doesn’t respond to SERRs.

Bit 7, Wait Cycle Control, is written 0 for all devices.

Bit 6, Parity Error Response, is written 0 for all devices.

Bit 5, VGA Palette Snoop, is written 0 for all devices.

Bit 4, Memory Write and Invalidate Enable. PCI-to-PCI Bridges
consider this a read-only bit and will always return 0 when read.
They act only as agents for masters behind them and will propagate
Memory Write and Invalidate commands if a PCI Master on either
side generates such a cycle.

Bit 3, Special Cycle Enable. PCI-to-PCI Bridges consider this a
read-only bit and will always return 0 when read, because they
cannot respond to Special Cycles.

Bit 2, Bus Master Enable, is written 1 for all devices; the Power
Macintosh system supports masters in all PCI locations.

Bit 1, Memory Space Enable, is written 1 for PCI-to-PCI bridges to
enable memory cycles to pass through the bridge transparently,
based on the programming of the Memory Base and Limit registers.
Bit 0, I/O Space Enable, is written 1 for PCI-to-PCI bridges to enable
I/0O cycles to pass through the bridge transparently based on the
programming of the I/O Base and Limit registers.

The following bits are read in the Status register:

Bits 10-9, DEVSEL speed, value stored in the node’s

devsel - speed property.

Bit 7, Fast Back to Back Capable, value noted for each PCI device. If
the value is nonzero, the property f ast - back-t o- back is created
for the node (see Command register explanation of Fast Back to
Back Enable bit).

No specific action taken based on values of the remaining bits in the
Status Register.

Read by system Open Firmware and stored in property
revision-id.

Read by system Open Firmware and stored in property cl ass- code.
The nane property for PCI-to-PCI bridges defaults to pci - bri dge,
based on the class code matching PCI-to-PCI bridge encoding
(0x060400).

Written by system Open Firmware. Written 0x08 for all devices,
which corresponds to the PowerPC family cache line size of

32 bytes.

Written by system Open Firmware. Written 0x20 for all devices,
which corresponds to 32 PCI clock intervals.
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Header Type

BIST

base registers 0-1

Read by system Open Firmware. First, bits 6 through 0 are
examined. If the value is 0x00, the configuration space has a
standard header layout for configuration addresses 0x10-0x3F;
if the value is 0x01, it has a PCI-to-PCI bridge header layout for
that section. Described in this section is the behavior taken for a
PCI-to-PCI header.

No action is taken by the system Open Firmware on this register.

Open Firmware does not set the Base Registers for PCI-to-PCI
bridges. It is assumed that they are programmed only through PCI
configuration space.

Primary Bus Number

Written by system Open Firmware with the appropriate PCI Bus
number corresponding to this bridge’s primary bus location (closer
to main memory side) in the system topology.

Secondary Bus Number

Written by system Open Firmware with the appropriate PCI Bus
number corresponding to this bridge’s secondary bus location
(farther from main memory side) in the system topology. This value
is stored in the device tree as the first datum in the PCI-to-PCI
Bridge’s bus-range property.

Subordinate Bus Number

Written by system Open Firmware with the appropriate PCI Bus
number corresponding to the highest numbered PCI bus that is
located behind (subordinate to, or farthest from main memory) this
PCI-to-PCI bridge. This value is stored in the device tree as the
second datum in the PCI-to-PCI Bridge’s bus-range property.

Secondary Latency Timer

I/O Base

I/O Limit

PCI-To-PCI Bridges

Written by system Open Firmware. Written 0x20 for all devices,
which corresponds to 32 PCI clock intervals.

Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require I/ O space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of I/O space located behind the
PCI-to-PCI bridge. See the the PCI-to-PCI bridge architecture
specification (described in “PCI Special Interest Group” on

page xxiv) for details on this register. If no I/O space is requested
behind the PCI-to-PCI Bridge, the I/ O Base Register is written with
a value greater than the I/O Limit value, thereby disabling any
decoding of I/ O space behind a PCI-to-PCI bridge.

Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require I/O space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of I/O space plus the amount of space
required located behind the PCI-to-PCI bridge. See the PCI-to-PCI
bridge architecture specification for details on this register. If no
I/0O space is requested behind the PCI-to-PCI Bridge, the I/ O Base
Register is written with a value greater than the I/O Limit value,
thereby disabling any decoding of I/ O space behind a PCI-to-

PCI bridge.
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Secondary Status

Memory Base

Memory Limit

Read by system Open Firmware. Bit specifics:

Bits 10-9, DEVSEL speed, value stored in the node’s devsel-speed
property.

Bit 7, Fast Back to Back Capable, value noted for each PCI device. If
the value is non-zero, the property "fast-back-to-back" is created for

the node (see Command register explanation of Fast Back to Back
Enable bit).

No specific action taken based on values of the remaining bits in the
Secondary Status Register.

Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require memory space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of memory space located behind the
PCI-to-PCI bridge. See the PCI-to-PCI bridge architecture
specification for details on this register. If no memory space is
requested behind the PCI-to-PCI bridge, the Memory Base Register
is written with a value greater than the Memory Limit value,
thereby disabling any decoding of memory space behind a
PCI-to-PCI bridge.

Written by system Open Firmware. If devices found behind the
PCI-to-PCI bridge require memory space address allocation, this
byte-wide register is written with the appropriate values
corresponding to the base of memory space plus the amount of
space required located behind the PCI-to-PCI bridge. See the
PCI-to-PCI bridge architecture specification for details on this
register. If no memory space is requested behind the PCI-to-PCI
bridge,the Memory Base Register is written with a value greater
than the Memory Limit value, thereby disabling any decoding of
memory space behind a PCI-to-PCI bridge.

Prefetchable Memory Base

Written by system Open Firmware. All memory space allocated
behind a PCI-to-PCI bridge in PCI Power Macintosh systems is
defined as non-prefetchable. Therefore, the Prefetchable Memory
Base register is always written with a value that is greater than the
Prefetchable Memory Limit value. This disables any decoding of
Prefetchable Memory behind a PCI-to-PCI bridge.

Prefetchable Memory Limit

Written by system Open Firmware. All memory space allocated
behind a PCI-to-PCI bridge in PCI PowerMac systems is defined as
non-prefetchable. Therefore, thPrefetchable Memory Base register is
always written with a value that is greater than the Prefetchable
Memory Limit value. This disables any decoding of Prefetchable
Memory behind a PCI-to-PCI bridge.

Prefetchable Base Upper 32 bits

PCI-To-PCI Bridges

Written by system Open Firmware with all 0s, because the PCI
PowerMacs have a 32-bit address space.
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Prefetchable Limit Upper 32 bits
Written by system Open Firmware with all Os, because the PCI
PowerMacs have a 32-bit address space.

I/0O Base Upper 16 bits
Written by system Open Firmware with all Os, because the PCI
PowerMacs utilize a 16-bit I/O address space behind PCI-to-
PCI bridges.

I/O Limit Upper 16 bits
Written by system Open Firmware with all Os, because the PCI
PowerMacs utilize a 16-bit I/ O address space behind PCI-to-
PCI bridges.

Expansion ROM Base Register
Open Firmware takes no action with this register. It is assumed that
PCI-to-PCI bridges have no FCode in their ROMs.

Interrupt Line No action taken on this register. It has no meaning for the Power
Macintosh system, as interrupts are ORed together in hardware for
per slot, creating a unique interrupt for each PCI card presented to
the system interrupt controller. No useful information for Power
Mascintosh driver writers exists in this register.

Interrupt Pin Read by system Open Firmware. If the value is nonzero, it appears
in the property i nt er r upt s. It has no meaning for Power
Macintosh, for the reasons given in the preceding paragraph.

Bridge Control Written by system Open Firmware. Bit specifics:
Bit 7, Fast Back to Back Enable, is written 1 if all PCI devices on the
secondary side of the PCI-to-PCI bridge are Fast Back to Back
capable (if all devices have a fast-back-to-back property stored in
their device node); otherwise, it is written 0.

Bit 6, Secondary Bus Reset, is written 0 so as not to cause a separate
reset on the secondary bus from the regular PCI hardware reset,
which is passed automatically by the PCI-to-PCI bridge hardware.

Bit 5, Master Abort Mode, is written 0 so that all Master Aborts on
the Secondary bus return all Fs on read actions.

Bit 4, Reserved.

Bit 3, VGA Enable, is written 0, which disallows the forwarding of
VGA hard decoding addresses to the secondary bus.

Bit 2, ISA Enable, is written 1, which blocks forwarding of
traditional hard-decoded addresses (top 768 bytes for each 1K block
of I/O space) from the primary to the secondary PCI bus.

Bit 1, SERR# Enable, is written 0, because the Power Macintosh
system doesn’t respond to SERR signals.

Bit 0, Parity Error Response, is written 0.

PCI-To-PCI Bridges
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As explained in Chapter 4, “Startup and System Configuration,” PCI expansion cards in
Power Macintosh computers may need to operate during the Open Firmware startup
process, before any operating system is present. The drivers for such cards are called
Open Firmware drivers. Other drivers, called run-time drivers, are used only after an
operating system has been loaded and has taken control of the main processor. Read
“Open Firmware FCode Options,” beginning on page 32, for help in deciding whether or
not your PCI card needs an Open Firmware driver.

This chapter discusses the general technical requirements for Open Firmware drivers for
PCI devices—drivers that are used with the Open Firmware startup process. Run-time
drivers for PCI devices used with Mac OS and other operating systems are discussed in
Part 3, “Native PCI Card Drivers.”

General Requirements

Any Open Firmware driver must be stored in a PCI card’s expansion ROM so that the
Macintosh firmware can load and run it in the absence of an operating system. Open
Firmware drivers are written in FCode. For further information about FCode, see Writing
FCode Programs for PCI. This book is listed in “Other Publications,” beginning on

page xxiii.

Other general requirements for Open Firmware drivers include the following:

» They must be able to acquire any software resources they need from the PCI card’s
expansion ROM or from the Macintosh firmware. For example, a display card must be
able to access a font in the expansion ROM if it is required to write characters on the
screen during startup.

» The card hardware may not address system space below 1 MB. In Power Macintosh
computers, PCI cards that request space below 1 MB in a r eg property will not
receive a corresponding assi gned- addr esses entry.

s PCI expansion cards and their drivers should avoid hard address decoding, as
discussed in “Hard Decoding” on page 13.

Driver Interfaces

48

Open Firmware driver code typically supports two interfaces:
» ahardware interface, through which the driver controls its associated device

» aclient interface, through which the driver cooperates with an operating system

Discussion of the hardware interface for Open Firmware driver code is beyond the scope
of this book; it is assumed that the relation between a driver and its associated hardware
is entirely controlled by the internal design of the PCI expansion card.

This book also does not try to discuss the general client interface for Open Firmware
drivers, which is of interest primarily to engineers designing an operating system. For

General Requirements
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details about the specific client interface between drivers and Mac OS, see Part 3, “Native
PCI Card Drivers,” beginning on page 57.

The next section discusses how PCI card expansion ROMs export properties to the Open
Firmware device tree. This process lets the card’s Open Firmware drivers (if any) work
with the Power Macintosh firmware during the computer’s startup process, before an
operating system is present.

Open Firmware Driver Properties

When the Open Firmware startup process finds a PCI expansion card, it looks in the
card’s expansion ROM for an Open Firmware signature and succeeding FCode. When it
finds FCode, the Open Firmware startup process loads it into RAM and interprets and
executes it. The code must fill in the part of the device tree applicable to its device node;
it must also create property nodes required by the startup firmware and by any operating
system that may use the driver in the future.

The standard property nodes for PCI devices working with the Open Firmware startup
process are defined in PCI Bus Binding to IEEE 1275-1994. For information about
obtaining this document see the note under “Institute of Electrical and Electronic
Engineers” on page xxiv.

The call interface to PCI Open Firmware drivers and the data format for the Open
Firmware signature are defined in IEEE Standard 1275. This book is listed in
“Supplementary Documents,” beginning on page xxi.

Standard device properties for PCI expansion cards and run-time drivers used with
Mac OS are listed in Table 8-1 on page 193. The same properties are used with boot
devices and Open Firmware drivers for Power Macintosh computers. Other properties,
described in IEEE Standard 1275, may be required if a PCI card is to support operating
systems other than Mac OS or be compatible with computers besides Power Macintosh.

Terminal Emulation in Graphics Drivers

For details of Open Firmware driver design for most standard boot devices, including
Open Firmware graphics drivers, see IEEE Standard 1275 and Writing FCode Programs.
These books are listed in “Other Publications,” beginning on page xxiii.

Besides their generic requirements, Open Firmware drivers for PCI graphics cards in
Power Macintosh computers must provide terminal emulation support. IEEE Standard
1275 defines the behavior of a terminal emulator support package, including the
implementation of certain escape sequences defined by ANSI Standard X3.64. The
Macintosh package, described here, conforms to ISO Standard 6429-1983. The Macintosh
implementation of Open Firmware for PowerPC supports additional graphic renditions,
through Select Graphic Rendition (SGR) escape sequences, beyond those specified in the
Open Firmware standard.

Open Firmware Driver Properties 49



50

CHAPTER 5

PCI Open Firmware Drivers

For the Macintosh terminal emulation extensions to be used, the FCode device driver for
a display device (a device whose devi ce_t ype property has the value di spl ay) must
initialize the first 16 entries of its color table to appropriate values, as described below.
These values assume that the color is represented by the low-order 3 bits of the color
index and that the bit corresponding to a value of 8 represents the intensity. The ISO
Standard 6429-1983 provides parameter values to control the color of foreground (30-37)
and background (40-47) independently. The intensity is set separately (1-2), and must be

issued before the color control; 1 -> color, 2 -> color+8.

In the Macintosh terminal emulator, there are current background and foreground colors
whose values range from 0 through 15, corresponding to the first 16 entries of the color
table. In positive image mode, pixels corresponding to a font or logo bit set to a value of
1 are set to the foreground color; pixels corresponding to a font or logo bit cleared to 0
are set to the background color. When in negative image mode, the roles of foreground
and background are reversed.

The default rendition is positive image mode, with background set to 15 and the

foreground set to 0, thus producing black characters on a bright white background.

Table 5-1 lists the effects of executing SGR escape sequences with various parameters.

Table 5-1 SGR escape sequence parameters

Parameter Interpretation
0 Default rendition
1 Bold (increased intensity)
2 Faint (decreased intensity)
7 Negative image

27 Positive image

30 Black foreground

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background

42 Green background

43 Yellow background

Terminal Emulation in Graphics Drivers

continued
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Table 5-1 SGR escape sequence parameters (continued)
Parameter Interpretation

44 Blue background

45 Magenta background

46 Cyan background

47 White background

The next sections define the additional behavior of display devices for Open Firmware
implementations that support the terminal emulator extensions.

Color Table Initialization

The core specification of Open Firmware defines a terminal emulation support package
that does not include support for colors. The Macintosh Open Firmware implementation
supports additional SGR parameters to allow client programs to display characters and
logos in a 16-color model.

For this expanded terminal emulation support to work, Open Firmware device drivers
for display devices must initialize the first 16 entries of their color table to values defined
in Table 5-2, where values are defined in terms of the fraction of full saturation required
for each of the primary red-green-blue (RGB) colors.

Table 5-2 Color table values
Index Red Green Blue Color

0 0 0 0 Black

1 0 0 2/3 Blue

2 0 2/3 0 Green

3 0 2/3 2/3 Cyan

4 2/3 0 0 Red

5 2/3 0 2/3 Magenta

6 2/3 1/3 0 Brown

7 2/3 2/3 2/3 White

8 1/3 1/3 1/3 Gray

9 1/3 1/3 1 Light blue
10 1/3 1 1/3 Light green
11 1/3 1 1 Light cyan
12 1 1/3 1/3 Light red

continued
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Table 5-2 Color table values (continued)

Index Red Green Blue Color

13 1 1/3 1 Light magenta
14 1 1 1/3 Light yellow
15 1 1 1 Bright white

Display Device Standard Properties

In addition to the standard properties defined by Open Firmware for display devices, the
following device properties, encoded as with encode- i nt, must be supported:

wi dt h Visible width of the display, in pixels.

hei ght Visible height of the display, in pixels.

l'i nebytes Address offset between a pixel on one scan line and the same
horizontal pixel position on the next scan line.

dept h Number of bits in each pixel.

Display Device Standard Methods

This section defines additional methods that display devices should implement to be
compliant with the Macintosh terminal emulator extensions. These methods assume that
the device supports at least 16 colors using the RGB color model and that a color lookup
table (CLUT) exists that can be read and written to. The model assumes 8-bit values

for each of the RGB components of the colors, where 0x00 implies no color and OxFF
indicates full saturation of the component. If fewer bits are available, the corresponding
entries should be scaled appropriately.

Individual color entries are specified by their RGB values, using 8 bits for each. Each
color is represented by an index. The index values for the 16-color extension are in the
range 0 through 15; however, most display hardware will support at least 256 colors.

The following methods allow access to the CLUT from client programs, as well as the
user interface described in the next section.

set-colors ( adr index #indices -- )
Allows setting a number of consecutive colors, starting at i ndex, for #i ndi ces
colors. The adr parameter is the address of a table of packed RGB components.
get-colors ( adr index #indices -- )
Allows reading a number of consecutive colors, starting at i ndex, for #i ndi ces
colors. The adr parameter is the address of a table that will be filled in with packed
RGB components.
color! (r g b index -- )
Allows setting a single color value, specified by i ndex. Ther, g, and b parameters
are values to be placed into the red, green, and blue components, respectively.
color@( index -- r g b))
Allows reading the color components of a single color value, specified by i ndex.
Ther, g, and b parameters are the values of the red, green, and blue components,
respectively.

Terminal Emulation in Graphics Drivers
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Open Firmware User Interface

The Macintosh implementation of Open Firmware includes the user interface described
in IEEE Standard 1275. The user interface provides an interactive terminal environment
that is useful in viewing and manipulating Open Firmware data structures and other
system-level resources, such as memory and device registers, in the absence of a running
operating system. The current implementation operates from a remote terminal
connected by a serial communication link to the modem port of the target PCI-based
Power Macintosh computer. The serial link’s default settings are as follows:

38400 baud

No parity

8 data bits

1 stop bit

XON/XOFF handshake
ANSI/VT102 terminal protocol

Invoking the User Interface

To enter the Open Firmware user interface, restart the target Power Macintosh computer
while you immediately and simultaneously press the Command, Option, O, and F keys
on its keyboard. Release the keys after you hear the boot sound from the computer and
see the Open Firmware prompt on the remote terminal. If you see the Mac OS boot
message on the target computer, you may have failed to press the keys quickly enough
and should try again.

The key action just described causes the Macintosh startup firmware to enter the Open
Firmware user interface at the point just before initiating an operating system startup
process. At this point all FCode that was present on PCI cards has been executed and the
assi gned- addr esses and other standard properties have been added to the device
tree. When the user interface is invoked, it sends a bell character and a string identifying
Open Firmware and its version number to the remote terminal. It then awaits input from
the terminal. The default routes for both output and input devices are through the serial
terminal connection.

If the Open Firmware configuration variable aut o- boot ? is set to f al se, the
Macintosh startup firmware enters the user interface automatically after subsequent
system restarts. This makes the Command-Option-O-F key combination unnecessary.

Note

The Open Firmware user interface makes it possible for you to modify
system settings to a state that prevents the computer from starting an
operating system. To return the computer to its default settings, as
stored in NVRAM, simultaneously press the Command, Option, P, and
R keys on its keyboard immediately after a system restart. O
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The user interface operates as an interactive Forth environment, with necessary
omissions and additions as appropriate to Open Firmware. The interface should be used
to develop and debug the Forth source code that will eventually be converted into
FCode and stored in a PCI card’s expansion ROM. To create FCode, which is a tokenized
representation of the Forth source, you must use an FCode tokenizer. Apple provides
such a tool as part of the development kit described in Appendix A, “Development
Tools.” The Apple tokenizer runs as an MPW tool under the CForth93 environment.
Special tokenizer words automatically generate a ROM image with the correct signatures
and formats for a PCI card expansion ROM with FCode.

User Interface Commands

Here is a short list of commands available through the Open Firmware user interface.
Note that several of them are combinations of commands that can be used separately.

assi gn- addr esses

boot
dev / Is

dev /bandit/gc
. properties

dl

dunp-devi ce-tree
FFCO0000 100 dunp

i nit-nvram
nmake- properties

printenv

pwd
reset-all
see word

Open Firmware User Interface

Emulates the regular Open Firmware startup process of
querying the system for resource requirements and adding
an assi gned- addr esses property to the node that is the
current package.

Performs the startup process, using the currently chosen
device.

Selects the root node and lists its children recursively,
effectively dumping a name view of the device tree.

Selects gc (the node representing the Bandit ASIC, which
controls many Macintosh I/O features) as the active package
and displays its properties. Bandit is used in the first
PCI-based Power Macintosh models but may not be present
in future models. For an illustration of its position in the
device tree, see Listing 8-1 on page 164.

Sets the terminal emulator for downloading Forth code to
RAM. Press Control-D to end the downloading process.

Lists properties and methods of all the device tree nodes.

Dumps 0x100 bytes from virtual address 0XFFC00000, if that
address is currently mapped in.

Resets data in NVRAM to default values.

Emulates the regular Open Firmware startup process of
querying the device’s configuration space and adding the
standard PCI properties to the node that is the current
package.

Lists current and default settings of Open Firmware
configuration variables stored in NVRAM.

Displays the pathname of the active package.
Resets the target computer.

Displays the Forth source code for the word entered.
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set env aut o- boot ? Sets the environment variable aut 0- boot ? stored in

fal se NVRAM to f al se. This conditions the computer to invoke
the user interface automatically after subsequent restarts.

shut - down Powers down the computer.

wor ds Lists variables, constants, and methods of the active package

(as in Forth, but in the scope of the current package only).

Sample Driver

Listing 5-1 shows a minimal FCode driver for a PCI SCSI card. The driver provides
identifying information in its device node and creates a property that contains

the run-time driver to be loaded into the Macintosh system heap by the Expansion
Bus Manager.

Listing 5-1 Minimal FCode driver

/1
/1
/1
/1

push argunents on the stack for pci-header:

**% THESE MUST MATCH THE CONFI G REG STERS FOR YOUR ***
*** FCODE TO BE RECOGNI ZED BY OPEN FI RMAARE el
vendor #, device #, class-code = SCS|I bus controller

tokeni zer[ hex 1000 0003 010000 decimal ]tokenizer

pci - header /'l generate proper PCl inmage header
f code-versi on2 /1 generate proper FCode header (within PCl inage)
" AAPL, NCR8250S" devi ce- nanme /1 Apple is card vendor
"scsi" device-type
"8250S" nodel
/1 generate a "reg" property which lists our configuration space at the start of
/'l our assigned space, with 0 size (as required by the PCl Bi nding Suppl enent)
0 0 ny-space encode- phys
0 encode-int 0 encode-int encode+ encode+ /'l config space
0 0 ny-space h# 02000014 or encode-phys
0 encode-int h# 00000100 encode-int encode+ encode+ /1l nmenory space
encode+ " reg" property
/1 generate a "power-consunption” property which lists standby and full-on power
/1 consuntion for various power rails in mcrowatts; if we don't create this
/1 property, Open Firmvare will create one by filling in the "unspecified" rail
/1 entries fromthe PRSNT pins (since we know our power consunmption, we fill the
/1 "unspecified" entries with zeros)
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0 encode-int 0 encode-int encode+ /'l "unspecified"
d# 7500000 encode-int d# 7500000 encode-int encode+ encode+ /1l +5V

0 encode-int 0 encode-int encode+ encode+ /1l +3V

d# 8100000 encode-int d# 8100000 encode-int encode+ encode+ Il 110 power

/1 remaining entries are 0 and can be onitted

0 encode-int 0 encode-int encode+ encode+ /'l reserved

" power - consunpti on" property

the following properties will be automatically generated for this card:
"has- f code"
"vendor-id" - fromPCl configuration register
"device-id" - fromPCl configuration register
"revision-id" - fromPCl configuration register
"class-code" - from PCl configuration register
"interrupts" - from PCl configuration register
"mn-grant” - from PCl configuration register
"max- |l atency" - from PCl configuration register
"devsel -speed” - from PCl configuration register
"fast-back-to-back” - from PCl configuration register
"assi gned- addr esses”

we don't need to define any nmethods here; there is enough information for the
runtime driver to be able to locate the card, but a conplete FCode inpl enmentation
woul d provide boot-tinme I/0O services

include an image of the runtinme driver, and have it assigned as the value of a
property that the Expansi on Bus Manager will read at startup

the name of the property takes the form "driver, <conpany>, <osname>, <i sa>"
NOTE: in the foll owi ng exanple, the given <osnanme> (for Macintosh System 7)
is prelimnary and subject to change

use encode-file to create a driver...property, which saves space in

copi es of the device tree that an OS nay keep because it contains a pointer to
your driver that the OS can use to find the inmage and copy if from your
onboard ROM

encode-file is now supported in the A7 Mac ROM
encode-file NCRDriver "driver, AAPL, MacCS, Power PC' property

f code- end /! term nate normal FCode

pci - end /'l conplete the PCl image

56

Sample Driver



PART T HREE

Native PCI Card Drivers

This part of Designing PCI Cards and Drivers for Power Macintosh Computers
tells you how to design and write run-time PCI card drivers for the second
generation of Power Macintosh computers. These drivers are called native
because they are written for execution by the native instruction set of the
PowerPC microprocessor. This part consists of the following chapters:

Chapter 6, “Native Driver Overview,” presents the general concepts and
framework applicable to PCI drivers for PowerPC Macintosh computers.

Chapter 7, “Writing Native Drivers,” gives you details of native driver
design and coding, including how to use services provided by the
Macintosh Driver Loader Library.

Chapter 8, “Macintosh Name Registry,” describes the Mac OS data
structure that stores device information extracted from the PCI device tree.

Chapter 9, “Driver Services Library,” details the general support that
Mac OS provides for device drivers, including interrupt and timing
services.

Chapter 10, “Expansion Bus Manager,” discusses a collection of PCI bus-
specific system services available to native device drivers.

Chapter 11, “Graphics Drivers,” describes the calls serviced by typical
display drivers.

Chapter 12, “Network Drivers,” describes the construction of a sample
network driver.

Chapter 13, “SCSI Drivers,” describes the construction of a sample native
SCSI Interface Module (SIM) compatible with SCSI Manager 4.3.
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This chapter presents an overview of the PCI driver environment and services, or I/O
architecture, available in the Macintosh system software for the second generation of
Power Macintosh computers. It covers concepts and terminology that are introduced
with this I/O architecture. It also provides a high-level summary of the new driver
interfaces, packaging, and support. The discussion in this chapter applies to run-time
drivers, which run after the system startup steps detailed in Chapter 4, “Startup and
System Configuration.”

The previous Macintosh I/O architecture was based on resources of type ' DRVR and
their associated system software, including the Device Manager. Mac OS now supports a
more general concept of driver software. In the new I/O architecture, a driver is any
PowerPC native code that controls a physical or virtual device. This definition includes
resources of type ' ndrv' but excludes resources of type ' DRVR' , protocol modules,
control panels, resources of type' | Nl T' , and application code. The Device Manager is
being changed; future releases of Mac OS will support older Device Manager operations
only for drivers written in 68L.C040 microprocessor code running in emulation mode.

Native device drivers are now isolated from application-level interfaces and services;
in particular, main driver code must run without access to the Macintosh Toolbox. This
concept is discussed further in “Separation of Application and System Services” on
page 63.

To understand this chapter, you should have some experience developing drivers or
similar software designed to work with Mac OS. For recommended reading material
about Macintosh technology, see the documents listed in “Supplementary Documents”
beginning on page xxi.

Macintosh System Evolution

60

For their the second generation, Power Macintosh computers are switching from NuBus
to the more standard PCI bus. This change means that many useful new PCI-based
peripheral devices will become available for Macintosh computers. Meanwhile, Mac OS
is undergoing fundamental changes that provide better memory protection, preemptive
scheduling of tasks, and improved I/O support.

To provide improved I/O support in Mac OS, Apple is introducing a native I/O
framework that includes a set of driver services and mechanisms separate from those
available to previous Macintosh device drivers. The native I /O framework includes
these features:

= native PowerPC execution of all driver code

= support for PCI bus operations

= new Device Manager support for concurrent operations
» improved interrupt mechanisms

= new driver support services

= a Name Registry

Macintosh System Evolution
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Mac OS provides these features only for PCI native device drivers. Existing drivers
written in code for MC68000-family microprocessors (called 68K drivers) will continue to
work as they have in the past, but inclusion of the new I/O framework marks the
beginning of the transition of all Macintosh drivers to the native model described in this
chapter. The model standardizes Macintosh driver design so that PCI and non-PCI
device drivers can be written to a single specification. Except for SCSI Interface Modules
(SIMs), drivers that conform to the new driver framework will work unchanged in
future releases of Mac OS. SIMs are discussed in Chapter 13, “SCSI Drivers.”

Terminology

The following list defines new terms used in the rest of this book:

Application programming interface (API): The API is the rich set of Mac OS services
available to application-level software, including the Macintosh Toolbox routines.
Drivers do not have access to this set of services.

Code Fragment Manager (CFM): The CFM is the part of Mac OS that loads code
fragments into RAM and prepares them for execution. The CFM is fully described in
Inside Macintosh: PowerPC System Software.

Disk-based driver: Disk-based drivers are drivers that are stored in the Macintosh file
system, in the Extensions folder. Disk-based drivers are CFM fragments in files of type
"ndrv' with an unknown creator. A disk-based driver may replace a ROM-based
driver if it is a newer version. Disk-based drivers are not available during system
startup, before the file system is working.

Expert: The code that connects a class or family of devices to the operating system is
called an expert. Low-level experts and family experts are defined below.

Family: A device family is a collection of devices that provide the same kind of I /O
functionality. One example of a family is the set of Open Transport devices with their
corresponding Open Transport Data Link Provider Interface (DLPI) drivers. Another
example is the family of display devices.

Family administrator: A family administrator is a high-level system component that
communicates configuration information to a device, using whatever mechanism is
appropriate. Configuration information may be known only to the user or may be
stored in a file system, and it may not be available when an entry is first added to the
Name Registry. A family administrator can communicate with a family expert, a
driver, or the Name Registry to install and retrieve configuration information. Mac OS
currently contains no family administrators; it may include them in the future, or
third parties may supply them.

Family expert: A family expert, or high-level expert, is the code responsible for locating,
initializing, and monitoring all entries in the Name Registry that are associated with
devices in its family or service type. Hence, a family expert is the device administrator
for a family. Family experts run when devices are connected to the system (usually at
system startup time), but they are not part of the primary data paths to the devices.
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= Family programming interface (FPI): An FPl is a set of services used between a
family expert and the devices in the expert’s family. For example, Open Transport
exports the routine f r eensg as part of its FPI. This routine returns a STREAMS buffer
to the general memory pool maintained by the Open Transport subsystem. The
f r eensg call is not accessible to software outside the Open Transport family. Each
FP1 is supported by routines in a family library.

= Low-level expert: Low-level experts are software utilities that install entries in the
Name Registry for specific devices. Low-level experts may reside in system firmware,
PCI card firmware, or Mac OS and may run at any time. A low-level expert’s task is
to install enough information in each Name Registry entry to permit device control
and driver matching. The information must be presented to Registry clients in a
generalized form, independent of hardware configuration. Primary clients of the
Registry at present are run-time device drivers and family experts (defined below).

= Name Registry: The Name Registry is a high-level Mac OS service that stores the
names and relations of hardware and software components in the system that is
currently running. In the second generation of Power Macintosh, the Name Registry
is used only for I/O device and driver information, serving as a rendezvous point
between low-level or hardware-specific experts and family experts. The Registry
supports both name entry management and information retrieval.

» Physical device: A physical device is a piece of hardware that performs an1/O
function and is controlled by a device driver. An example of a physical device is a
video accelerator card.

= Property: Each piece of information associated with an entry in the Name Registry is
called a property. For example, adri ver - descri pti on property is associated in the
Registry with each device that has a unique associated driver. It contains the driver
description data structure described in “Native Driver Package” beginning on page 87.

= ROM-based driver: ROM-based drivers are drivers that are stored in a PCI expansion
ROM. They are the only kind of drivers that are usable when the system is starting up
and the file system is not yet available, as described in Chapter 5, “PCI Open
Firmware Drivers.” PCI ROMs usually also contain native run-time drivers for
Mac OS, stored as CFM fragments; they are described in Chapter 7, “Writing Native
Drivers.”

= Scanning: Scanning is the process of matching a device with its corresponding driver.
Scanning to determine device location and driver selection is one of the problem areas
discussed in this chapter.

= System programming interface (SPI): The SPI is the set of services that Mac OS
provides for drivers or other pieces of software that are installed and run in the
operating system. For example, QueueSecondar yl nt er r upt Handl er is an SPI
routine in Mac OS that defers interrupt processing. Application-level software does
not generally have access to the SPI. For more information about the Macintosh SPI
for PCI cards, see Chapter 9, “Driver Services Library.”

» Virtual device: A virtual device is a piece of code that provides an 1/O capability
independently of specific hardware. An example of a virtual device is a RAM disk. A
RAM disk performs disk drive functions but is actually just code that reads and writes
data in the system’s physical memory.

Terminology
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Concepts

To prepare for changes in current and future releases of Mac OS, Apple is introducing
several new or modified concepts in the second generation of Power Macintosh
computers. The concepts include

= separation of application and system services
= common packaging of loadable software

» the Name Registry

= families of devices

= ROM-based and disk-based drivers

= noninterrupt and interrupt-level execution

= generic and family drivers

» driver descriptions

These concepts are discussed in the next sections.

Separation of Application and System Services

Previous versions of Mac OS had only one kind of operating-system interface, an
application programming interface (API). This meant that all Mac OS services were
available to all varieties of Macintosh software. With the second generation of Power
Macintosh computers, Apple starts distinguishing between APIs and system programming
interfaces (SPIs). The distinction must be made because programming contexts are
becoming increasingly specialized as Mac OS evolves.

In present and future Mac OS releases, Toolbox services (for example, the Modal Di al og
function and Menu Manager calls) are not available to drivers. Drivers operate outside
the user interface and the application software environment.

Note

Commands available through the concurrent Device Manager still
constitute an API for generic drivers, as described in “Generic and
Family Drivers” on page 69. O

Family services required by device drivers are provided by family experts, using family
libraries. These services are not available to applications.

The separation of application and system services in Mac OS is a big change that starts
with the second generation of Power Macintosh computers. The difference between the
old API model and the new API/SPI model is diagrammed in Figure 6-1 on page 64.
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Figure 6-1 New system model
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Native device drivers and SIMs are created as CFM fragments. Each CFM fragment
exports a driver description structure that the system uses to locate, load, and initialize
the driver or SIM. Previously, device drivers were created as Macintosh resources.

Hence native drivers are packaged differently from previous Macintosh drivers. Because
they are CFM fragments, they are allowed to have persistent global data storage in
specific locations, and they can be written in a high-level language without assembly-
language headers. Each instance of a single driver or SIM has private static data and
shares code with every other instance of that driver or SIM. The CFM is responsible

for maintaining the driver context (similar to the “A5 world” in previous Macintosh
programming). A device driver no longer locates its private data by means of a field in
its device unit table entry.

One consequence of drivers and SIMs as CFM code fragments is that a single device
driver no longer controls multiple devices. Normally there is a driver instance for each
device, although only one copy of the driver’s code is loaded into memory.

The Name Registry

The Mac OS Name Registry is a database of system information. The native I/O
framework uses the Registry as a general storage and retrieval mechanism for family
experts and low-level experts. Device scanning code and the Name Registry help
separate system initialization and device driver initialization in a well-defined way, as
illustrated in Figure 6-2. The Name Registry is more fully described in Chapter 8.

Concepts
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Figure 6-2 Typical role of the Name Registry
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Although it does not drive the startup process, the Name Registry assists system startup
by providing a structure for storing information. It does this in several ways:

= During the computer’s startup process, low-level experts in the Macintosh ROM and
in PCI card expansion ROMs install and update system information in the Registry.

= Other software in the startup process can then use the Registry to locate devices
required to initialize the system.

= System firmware installs disk-based drivers and other system components in the
Registry when the file system becomes available.

= Disk-based experts can then use information in the Registry to locate and initialize
family devices.

= When device initialization driver code is called, the Registry provides configuration
information for device drivers and family experts.

These processes are marked by steps in Figure 6-2. In Step 1, low-level experts scan the
PCI bus for their device types and create name entries in the Name Registry that identify
device properties and contain device drivers. In Step 2, family experts locate all name
entries that match their service categories. In Step 3, family experts obtain device drivers
and call the drivers’ initialization routines.

To make driver design easier, the Name Registry lets all types of device drivers be
written identically, whether they are located in PCI expansion ROMs, system firmware,
or elsewhere. Drivers can expect basic hardware information to be available in the
Registry and are not required to locate or hard code this data.
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The Registry supports a comprehensive driver replacement capability, described in
“Finding, Initializing, and Replacing Drivers” beginning on page 140. All device entries
and their corresponding code (drivers or SIMs) exist in the device portion of the Name
Registry and are available for this process.

Families of Devices

Families are groups or categories of devices that provide similar or the same function-
ality and have the same basic software interface requirements. An example of a device
family is the set of devices that provide networking services to the system. These devices
are not the same—for example, Ethernet is not the same as LocalTalk—but they all run
within the Open Transport family and use the Open Transport libraries to augment the
SPI provided by Mac OS. A second example of a device family is the set of all display
devices. The concept of device family is critical to the Power Macintosh general-purpose
I/O interconnection scheme because it allows the needs of each device family to be

met independently of the needs of other families. The Name Registry helps PCI card
developers group devices together and provide family services for those devices.

Mac OS for PCI-based Power Macintosh computers provides built-in support for device
families such as the display family and the network family. Each of these families has
access to services that isolate system and application software from particular device
characteristics. For example, the Display Manager provides a uniform programming
interface—a family programming interface (FPI)—for display devices regardless of their
physical form. Similarly, the Open Transport subsystem isolates the remainder of the
system and applications from the particular characteristics of network devices. These
FPIs are provided by family libraries in Mac OS.

The Display Manager and PCI video drivers illustrate how a family of devices can
provide and utilize family-specific services. These services are complementary to the
services provided by the system software, because they are used by the family but are
not duplicated by the system and are not available to other components of the system or
to Macintosh applications. For a fuller discussion, see Chapter 11, “Graphics Drivers.”

A family expert such as the Open Transport expert interrogates the Registry for devices
of a certain service category, verifying only that they are of the right category. For
example, a software loopback device could appear in the Registry, the driver for which
would take data from a source and return it back to the same source. To install a loop-
back Registry entry, the loopback configuration software would call the Registry to
create an entry and to add the driver descriptor property with its driver information
containing the appropriate service category. In networking, the service category for a
loopback device is ' OTAN . Installing the loopback entry would be the work of a low-
level expert for loopback devices; there would be no bus associated with the loopback
device. The family expert for Open Transport would locate the loopback entry using
Registry calls, and it would initialize the driver in the Open Transport subsystem using
family-specific initialization mechanisms.
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ROM-Based and Disk-Based Drivers

ROM-based drivers are stored in PCI expansion ROMs. Disk-based drivers are located in
the Macintosh file system, in the Extensions folder.

ROM-based drivers with the correct information in their driver description structures are
installed and opened by the Macintosh firmware, acting as the driver’s client. These are
the only drivers available at the beginning of system startup.

Disk-based drivers are located and opened as needed. Once the file system is working,
Mac OS can replace outdated ROM-based drivers with disk-based drivers. Experts that
control disk-based drivers locate and initialize their drivers soon after. Drivers that are
disk-based but not under expert control, and that are not needed by Mac OS during
startup, remain uninitialized and unopened until a specific client requests access to the
device associated with the driver.

Noninterrupt and Interrupt-Level Execution

In prior releases of Mac OS there has been no clear distinction between application-level
programming and system-level programming. Restrictions about when certain system
services can be used and when they cannot are not fully defined.

In Mac OS releases starting with the second generation of Power Macintosh computers,
different execution levels will have different restrictions. Noninterrupt (task level)
execution may make use of nearly any operating-system or Toolbox service. Secondary
interrupt routines and hardware interrupt handlers are allowed only a small subset of
those services.

The discussion in this book uses the following definitions:

s Task level: the noninterrupt level on which most code, including applications, is
executed.

= Hardware interrupt level: the execution level of concern to driver writers. Hardware
interrupt-level execution happens as a direct result of a hardware interrupt request.
The software executed at hardware interrupt level includes installable interrupt
handlers for PCI and other devices as well as interrupt handlers supplied by Apple.

= Secondary interrupt level: the execution level similar to deferred task execution in
previous versions of Mac OS. The secondary interrupt queue is filled with requests to
execute subroutines that are posted for execution by hardware interrupt handlers. The
handlers need to perform certain actions but choose to defer the execution of those
actions to minimize interrupt-level execution. Unlike hardware interrupt handlers,
which can nest, secondary interrupt handlers always run serially.

Symmetric Multiprocessing

In future PCI-based Power Macintosh computers that feature symmetric multiprocessing
(SMP), a device driver will not be able to assume that hardware or secondary interrupt
level execution preempts all task level execution. In a four-processor system, for
example, one processor might be running a hardware interrupt handler, another running
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a secondary interrupt handler, and the other two running tasks. This behavior is
different from that of a uniprocessor system, where an interrupt handler normally runs
to completion between two task-level instructions. The difference is illustrated in
Figure 6-3.
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Figure 6-3 Uniprocessing and multiprocessing execution
Uniprocessor system Multiprocessor system
Task-level Interrupt Task-level Interrupt
driver code handler code driver code handler code

Instruction 1 Instruction 1
Instruction 2 Instruction 2
Interrupt | Instruction 1 Interrupt | Instruction 1
Instruction 2 Instruction 3 | Instruction 2
Instruction 3 Instruction 4 | Instruction 3
Instruction 3
Instruction 4

Symmetric multiprocessing changes some of the programming rules for driver writers.
Observe these cautions:

= If you use an atomic operation to reference a particular memory location at task level
(such as an atomic increment to a counter), you must also use atomic instructions
when referencing that location at hardware and secondary interrupt level.

= If you disable interrupts and use secondary interrupt level following the rules in this
book, you shouldn’t have any problems. If you assume that no task can be running
while your interrupt handler runs, your code will break on a multiprocessor system.

s If your driver disables interrupts for its device while running at task level, an inter-
rupt for a different device can still occur. The second interrupt may run concurrently
with your task-level device driver as shown in Figure 6-3.

Disabling hardware interrupts for synchronization purposes works safely in an SMP
environment. Disabling hardware interrupts on one processor guarantees that interrupts
are off on every processor and that no other processor can execute code that runs with
interrupts off. If another processor tries to disable interrupts, it will loop while waiting
for the first processor to turn interrupts on again. This feature makes it critical that
interrupts be disabled for very short periods of time.

Similarly, in an SMP environment only one processor at a time can run at secondary
interrupt level. Other processors trying to run at secondary interrupt level will do no
useful work until the first processor exits that level. For this reason, secondary interrupt
level should be used as sparingly as possible.
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Generic and Family Drivers

The Macintosh native driver model defines a new driver packaging format, described in
“Driver Package,” later in this chapter. The driver package may contain a generic driver
or a driver that is specific to a family of devices. Generic drivers have a family type of
"ndrv' and are controlled by the Device Manager (described in Inside Macintosh:
Devices). Family drivers have other type designations and do not act as Device Manager
clients. They are not installed in the Device Manager unit table and do not export the
generic driver call interface. The generic driver call interface and runtime framework are
described in “Generic Driver Framework” beginning on page 70.

Most drivers are generic. However, some drivers belong to device families with special
characteristics that do not fit into the generic driver model; they are drivers controlled by
family experts. An example of this type of driver is a networking device driver for the
Open Transport environment. Networking device drivers under Open Transport are
STREAMS drivers that provide industry standard STREAMS/DLPI interfaces to the
Macintosh system. They are discussed in Chapter 12, “Network Drivers.”

Drivers controlled by family experts use FPIs. FPIs are defined for each family and are
not accessible to Macintosh applications. Should an application discover an FPI and try
to make an FPI call, the application is likely to fail. In the next release of Mac OS soft-
ware, the application will probably crash with an access violation because the device
driver services are in a different address space than Macintosh applications.

All drivers with family-private FPIs must export well-defined family FPI names for both
FPI data and FPI functions. Clients of family drivers load the CFM-based driver and call
the exported names. The CFM connects the driver client to the CFM device driver
exports. PCI device drivers and SIMs that provide private family interfaces need not
provide an additional native driver interface to the Macintosh system.

As an example of a family interface, Open Transport requires a family data structure
called i nst al | _i nf o and an FPI function whose name is Get OTI nst al | | nf 0. The

i nst al | _i nf o structure is used by Open Transport to link STREAMS modules to
STREAMS device drivers. The Open Transport family expert calls the device driver FPI
Cet OTl nst al | | nf o function as part of the installation process for native drivers of the
" OTAN' service category. See Chapter 12, “Network Drivers,” for more details on Open
Transport driver requirements.

Other family drivers are described in Chapters 11 and 13.

Note

Device drivers need to provide only one programming interface. If
a device driver chooses to provide more than one service category
programming interface, however, it must conform to the standards
of each interface. O
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Driver Descriptions

Drivers are CFM code fragments and must export driver description structures to
characterize their functionality and origin. The structures must be exported through
the CFM’s symbol mechanism, using the symbol name TheDr i ver Descri pti on. The
complete structure is defined in “Driver Loader Library” beginning on page 117. It is
based on the dri ver - descri pti on property associated with device entries in the
Name Registry, described in Chapter 8.

The Dri ver Descri pti on structure is used by scanning code to

» match Registry entries to drivers

= identify device entries by service type or family

= provide driver version information

» provide driver initialization information

» allow replacement of ROM-based drivers with newer disk-based drivers

By providing a common structure to describe drivers, the system is able to regularize the
mechanisms used to locate, load, initialize, and replace them. Details of how this works
are given in “Finding, Initializing, and Replacing Drivers” beginning on page 140.

Mac OS treats any CFM code fragment that exports a driver description structure as a
native driver.

Generic Driver Framework

70

This section describes the system software framework in the second generation of Power
Macintosh for generic run-time drivers—that is, drivers of family type ' ndrv' .

Device Manager

The traditional Macintosh Device Manager controls the exchange of information
between applications and hardware devices by providing a common programming
interface for applications and other software to use when communicating with generic
device drivers. Normally, applications don’t communicate directly with generic drivers;
instead, they call Device Manager functions or call the functions of another manager that
calls the Device Manager.

In the second generation of Power Macintosh, two significant additions have been
made to the Device Manager. First, drivers can now process more than one request
simultaneously. Such drivers are called concurrent drivers. Second, a new entry point
has been added, similar to | CDone. It is called | OConmmand| sConpl et e. Details on
concurrent drivers and their use of | OConmand| sConpl et e are given in “Completing
an I/O Request” beginning on page 83.

Generic Driver Framework
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Driver Package

The native driver model defines a new driver packaging format. This package may
contain generic drivers or family drivers, as explained in “Generic and Family Drivers,”
earlier in this chapter.

The native driver package is a CFM code fragment that may reside in the Macintosh
ROM, in a PCI expansion ROM, or in the data fork of a Preferred Execution Format
(PEF) file. File-based generic and family driver fragments have no resource fork, have a
file type of ' ndrv', and have an unspecified file creator. ROM-based PCI drivers may be
replaced by disk-based versions of the driver located in the Extensions folder. PEF and
the CFM are described in Inside Macintosh: PowerPC System Software.

A native driver package must define and export at least one data symbol through the
CFM'’s export mechanism. This symbol must be named TheDr i ver Descri pti on;itis
a data structure that describes the drivers type, functionality, and characteristics. This
data structure is described in “Driver Description Structure” beginning on page 88.

Depending on the type of driver, additional symbols may need to be exported. The
generic' ndrv' driver type requires that the CFM package export a single code entry
point called DoDr i ver | Q which passes all driver I/O requests. DoDr i ver | Omust
respond to the Open, Cl ose, Read, Wite, Control,Status,KilllQlnitialize,
and Fi nal i ze commands. Other driver types for device families export and import
symbols and entry points defined by the device family or device expert.

Driver Services Library

The native PCI driver framework includes a Driver Services Library (DSL) that supplies
the SPI required by most generic drivers. SPIs are described in “Separation of
Application and System Services” beginning on page 63. The driver loader links the DSL
automatically to each generic driver at load time. Mac OS may provide additional
services to drivers in certain families or categories.

The types of services represented in the Driver Services Library include
= request processing services

= memory management services

= interrupt management services

= secondary interrupt handlers

= atomic operation services

= timing services

» operating system utilities

The calls supplied by the DSL and the family support libraries constitute the complete
set of services provided to device drivers. The calls in the DSL are the only driver
interfaces guaranteed to be maintained in subsequent releases of Mac OS. Calls to
services outside of the DSL and the family support libraries (for example, calls to
Toolbox traps, low-memory globals, and similar vectors) will result in driver failure.
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Converting Previous Macintosh Drivers

Previous Macintosh drivers have used standard ways of handling scheduling, memory
management, interrupts, and configuration. Macintosh drivers have also had the
freedom to call a set of services that are not available in the native driver model.

Restricted Access to Services

As mentioned in “Separation of Application and System Services” beginning on page 63,
future releases of Mac OS will distinguish between APIs and SPIs. Services such as
modal dialog displays or Menu Manager calls will not be available to drivers; instead,
drivers will use only the interfaces provided by the Driver Services Library. Those parts
of a driver that require services provided by the Macintosh Toolbox must be written to
run at noninterrupt (task) level.

In addition to restricting the types of Toolbox calls drivers are able to make, there are
changes to existing mechanisms that will allow drivers written for the second generation
of Power Macintosh to be used unchanged in the subsequent releases of Mac OS.

The section “Driver Migration” beginning on page 152 documents the programming
interface changes between previous Mac OS driver calls and the native driver services
provided for PCI drivers. It also lists the replacement calls for existing mechanisms.

Error Returns

As is always the case with programming interfaces, native driver code should check the
error returns from calls to system services. The new driver model includes the following
32-bit error return type:

typedef |ong OSStat us;

The lower 16 bits of OSSt at us are equivalent to the existing OSEr r type, described in
Inside Macintosh: Overview. In current versions of Mac OS, the upper 16 bits contain the
sign extension of the lower 16 bits. At present there are just two possible values for the
upper 16 bits, all 1s or all Os; other values are reserved for future use by Apple.

Ensuring Future Compatibility
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Several important environmental differences between the current release of Mac OS and
future releases affect native drivers. Three of them are the following:

» Substantial changes in task execution and interrupt handling affect native drivers. The
tasking model and interrupt handling mechanisms will be increasingly hidden behind
the Driver Services Library, the Driver Loader Library, and the Name Registry. Drivers
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that do not use the native libraries provided with the current release of Mac OS will
not work with subsequent releases.

= In the current Mac OS environment there is one address space, which all applications,
Toolbox services, and drivers share. In future versions of Mac OS there will be many
address spaces, and applications and their associated data may exist outside the
address space in which the kernel, driver services, and drivers exist. It is not possible
to verify correct address space usage using the current version of Mac OS, but strict
adherence to the rules outlined below will guarantee success with future releases.

= SCSI SIMs for current releases of Mac OS will not be compatible with future releases.
SIMs are discussed in Chapter 13, “SCSI Drivers.”

Task execution and interrupt handling are discussed in detail in various sections of
Chapters 7 through 9. Toolbox services that are not available to native drivers are listed
in “Driver Services That Have No Replacement” beginning on page 152. Addressing
problems are discussed next.

Note

The issues discussed here do not apply to 68K drivers, even though such
drivers are also called through the Device Manager. All 68K drivers are
executed by Macintosh emulation software. O

Copying Data

To allow compatible driver development on the current version of Mac OS, future
releases of Mac OS will give drivers that are managed by the Device Manager a
restricted set of facilities for mapping address spaces and copying data from one space
to another. Device families, such as video displays, will have additional family-specific
facilities to address their data transfer needs. Hence, drivers that exchange data with
applications via the Device Manager must do so via PBRead and PBW i t e calls.
Depending on the size of the data buffer, the Device Manager will copy or map the

| OPar anBl ockRec data structure for these calls and will copy or map the associated

i oBuf f er up toi oReqCount bytes.

PBOpen, PBC ose, PBCont r ol , PBSt at us, and PBKi | | | Ocalls will keep the

| OPar anBl ockRec and Cnt r | Par amdata structures accessible; however, no
referenced data will be copied or mapped. This means that the csPar amfields of
the Cnt r | Par amblock must not contain buffer pointers to additional data, and the
i oBuf f er field will be ignored for Device Manager calls (such as PBOpen and
PBC ose) for which it is not a documented input parameter. The Device Manager
will not copy or map data pointed to by either of these fields.

In the past, applications and device drivers have extended the size of the

| OPar amBl ockRec and Cnt r | Par amstructures to tag additional information into
a device driver request. This was possible because applications and device drivers
shared a single address space. In future releases of Mac OS, the Device Manager
will copy only the | OPar anBl ockRec and Cnt r | Par amstructures as defined in
Inside Macintosh: Devices.
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Synchronous and Asynchronous Driver Operation

As a result of tasking and addressing issues in future releases of Mac OS, synchronous
and asynchronous driver calls will handle data buffers differently. Synchronous calls to
native drivers through the Device Manager will run in the execution context of the
calling application. This will allow direct accessibility to all data in | OPar anBl ockRec
or Cnt r | Par amstructures and their associated substructures.

Asynchronous calls to native drivers will make I/O operations within the device driver
run in a separate task context. This means that only data that has been copied or mapped
by the Device Manager will be available to the native code that processes the I/ O request.

One result of the different behavior of asynchronous and synchronous drivers is that the
writer of a native driver must make careful implementation choices. The driver may be
completely synchronous and do minimal data copying or mapping, but the application
calling the driver will halt until the I/O request is complete. Alternatively, the driver
may be completely asynchronous and concurrent. This will free the application from
waiting for I/O operations to finish, but will require that all data be transferred in an

| OPar anBl ockRec or Cnt r | Par amstructure, or via PBRead and PBW i t e call buffers
pointed to by the i oBuf f er field of an | OPar anBl ockRec structure.

A driver can also support a mix of asynchronous and synchronous calls. This option is
straightforward for nonconcurrent drivers and is possible (with restrictions) for
concurrent drivers. Mixing asynchronous and synchronous calls results in a more
complex driver call interface but may allow for special-purpose optimizations.
Nonconcurrent drivers must use Device Manager queueing and expect to handle no
more than one outstanding I/O request at a time. This mechanism lets the Device
Manager handle address mapping or copying invisibly.

To support a mix of synchronous and asynchronous commands within a concurrent
driver, the driver must ensure that PBRead and PBW i t e calls are the only asynchronous
calls. All other calls must be synchronous. Concurrent drivers supporting a mix of
synchronous and asynchronous calls that result in queued I/O requests are not possible
with the current version of Mac OS because the driver would have to be aware of task
switching primitives that are not available. A concurrent driver that allows only
synchronous control and status calls, and never queues these requests, can make use of
data that is available through the | OPar anBl ockRec structure.

Sharing Data With Applications

A concurrent or nonconcurrent driver wishing to share a data buffer with an application
should do the following. The application should issue an asynchronous read or write
command to the driver supplying the data buffer address and byte count in the

i oBuf f er and i oReqCount fields in the | OPar anBl ockRec structure.

To indicate to the Device Manager that the i oBuf f er field to be shared must be mapped
(not copied), the i oMapBuf f er flag must be set in the i oPosMode field of the

| OPar anBl ockRec structure. The driver and the application can share the buffer for the
duration of the asynchronous call. When sharing is complete, the driver should complete
the asynchronous call using the | OCommandl sConpl et e service described on page 84.
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Note

The issues discussed here are separate from the concurrent program-
ming issues and requirements discussed in “Concurrent Generic
Drivers” beginning on page 82. The addressing issues detailed

here affect only the movement of data between applications and
device drivers. O

Power Management

The Macintosh Power Manager API is still being defined and is likely to change in future
releases of Mac OS. You are encouraged to make use of the power management facilities
in family experts instead; these are described in later chapters of this book. If you must
use the Power Manager, be careful to use only its published APL

Summary

The I/O architecture defined in this chapter sets a durable standard for writing
Macintosh device drivers. This standard will be supported in future releases of Mac OS,
and device drivers that conform to it will work unmodified and efficiently with those
releases. Successful execution of this strategy, which allows native device drivers to work
portably and effectively across future Mac OS releases, depends upon the successful
adoption of the guidelines summarized in this section.

Use the System Programming Interfaces

The use of SPIs is essential to a driver’s portability to future Mac OS releases. These are
the programming interfaces for device drivers that are guaranteed to be common across
Mac OS system versions. They consist of

» The Name Registry library NaneRegi stryLi b
» The Driver Services library Dri ver Servi cesLi b
= Aservice library specific to each high-level device family

When writing a device driver, never use Toolbox API calls. Doing so will prevent your
device driver from being compatible with future Mac OS releases. Instead, use the
functionality provided by the corresponding SPIs. These sets of calls let you deal more
naturally with device driver issues that the Toolbox API does, because the Toolbox is
intended for applications.

You can ensure compliance with the foregoing rule by not letting your driver link with
application libraries such as | nt er f aceLi b, Mat hLi b, St dCLi b, and so on. Any
necessary Toolbox functionality, such as driving a graphical user interface, should be
accomplished by separate application-level software on behalf of the device driver.
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Use the Name Registry

The Name Registry provides a unified way of identifying or obtaining information about
many system resources, not just about devices. When writing a device driver, never
acquire information from low memory or through Toolbox API calls because doing so
will prevent your driver from being compatible with future Mac OS releases. Instead,
use the Name Registry to acquire the information. During driver initialization, family
experts facilitate this process by passing each driver a RegEnt r yl Drepresenting its
physical device. By using the RegEnt r yl Dand the Name Registry a device driver can
find all the information it is likely to need.

For further information about the Name Registry, see Chapter 8, “Macintosh Name
Registry.”

Summary
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This chapter tells you about Macintosh native run-time drivers in the second generation
of Power Macintosh computers. It covers the following subjects:

= how generic native drivers interact with the Device Manager

= how native drivers operate concurrently

= the context in which driver code is executed

= how to write a native device driver

s the Driver Loader Library

s finding, initializing, and replacing drivers

» migrating driver code from the 68000 environment to the PowerPC environment

You need to understand the information in this chapter if you are going to write or adapt
a driver to work with Mac OS. This chapter assumes that you are generally familiar with
programming Power Macintosh computers, particularly with using the Device Manager
and the Code Fragment Manager.

Note

The discussions of the Device Manager and the Driver Loader Library in
this chapter apply only to generic drivers. For a description of generic
drivers, see “Generic Driver Framework” beginning on page 70. O

Native Driver Framework
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All native (PowerPC) device drivers are Code Fragment Manager (CFM) fragments with
the following general features:

= CFM container format
= CFM programming interfaces exported from the driver to Mac OS
= CFM programming interfaces imported by the driver from Mac OS

Generic drivers are CFM fragments that work with the Device Manager and the Driver
Loader Library; family drivers are CFM fragments that use other mechanisms. Generic
and family drivers are distinguished in “Generic and Family Drivers” beginning on

page 69. The general characteristics of both kinds of native drivers are briefly summarized
in the next sections.

Native Container Format

The container format for native PowerPC device drivers is the container format
supported by the Code Fragment Manager. The CFM format provides all mechanisms
necessary for drivers, is integrated with Mac OS, and is documented in Inside Macintosh:
PowerPC System Software.

Previous device drivers for use with 68000-family microprocessors (called 68K drivers)
were located in' DRVR' resources, as described in Inside Macintosh: Devices.

Native Driver Framework
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Native Driver Data Exports

All native drivers, both generic and family, must export a single data symbol
that characterizes the driver’s functionality and origin. This symbol, called
TheDr i ver Descri pti on, is exported through the CFM’s symbol mechanism.
It is documented in “Driver Description Structure” beginning on page 88.

Driver description information helps match drivers with devices. It also lets the
Device Manager pick the best driver among multiple candidates. For example, it
lets a newer driver on disk override a ROM-based driver.

Native Driver Code Exports

Previous Macintosh drivers exported five callable routines: Qpen, Cl ose, Pri e,
Cont rol , and St at us. Native device drivers export a single code entry point, called
DoDri ver | Q that handles all Device Manager operations. It is a selector-based entry
point with command codes that specify the I/O action to be performed. The device
driver can determine the nature of the I/ O request from the command code
(Initialize Finalize, Open,C ose, Read, Wite, Control,Status,KilllQ
Repl ace, or Super seded) and command kind (Synchr onous, Asynchr onous, or
| mredi at e). DoDr i ver | Ois described in “DoDriverlO Entry Point” beginning on
page 93.

Native Driver Imports

The CFM requires that fragment imports be identified in some manner. With generic
drivers, this is done by linking the device driver fragment code to the Driver Services
Library; family drivers may also be linked to family libraries. The linking lets the

fragment’s symbols be bound at execution time. The Driver Services Library or a family

library should be used instead of a Toolbox-based library when linking a device driver.

IMPORTANT

Native device drivers should use the CFM’s import library mechanism

to share code or data. With this technique, the CFM creates an import

library fragment when the first driver is loaded. When another driver is

loaded, it establishes a connection to the existing library, letting the two

drivers share code or data. For further information about the CFM, see

Inside Macintosh: PowerPC System Software. This book is listed in “Apple
Publications” beginning on page xxi. 4

In the past, driver imports have not always been rigidly characterized. The reason
for now explicitly specifying the system entry points available to native drivers is
to guarantee compatibility of drivers with future releases of Mac OS. For a further
discussion, see “Driver Services Library” beginning on page 71. See also the family-
specific information in Chapters 11, 12, and 13.

Native Driver Framework
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Drivers for Multiple Cards

Drivers that support more than one PCI expansion card (or multiple sections on one
card) should use the Code Fragment Manager to import a shared library for both code
and data. The CFM links instances of the native driver on the fly when the driver is
loaded by the Driver Loader Library. Follow these design guidelines:

s Put the shared library in the Extensions folder in the System Folder.

= Separate your code and data into card-specific and card-independent portions.
Card-specific portions go into the driver, and card-independent portions go into
the library.

= Load the driver multiple times with the functions | nst al | Dri ver Fr onDi sk or
Instal | Driver FronFi | e, passing the RegEnt r yl D of each device as a parameter.
(If the driver is in ROM, use | nst al | Dri ver Fr om\Venor y.) Instances of the driver
for each card will be installed in the unit table with different Ref Numvalues.

You can construct a driver that exports services for different families, such as both
"ndrv' and' otan', using a driver description structure with multiple service
categories defined.

Note

The driver is responsible for synchronizing accesses to the shared library
in such a way that it protects shared data structures. You can use DSL
mechanisms to help with synchronization. O

The Device Manager and Generic Drivers

The Device Manager is part of the Macintosh system software that provides communica-
tion between applications and devices. The Device Manager calls generic device drivers;
it doesn’t manipulate devices directly. Generic drivers accept calls from the Device
Manager and either cause device actions or respond by sending back data generated by
devices. For further general information about drivers and the Device Manager, see
Inside Macintosh: Devices.

The Device Manager has traditionally been the gateway for device drivers to use the
Macintosh Toolbox. For 68K drivers, the Device Manager’s capabilities and services
remain unchanged. For generic drivers compatible with the PowerPC microprocessor,
the Device Manager has changed to support PowerPC driver code and to permit drivers
to operate concurrently.

Native Driver Differences

For detailed information about constructing native device drivers, see “Writing a Generic
Device Driver,” later in this chapter. If you are already familiar with writing 68K device
drivers, using former versions of the Device Manager, the following are highlights of the
principal differences:

= A native driver receives its parameters through the single DoDr i ver | Oentry point,
subject to the calling conventions specified by the PowerPC run-time architecture. If a
DoDr i ver | o routine is written in C, the correct behavior is guaranteed. This is a
fundamental change from the way 68K drivers received parameters.

Native Driver Framework
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= A native driver doesn’t have access to its driver control entry (DCE) in the unit table.

= | mredi at el OCommandKi nd is passed in the i 0Ki nd parameter to specify that a
request must be executed immediately. If so, the driver must process the request
completely and the result of the process must be reflected in the return value from the
driver. I nitialize, Finalize, Qpen,d ose, KilllQ Repl ace, and Super seded
calls are always immediate.

= If the i oKi nd parameter is either Synchr onous| OCommandKi nd or
Asynchr onous!l OComrandKi nd, the return value from the driver is ignored.
The driver must call | OConmandl sConpl et e at some future time.

s ThelnitializeandFinalizecommands are sent to the driver as its first and last
commands. | ni ti al i ze gives the driver information it needs to start up. Fi nal i ze
informs the driver that the system needs to unload it.

= Drivers now receive all Open and Cl ose calls, which connect the driver independently
of initialization and finalization. In the past, the first (and only) Open and Cl ose calls
were used as the initialization and finalization mechanism.

= All native drivers must accept and respond to all command codes. The Read_Enabl e,
W ite_ Enabl e, Control Enabl e, and St at us_Enabl e bits in the DCE are
ignored. Native drivers must keep track of I/ O permissions for each instance of
multiple open actions and return error codes if the permissions are violated.

= The existing Device Manager processes zero-length reads and writes on behalf of the
driver. New drivers must accept zero-length read and write commands and respond
to them in an intelligent way without crashing.

= Ki ||| Oisno longer a control call; it is now its own command. For backward
compatibility, the Device Manager converts Ki | | | Otraps into Ki | | | Ocommands.
It passes the old csKi | | code control call (csCode = 1) without acting on it.

s The Code Fragment Manager sends CFM initialization and termination calls to a
driver when the driver is loaded and unloaded. The CFM initialization routine, if
present, will run prior to the driver being initialized by the Device Manager. It is
possible that the driver will be loaded and its CFM initialization routine run even
though it is never opened and, therefore, never closed. It is important that any
processing done by a CFM initialization routine be undone by the CFM termination
routine. The Device Manager may load a number of drivers looking for the best
candidate for a particular device. Only the best driver is opened and remains loaded.
All other CFM connections are closed, causing the CFM termination routine to run.

» Native drivers never jump to the | ODone routine. To finish processing an I/ O request,
a generic native driver must call | OConmand| sConpl et e to notify the Device
Manager that a given request has been completed.

= To determine the kind of request or kind of command, the i oTr ap field of the old
Device Manager parameter block has been replaced with routine parameters called
t heCode and t heKi nd.

= A native driver must be reentrant to the extent that during any call from the driver to
| OConmandl sConpl et e the driver may be reentered with another request.

= A native device driver does not have any sort of header. It must however, export
a data symbol called TheDr i ver Descri pti on. A driver uses this data structure
to give header-like information to the Device Manager. The Device Manager uses
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the information in TheDr i ver Descri pti on to set the dCt | Fl ags field in the
driver’s DCE.

» A native device driver cannot make use of the dCt | EMask and dCt | Menu fields of its
driver control block.

s Ifyou set thei oBuf f er field in an I/O parameter block to NULL, the Device Manager
will not pass the buffer to a native driver (but it will not return an error either).

= Native drivers cannot be used for creating desk accessories.

IMPORTANT

Native drivers may use only those services provided by the Driver
Services Library or family libraries. The Driver Services Library is
described in Chapter 9. a

Native Driver Limitations

The ability of Mac OS to support generic native drivers does not mean that Mac OS
contains a fully native I/ O subsystem; at present the Device Manager still runs in

68K code. In addition, the 68K emulator can service interrupts only on 68K instruction
boundaries. As a result, the performance of a native device driver may be greater or
less than the performance of its 68K equivalent. At this time, Apple has made no
commitment to furnish either a native version of the Device Manager or a combined
native-68K version.

The discussions of generic native drivers in the previous sections apply only to drivers
managed by the Device Manager. Other driver-like things, such as Apple Desktop Bus
drivers, which are not managed by the Device Manager, realize no benefit from the
Device Manager’s concurrency features. These features are discussed in the next section.
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Previously, the Device Manager let drivers process only one request at a time. Although
multiple requests could be pending for a driver, the Device Manager passed each new
request only when the it was certain that the driver was idle.

Many clients of the present Device Manager contain workarounds that let the driver
handle multiple requests concurrently. The Device Manager now lets native PowerPC
device drivers handle concurrent tasks more simply.

Drivers that support simultaneous requests should set the kdri ver | sConcurrent bit
of thedri ver Runt i me flags word in the driver description structure. In concurrent
mode, the Device Manager alters its request management as follows:

s AllI/O requests it receives are immediately forwarded to the appropriate driver.

s ThedrvrActi ve bit (bit7) in the dCt | FI ags field of the device control block is
never set.
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= When a driver chooses to do standard Device Manager queuing, the parameter blocks
corresponding to its requests are placed onto the device’s request queue rooted by the

dCt | QHdr field of the device control block.

= A driver that chooses to queue requests to an internal queue should set the
kdri ver Queues| OPBbit in the dri ver Runt i ne flags word in the
Driver Descri pt or structure. This bit prevents the Device Manager from
queueing the request to the DCE request queue. Drivers using the
kdri ver Queues| OPB option bit must dequeue the I/O parameter block (IOPB)
from any internal queues before calling | OConmmand| sConpl et e.

= A driver must use the | OComrandl sConpl et e service to complete a request. It
may not use the original | ODone service. | OConmand| sConpl et e is described in
the next section.

= A driver is responsible for ensuring that all requests have been completed prior to
returning from a Fi nal i ze request. Once a Fi nal i ze request has been made to a

concurrent driver, no further requests will be made to the driver until the driver has

completed the Fi nal i ze request and the driver is again initialized.

Completing an 1/0 Request

To replace the | ODone routine and its associated vector j | ODone, a new routine has
been added to the Device Manager called | OConmmand| sConpl et e. The difference
between | ODone and | OCommand! sConpl et e is that while | ODone initiates request
completion processing for a request that is implicitly designated by the request queue
head, a caller of | OCCommand| sConpl et e must explicitly specify the request that is to
be completed.

After a nonimmediate | OCommandKi nd command has been accepted, the driver
performs the actions implied by the command and the IOPB contents. When the
command has been processed, the driver must complete the command.

The driver must identify the command it is completing; this is done by passing the
command ID to | OConmand| sConpl et e. The command ID is provided to a driver
as the first parameter to its I/O entry point, as well as being stored in the IOPB’s

i oCndAddr field (ThePb -> i oPar am i oCndAddr ).

As a result of a completion, the Device Manager takes several actions. If the command
was performed synchronously, the I/O trap finishes. If the command was performed
asynchronously, the requested 1/O completion routine is invoked. The routine

| OCommandl sConpl et e stores the st at us value in the IOPB r esul t field. The driver

should never try to modify r esul t .

Concurrent Generic Drivers
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IOCommandIsComplete

DESCRIPTION

| OCommand! sConpl et e lets a driver tell the Device Manager that an I/O request has
been completed.

0SSt at us | OCommandl sConpl ete (1 OConmandl D | D,

XSErr result);
ID Specifies the ID of a command.
resul t Returns the status value to place in the IOPB.

The parameter | D specifies the ID of a command being completed. The value of this ID is
opaque and may be dependent on the operating system version, as discussed in the note
on page 216. The parameter r esul t specifies the status value to place in the IOPB. The
driver must make sure that the request that corresponds to Command is not queued
internally when it calls | OCommandl sConpl et e, and it may not access the parameter
block afterward.

EXECUTION CONTEXT

RESULT CODES

84

| CCommandl sConpl et e may be called from task level or software interrupt level, but
not from hardware interrupt level. For a list of the execution contexts of other system
routines that support native drivers, see “Service Limitations” beginning on page 282.

noErr 0 No error
par ankrr -50 Bad parameter

Note
The OSSt at us type is described in “Error Returns” on page 72. O

Concurrent 1/0O Request Flow

The movement of multiple driver I/O requests from clients through the Device Manager
to concurrent drivers and back again follows these steps:

1. A client issues an I/ O request.

2. The request (in the form of an IOPB) is passed to the Device Manager.

3. The Device Manager uses the r ef Numin the IOPB to locate the appropriate driver.
4.

The Device Manager checks the kdr i ver Queues| OPB option bit. If the value of
the bit is f al se, the Device Manager adds the IOPB to the driver’s DCE-based
request queue.
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10.

11.
12.

13.

. The Device Manager invokes the driver’s DoDr i ver | Oentry point.

. The driver may choose to leave the request on the DCE queue; alternately, if it is

using the kdr i ver Queues| OPB bit, the driver may post the request to a privately
managed queued.

. The driver starts the I/O action; if it is truly asynchronous, it returns to the Device

Manager without calling | OConmand| sConpl et e.

. If the client issued the request synchronously, the Device Manager waits for the

completion of the request; otherwise, it returns control to the client.

. Some time later, the driver determines (through a primary or secondary interrupt

routine) that the device I/O action has finished. At this time, the driver scans its
private queue looking for the IOPB representing the I/O action.

The driver uses the IOPB command| Dstored at (ThePb ->i oPar am i oCndAddr ) to

issue an | OCommandl sConpl et e call. Drivers using the kdr i ver Queues| OPB bit

must make sure the IOPB is not on any queue when calling | OConmand| sConpl et e.

The Device Manager places the result in the IOPB.

If the I/ O request was issued synchronously, control returns to the client. If the I/O
request was issued asynchronously, the Device Manager invokes the client’s
completion routine.

Control returns to the driver. The driver should not attempt to access the IOPB after

calling | CConmand| sConpl et e.

Driver Execution Contexts

This section discusses the general concepts and rules covering driver execution in
Mac OS. You must understand these rules to ensure that your code will be compatible
with future versions of Mac OS.

Code Execution in General

Future versions of Mac OS will enforce strict run-time execution limitations based upon

execution contexts. Considerable effort has been spent on normalizing these contexts to

ensure that high-level language software can run directly with no interface glue. The
environments in which code execution can occur are described in “Noninterrupt and
Interrupt-Level Execution” beginning on page 67 and may be summarized as follows:

» Hardware interrupt level execution occurs as a direct result of a hardware interrupt

Task level is where applications and most other code are executed.

request. The software executed at hardware interrupt level includes installable
interrupt handlers for PCI and other devices as well as Apple-supplied interrupt
handlers.

Driver Execution Contexts
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= Secondary interrupt level is similar to the deferred task environment in System 7.
The secondary interrupt queue is filled with requests to execute subroutines posted
for execution by hardware interrupt handlers. Secondary interrupt handlers always
execute sequentially. For synchronization purposes, code running at task level may
also post secondary interrupt handlers for execution; these are processed synchronously
from the perspective of the task level, but are serialized with all other secondary
interrupt handlers.

IMPORTANT

Hardware interrupt handlers can nest in the second generation of Power
Macintosh computers but may not be able to in future products. a

Different execution levels have different restrictions. Task-level execution may make use
of nearly any operating-system or Toolbox service, but secondary interrupt tasks and
hardware interrupt handlers are allowed only a subset of those services.

Note

Some confusion in System 7 programming results from ad hoc rules
governing execution contexts. In System 7, applications have one set of
rules while their VBL tasks, Time Manager tasks, and I/O completion
routines all have their own rules. Rules that establish when certain
system services can and cannot be used are difficult to understand and
are not fully established. O

Driver Execution

The System 7 asynchronous I/O model requires that a generic driver’s responses to its
Read, Wite, Control,and St at us entry points comply with the requirements of
hardware interrupt level execution. This is because the System 7 Device Manager
initiates requests that have been queued for the driver only after previously queued
requests finish. Routine initiation and completion are both possible at the hardware
interrupt level.

IMPORTANT

Adriver’s Open, C ose, I nitialize, Finalize, Repl ace, and
Super seded entry points are always invoked at task level. This is the
only opportunity that a driver has to allocate memory or use other
services that are only available at the task level. For memory allocation
guidelines, see “Memory Management Services” beginning on

page 216. a

“Service Limitations” beginning on page 282 indicates which Mac OS services are
available to drivers at hardware interrupt level and at secondary interrupt level. It is the
responsibility of the driver writer to conform to these limitations. Drivers that violate the
limitations will not work with future releases of Mac OS.
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Writing a Generic Device Driver

This section discusses writing a generic native driver—one that can respond to Device
Manager requests in the second generation of Power Macintosh computers. Although
drivers may contain PowerPC assembly-language internal code, a native driver’s
interface should be written in C.

Before you decide to write your own device driver, you should consider whether your
task can be more easily accomplished using one of the standard Macintosh drivers
described in Inside Macintosh. In general, you should consider writing a device driver
only if your hardware device or system service needs to be accessed at unpredictable
times or by more than one application. For example, if you develop a new output device
that you want to make available to any application, you might need to write a custom
driver. But if your product is a specialized device that can only be used by one application,
it may be easier to control the device using private code in the application.

This section describes the Native Driver package and tells you how to

» create a driver description structure

= write native driver code to respond appropriately to Device Manager requests
» handle the special requirements of asynchronous I/O

= install and initialize the driver

Note

Generic drivers alone interact with the Device Manager. The only part of

this section that applies to family drivers is “Driver Description
Structure” beginning on page 88. O

Native Driver Package

The driver model in the second generation of Power Macintosh defines a new driver
packaging format. This package may contain generic drivers that have the generic driver
call interface or may contain device family drivers that have call interfaces specific to the
device family.

The Native Driver package is a CFM code fragment. It may reside in the Macintosh
ROM, in a PCI expansion ROM, or in the data fork of a file. File-based native driver code
fragments contain no resource fork and have a file type of ' ndr v' . The Macintosh file
system ignores the file’s creator; by specifying a custom creator value assigned by Apple,
you can use this value to distinguish one driver from another. For a discussion of this
technique, see “Using NVRAM to Store Name Registry Properties” beginning on

page 292.
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The Native Driver package may house various types of drivers. The driver is expected
to support services defined for the particular device family. One predefined driver type
is a generic type and is called ' ndrv' (not to be confused with the Native Driver file
type' ndrv' ).

The Native Driver package requires that at least one symbol be defined and exported by
the CFM’s export mechanism. This symbol must be named TheDr i ver Descri pti on; it
is a data structure that describes the driver’s type, functionality, and characteristics.

Depending on the type of driver, additional symbols must be exported. The generic
"'ndrv' driver type requires that the CEM package export a single code entry point,
DoDr i ver | Q which passes all driver I/O requests. DoDr i ver | Omust respond to the
Open, C ose, Read, Wite,Control ,Status,KilllQlnitialize, Finalize,
Repl ace, and Super seded commands. Native drivers must also keep track of I/O
permissions for each instance of multiple open actions and return error codes if
permissions are violated. Other driver types that support device families must export
the symbols and entry points defined by the device family or device expert.

IMPORTANT

Native drivers must handle a new type of error return code, OSSt at us.
This data type is described in “Error Returns” on page 72. a

Driver Description Structure

The structure Dri ver Descri pti on is used to match drivers with devices, set up and
maintain a driver’s run-time environment, and declare a driver’s supported services.

struct DriverDescription {

OSType driver DescSi gnat ure;
Dri ver DescVer si on dri ver DescVer si on;
Driver Type driver Type;

Driver GSRunti ne driver OSRunti nel nf o;
Driver OSServi ce driver Services;

b

typedef struct DriverDescription DriverDescription;
typedef struct DriverDescription *DriverDescriptionPtr;

enum {
kTheDescri ptionSignature = "'ntej’ /[*first long word of
DriverDescription*/

s

typedef Ul nt32 DriverDescVersion;
enum {
kinitial DriverDescriptor = 0 /*version 1 of DriverDescription*/

b
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Field descriptions

driverDescSi gnature
Signature of this Dri ver Descri pti on structure;
currently ' ntej ' .

driverDescVersion
Version of this driver description structure, used to distinguish
different versions of Dri ver Descri pti on that have the same
dri ver DescSi gnat ur e value.

driverType Structure that contains driver name and version.

driver OSRunti el nf o
Structure that contains driver run-time information, which
determines how a driver is handled when Mac OS finds it. This
structure also provides the driver’s name to Mac OS and specifies
the driver’s ability to support concurrent requests.

driver Services Structure used to declare the driver’s supported programming
interfaces.

The dri ver Type, dri ver OSRunt i nel nf o, and dri ver Ser vi ces structures are
described in the next sections. A typical driver description is shown in Listing 7-1.

Listing 7-1 Typical driver description

DriverDescription TheDriverDescription =
{
/1 signature info
kTheDescri ptionSignature, // signature always first
kinitial DriverDescriptor, [/ version second

/1 type info
{
"\ pAAPL, Vi per", /1 device's name (must match
nane i n Nane Registry)
0x1, 0x0, 0x40, 0x2, // Rev 1.0.0a2
1
/1 OS run-tine requirements
{
kdri ver | sUnder Expert Cont r ol /1 run-time options
+ kdriver| sOpenedUponLoad,
"\ p. Di spl ay_Vi deo_Appl e_Vi per",
H
/1 OCS run-time info
{
1, /1 nunber of service categories

Writing a Generic Device Driver 89



90

CHAPTER 7

Writing Native Drivers

kServi ceCat egoryNdrvDriver,// we support 'ndrv' categor
kNdr vTypel sVi deo, /1 video type

/1 Version of service
1, 0, 0, O /! major, mnor, stage, rev

}s

Driver Type Structure

The Dr i ver Type structure contains name and version information about a driver,
which is used to match the driver to a specific device. For further information about
driver matching, see “Matching Drivers With Devices” beginning on page 142.

struct DriverType {

Str31 namel nf oSt r;
NunVer si on versi on;
}
t ypedef Ul nt32 Devi ceTypeMenber ;
t ypedef struct Driver Type DriverType;
t ypedef struct Driver Type *Driver TypePtr;

Field descriptions

nanel nf oSt r Name used to identify the driver and distinguish between various
versions of the driver when an expert is searching for drivers. This
string of type St r 31 is used to match the PCI nane property in the
Name Registry.

version Version resource used to obtain the newest driver when several
identically named drivers (that is, drivers with the same value of
namel nf oSt r ) are available on disk.

Driver Run-Time Structure

The Dri ver OSRunt i me structure contains information that controls how the driver is
used at run time.

struct DriverOSRuntinme {

Runti meOpti ons driverRuntine;
Str31 dri ver Nane;
Ul nt 32 dri ver DescReserved[ 8] ;

b

typedef OptionBits RuntinmeOptions;
typedef struct DriverOSRuntinme Driver OSRunti ne;
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typedef struct DriverOSRuntinme *Driver OSRuntinePtr;
enum { /*DriverOSRuntinme bit constant s*/
kdri ver| sLoadedUponDi scovery 1, /*auto-load driver when
di scovered*/

kdri ver | sOpenedUponLoad = 2, [*auto-open driver when
it is |oaded*/
kdri ver | sUnder Expert Cont r ol =4, [*1/0 expert handl es

| oads and opens*/
kdriver | sConcurrent = 8, [/*supports concurrent
request s*/
0x10 /*Devi ce Manager doesn't
queue | OPB*/

kdri ver Queuesl| OPB

}s

Field descriptions
driverRuntinme Options used to determine run-time behavior of the driver. The bits
in this field have these meanings:

Bit Meaning

System loads driver when driver is discovered.

System opens driver when driver is loaded.

Device family expert handles driver loads and opens.
Driver is capable of handling concurrent requests.

The Device Manager does not queue the IOPB to the DCE
request before calling the driver.

dri ver Nane Driver name used by Mac OS if driver type is ndr v. Mac OS copies
this name to the area pointed to by the dNamePt r field of the DCE.
This field is unused for other driver types.

dri ver DescReser ved
Reserved for future use.

= W= O

Driver Services Structure

The Dr i ver OSSer vi ce structure describes the services supported by the driver that are
available to applications and other software. Each device family has a particular set of
required and supported services. A driver may support more than one set of services. In
such cases, nSer vi ces should be set to indicate the number of different sets of services
that the driver supports.

struct DriverOSService {
Ser vi ceCount nServi ces;
Driver Servicelnfo service[1];

}s

typedef U nt32 ServiceCount;
typedef struct DriverOSService Driver OSServi ce;
typedef struct DriverOSService *DriverOSServicePtr
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Field descriptions

nServi ces The number of services supported by this driver. This field is used
to determine the size of the service array that follows.
service An array of Dri ver Ser vi cel nf o structures that specifies the

supported programming interface sets.

Driver Services Information Structure

The Dri ver Ser vi cel nf o structure describes the category, type, and version of a
driver’s programming interface services.

struct DriverServicelnfo {

OSType servi ceCat egory;
OSType servi ceType;
NumVer si on servi ceVer si on

s

typedef struct DriverServicelnfo DriverServicelnfo;
typedef struct DriverServicelnfo *DriverServicelnfoPtr

enum { /*used in serviceCategory*/
kServi ceCat egor yDi spl ay = "disp',/*display*/
kSer vi ceCat egor yopent r ansport = 'otan',/*QOpen Transport*/
kSer vi ceCat egor ybl ockst or age = "blok',/*bl ock storage*/

kSer vi ceCat egor ySCSI Si m
kServi ceCat egoryndrvdri ver

"scsi',/*SCSI SI M/
"ndrv' [/*generic*/

s

Note
Current display devices use the generic device type ' ndrv' . O

Field descriptions
servi ceCategory Specifies driver support services for given device family. The
following device families are currently defined:
Name Supports services defined for
' bl ok’ block drivers family
"disp'  video display family

"ndrv’ generic native driver devices
'otan' Open Transport
"scsi’ SCSI Interface Module
servi ceType Subcategory (meaningful only in a given service category).

serviceVersion  Version resource (' ver s' ) used to specify the version of a set of
services. It lets interfaces be modified over time.
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DoDriverlO Entry Point

Generic' ndrv' drivers must provide a single code entry point DoDr i ver | Q which
responds to Qpen, Cl ose, Read, Wite, Control,Status,KilllQlnitialize,
Fi nal i ze, Repl ace, and Super seded commands.

CSErr DoDriverl O (AddressSpacel D spacel D,
| OConmandl D | D,
| OCommandCont ent s contents,
| OCommandCode code,
| OCommandKi nd ki nd) ;

t ypedef Kernel | D AddressSpacel D

spacel D The address space containing the buffer to be prepared. Mac OS 7.5
provides only one address space, which it automatically passes to
native drivers. Otherwise, specify kCur r ent Addr essSpacel D.

I D Command ID.

contents An | OCommandCont ent s I/O parameter block. Use the
Initializationlnfounion member when calling to initialize
the driver, Fi nal i zat i onl nf 0 when removing the driver,
Dri ver Repl acel nf o when replacing, Dri ver Super sededl| nf o
when superseding, and Par nBl kPt r for all other I/O actions.

code Selector used to determine I/O actions.
ki nd Options used to determine how I/O actions are performed. The bits
in this field have these meanings:

Bit Meaning

0 synchronous I/O
asynchronous I/O

2 immediate I/O

DoDriverlO Parameter Data Structures

The data types and structures that the DoDr i ver | Oentry point uses have the following
declarations:

typedef struct OpaqueRef *Kernell D

enumn{
kinvalidlD = 0
1
t ypedef Kernel | D | OCommandl D

Type Ker nel | Dis a 32-bit opaque identifier used to identify various operating system

resources. Any Mac OS I/O service that creates or allocates a resource return an ID. The
ID is later used to specify the resource to perform operations on it or delete it. With type
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OpaqueRef , the value of the ID tells you nothing—you can’t tell which resource it
identifies without calling Mac OS. You also can’t tell what ID you'll get back the next
time you create a resource, and you can't tell the relationship between any two resources
by the relationship between their IDs. When a resource is deleted, its ID becomes invalid
for a long time. If you accidentally use an ID for a resource that has been deleted,
chances are you’ll get an error instead of accessing a different resource.

uni on | CConmandContents { /* contents are conmand specific*/

Par nBl kPt r pb;
DriverlnitlnfoPtr initiallnfo;
DriverFinal |l nfoPtr finallnfo;
Driver Repl acel nfoPtr repl acel nf o;

Dri ver Super sededl nf oPtr super sededl nf o;

1
t ypedef uni on | CConmandCont ents | OCommandCont ent s;

typedef Ul nt32 | CCommrandCode;

enun{ /[*'ndrv' driver services*/
kOpenConmand, /*open comrand*/
kd oseCommand, /*cl ose command*/
kReadConmmand, /*read conmmand*/
kWit eComand, /*write command*/
kCont r ol Conmand, /*control commuand*/
kSt at usComand, /*status conmand*/
kKi | I I OConmmand, [*kill /O conmand*/
kl nitializeCommand, /*initialize comand*/
kFi nal i zeCommand, /*finalize command*/
kRepl aceComand, /*replace driver conmand*/
kSuper sededComrand /*driver superseded comrand*/
1

typedef U nt32 | OComrandKi nd;
enum{
kSynchr onous| CCommandKi nd = 1,
kAsynchr onous| CConmandKi nd = 2,
kl mredi at el OCCommandKi nd = 4

1

struct Driverlnitinfo {
Dri ver Ref Num ref Num
RegEnt ryl D devi ceEntry;

s
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struct DriverFinallnfo {
Dri ver Ref Num ref Num
RegEntryl D devi ceEntry;

1
typedef struct Driverlnitinfo Driverlnitinfo, *DriverlnitlnfoPtr;

typedef struct Driverlnitlnfo DriverReplacel nfo,
*Driver Repl acel nfoPtr;

typedef struct DriverFinallnfo DriverFinallnfo,
*DriverFinallnfoPtr;

typedef struct DriverFinallnfo DriverSupersededl nfo,
*Dri ver Super sededl nfoPtr;

struct Initializationlnfo {
ref Num ref Num
RegEntryl D deviceEntry;

}s

struct Finalizationlnfo {
ref Num ref Num
RegEntryl D deviceEntry;

}s

typedef struct Initializationlnfo Initializationlnfo;
typedef struct Initializationlnfo *InitializationlnfoPtr;

typedef struct Finalizationlnfo Finalizationlnfo;
typedef struct Finalizationlnfo *FinalizationlnfoPtr;

Sample Handler Framework

A typical driver code framework for responding to DoDr i ver | Ois shown in Listing 7-2.

Listing 7-2 Driver handler for DoDr i ver 1 O

OSEr r
DoDriverl Q( AddressSpacel D Spacel D,
| OConmmand! D t hel D,
| CConmandCont ent s t heCont ent s,
| OCommandCode t heCode,
| OConmmandKi nd theKi nd )
{

CSErr result;
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switch ( theCode )

{

case kinitializeConmmand:

case kRepl aceComrand:
result = DolnitializeCrd

( theContents.initiallnfo->refNum
& heContents.initiallnfo->deviceEntry);

br eak;

case kFi nal i zeConmmand:

case kSuper sededConmand:
result = DoFinalizeCmd

( theContents.finallnfo->ref Num
&t heCont ent s. fi nal | nf o- >devi ceEntry);

br eak;

case kOpenCommand:
result = DoQpenCrd ( theContents.pb );
br eak;

case kC oseConmand:
result = Dod oseCmd ( theContents.pb );
br eak;

case kKi | I 1 CCommand:
result = DoKilll OCnd ( theContents.pb );
br eak;

case kReadConmmand:
result = DoReadCnd ( theContents.pb );
br eak;

case kWit eComrand:
result = DoWiteCrd ( theContents.pb );
br eak;

case kCont r ol Cormand:
result = DoControl Crd ( theContents.pb );
br eak;

case kSt at usConmand:
result = DoStatusCnd ( theContents.pb );
br eak;

defaul t:
result = parantrr;
br eak;

}
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/1 if an imredi ate conmand make sure result = a valid result
if ((ioConmmandKind & kil nmedi at el OCommandKi nd) !'= 0) {
return (result);/* imredi ate conmands return the
operation status */

}
else if (status == kl QBusyStatus) {
/*
* An asynchronous operation is in progress. The driver
* handl er pronises to call | OComrandl sConpl ete when the
* operation concl udes.
*/
return (noErr);
}
el se {
/*
* Normal conmmand that conpl eted synchronously. Dequeue the
* user's paraneter bl ock.
*/
return (1 CComuandl sConpl et e(i oConmandl D, status));
}

Getting Command Information

Any command in progress that the Device Manager has sent to a native driver can be
examined using Get | OConmmand| nf o.

GetlOCommandInfo
OSErr Get| OConmmandl nfo (I OCommandl D | D,
| OCCommandCont ent s *contents,
| CConmrandCode *conmand,
| OConmmandKi nd *Kki nd) ;
I D Command ID.
contents Pointer to the IOPB or Initialize /Finalize contents.
comand Command code.
ki nd Command kind (synchronous, asynchronous, or immediate).
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Get | OCommand| nf o returns information about the active native driver I/O command
identified by | D. Get | OCommand| nf o will not work after a driver has completed
a request.

EXECUTION CONTEXT

RESULT CODES

Get | OConmand| nf 0 may be called from task level or software interrupt level, but not
from hardware interrupt level.

noErr 0 No error
par anerr -50 Bad parameter

Responding to Device Manager Requests

As explained in “Native Driver Code Exports” on page 79, native drivers respond to
Device Manager requests by handling a single call, DoDr i ver | O Native drivers must
also keep track of I/O permissions for each instance of multiple open actions and return
error codes if permissions are violated.

The DoDrx i ver | Ocall interface is described in the previous section. The following
sections discuss some of the internal routines a driver needs to service DoDr i ver | O
requests.

Initialization and Finalization Routines

The Device Manager sends | ni ti al i ze and Fi nal i ze commands to a native driver
as its first and last commands. The | ni ti al i ze command gives the driver startup
information; the Fi nal i ze command informs the driver that the system would like to
unload it. Open and Cl 0se actions are now separate from initialization and finalization;
in the past, Open and Cl ose calls were used as the initialization and finalization
mechanism.

A typical framework for a generic driver handler for Device Manager finalization and
CFM initialization and termination commands is shown in Listing 7-3.

Listing 7-3 Initialization, finalization, and termination handlers

98

ref Num MyRef er enceNunber ;
RegEntryl D MyDevi cel D

OSErr Dol nitializeComrand
( refNum nyRef Num regEntryl DPtr myDevice )

/1 renmenmber our refNum and Registry entry spec
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}

MyRef er enceNunber = nyRef Num
MyDevi cel D = *nyDevi ce;
return nokErr;

OSErr DoFi nal i zeComrand

{

( ref Num nyRef Num RegEntryl DPtr myDevice )

#pragma unused ( myRef Num, myDevice )

}

return noErr;

CFM nitialize ()

{
}

return noErr;

CFMTerm nate ()

{
}

return noErr;

The driver's initialization routine should perform the following functions:

1.

Check the device’s AAPL, addr ess property to see that needed resources have been
allocated. The AAPL, addr ess property is described in “I/O Space Cycle Generation’
beginning on page 300.

4

. Enable PCI memory or I/O space, or both, using the logic illustrated in Listing 7-4.

Listing 7-4 Enabling PCI spaces

CSErr | nit PCl MenorySpace (RegEntryl DPt r Devi cel D,

Logi cal Addr ess addr )

U nt16 cnmdWor d;
CSEr r st at us;

status = ExpMgr Confi gReadWord (Devi cel D, addr, &mdWord ) ;
if ( status != noErr )
return status;

cmdWrd | = cwComrandEnabl eMenor ySpace |
cwConmandEnabl el OSpace;

return ExpMgr Confi gWiteWrd (Devicel D, addr, cmdWrd ) ;
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3. Probe the device to verify the driver’s match to it, as illustrated in Listing 7-5.

Listing 7-5 Device probing

100

OSErr ProbePCl MenorySpace ( Logi cal Address addr )

{
unt8 ctest3;
OSEr r st at us;
status = Devi ceProbe(
(void *) (((U nt32)addr) + CTEST3),
&ct est 3,
k8Bi t Access
);
if ( status != noErr )
return status;
}

The initialiation code should also allocate any private storage the driver requires and
place a pointer to it in the static data area that the Code Fragment Manager provides for
each instance of the driver. After allocating memory, the initialization routine should
perform any other preparation required by the driver. If the handler fails to allocate
memory for private storage, it should return an appropriate error code to notify the
Device Manager that the driver did not initialize itself.

If the Open Firmware FCode in the device’s expansion ROM does not furnish either
a"driver, AAPL, MAacCS, Power PC' property or a unique nane property, or if the
driver’s PCIvendor - i d and devi ce- i d properties are generic, then the initialization
routine must check that the device is the correct one for the driver. If the driver has been
incorrectly matched, the initialization routine must return an error code so the Device
Manager can attempt to make a match. Driver matching is discussed in “Matching
Drivers With Devices” beginning on page 142. PCIvendor - i d and devi ce-i d
properties are discussed in “Finding, Initializing, and Replacing Drivers” beginning on
page 140.

The driver’s finalization routine must reverse the effects of the initialization routine

by releasing any memory allocated by the driver, removing interrupt handlers, and
canceling outstanding timers. If the finalization routine cannot complete the finalization
request, it can return an error result code. In any event, however, the driver will

be removed.

If the initialization routine needs to install an interrupt handler, see the discussion in
“Interrupt Management” beginning on page 240.

Initialization, finalization, and termination calls are always immediate.
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Open and Close Routines

You must provide both an open routine and a close routine for a native device driver.
The current Macintosh system software does not require that these routines perform any
specific tasks; however, the driver should keep track of open calls to match them with
close calls. Open and close routines are immediate.

Typical code for keeping track of open and cl ose commands is shown in Listing 7-6.

Listing 7-6 Managing open and close commands

| ong nyOpenCount ;

CSErr DoQpenCommand (Par Bl kPt r t hePb)

{ myQpenCount ++;
return nokrr,;
}
OSErr Dod oseConmmand (ParnBl kPt r t hePb)
{
myQpenCount - - ;
return nokrr;
}

Read and Write Routines

Driver read and write routines implement I/ O requests. You can make read and write
routines execute synchronously or asynchronously. A synchronous read or write routine
must complete an entire I/ O request before returning to the Device Manager; an
asynchronous read or write routine can begin an I/O transaction and then return to the
Device Manager before the request is complete. In this case, the I/ O request continues to
be executed, typically when more data is available, by other routines such as interrupt
handlers or completion routines. “Handling Asynchronous I/O” on page 104 discusses
how to complete an asynchronous read or write routine.

Listing 7-7 shows a sample read routine.

Listing 7-7 Sample driver read routine

short nyLastErr; /* d obals */
[ ong myLast Count;

OSErr DoReadComrand (1 Opb pb)

{
| ong nunByt es;

short nyErr;
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nunbytes = pb -> | ORegCount;

{
/* do the read into pb -> iobuffer */
}
myLastErr = nyErr; /* store in globals */
return(nyErr);

}

Control and Status Routines

Control and status routines are normally used to send and receive driver-specific
information. However, you can use these routines for any kind of data transfer as long as
you implement the minimum functionality described in this section. Control and status
routines can execute synchronously or asynchronously.

Listing 7-8 shows a sample control routine, DoCont r ol Conmmand.

Listing 7-8 Sample driver control routine
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MyDri ver d obal sPtr dSt ore;

OSErr DoCont r ol Conmmand ( ParanBl kPt r pb)
{
switch (pb->csCode)
{
case kC earAll:
dSt or e- >byt eCount = O;
dStore->lastErr = 0O;
return(noErr);
default: /* always return control Err for unknown csCode */
return(control Err);

}

The status routine should work in a similar manner. The Device Manager uses the
csCode field to specify the type of status information requested. The status routine
should respond to whatever requests are appropriate for the driver and return the error
code st at usEr r for any unsupported csCode value.

The Device Manager interprets a status request with a csCode value of 1 as a special
case. When the Device Manager receives such a status request, it returns a handle to the
driver’s device control entry. The driver’s status routine never receives this request.

Note

An | CCommand| sConpl et e call with an OSSt at us return of PBBusy
causes a fatal error. O
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Listing 7-9 shows a sample status routine, DoSt at us Conmand.

Listing 7-9 Sample driver status routine

MyDri ver d obal sPtr dSt ore;

OSErr DoSt at usCommand ( Par anBl kPt r pb)
{
switch (pb->csCode)
{
case kByteCount:
pb- >csPar ani 0]
return(noErr);
case kLastErr:
pb->csParan{ 0] = dStore->lastErr;
return(noErr);
default: /* always return statusErr for unknown csCode */
return(statuskrr);

dSt or e- >byt eCount ;

}

The control routine must return cont r ol Err for any csCode values that are not
supported. You can define driver-specific csCode values if necessary, as long as they
are within the range 0h80 through Oh7FFF.

KilllO Routine

Native driver ki | | I Oroutines take the following form:

OSErr DoKil |1 OCommand (Par mBl kPt r t hePb)
{ [/* check internal queue for request to be killed; if found,
renove from queue and free request */
return nokrr;
} /* else, if no request located */
return abortErr;

t hePb Pointer to a Device Manager parameter block.

When the Device Manager receives a Ki | | | Orequest, it removes the specified
parameter block from the driver I/O queue. If the driver responds to any requests
asynchronously, the part of the driver that completes asynchronous requests (for
example, an interrupt handler) might expect the parameter block for the pending request
to be at the head of the queue. The Device Manager notifies the driver of Ki I | I O
requests so it can take the appropriate actions to stop work on any pending requests. The
driver must return control to the Device Manager by calling | OCComrand| sConpl et e.
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Replace and Superseded Routines

Under certain conditions, it may be desirable to replace an installed driver. For example,
a display card may use a temporary driver during system startup and then replace it
with a better version from disk once the file system is running and initialized.

Replacing an installed driver is a two-step process. First, the driver to be replaced is
requested to give up control of the device. Second, the new driver is installed and
directed to take over management of the device. Two native driver commands are
reserved for these tasks.

The kSuper sededComrand selector tells the outgoing driver to begin the replacement
process. The command contents are the same as with kFi nal i zeCommand. The
outgoing driver should take the following actions:

» If it is a concurrent driver, it should wait for current I/O actions to finish.

= Place the device in a “quiet” state. The definition of this state is device specific, but it
may involve such tasks as disabling device interrupts.

» Remove any installed interrupt handlers.

» Store the driver and the device state in the Name Registry as one or more properties
attached to the device entry.

= Return noErr to indicate that the driver is ready to be replaced.

The kRepl aceCommand selector tells the incoming driver to begin assume control of the
device. The command contents are the same as those of kI ni ti al i zeConmand. The
incoming driver should take the following actions:

= Retrieve the state stored in the Name Registry and delete the properties stored by the
Super seded command.

= Install interrupt handlers.
» Place the device in an active state.

= Return noEr r to indicate that the driver is ready to be used.

Note

When replacing concurrent generic drivers, the Device Manager halts
new commands until the replacement process is complete. O

Handling Asynchronous I/O

If you design any of your driver routines to execute asynchronously, you must provide a
mechanism for the driver to complete the requests. Some examples of routines that you
might use are the following;:

= Completion routines: Completion routines are provided by Device Manager clients to
let the Device Manager notify the client when an I/O process is finished.

= Interrupt handlers: If the driver serves a hardware device that generates interrupts,
you can create an interrupt handler that responds to these interrupts. The interrupt
handler must clear the source of the interrupt and return as quickly as possible. For
more information about interrupts and how to install an interrupt handler, see
“Interrupt Management” beginning on page 240.
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Clients of the Device Manager that make asynchronous calls should observe these
guidelines when using asynchronous routines:

= Once you pass a parameter block to an asynchronous routine, it is out of your control.
You should not examine or change the parameter block until the completion routine is
called because you have no way of knowing the state of the parameter block.

= Do not dispose of or reuse a parameter block until the asynchronous request is
completed. For example, if you declare the parameter block as a local variable, the
function cannot return until the request is complete because local variables are
allocated on the stack and released when a function returns.

= Use a completion routine to determine when an asynchronous routine has completed,
rather than polling the i oResul t field of the parameter block. Polling the i oResul t
field is not efficient and defeats the purpose of asynchronous operation.

Installing a Device Driver

There are two ways to install a device driver, depending on where the driver code is
stored and how much control you want over the installation process.

= You can store the device driver in the expansion ROM of a PCI card, as described in
Chapter 4, “Startup and System Configuration.”

= You can store the device driver on disk in a file of type ' ndrv' in the Extensions
folder inside the System Folder.

The first option, storing the driver in the card’s expansion ROM, is the normal practice
because it gives the card autoconfiguration capabilities, as described in Chapter 4,
“Startup and System Configuration.”

See “Finding, Initializing, and Replacing Drivers” beginning on page 140 for driver
loading and installation details. “Driver Loader Library” beginning on page 117 provides
details of the mechanisms available for installing and removing drivers that are listed in
the Device Manager unit table.

Table 7-1 lists the driver unit numbers that are reserved for specific purposes.

Table 7-1 Reserved unit numbers

Unit number range Reference number range Purpose

0 through 11 -1 through -12 Reserved for serial, disk, AppleTalk,
printer, and other drivers

12 through 31 -13 through -32 Available for desk accessories

32 through 38 -33 through -39 Available for SCSI devices

39 through 47 —40 through —48 Reserved

48 through 127 —49 through —128 Available for PCI and other drivers
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Every device driver has a unique set of family-specific configuration and state informa-
tion that it maintains. This configuration information often needs to be passed between
the family expert and the device drivers it manages. To aid in this communication
process, the native driver architecture provides a driver gestalt mechanism. Driver
gestalt provides a common, unified mechanism for both native and 68K device drivers
by which clients (such as applications) or family subsystem managers (such as the SCSI
Manager or the Display Manager) can access family-specific configuration and state
information about the driver.

For instance, the Start Manager uses dri ver Gest al t to interrogate SCSI drivers for
family-specific information to determine from which SCSI device to boot. The informa-
tion communicated back to the Start Manager is family specific (specific to the SCSI
Manager) and contains necessary data for system startup— SCSI bus ID, device ID,

and disk partition. Each I/O subsystem defines unique dr i ver Gest al t Sel ect or and
dri ver Gest al t Response formats. The SCSI Manager driver gestalt formats are SCSI
based, the Display Manager formats convey video information, and so on. Cross-device-
family dri ver Gest al t calls are not advised; for example, don’t make SCSI Manager
driver gestalt calls to video drivers.

Note

Support for driver gestalt is optional, but it is highly recommended. If a
PCI device driver does not support driver gestalt, it may not work with
some applications or in certain system configurations. O

For general information about the Macintosh gestalt mechanism, see Inside Macintosh:
Operating System Utilities. This book is described in “Apple Publications” beginning on
page xxi. The primary differences between driver gestalt and the traditional Macintosh
gestalt mechanism are that driver gestalt has no NewGest al t or Repl aceGest al t
functionality and information is provided independently for each driver.

System gestalt for PCI-based Macintosh computers, which is different from driver
gestalt, is described in “Macintosh System Gestalt” beginning on page 202.

Supporting and Testing Driver Gestalt

DriverGestaltOn,DriverGestaltOf,and Dri ver Gest al t1sOn, described in
this section, let driver code and other software communicate about the driver’s support
for driver gestalt.
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DriverGestaltOn and DriverGestaltOff

DriverGestaltOnandDriver Gestalt O f let driver code indicate to other software
that it does or does not support driver gestalt.

OSErr DriverGestaltOn (Driver Ref Num ref Num ;
CSErr DriverGestaltOf (Driver Ref Num ref Num ;
ref Num Unit table reference number.

DESCRIPTION
DriverGestaltOnandDriver Gestal t O f set and clear bit 2 in the device control
entry (DCE) flags word.
RESULT CODES
noErr 0 No error
badUni t Err -21 Bad unit number
uni t Enpt yErr -22 Empty unit number
DriverGestaltIsOn
Dri ver Gest al t | sOn lets other code test whether or not a driver supports
driver gestalt.
Bool ean DriverGestaltlsOn (DriverFlags flags);
flags The f | ags word in the driver’s DCE.
DESCRIPTION

Driver Gestal t | sOn returns t r ue if bit 2 in the DCE flags word is set,
f al se otherwise.

Implementing Driver Gestalt

If a native driver has indicated support for driver gestalt, as described in the previous
section, it must conform to these rules:

» It must respond to all unsupported status csCode values with a st at usErr value,
and to all unsupported control csCode values with a cont r ol Err value. This rule is
the most important for drivers to follow after calling Dr i ver Gest al t On.
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It should be capable of closing properly and of removing vertical blanking (VBL)
tasks, Time Manager tasks, drive queue elements, and so on. Drivers that can close
should return noEr r in response to Cl 0se requests. If it is absolutely not possible for
the driver to close, it must respond with ¢l 0SEr r and continue to function as if the
0 ose request had not been issued.

It must implement the csCode values listed in Table 7-2 and described in the rest of

this section. Driver clients seeing the Dr i ver Gest al t Enabl e bit set will assume
that these calls will either produce the required actions or resultin a st at usgrr or
control Err return. The kcsDri ver Gest al t and kcsDri ver Confi gur e codes
produce the principal new functionality of the native driver model. For historical
reasons, setting the Dr i ver Cest al t Enabl e bit also requires that the other calls
listed in Table 7-2 either be supported or return an error code. Future control or status
calls for all native PCI drivers will be implemented using only selectors through
DriverGestalt and Dri ver Confi gure.

Table 7-2 Driver gestalt codes

Name Value

Status codes

Description

kcsDri ver Gestal t 43 General status information

kcsGet Power Mode 70 Returns card power mode’

kcsRet urnDevi cel D 120 Returns SCSI device ID in csPar ani 0]
Control codes

kcsDri ver Confi gure 43 General configuration commands
kcsSet StartupDrive 44 Designates partition as a boot partition
kcsSet Power Mode 70 Sets card power mode’

" For a discussion of power modes, see “Card Power Controls” beginning on page 311.

DCE Flags

DCE bit 2 indicates that a driver supports the driver gestalt interface defined in the next
section. The complete list of DCE bits in the f | ags word is given in Table 7-3.

Table 7-3 Bits in flags word

Name Value Description

kbl sAppl eTal k 0

kbDri ver Gest al t Enabl e 2 Supports driver gestalt
kbl sNdr v 3 Is a PowerPC native driver
kbl sConcur r ent 4 Used by AOCE
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Table 7-3 Bits in flags word (continued)

Name Value Description
kbl sOpen 5

kbl sRanBased 6 (Not used with native drivers)
kbl sActi ve 7

kbReadEnabl e 8

kbW i t eEnabl e 9

kbCont r ol Enabl e 10

kbSt at usEnabl e 11

kbNeedsGoodbye 12

kbNeedsTi ne 13

kbNeedsLock 14

Mask values for the bits listed in Table 7-3 are given in Table 7-4.

Table 7-4 Mask values for flags word

Name Value

km sAppl eTal kMask 1 << kbl sAppl eTal k
knDri ver Gest al t Enabl eMask 1 << kbDriver Gestal tEnabl e
km sNdr vivask 1 << kbl sNdrv

km sConcur r ent Mask 1 << kbl sConcurrent
km sOpenMask 1 << kbl sOpen

km sRamBasedMask 1 << kbl sRanBased
km sAct i veMask 1 << kbl sActive
knReadEnabl eMask 1 << kbReadEnabl e
kmW i t eEnabl eMask 1 << kbWiteEnabl e
knCont r ol Enabl eMask 1 << kbContr ol Enabl e
kntt at usEnabl eMask 1 << kbSt at usEnabl e
kmNeeds GoodbyeMask 1 << kbNeedsGoodbye
knNeedsTi neMask 1 << kbNeedsTi e
knNeedsLockMask 1 << kbNeedsLock
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Using DriverGestalt and DriverConfigure

Status code csCode 43 (0x2B) is defined as Dr i ver Gest al t . It takes two parameters, at
csPar amand csPar amt4, that contain a gestalt-like selector and long word output.
Similarly, control csCode 43 is defined as Dri ver Conf i gur e. It also takes two
parameters, an OSType selector that specifies the requested operation and a long word.
The parameter blocks have these structures:

struct Driver GestaltParam {

CEl enPtr gLi nk;
short gType;
short i oTr ap;
Ptr i oCrdAddr ;
ProcPtr i oConpl etion;
OSEr r i oResul t;
StringPtr i oNamePtr;
short i oVRef Num
short i oOCRef Num /* refNumfor 1/0O operation*/
short csCode; [* == driverCestaltCode */
OSType driver GestaltSel ector;
Ul nt 32 dri ver Gest al t Response;
1
struct Driver Confi gParam {
CEl enPtr gLi nk;
short gType;
short i oTr ap;
Ptr i oCndAddr ;
| OConpl eti onUPP i oConpl eti on;
OSErr i oResul t;
StringPtr i oNanmePt r;
short i oVRef Num
short i oOCRef Num  /* refNumfor 1/0O operation*/
short csCode; [* == driver ConfigureCode*/
OSType dri ver Confi gureSel ector;
DriverGestaltinfo dri ver Confi gur ePar anet er;
b
IMPORTANT

Dri ver Conf i gur e is not currently implemented. See
“DriverConfigure Selectors” on page 113. a

The OSType selectors for Dri ver Gest al t and Dri ver Confi gur e are defined
according to the rules of gestalt selector definition set forth in Inside Macintosh: Operating
System Utilities. In particular, Apple reserves all four-character sequences consisting
entirely of lowercase letters and nonalphabetic characters.
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DriverGestalt Selectors

Currently defined selectors for the Dri ver Gest al t status call are listed in Table 7-5.

Table 7-5 DriverGestalt selectors

Selector Description Response type

' boot' Parameter RAM value to designate this driver/drive Boot Response
" devt'’ Type of device the driver is driving DevTResponse
"intf! Immediate location (or interface) for device I nt f Response
"I pwr’ True if driver supports power switching Bool ean
"pm3’ Minimum power consumption at 3.3 V unsigned long*

" pm5’ Minimum power consumption at 5 V unsigned long*

" pnx3' Maximum power consumption at 3.3 V unsigned long*

' pnx5'’ Maximum power consumption at 5 V unsigned long*
"purg' True if driver has purge permission Bool ean
'sync' True if driver only behaves synchronously SyncResponse
"vers' The version number of the driver Numver si on®
"wi de' True if driver supports the i oWPosCF f set for 64-bit W deResponse

addressing

i Represents power consumed in microwatts.
* The NunVer si on data structure is described on page 135.

Note

For some types of devices, Dr i ver Gest al t responses may be

dependent upon fields other than the selector field. For instance, the

" boot ' selector returns a startup value that identifies a particular drive
in the drive queue instead of a particular device or driver. A driver
handling a partitioned disk, with each HFS partition representing a
separate drive, returns a result appropriate for a particular partition, as
specified by drive number in the i 0VRef Numfield. O

The following response buffers are defined for some of the driver gestalt selectors listed
in Table 7-5:

struct

{

Driver Gestal t SyncResponse
Bool ean behavesSynchronousl y;

Ul nt pad[ 3]
i

Driver Gestalt 111



CHAPTER 7

Writing Native Drivers

struct Driver CGestal t Boot Response

{
U nt 8 ext Dev; /* packed target (upper 5 bits)
LUN (lower 3 bits) */
unt8 partition; /* partition */
U nt8 SIMSlot; /[* slot */
U nt8 SI MsRSRC, /* sRsrclD */
b
struct Driver CestaltDevTResponse
{
OSType devi ceType;
s
enum {
kdgDi skType = ' disk", /* standard r/w di sk drive */
kdgTapeType = 'tape', /* tape drive */
kdgPri nt er Type = 'prnt', /* printer */
kdgPr ocessor Type = 'proc', /* processor */
kdgWor niType = "worm, /* write-once */
kdgCDType = 'cdrm, /* cd-romdrive */
kdgFl oppyType = "'"flop', /* floppy disk drive */
kdgScanner Type = 'scan', /* scanner */
kdgFi | eType ="'file", /* logical partition based on a
file (drive Container) */
kdgRenovabl eType = 'rdsk’ /* renovabl e nedia hard di sk */
b
struct DriverGestaltlntfResponse
{
OSType interfaceType;
s
enum {
kdgScsi I nt f = 'scsi',
kdgPcnti al nt f = 'pcnt',
kdgl del nt f = '"ide "
kdgFireWrelntf ='fire",
kdgExt Bus = 'card'
1

struct Devi cel nfoRecord {
struct Devicel nfoRecord *next| nfo;
Devi cel dent devi cel D
short identifier; /* to be used as a uni que
identifier */
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struct Driver CGestalt WdeResponse

{

Bool ean supportsW de;

}s

Using the 'boot’ Selector

The' boot' Driver Gestal t status call is made both by the Startup Disk control panel
when the user selects a device and by the Start Manager when the ROM is trying to
match a device in the drive queue with the device specified in PRAM. The Dr i veNumof
the device’s Dr vQE! is placed in the i 0VRef Numfield of Dr i ver Gest al t Par am In the
case of a SCSI device, it is necessary to return the data in a particular format so that the
startup code knows on which SCSI bus, ID, and LUN the boot device can be found. It
needs this information so that it can attempt to load that driver first. A SCSI driver can
return the following data:

bi PB. scsi HBAsl| ot Nuber -> dri ver Cest al t Boot Response. sl ot

bi PB. scsi SI MsRsrcl D -> driver Gest al t Boot Response. sRSRC
targetl D<<3 + LUN -> driver Gest al t Boot Response. ext Dev
partition nunber -> driver Gestal t Boot Response. partition

As shown, the disk driver can copy the values found in Busl nqui ry into the sl ot and
SRSRCfields and can generate the ext Dev field by left-shifting the target ID by 3 bits (0
to 31 range) and adding the logical unit number (0 to 8 range). The partition field enables
the selection of a single partition on a multiply partitioned device as the boot device. It is
not interpreted by the ROM or the startup disk ' cdev', so the driver can choose a
meaning and a value for this field. Typically the driver would enumerate the partitions
laid out on a disk and return the number of the partition for the drive specified in the

i oVRef Numfield.

DriverConfigure Selectors

No Dri ver Conf i gur e selectors are currently defined; however, the control call with
csCode =43 will be used in the future to add driver control functions. Drivers setting
the Dr i ver Gest al t Enabl e bit should not implement this control call for other uses.
To use the Dri ver Conf i gur e call, use the dri ver Conf i gur eSel ect or field to
choose an operation and pass parameters to it with the dri ver Conf i gur ePar anet er
field. Multiple parameters can be passed by means of a pointer to a structure.

Other Control and Status Calls

This section discusses how native drivers should respond to driver gestalt control and
status calls other than Dri ver Confi gur e and Dri ver Gest al t —that is, calls with
csCode values other than 43.
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SetStartupDrive Control Call

The kcsSet St art upDr i ve control call (csCode = 44) results when a user selects a
drive from the Startup Device control panel in the current version of Mac OS. It indicates
to the driver that a volume controlled by that driver (that is, one with its drive number in
the i oVRef Numfield) is the chosen startup drive. This lets a specific partition selected by
the user on a multiply partitioned disk be the startup volume by allowing the driver to
control which partition is inserted into the drive queue first. Mass storage drivers (those
that control elements in the drive queue) that set the dr i ver Gest al t Enabl e bit must
implement this control call or return cont r ol Err.

RegisterPartition Control Call

The Regi st er Parti ti on control call (csCode = 50) registers a non-Macintosh partition
found on a disk. The driver should fill in csPar amas follows:

(long *)csParani0] <- DrvQeElPtr /* DrvQeEl of partition */
(long *)csParanil1l] <- /* start of partition in |ogical blocks */
(long *)csParanf2] <- /* size of partition in |ogical blocks */

GetADrive Control Call

The Get ADr i ve control call (csCode = 51) asks the driver to get a drive. No parameters
are passed into Get ADr i ve, but it must return a Dr VQEI Pt r value for the drive
incsParani 0] .

ProhibitMounting Control Call

The Pr ohi bi t Mount i ng control call (csCode = 52) prevents the mounting of a
partition. The csPar anf 0] field contains a valid par t | nf oRecPt r, a pointer to a
part | nf oRec structure that contains information about a partition:

typedef struct partlnfoRec
{
Devi cel dent SCSI | D /1 Deviceldent for the device
unsi gned | ong physPartitionLoc; // physical block nunber of
begi nning of partition
unsi gned | ong partitionNunber; /] partition number of this
partition
} partinfoRec, *partlnfoRecPtr;

GetPartitionStatus Status Call

The Get Partiti onSt at us status call (csCode = 50) retrieves the status of a partition.
The driver should fill out csPar amas follows:

(long *)csParani 0] <- /* partlnfoRecPtr for partition */
(short *)csParanil1l] <- /* address of a short for response */

The variable pointed to by csPar ammust be filled with the VRef Numvalue for a
volume mounted on the partition. If none exist, the driver must return 0.
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GetPartitionInfo Status Call

The Get Par ti ti onl nf o status call (csCode = 51) returns information about a
partition in the par t | nf oRec structure described earlier in “ProhibitMounting Control
Call.” The csPar anf 0] field contains a pointer to an empty par t | nf oRec structure,
which the driver fills out as follows:

*(partInfoRecPtr)csParam SCSII D <- // Deviceldent for the device

*(partlnfoRecPtr)csParam physPartitionLoc <- // physical block
nunber of partition start

*(partInfoRecPtr)csParam partiti onNunmber <- // partition nunber
of this partition

Low Power Mode Support Calls

Control and status calls with csCode = 70 are optional for all drivers. Making a control
call with csCode =70 sets the device’s power-saving mode, while a status call returns it.
Information is passed in the following structure in csPar anf 0] :

enum {
kcsGet Power Mode = 70 /* returns the current power node*/
kcsSet Power Mode 70 /* sets the current power node*/

i
enum {
pmActi ve =0, /* normal operation */
pnt andby =1, /* mininmal energy saving state; can go active
in 5 seconds */
pm dl e = 2, /* substantial energy savings; can go active
in 15 seconds */
pnsl eep = 3 /* maxi num energy savi ngs; device nmay be
turned of f */
1
struct LowPower Mode
{
unsi gned char node;
b

The differences among these low power modes are the amount of energy savings and the
time it takes to return to the active state. Each device driver must determine the
appropriate level of energy saving support for the device that it drives. If the device can
go into active state in all possible low power states within 5 seconds, it should map both
pm dl e and pnSl eep to pnt andby. If the device takes a minimum of 10 seconds to go
into active state from a low power state, then it should map pnft andby to pmAct i ve.
All device drivers should support these four modes; they should never return an error
because they do not support a particular mode. Low power modes that are not possible
on a given device should be mapped to other appropriate modes.
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For the device to become active, it is not required that the device driver get a control call
telling it to make the device active. Any operation that requires the device to become
active is sufficient. For example, if a hard disk driver currently has its drive in sleep
mode and it gets a read call, it should automatically wake up the drive and respond to
the read request. Once the drive is made active, the device driver requires a control call
telling it to put the device into some other mode. It should not put the device into an
inactive mode automatically unless it is managing the device’s power state independently
of the Mac OS Power Manager.

Drivers that support low power mode calls should return true to the ' | pwr'

Driver Gestal t call listed in Table 7-5 on page 111. Drivers that do not support

these calls should return false to the' | pwr' Dri ver Gest al t call, return control Err
to the Set Power Mbde (csCode = 70) control call, and return st at usErr to the

Get Power Mode (csCode = 70) status call.

Device-Specific Status Calls

This section describes two device-specific driver gestalt status calls, Ret ur nDevi cel D
and Get CDDevi cel nf o.

ReturnDevicelD Status Call

A status call with a csCode value of 120 returns the Devi cel dent value for the
primary SCSI device being controlled by a driver. SCSI drivers that set the

dri ver Gest al t Enabl e bit must implement this csCode value as described or
return st at Uskrr.

GetCDDevicelnfo Status Call

A status call with a csCode value of 121 determines the features of a particular
CD-ROM drive. Before Apple’s CD-ROM driver version 5.0, this was done using the
Cet Dri veType status call, which returned a specific model of CD-ROM drive. This
makes client code difficult to maintain since it must be modified each time a new
CD-ROM drive is introduced. To alleviate this problem, the features of the device
have been encoded in testable bits. An integer containing the sustained transfer rate
of the drive relative to an AppleCD 150 is also included. This information is returned
in the CDDevi ceChar act eri st i cs structure. CD-ROM drivers that set the

dri ver Gest al t Enabl e bit must either implement this csCode value or return
stat uskrr.

struct CDDevi ceCharacteristics

{
U nt8 speedMpj or; /* high byte of fixed-point nunber
for drive speed */
unt8 speedM nor; /* low byte of "" CD 300 == 2.2
CD SC == 1.0 etc. */
U nt16 cdFeatures; /* flags for features of drive */
1
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enum /* flags for CD features field (cdFeatures) */
{
cdPower | nj ect =0, /* supports power inject of nmedia */
cdNot Power Ej ect =1, /* no power eject of nedia */

cdMut e = 2, [/* audio channels can be nuted;
audi o play nmode = 00xxb or xx00b */
/* bits 3 and 4 are reserved */
/* left, right channels can be m xed;
audi o play nmode = 11xxb or xx11b */
/* bits 6 through 9 are reserved */
cdSCsl 2 = 10, /* supports SCSI-2 CD-ROM crmd set */
cdSt er eoVol une 11, /* supports independent volume |evels
for each audi o channel */
12, /* drive supports SCSI di sconnect/
reconnect */
cdWiteOnce = 13, /* drive is a wite/once (CD-R) type;
bits 14 and 15 are reserved */

cdLeft Pl usRi ght

n
o

cdDi sconnect

cdSt er eoVol umreMask
cdDi sconnect Mask
cdWit eOnceMask =

<< cdSt er eoVol une,
<< cdDi sconnect,
<< cdWiteOnce

cdPower | nj ect Mask = 1 << cdPowerl nj ect,
cdNot Power Ej ect Mask = 1 << cdNot Power Ej ect,
cdMut eMask = 1 << cdMute
cdLeft Pl usRi ght Mask = 1 << cdLeftPl usRi ght,
cdSCSI 2Mvask = 1 << cdSCsl _2,

1

1

1

Driver Loader Library

This section describes the Driver Loader Library (DLL), a CFM shared-library extension
to the Macintosh Device Manager. The DLL provides services to locate, install, and
remove drivers.

IMPORTANT

Family experts and the Mac OS startup firmware are the primary clients
of the DLL. It offers services that control every aspect of driver-to-device
matching and driver loading and installation. Driver loading is normally
an automatic process that frees drivers from having to match themselves
with devices. In some situations, however, drivers may need to perform
the match themselves. a
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The installation and removal services are provided for drivers that are called through the
Device Manager. Typically, these drivers are of service type ' ndr v' . Clients that expect
to call drivers through the Device Manager should utilize these services to locate the
driver, load it, install it in the unit table, and remove it.

Clients of device drivers that belong to a well-defined family type (such as networking
devices within OpenTransport) need not use the installation and removal services, since
these drivers are not callable via the Device Manager and hence do not reside in the unit
table. These clients may choose to use the standard CFM services to load their drivers
and may use the loader utilities to do driver matching before using the CFM.

The Driver Loader Library services provide several major functions for drivers:
» loading and memory space management

= installation in the unit table

= removal from the unit table

= providing information about installed drivers

= driver matching

Figure 7-1 shows the roles and relationships of the Device Manager, the ROM
(all Macintosh system software other than the Device Manager), and the Driver

Loader Library.
Figure 7-1 Position of Driver Loader Library
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Figure 7-2 shows the relationship of the Driver Loader Library’s main functions.

Figure 7-2 Driver Loader Library functions
Name
Registry
RAM Files
> - Code
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Installation
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Removal

Loading and Unloading

A driver may be loaded from any CFM container (in memory, files, or resources) as well
as from a device’s driver property in the Name Registry. The following services are
provided for this purpose.

= Cet Driver MenoryFragnent loads a driver from a memory range.
m Get Driver Di skFragnment loads a driver from a file.

= Fi ndDri ver Candi dat es and ScanbDr i ver Candi dat es prepare a list of file-based
drivers that potentially match a device.

» FindDriversFor Devi ce finds the “best” drivers for a device, searching both ROM
and disk, without making a CFM connection.

s CetDriver For Devi ce finds the “best” driver for a device and returns its CFM
connection ID.

= SetDriverd osureMenory holds or releases a driver’s memory, including any
associated libraries.

The only circumstance in which Fi ndDr i ver sFor Devi ce or Get Dri ver For Devi ce
is required is when there is a device node in the device tree that does not have an
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associated driver. One instance when this might happen is if a PCI card is entered in the
device tree after system startup. Fi ndDr i ver sFor Devi ce does not create a CFM
connection for the driver it finds; this service is useful if you want to browse potential
drivers for a device without loading them. Get Dr i ver For Devi ce finds the driver and
creates a CFM connection for it.

The successful load of a driver yields the following results:
» a CFM Connectionl D
» a pointer to the driver description

= in the case of a generic native driver, a pointer to its DoDr i ver | Oentry point

If the driver has a CFM initialization routine, it will be executed. The initialization
routine should return noEr r to indicate a successful load. Note that multiple drivers
may be loaded in order to determine the best device-to-driver match. Therefore, a
driver’s CFM initialization routine should not allocate resources that cannot be released
in its termination routine.

The services listed above do not affect the Device Manager’s unit table. They are
discussed in the next sections.

Note
Holding down the Shift, Command, N, and D keys simultaneously
during Mac OS startup disables the loading of file-based drivers. O

GetDriverMemoryFragment

120

Get Dri ver Menor yFr agnent loads a code fragment driver from an area of memory.

OSErr Get Dri ver Menor yFr agnent

(Ptr memAddr ,
| ong | engt h,
Const St r 63Par am f ragNane,
CFragConnectionl D *f ragment Connl D,
Driver EntryPoint Ptr *fragment Mai n,

DriverDescriptionPtr *DriverDesc);

memAddr Pointer to the beginning of the fragment in memory.
| engt h Length of the fragment in memory.
f ragName Optional name of the fragment (primarily used by debugger).

fragment Connl D Resulting CFM connect i onl D.
f ragnment Mai n Resulting pointer to DoDr i ver | O(may be ni | ).
Dri ver Desc Resulting pointer to Dr i ver Descri pti on.
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Given a pointer to the beginning of a driver code fragment in memAddr and the length of
that fragment in | engt h, Get Dri ver Menor yFr agnent loads the driver. It returns the
loaded driver’s CFM connect i onl Dvalue in f r agment Connl D, a pointer to its

DoDr i ver | Oentry point in f r agment Mai n, and a pointer to its driver description
structure in Dri ver Desc.

Note

The CFM connect i onl Dvariable should be freed when
the driver is unloaded. O

noErr 0 No error
par ankrr =50 Bad parameter
All CFM errors (see Inside Macintosh: PowerPC System Software)

GetDriverDiskFragment

DESCRIPTION

RESULT CODES

Get Dri ver Di skFragnent loads a native driver from a file.

OSErr GetDriver D skFragnment

(FSSpecPt r f ragnent Spec,
CFragConnectionl D *f ragment Connl D,
DriverEntryPointPtr *f ragnment Mai n,

DriverDescriptionPtr dri verDesc);

f ragment Spec Pointer to a file system specification.
fragment Connl D Resulting CFM connect i onl D.

fragnment Mai n Resulting pointer to DoDr i ver | O
driverDesc Resulting pointer to Dri ver Descri pti on.

Given a pointer to a CFM file system specification, Get Dr i ver Di skFr agment uses the
CFM search path to find and load a driver code fragment. It returns the loaded driver’s
CFM connect i onl Dvalue in f r agment Connl D, a pointer to its DoDr i ver | Oentry
point in f r agment Mai n, and a pointer to its driver description in dri ver Desc.

noErr 0 No error
fnfErr —43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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FindDriverCandidates

OSErr Fi ndDri ver Candi dat es

(RegEntryl DPt r devi cel D,
Ptr *propBasedDri ver,
RegPr opertyVal ueSi ze *pr opBasedDri ver Si ze,
StringPtr devi ceNane,
Driver Type *propBasedDri ver Type,
Bool ean *got PropBasedDri ver,
Fi | eBasedDri ver RecordPtr fil eBasedDrivers,
| t enCount *nFi | eBasedDrivers);
devi cel D Name Registry ID of target device.
propBasedDri ver Address of property-based driver.

propBasedDri ver Si ze Size of property-based driver.

devi ceName Returned name of the device.

propBasedDri ver Type Type of property-based driver.

got PropBasedDr i ver Value is t r ue if property-based driver was found.
fil eBasedDrivers List of sorted file-based driver records.

nFi | eBasedDri vers Count of file-based driver records.

DESCRIPTION

Given the name entry ID of a device, Fi ndDr i ver Candi dat es constructs a list of file-
based drivers that match the device name or one of the device-compatible names. The
list is sorted from best match to least favorable match. Drivers that match the device
name are listed before drivers that match a compatible name. Each of these groups are
further sorted by version numbers, using the Hi gher Dri ver Ver si on service described
on page 135. Property-based drivers are always matched using the device name and are
returned separately from file-based drivers. An I/O expert can determine a property-
based driver’s ranking using the Hi gher Dri ver Ver si on service. If a property-based
driver is not found, all outputs are zeroed.

If ani | list output buffer is passed, only the count of matched file-based drivers is
returned. An1/0O expert can call Fi ndDri ver Candi dat es first with a ni | buffer,
allocate a buffer large enough for the list, and then call Fi ndDr i ver Candi dat es again
with the appropriately sized buffer.

If ani | valueis passed in devi cel D, all drivers from the Extensions folder are
returned. When using this option, pass ni | values for all parameters except
fil eBasedDrivers and nFi | eBasedDri vers.
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The list of matched drivers consists of an array of file-based driver records:

struct Fil eBasedDriverRecord {

FSSpec t heSpec; /* file specification*/

Driver Type theType; /* nanel nfoStr + version nunber*/

Bool ean conpati bl eProp; /* true if matched using a
conpati bl e name*/

unt8 pad[ 3]; /* alignnent*/

b

typedef struct Fil eBasedDriverRecord
Fi | eBasedDri ver Record, *Fi | eBasedDri ver Recor dPtr;

A file-based driver consists of a file specification, the driver’s type, and whether the
driver was matched using the device name or a compatible device name.

An 1/0O expert can use the program logic summarized in Listing 7-10 to cycle through a
list of file-based candidates.

Listing 7-10 Finding file-based driver candidates

Fi ndDriver Candi dates(); /* get list of candidates for a device*/
while (Candidates in the |ist)

{
GetDriverFronFile ( FSSpec-in-Record, &driverConnectionlD);
if (InitializeThisDriver(Candi date) == Not MyHar dwar eError))
{
/1 unhold this failed driver's nenory
/1 and cl ose its CFM connection
Unl oadTheDriver ( driverConnectionlD );
/1 advance to next position in the |ist
Cet Next Candi dat e() ;
}
el se
break; // driver |loaded and initialized
}
RESULT CODES
noErr 0 No error
fnfErr -43 File not found

All CFM errors (see Inside Macintosh: PowerPC System Software)
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ScanDriverCandidates

DESCRIPTION

RESULT CODES

OSErr ScanDri ver Candi dat es

(RegEntryl DPt r devi cel D,
Fi | eBasedDri ver RecordPtr fileBasedDrivers,
| t emCount nFi | eBasedDri vers,
Fi | eBasedDri ver RecordPtr mat chi ngDri vers,
I t emCount *nMat chi ngDri vers);
devi cel D Name Registry ID of target device.

fil eBasedDrivers List of sorted file-based driver records.

nFi | eBasedDrivers Count of file-based driver records.

mat chi ngDri vers File-based driver records (a subset of f i | eBasedDri vers).
nMat chi ngDri vers Count of driver records (<= nFi | eBasedDri vers).

Given the name entry ID of a device and a list of Fi | eBasedDr i ver Recor d elements,
ScanDri ver Candi dat es constructs a list of matching file-based drivers that match the
device name or one of the device-compatible names. The list is sorted from best match to
least favorable match. Input to this service is an array Fi | eBasedDr i ver Recor d
elements, described in “FindDriverCandidates” beginning on page 122. Clients can use
ScanDr i ver Candi dat es to match drivers from a static list of candidates without
having to incur the overhead of disk I/ O operations.

noErr 0 No error
fnfErr —43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)

FindDriversForDevice

124

Fi ndDr i ver sFor Devi ce finds the driver from a file and from a device tree property
that represents the “best” driver for a device—that is, the latest version of the most
appropriate driver, regardless of whether it is file-based or property-based. The
algorithm for determining the best driver is described in “Matching Drivers With
Devices” beginning on page 142.

Driver Loader Library



CHAPTER 7

Writing Native Drivers

OSErr FindDriversForDevi ce (RegEntryl DPtr devi ce,
FSSpec *f ragment Spec,
DriverDescription *fileDriverDesc,
Ptr *memAddr,
| ong *| engt h,
StringPtr f ragNane,

DriverDescription *menDr i ver Desc) ;

devi ce Device ID.

f ragment Spec Pointer to a file system specification.
fileDriverDesc Pointer to the driver description of driver in a file.
mermAddr Pointer to driver address.

| engt h Length of driver code.

f ragName Name of driver fragment.

menDriver Desc  Pointer to the driver description of driver in memory.

DESCRIPTION

Given a pointer to the RegEnt r yl Dvalue of a device, Fi ndDr i ver sFor Devi ce finds
the most suitable driver for that device. If the driver is located in a file, it returns a
pointer to the driver’s CFEM file system specification in f r agnent Spec and a pointer
to its driver descriptionin f i | eDri ver Desc. If the driver is a fragment located in
memory, Fi ndDri ver sFor Devi ce returns a pointer to its address in memAddr, its
length in | engt h, its name in f r agNane, and a pointer to its driver description in
menDr i ver Desc. Fi ndDri ver sFor Devi ce initializes all outputs to ni | before
searching for drivers.

The f r agNane parameter that Fi ndDr i ver sFor Devi ce returns can be passed to
Cet Dri ver Menor yFr agnent (described on page 120) or Get Dr i ver Di skFr agnment
(described on page 121).

RESULT CODES

nokErr 0 No error
fnfErr —43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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GetDriverForDevice

Get Dri ver For Devi ce loads the “best” driver for a device from memory. The algorithm
for determining the best driver is described in “Matching Drivers With Devices”

beginning on page 142.

OSErr CetDriver For Devi ce( RegEntryl DPt r devi ce,
CFragConnectionl D *f ragment Connl D,
Driver EntryPoi ntPtr *fragnment Mai n,
DriverDescriptionPtr *driverDesc);

devi ce Device ID.

fragment Connl D Pointer to a fragment connection ID.
fragnment Mai n Pointer to DoDr i ver | O
driverDesc Pointer to the driver description of driver.

DESCRIPTION
Given a pointer to the RegEnt r yI Dvalue of a device, Get Dri ver For Devi ce loads
from memory the most suitable driver for that device. It returns the loaded driver’s CFM
connect i onl Dvalue in f r agment Connl D, a pointer to its DoDr i ver | Oentry point in
f ragment Mai n, and a pointer to its driver description in dr i ver Desc.

RESULT CODES

noErr 0 No error
fnfErr —43 File not found
All CFM errors (See Inside Macintosh: PowerPC System Software)

SetDriverClosureMemory

OSErr SetDriverd osureMenory
( CFragConnecti onl D f ragnment Connl D,
Bool ean hol dDri ver Menory) ;

f ragnent Connl D ID of driver closure (returned from other DLL loading services).
hol dDri ver Menory Passtr ue to hold a driver closure; f al se to free it.

DESCRIPTION
A driver and all its libraries is called a driver closure. When a driver is loaded and
prepared for initialization by the DLL, memory for its closure is held as the final step
in implementing Get Dri ver Menor yFr agnent and Get Dri ver Di skFragnent .
Closure memory is held by default to prevent page faults at primary and secondary
interrupt level.
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Set Dri ver Cl osur eMenory lets you hold closure memory by setting the
hol dDr i ver Menor y parameter to t r ue. It can also be use to free memory held
for a driver closure by setting the hol dDr i ver Menor y parameter to f al se.

To undo the effects of Get Dri ver Menor yFr agment or Get Dri ver Di skFragnent, an
I/O expert can call Set Dri ver Menor yCl osur eMenory (cfm D, fal se) followed by
C oseConnect i on (&cf ml D) . This has the effect of unloading the driver. Listing 7-11
shows a sample of code to perform this task.

Listing 7-11 Unloading a driver

voi d Unl oadTheDriver ( CFragConnectionlD fraglD)

{
OSEr r St at us;
THz t heCurr ent Zone = Cet Zone();
/'l make sure the fragnent is attached to the system context
/1 (System 7.5.2 CFM keys context fromthe current heap zone)
Set Zone ( Systen¥one() );
Status = SetDriverd osureMenory (fraglD, fal se);
if ( Status != noErr )
printf("Couldn't unhol d pages of Driver C osurel!
(Err==%)\n", Status);
Status = O oseConnection(&f raglD);
if ( Status != noErr )
printf("Couldn't close Driver Connection!
(Err==%)\n", Status);
/1 reset the zone
Set Zone ( theCurrent Zone );
}

Note that you must switch the current heap to the system heap before calling
d oseConnecti on.

Installation

Once loaded, a driver must be installed in the unit table to become available to Device
Manager clients. This process begins with a CFM fragment connection ID and results in a
r ef Numvalue.

The installing software can specify a desired range of unit numbers in the unit table. For
example, SCSI drivers use the range 32 through 38 as a convention to their clients. If the
driver cannot be installed within that range, an error is returned. The unit table may
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grow to accommodate the new driver, however. For the rules of this growth, see the note
on page 129.

When installing a native driver, the caller also passes the RegEnt r yl DPt r value of the
device that the driver is to manage. This pointer (along with the r ef Numvalue) is given
to the driver as a parameter in the initialization command. The driver may use this
pointer to iterate through a device’s property list, as an aid to initialization. The native
driver should return noEr r to indicate a successful initialization command.

These functions, described in the next sections, operate on a loaded driver fragment:
= VerifyFragnment AsDri ver verifies fragment contents as driver.

= InstallDriverFronFragnment places a driver fragment in the unit table.

= InstallDriverFronD sk places a disk-based driver in the unit table.

= Openlnstall edDri ver opens a driver that is already installed in the unit table.

VerifyFragmentAsDriver

Veri f yFragnent AsDri ver makes sure there is a driver in a given fragment.

OSErr VerifyFragment AsDri ver
( CFragConnecti onl D f ragment Connl D,
DriverEntryPointPtr *fragnment Mai n,
DriverDescriptionPtr *dri ver Desc);

fragment Connl D CFM connecti onl D.
fragment Mai n Resulting pointer to DoDr i ver | O
driverDesc Resulting pointer to Dri ver Descri pti on.

DESCRIPTION

Given a CFM connect i onl Dvalue for a code fragment, Ver i f yFr agment AsDr i ver
verifies that the fragment is a driver. It returns a pointer to the driver’s DoDr i ver | O
entry point in f r agment Mai n and a pointer to its driver description in dri ver Desc.

RESULT CODES

nokErr 0 No error
All CFM errors (see Inside Macintosh: PowerPC System Software)
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InstallDriverFromFragment

DESCRIPTION

RESULT CODES

I nstal | Driver FronfFragnent installs a driver fragment in the unit table.

OSErr Install Driver Fronfragment
(CFragConnectionl D fragment Connl D,

RegEnt ryl DPt r devi ce,

Uni t Nuber begi nni ngUni t,
Uni t Nurmber endi ngUni t,
ref Num *ref Nunj ;

fragment Connl D CFM connecti onl D.

devi ce Pointer to Name Registry specification.
begi nni ngUni t Low unit number in unit table range.
endi ngUni t High unit number in unit table range.
ref Num Resulting unit table r ef Numvalue.

I nstal | Driver FronFragment installs a driver that is located in a CFM code fragment
anywhere within the specified unit number range of the unit table. It invokes the

driver’s I ni ti al i ze command, passing the RegEnt ryl DPt r value to it. The driver’s
initialization code must return noEr r for I nst al | Dri ver Fr onFr agnment to complete
successfully. This function returns the driver’s r ef Numvalue but it does not open

the driver.

IMPORTANT

If the unit table is filled throughout the range from begi nni ngUni t to
the value returned by H ghest Uni t Nunber (described on page 138),
and the table has not already grown to its maximum size, it can expand
to accept the new driver. To use this feature, set endi ngUni t larger
than Hi ghest Uni t Nunber () . If endi ngUni t is less than or equals
Hi ghest Uni t Nunber () under these conditions, uni t Tbl Ful | Err
will be returned and the driver will not be installed. a

noErr 0 No error
badUni t Err -21 Bad unit number
uni t Tbl Ful I Err -29 Unit table or requested range full

Specific returns from | ni ti al i ze, Repl ace, Super seded
All CFM errors (see Inside Macintosh: PowerPC System Software)
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InstallDriverFromDisk

I nstal |l Driver Fr onDi sk locates a file in the Extensions folder that is in the Mac OS
System Folder, verifies that the file’s contents are a native driver, and loads and installs
the driver.

OSErr Install DriverFronDi sk

(Ptr t heDri ver Nane,
RegEnt ryl DPt r t heDevi ce,
Uni t Nurber t heBegi nni ngUni t,
Uni t Nunber t heEndi ngUni t,
Dri ver Ref Num *t heRef Nunj ;
t heDri ver Nanme Name of a disk file containing a driver.
t heDevi ce Pointer to entry in the Name Registry.
t heBegi nni ngUni t  First unit table number of range acceptable for installation.
t heEndi ngUni t Last unit table number of range acceptable for installation.
t heRef Num Reference number returned by | nst al | Dri ver Fr onDi sk.

DESCRIPTION

I nstall Driver FronDi sk installs a driver that is located on disk anywhere within the
specified unit number range of the unit table and invokes the driver’s I ni ti al i ze
command, passing the RegEnt ryl DPt r value to it. The driver’s initialization code must
return NOEr r for I nstal | Dri ver Fr onDi sk to complete successfully. This function
returns the driver’s r ef Numvalue but it does not open the driver.

If the unit table is filled throughout the range from begi nni ngUni t to the value
returned by Hi ghest Uni t Nunber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endi ngUni t larger than Hi ghest Uni t Nunber ().

Note

Instal |l DriverFronDi sk uses Get Dri ver Menor yFr agnent to
load the driver, which should then call Set Dri ver Cl osur eMenory
to hold the driver’s closure memory. O

RESULT CODES
noErr 0 No error
badUni t Err -21 Bad unit number
uni t Tbl Ful I Err -29 Unit table or requested range full
fnfErr —43 File not found

All CFM errors (see Inside Macintosh: PowerPC System Software)

130 Driver Loader Library



CHAPTER 7

Writing Native Drivers

OpenlnstalledDriver

DESCRIPTION

RESULT CODES

Openl nst al | edDri ver opens a driver that is already installed in the unit table.

OSErr Openlnstall edDriver

(Driver Ref Num ref Num
SInt8 i oPerni ssion);
ref Num Unit table reference number.

i oPerm ssion  I/O permission code:
fsCurPerm 0 retain current permission
f sRdPer m 1  allow read actions only
fsW Perm 2 allow write actions only
fsSRAW Perm 3  allow both read and write actions

Given an installed driver’s unit table reference number, Qpenl nst al | edDri ver opens
the driver. The Device Manager ignores the i oPer mi ssi on parameter; it is included
only to provide easy communication with the driver.

IMPORTANT

Native drivers must keep track of I/ O permissions for each
instance of multiple open actions and return error codes if
permissions are violated. a

noErr 0 No error
badUni t Err 21 Bad unit number
uni t Enpt yErr —22 Empty unit number

Load and Install Option

Clients wishing to combine the loading and installation process in one service may want
to use one of the following functions, described in the next sections:

m Install DriverFronFil e loads and installs a file-based driver.

= Install Driver Fromvenory loads and installs a memory-based driver.
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InstallDriverFromFile

I nstall Driver FronFi |l e loads a driver from a file and installs it.

OSErr InstallDriverFronFile (FSSpecPtr f ragnment Spec,
RegEntryl DPtr devi ce,
Uni t Nunber begi nni ngUni t,
Uni t Nuber endi ngUni t,
Driver Ref Num *ref Num ;

f ragment Spec Pointer to a file system specification.
device Pointer to Name Registry specification.
begi nni ngUni t Low unit number in unit table range.
endi ngUni t High unit number in unit table range.
ref Num Resulting unit table r ef Numvalue.

DESCRIPTION
I nstal | DriverFronFil e installs a driver that is located on disk anywhere within the
specified unit number range of the unit table and invokes the driver’s I ni ti al i ze
command, passing the RegEnt ryl DPt r value to it. The driver’s initialization code
must return NoEr r for I nstal | Dri ver FronFi | e to complete successfully. This
function returns the driver’s r ef Numvalue but it does not open the driver.

If the unit table is filled throughout the range from begi nni ngUni t to the value
returned by Hi ghest Uni t Nunber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endi ngUni t larger than Hi ghest Uni t Nunber ().

Note

Instal | DriverFrontil euses Get Dri ver Di skFragment to load
the driver, which should then call Set Dri ver O osur eMenory to
hold the driver’s closure memory. O

RESULT CODES

noErr 0 No error

badUni t Err -21 Bad unit number

uni t Tbl Ful I Err -29 Unit table or requested range full
fnfErr —43 File not found

All CEM errors (see Inside Macintosh: PowerPC System Software)
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InstallDriverFromMemory

DESCRIPTION

RESULT CODES

I nstal | Dri ver FromMenory loads a driver from a range of memory and installs it.

OSErr Install DriverFromvenory
(Ptr nmenory,
| ong [ engt h,
Const Str63Param fragNane,
RegEnt ryl DPt r devi ce,

Uni t Nunber begi nni ngUni t,
Uni t Nuber endi ngUni t,
Dri ver Ref Num *ref Nunj ;
menory Pointer to beginning of fragment in memory.
 engt h Length of fragment in memory.
f ragNanme An optional name of the fragment (used primarily by debugger).
device Pointer to Name Registry specification.
begi nni ngUni t Low unit number in unit table range.
endi ngUni t High unit number in unit table range.
ref Num Resulting unit table r ef Numvalue.

I nstal | Driver FromMvenory installs a driver that is located in a CFM code fragment
anywhere within the specified unit number range of the unit table. It invokes the
driver’s I ni ti al i ze command, passing the RegEnt ryl DPt r value to it. The driver’s
initialization code must return noEr r for I nst al | Dri ver Fr omMenor y to complete
successfully. This function returns the driver’s r ef Numvalue but it does not open

the driver.

If the unit table is filled throughout the range from begi nni ngUni t to the value
returned by H ghest Uni t Nunber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endi ngUni t larger than Hi ghest Uni t Nunber ().

Note

I nstal | Driver Fromvenory uses Get Dri ver Menor yFr agnent to
load the driver, which should then call Set Dr i ver Cl osur eMenory to
hold the driver’s closure memory. O

noErr 0 No error

badUni t Err 21 Bad unit number

uni t Thl Ful | Err -29 Unit table or requested range full
par antrr -50 Bad parameter

All CFM errors (see Inside Macintosh: PowerPC System Software)
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Match, Load, and Install

Clients wishing to combine the matching of the best driver for a device, with the loading
and installation process in one service, may use | nst al | Dri ver For Devi ce and

Hi gher Dri ver Ver si on, described in this section. The Dr i ver Descri pti on data
structure is used to compare a driver’s functionality with a device’s needs. See the
discussion of the native driver container package in “Driver Loader Library” beginning
on page 117.

The Driver Loader Library picks the best driver for the device by looking for drivers in
the Extensions folder and comparing those against drivers in the device’s property list.

InstallDriverForDevice

DESCRIPTION
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I nstal | Driver For Devi ce installs the “best” driver for a device. The algorithm for
determining the best driver is described in “Matching Drivers With Devices” beginning
on page 142.

OSErr Install Driver ForDevice
(RegEntryl DPt r devi ce,

Uni t Nurber begi nni ngUni t,
Uni t Nunber endi ngUni t,
Dri ver Ref Num *ref Nunj ;
devi ce Pointer to Name Registry specification.

begi nni ngUni t Low unit number in unit table range.
endi ngUni t High unit number in unit table range.
ref Num Resulting unit table r ef Numvalue.

I nstal | Dri ver For Devi ce finds, loads, and installs the best driver for a device
identified by its RegEnt r y| D value. It installs the driver anywhere within the specified
unit number range of the unit table and invokesits | ni ti al i ze command, passing the
RegEnt ryl DPt r value to it. The driver’s initialization code must return noEr r for

I nstal | Driver For Devi ce to complete successfully. This function returns the driver’s
r ef Numvalue but it does not open the driver.

If the unit table is filled throughout the range from begi nni ngUni t to the value
returned by Hi ghest Uni t Nunber (described on page 138), and the table has not
already grown to its maximum size, it can expand to accept the new driver. To use
this feature, set endi ngUni t larger than Hi ghest Uni t Nunber ().
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noErr 0 No error

badUni t Err =21 Bad unit number

uni t Tbl Ful I Err -29 Unit table or requested range full
fnfErr —43 File not found

All CFM errors (see Inside Macintosh: PowerPC System Software)

HigherDriverVersion

DESCRIPTION

Hi gher Dri ver Ver si on compares two driver version numbers, normally the values in
their Dri ver Descri pti on structures. It returns a value that indicates which driver is
later. This service may be used by any software that loads or evaluates drivers.

short Hi gherDriverVersion (NunVersion *driver Versionl,
NunVer si on *dri ver Versi on2);

struct NunVersion {
U nt 8 maj or Rev; /*1st part of version nunber in BCD¢/
Ul nt 8 mi nor AndBugRev; /*2nd and 3rd part of version nunber
share a byte*/
U nt 8 stage; /*stage code: dev, al pha, beta, final*/
U nt 8 nonRel Rev; /*rev | evel of nonrel eased version*/

}s

driverVersionl First version number being compared.

driverVersion2 Second version number being compared.

Hi gher Dri ver Ver si on returns 0 if dri ver Ver si onl and dri ver Ver si on2 are
equal. It returns a negative number if dri ver Ver si onl <dri ver Ver si on2 and a
positive number greater than 0 if dri ver Ver si onl >dri ver Ver si on2. If both
drivers have st age values of f i nal , a nonRel Rev value of 0 is evaluated as greater
than any nonzero number.

Stage codes are the following:

devel opSt age = 0x20
al phaSt age = 0x40
bet aSt age = 0x60
final St age = 0x80
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Driver Removal

Clients wishing to remove an installed driver should use RenoveDri ver.

RemoveDriver

RenpveDri ver removes an installed driver.

OSErr RenoveDri ver (Driver Ref Num ref Num
Bool ean | mredi at e) ;

ref Num Reference number of driver to remove.

| mredi ate Value of t r ue means don’t wait for driver to become idle.

DESCRIPTION
RermoveDri ver accepts a r ef Numvalue and unloads a code fragment driver from the
unit table. It invokes the driver’s Fi nal i ze command. If called as immediate, it doesn’t
wait for driver to become inactive.

RESULT CODES
noErr 0 No error
badUni t Err 21 Bad unit number
uni t Enpt yErr —22 Empty unit number

Getting Driver Information

Clients wishing to acquire information about an installed driver should use
CGet Dri ver | nformati on.

GetDriverInformation

Get Dri ver | nf or mat i on returns a number of pieces of information about an
installed driver.

OSErr CGetDriverlnformation

(Driver Ref Num ref Num
Uni t Nurber *uni t Num
DriverFl ags *fl ags,
Dri ver OQpenCount *count,
StringPtr nane,
RegEntryl D *devi ce,
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CFragHFSLocat or *dri ver LoadLocat i on,
CFragConnecti onl D *f ragment Connl D,
DriverEntryPoi ntPtr *fragnment Mai n,
DriverDescription *dri ver Desc) ;

ref Num Reference number of driver to examine.

uni t Num Resulting unit number.

flags Resulting DCE flag bits.

count Number of times driver has been opened.

name Resulting driver name.

devi ce Resulting Name Registry device specification.

driverLoadLocation
Resulting CFM fragment locator from which driver was loaded.

fragment Connl D Resulting CFM connection ID.
fragment Mai n Resulting pointer to DoDr i ver |1 O
driver Desc Resulting pointer to Dr i ver Descri pti on.

DESCRIPTION
Given the unit table reference number of an installed driver, Get Dri ver | nf or mati on
returns the driver’s unit number in uni t Num its DCE flags in f | ags, the number of
times it has been opened in count , its name in nane, its RegEnt r yl Dvalue in devi ce,
its CFM fragment locator in dr i ver LoadLocat i on, its CFM connection ID in
fragment Connl D, its DoDr i ver | Oentry point in f r agment Mai n, and its driver
descriptionin dri ver Desc.
Code that calls Get Dri ver | nf or mat i on must always supply an FSSpec file
specification with the CFM locator. For an example, see Listing 7-12 on page 139.
Note
With 68K drivers, Get Dri ver | nf or mat i on returns meaningful
information in only the uni t Num, f | ags, count, and name
parameters. 0O

RESULT CODES
noErr 0 No error
badUni t Err =21 Bad unit number
uni t Enpt yErr -22 Empty unit number
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Searching for Drivers

The routines described in this section help clients iterate through the unit table, locating
installed drivers.

HighestUnitNumber

DESCRIPTION

H ghest Uni t Nunber returns the currently highest valid unit number in the unit table.

Uni t Nunber Hi ghest Uni t Nunber (void);

H ghest Uni t Nunber takes no parameters. It returns a Uni t Nunber value that
represents the highest unit number in the unit table.

LookupDrivers

DESCRIPTION
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LookupDri ver s is used to iterate through the contents of the unit table.

OSErr LookupDrivers (Uni t Nunber begi nni ngUni t,
Uni t Nunber endi ngUni t,
Bool ean enptyUnits,
I t enCount *r et ur nedRef Nuns,

Driver Ref Num *ref Nums) ;

begi nni ngUni t First unit in range of units to scan.
endi ngUni t Last unit in range of units to scan.
emptyUnits A value of t r ue means return available units; a value of f al se

means return allocated units.

ret ur nedRef Nuns Maximum number of reference numbers to return; on completion,
contains actual number of reference numbers returned.

r ef Nums Resulting array of returned reference numbers.

Given the first and last unit numbers to scan, LookupDr i ver s returns the reference
numbers of both native and 68K drivers. The enpt yUni t s parameter tells it to return
either available or allocated units, and r et ur nedRef Nuns tells it the maximum number
of reference numbers to return. When LookupDr i ver s finishes, r et ur nedRef Nuns
contains the actual number of reference numbers returned.
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The sample code shown in Listing 7-12 uses Hi ghest Uni t Nunber and LookupDri vers
to print out the reference numbers of all installed drivers and obtain driver information.

RESULT CODES
noErr 0 No error
badUni t Err -21 Bad unit number
par antrr -50 Bad parameter

Listing 7-12 Using the LookupDr i ver s function

Fi ndAl'l Drivers ()

{

| t emCount t heCount = 1;
Uni t Nunber t heUni t = 0;
DriverRef Num theRefNum *full Si zedRef NunBuf f er;

/1 nmethod #1: iterate with a small output buffer

while ( (theUnit <= HighestUnitNunber()) &&
(LookupDrivers (theUnit, theUnit, false, & heCount, &t heRefNum) ==noErr))

{

if (theCount == 1) printf ("Refnum#%l is allocated.\n",theRef Num;
t heCount = 1;
t heUni t ++;

}

/1 method #2: get all refnums with one call

full Si zedRef NunBuf fer = NewPtr ((H ghestUnitNunber() + 1) *
si zeof (Driver Ref Num ) ;

t heCount = (Hi ghest UnitNunmber() + 1);

LookupDrivers (0, Hi ghestUnitNunber(), false, & heCount,
full Si zedRef NunBuffer);

for(theUnit=0,theUnit <theCount;theUnit++)

{
printf("Refnum#%l is allocated.\n", fullSizedRef NumBuffer [theUnit]);

ShowDri verlinfo (full SizedRef NunBuffer [theUnit]);

}
Di sposePtr (ful |l Si zedRef NunBuf fer);

return noErr;
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ShowDri verlnfo (DriverRef Num *ref Num

{

Uni t Nunber t heUni t;

Driver Ref Num aRef Num
DriverFl ags t heFl ags;
FSSpec driverFil eSpec;
RegEnt ryl D t heDevi ce;

CFr agHFSLocat or t heLoc;

Str 255 t heNarre;
CFragConnectionl D f ragment Connl D;
Dri ver OQpenCount t heQpenCount ;

DriverEntryPointPtr fragment Main;
DriverDescription t heDri ver Descri pti on;

t heLoc. u. onDi sk.fileSpec = &driverFil eSpec; /* See note bel ow */

GetDriverInformation ( aRef Num

& helni t,

&t heFl ags,

& heOpenCount ,

t heNane,

&t heDevi ce,

&t heloc,

&f ragment Connl D,

&f ragment Mai n,

& heDri ver Descri ption);
printf ("Driver's flags are: %%&\n", theFlags);

IMPORTANT

When calling Get Dri ver | nf or mat i on, always supply an
FSSpec file specification as shown in the preceding sample.
Failure to do so may let the DLL or the CFM either crash
the system or overwrite the system heap. a

Finding, Initializing, and Replacing Drivers

140

The native driver framework in PCI-based Power Macintosh computers tolerates a wide
range of variations in system configuration. Although drivers and expansion cards may
be designed and updated independently, the system autoconfiguration firmware offers
several techniques for making them work together. This section discusses what PCI
driver and card designers can do to improve the compatibility of their products.
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Device Properties

A PCI device is required to provide a set of properties in its PCI configuration space. It
may optionally supply FCode and run-time driver code in its expansion ROM. PCI
devices without FCode and run-time driver code in ROM may not be used during
system startup.

The required device properties in PCI configuration space are
= vendor-1D

= device-1D

= cl ass-code

= revision-nunmber

For PCI boot devices there must be an additional property:
driver, AAPL, MacGsS, Power PC

This property contains a pointer to the boot driver’s image in the PCI card’s expansion
ROM. It is used in conjunction with the f code- r om of f set property.

The Open Firmware FCode in a PCI device’s expansion ROM must provide and install a
dri ver property, as shown above, to have its driver appear in the Name Registry and
be useful to the system during startup. It must also add its expansion ROM's base
register to the r eg property, so that system firmware can allocate address space when
installing the driver.

To facilitate driver matching for devices with disk-based drivers, the FCode should
provide a unique nane property that conforms to the PCI specification. For further
information, see Chapter 5, “PCI Open Firmware Drivers.”

PCI Boot Sequence

To better explain the concepts and mechanisms for finding, initializing, and replacing
PCI drivers, here is a short description of the PCI boot sequence:

1. Hardware is reset.

2. Open Firmware creates the device tree. This device tree is composed of all the
devices found by the Open Firmware code, including all properties associated
with those devices.

3. The Name Registry device tree is created by copying the Macintosh-relevant nodes
and properties from the Open Firmware device tree.

4. The Code Fragment Manager and the interrupt tree are initialized.

5. Device properties that are persistant across system startups and are located in
NVRAM are restored to their proper location in the Name Registry device tree.

6. The Name Registry device tree is searched for PCI expansion ROM device drivers
associated with device nodes.

7. PCI expansion ROM device drivers required for booting are loaded and initialized.
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8. If a PCI ROM device driver is marked as kdr i ver | sLoadedUponDi scovery, the
driver is installed in the Device Manager unit table.

9. If a PCI ROM device driver is marked as kdr i ver | sQpenedUponLoad, the driver is
initialized and opened, and the dri ver - r ef property is created for the driver’s
device node.

10. The Display Manager is initiated.
11. The SCSI Manager is initiated.
12. The File Manager and Resource Manager are initialized.

13. Device properties that are persistant across system startups and located in the
Preferences folder in the System Folder are restored to their proper location in the
Name Registry device tree.

Device drivers under family expert control are processed next. The following steps load
disk-based experts and disk-based drivers:

1. Scan the Extensions folder for drivers (file type ' ndrv' ), updating the Registry with
new versions of drivers as appropriate. For each driver added or updated in the tree,
a driver description property is added or updated as well.

2. For each driver that is replaced, and already open, use the driver replacement
mechanism.

3. Run'init' resources for virtual devices. Virtual devices are discussed in “Real and
Virtual Devices” on page 165.

4. Scan the Extensions folder for experts (file type ' expt ' ); load, initialize, and run each
expert.

5. Run experts to scan the registry, using the driver description property associated with
each node to determine which devices are of each appropriate family.

6. Load and initialize appropriate devices based on family characteristics.

At that point all devices in use by the system and family subsystems are initialized.
Unitialized and unopened devices or services that may be used by client applications are
located, initialized, and opened at the time that a client makes a request for the devices
or services.

Note

PCI device drivers are ordered to switch from low-power to high-power
mode when their devices are opened. O

Matching Drivers With Devices

Mac OS matches drivers to devices by using the following algorithm:

= When a device node has a driver in ROM, no driver matching is required. Mac OS
uses the driver name and compares the version numbers of ROM-based and
disk-based drivers to select the newest version of the driver.
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= When a device node has a hame property that was supplied by the FCode in a
device’s expansion ROM, Mac OS checks the name property against all disk-based
drivers and find the first matching driver with the latest version number. If there is no
match against the nane property, then Mac OS attempts a match against each name
string in the device’s conpat i bl e property. The comparison is always against the
namel nf oSt r parameter in the driver description structure for each disk-based
driver. The first match is used. If no match is found against nane or conpati bl e
strings, the device is not usable.

s When a device node has no FCode, Mac OS tries to match the device with a driver
based on the generated name pci xxxx,yyyy where xxxx is the vendor ID and yyyy is
the device ID. Both these ID values must be hexadecimal numbers, without leading
Os, that use lower case for the letters A through F and are rendered as ASCII
characters. If a match is found, but the first initialization call to the driver fails, then
the code that is attempting to use the driver must call the Driver Loader Library’s best
match routine (again) to find the next-best driver.

Note

Each device node should have just one conpat i bl e property,
containing one or more C-formatted name strings as its value. The
strings must be packed in sequence with no unused bytes between them
and should be arranged with the more compatible names first. O

The DLL routines Get Dri ver For Devi ce, | nstal | Dri ver For Devi ce, and
Fi ndDr i ver sFor Devi ce use the following algorithm to match or install the
“best” driver for a device:

1. Find all candidate drivers for the device. A driver is a candidate if its namel nf oSt r
value matches either the device’s name or one of the names found in the device’s
conpat i bl e property.

2. Sort this list based on whether the driver matched using the device’s name or a
compatible name. Those matched with the device name are put at the head of the list.
Break ties using the driver’s version number (See “HigherDriverVersion” beginning
on page 135.) Sample code for file-based driver sorting is shown in Listing 7-13. The
sample code returns 0 if two drivers are equally compatible, a negative number if
driver 1 is less compatible than dri ver 2, and a positive number if dri ver 1 is
more compatible than dri ver 2.

3. If not installing the driver, return the driver at the head of the candidate list and
discard any remaining candidates.

If you still have candidates with which to attempt an installation, do the following;:
1. Load and install the driver located at the head of the list.

2. The driver should probe the device, using DSL services, to verify the match. If the
driver did not successfully initialize itself, discard it and return to step 1.

3. Discard any remaining candidates.

The routines that use this algorithm are described in detail in the sections that start with
“Loading and Unloading” beginning on page 119.
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A WARNING
You must try to match your driver with your device as securely as
possible, using the routines and algorithms just described. If you fail to
do so, the computer may crash with an unrecoverable bus error. a

Listing 7-13 File-based driver sorting

SInt 16 Candi dat eConpar eRout i ne

(Fil eBasedDri verlnfoPtr Driverl,
Fi | eBasedDri ver | nfoPtr Driver 2,
StringPtr Conpat i bl eNanes,
I t enCount nConpat i bl eNanes)
{
SInt 16 mat chResults = 0;

if ( Driverl and Driver2 matched using sane property (name or comnpati bl e))

{

if ( both drivers matched using conpatible property )

{
if ( drivers not matched with identical conpatible name )
{
/1 Wi ch conpatible name (by nunber) did driverl/driver2 match?
Dri ver 1Conpati bl eName = Wi chConpati bl eName(Driverl,...);
Driver2Conpati bl eNane = Wi chConpati bl eNanme(Driver2,...);
if ( DriverlConpatibleNane != Driver2Conpati bl eNane )
{
if ( DriverlConpatibleNane < Driver2Conpati bl eNane )
return 1; // driverl is "nore conpatible"
el se
return -1; // driver2 is "nore conpatible"
}
}
}

/1 Break tie with version nunbers, if possible.
mat chResul ts = Hi gherDriverVersion (&Driverl -> info.theType.version,
&Driver2 -> info.theType. version);

// Same version nunber too?
if ( mtchResults == 0 )
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{

/1 Final tie breaker is their filenanes
/'l (Reverse the conmpare with Rel String)
mat chResults = Rel String (Driver2 -> info.theSpec. nane,
Driverl -> info.theSpec. name, true, true );

}

return mat chResul ts;

}

/1 Matched using different property

if ( Driverl matched using conpatible property )

return -1; /1 driver 2 is higher
return 1; /1l else driver 1 is higher

Driver Initialization and Resource Verification

After finding a match between a hardware device and its driver, the driver initialization
code must check to make sure that all needed resources are available. This section
describes a typical algorithm for resource verification. Driver initialization code should
perform this algorithm for two reasons:

s The driver may not have all the address resources it requires. This event is unlikely,
but the driver should check.

s If the PCI card expansion ROM doesn’t contain FCode, the driver may need to
perform a diagnostic to make sure the card it has been matched with is actually the
card it is designed to control. This problem is discussed in “Open Firmware FCode
Options” beginning on page 32.

IMPORTANT
The driver must enable its card for a PCI device to be useable. a

The following is a typical resource verification and card enabling procedure:

1. Check for existence of an assi gned- addr esses property for the device.If no
assi gned- addr esses property exists, exit the driver initialization routine with
an error message (address resources not available). The assi gned- addr esses
property is discussed in “Standard Properties” beginning on page 193. If an
assi gned- addr esses property exists, go to step 2.

2. Check the assi gned- addr esses property for the existence of the base registers
required for full operation of the driver. Do this by looking at the last byte of the first
long word of each assi gned- addr esses entry that is required. A typical
assigned-addresses entry looks like this:

82006810 00000000 80000000 000000000 00008000
81006814 00000000 00000400 000000000 00000100

If the required base registers are not present, exit the driver initialization routine with
an error message (address resources not available). If the required base registers are
present, go to step 3.
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3. Note where in the assi gned- addr esses property the entries for the required base
registers are located. The first entry is 0, the next is 1, and so on. That same order will
be preserved in the AAPL, addr ess property, which is an array of 32-bit values
corresponding to the logical address for your base register's physical address. For
more information about the AAPL, addr ess property, see “I/O Space Cycle
Generation” beginning on page 300. A typical AAPL, addr ess property looks like this:

80000000 F2000400

If the driver uses Expansion Bus Manager routines (such as ExpMyr | OReadByt e) it
must pass the physical address for the I/ O base register, which it gets from the
assi gned- addr esses property. The Expansion Bus Manager does byte swapping
and EIEIO synchronization for the driver, but it's node-based and it’s slow. The
AAPL, addr ess version just uses a pointer, so it’s as fast as accessing memory space.

4. If the driver can be confused with another driver—if, for example, the card doesn’t
have FCode and another vendor uses the same PCI ASIC on a different card—the
driver must perform a diagnostic routine on the card to make sure that it has been
matched correctly. The Devi cePr obe function, described below, helps a driver
determine if a device is present at an address. If the diagnostic routine fails, the driver
must exit its initialization routine with an error message (not my card). If the driver
verifies that the card is correct, go to step 5.

5. The driver must read or write to the device’s configuration command register to
enable its PCI spaces. Listing 7-14 presents typical code for doing this. It uses the
ExpMgr Conf i gReadWr d routine described on page 305.

Listing 7-14 Enabling PCI spaces

ExpMyr Conf i gReadWord (your Node, 4, &yourval ue);

yourval ue = yourval ue | yourEnabl es; /* if 1/0O space, bit O;
if menory space, bit 1 */

ExpMyr Confi gWiteWrd (yourNode, 4, yourval ue);

Listing 7-15 shows a routine that extracts a device’s logical address by using its

assi gned- addr esses and AAPL, addr ess properties. It accepts as input the offsets
into PCI configuration space that match the device’s space request. For example, an
Ethernet card it may want two address spaces, I/O and memory. The card is designed
so that offset 0x10 in configuration space corresponds to the I/O space and 0x14
corresponds to the memory space.

Listing 7-15 Getting a device’s logical address

/1 The follow ng values are valid for offsetValues (defined in PCl Routines.h):

/1
/1
/1
/1
/1
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#defi ne kPCl Confi gBasel0O f set 0x10
#defi ne kPCl Confi gBaseldOf f set 0x14
#defi ne kPCl Confi gBasel8O f set 0x18
#defi ne kPCl Confi gBaselCOr f set 0x1C
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/1 #def i ne kPCl Confi gBase20C f set 0x20

/1 #defi ne kPCl Confi gBase24Of f set 0x24

/1 #def i ne kPCl Confi gBaseROMBOO f set 0x30

/1 Input:

/1 thel D - the NanmeRegistry ID for a PCl card

/1 baseRegAddress - no input val ue

/1 of fsetValue - config base offset, deternines which address space

I | ogi cal address is returned

/1 spaceAl | ocated - no input val ue

/] Qutput:

I if err = KOTNoError, *baseRegAddress - contains the |ogical address of a PCl
11 address space, also spaceAllocated is a byte count for the anpbunt of space
I that was all ocated

I returns various errors

I

e e e e

OSSt at us Get PCl Car dBaseAddr ess(RegEntryl D *thel D, U nt32 *baseRegAddress, U nt8 of fsetVal ue,
U nt 32 *spaceAl | ocat ed)

{

OSSt at us osSt at us;

PCl Assi gnedAddr ess *assi gnedArray;

RegPr opertyVal ueSi ze propertySi ze;

Ul nt 32 nunmber O El enent's, *virtual Array;
Bool ean f oundMat ch;

U nt 16 i ndex;

*baseRegAddress = NULL; /1 default val ue

f oundivat ch = kFal se;

osStatus = Get AProperty(thel D, kPCl Assi gnedAddr essProperty, (void **) &ssi gnedArr ay,
&propertySize);

if ((osStatus == kOTNoError) && propertySize)

{
nunber O El ement s = propertySi ze/ si zeof ( PCl Assi gnedAddr ess) ;

osStatus = Get AProperty(thel D, kAAPLDevi ceLogi cal Address, (void **)&virtual Array,
&propertySi ze);

if ((osStatus == kOTNoError) && propertySi ze)
{

/1 search through the assigned addresses property |ooking for base register
for (index = 0; (index != nunberO El enents) && !foundiatch; ++i ndex)
{

i f (assignedArray[index].registerNunber == offsetVal ue)
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{

*spaceAl | ocat ed = assi gnedArray[index]. size.lo;
*baseRegAddr ess = virtual Array[i ndex];
foundMat ch = kTrue;

}

Di sposeProperty((void **)&irtual Array);

}

el se

osStatus = kENXI Cerr;

Di sposeProperty((void **)&assi gnedArray);

}
el se
osSt at us

= KENXI CErr;

return osSt atus;

}
DeviceProbe
Devi cePr obe is used to determine if a hardware device is present at the
indicated address.
OSSt at us Devi ceProbe (void *t heSrc,
voi d *t heDest,
U nt32 AccessType);
t heSrc The address of the device to be accessed.
t heDest The destination of the contents of t heSr c.
AccessType How t heSrc is to be accessed: k8Bi t Access, k16Bi t Access, or
k32Bi t Access.
DESCRIPTION
Devi cePr obe accesses the indicated address and stores the contents att heDest using
AccessType to determine whether it should be an 8-bit, 16-bit or 32-bit access. Upon
success it returns NOEr r. If the device is not present, that is, if a bus error or a machine
check is generated, it returns noHar dwar eErr.
If a PCI card contains no FCode, and therefore is assigned a generic name of the form
pci xxxx,yyyy, it is important for a driver to provide diagnostic codeinits I ni ti al i ze
routine. When a driver is matched with a card that has a generic name property, it may
be the wrong driver. In that case, diagnostic code probing for a unique characteristic of
the card not only may fail a data compare operation but may also cause an unrecoverable
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machine check exception. Devi cePr obe allows a driver to explore its hardware in a
recoverable manner. It provides a safe read operation, which can gracefully recover from
a machine check and return an error to the caller. If Devi cePr obe fails, the driver
should return an error from its | ni ti al i ze command. This return may cause the DLL
to continue its driver-to-device matching process until a suitable driver is found.

noErr 0 Device present
noHar dwar eEr r -200 Device not present

Opening Devices

There is a clear distinction between device initialization and device opening. A device
opening action is a connection-oriented response to client requests. Device drivers
should expect to run with multiple Open and Cl 0se commands. This means that each
driver is responsible for counting open requests from clients, and must not close itself
until all clients have issued close requests. Initialization can occur independently of
client requests—for example at startup time, or (in the case of PCMCIA devices) when a
device is hot-swapped into or out of the system.

Initialization of native driver—controlled devices is handled in phases as described in the
previous section. It is necessary to make a distinction here between PCI drivers and 68K
drivers because the 68K driver initialization path has not changed.

The first phase of native driver initialization consists of searching the device portion

of the Name Registry for boot devices. Boot device nodes should be flagged as

kdri ver| sLoadedUponDi scovery and kdri ver | sOpenedUponLoad in the
Driver Descri pt or property associated with the device node. Boot devices are loaded,
initalized, and opened by the system. Their drivers, which must be in ROM, should be
passive code controlled by the system starting up. PCI bridges are similarly tagged

kDri ver | sLoadedUponDi scovery and kDri ver | sOpenedUponLoad.

The second phase of startup comes after the Macintosh file system is available. In this
second phase the Extensions folder is scanned for family experts, which are run as they
are located. Their job is to locate and initialize all devices of their particular service
category in the Name Registry. The family experts are initialized and run before their
service category devices are initialized because the family expert extends the system
facilities to provide services to their service category devices. For example, the Display
Manager extends the system to provide VBL capabilities to ' di sp' service category
drivers. In the past, VBL services have been provided by the Slot Manager; but with
native drivers, family-specific services such as VBL services move from being a part of
bus software to being a part of family software.

A family expert, whether ROM based or disk based, scans the Name Registry for devices
of a particular service category. Each device entered in the Registry with the specified
service category is initalized and installed in the system in a family-specific way.
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Note that startup steps 10 and 11 listed on page 142 initiated the Display Manager and
the SCSI Manager. The Display Manager and SCSI Manager are both family experts.
These are ROM-based experts that look for service category ' di sp' (' ndrv' for current
display devices) and service category ' bl ok' respectively. The SCSI Manager loads and
activates PCI SIMs in the way described in Inside Macintosh: Devices and in “SIMs for
Current Versions of Mac OS” beginning on page 384. The Display Manager loads,
initializes, and opens display devices. Disk-based experts perform exactly the same task
as ROM-based experts, but disk-based experts are run after the file system is available.
For more information about the Display Manager, see Display Device Driver Guide, listed
in “Apple Publications” beginning on page xxi.

Driver Replacement

Suppose you are shipping your PCI card and have discovered an obscure bug in your
expansion ROM driver. This section describes the mechanism that Apple supplies to
allow you to update your ROM-based driver with an newer disk-based version.

As described earlier in this chapter, the Name Registry is populated with device nodes
that have dri ver, AAPL, MacCS, Power PC properties and dri ver - descri ption
properties. These properties are loaded from device PCI ROM and configuration space,
installed by the Open Firmware code, and pruned by the Expansion Manager.

After the Registry is populated with device nodes, the Macintosh startup sequence
initializes the devices. For every device node in the Registry there are two questions that
require answers before the system can complete a client request to use the device. The
client may be the system itself or an application. The questions are

» Is there a driver for this node?

s Where is the most current version of the driver for this node?

If there is a driver in ROM for a device, the dri ver, AAPL, MacCS, Power PC property is
available in the Name Registry whenever a client request is made to use that device.
However, after the operating system is running and the file system is available, the ROM
driver may not be the driver of choice. In this case, the ROM-based driver is replaced
with a newer version of the driver on disk by the following means.

In the system startup sequence, as soon as the file system is available Mac OS searches
the Extensions folder and matches drivers in that folder with device nodes in the Name
Registry. For a discussion of driver matching, see “Matching Drivers With Devices”
beginning on page 142. The dri ver I nf oSt r and ver si on fields of the Dri ver Type
fields of the two driver description structures are compared, and the newer version of
the driver is installed in the tree. When the driver is updated, the Dri ver Descri pt or
property and all other properties associated with the node whose names begin with

Dri ver are updated in the Name Registry.

If the driver associated with a node is open (that is, if it was used in the system startup
sequence) and if the driver is to be replaced, the system must first close the open driver,
using the dri ver - r ef property in the Name Registry to locate it. The system must then
update the Registry and reinstall and reopen the driver. If the close or finalize action
fails, the driver will not be replaced.
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The native driver model does not provide automatic replacement of 68K drivers (type

" DRVR ). If you want to replace a 68K driver with a native driver dynamically, you must
close the open 68K driver, extract its state information, and load and install the native
driver using the Driver Loader Library. The native driver must occupy the same DCE
slot as the 68K driver and use the same reference number. After being opened, it must
start running with the state information that was extracted from the 68K driver.

Applications and other software can use the Repl aceDri ver Wt hFr agrment function
to replace one driver with another and RenaneDr i ver to change a driver’s name. These
routines are described next.

ReplaceDriverWithFragment

DESCRIPTION

RESULT CODES

Repl aceDri ver Wt hFragnment replaces a driver that is already installed with a new
driver contained in a CFM fragment. It sends replace and superseded calls to the drivers,
as described in “Replace and Superseded Routines” beginning on page 104.

OSEr r

Repl aceDriver Wt hFragnent (Driver Ref Num t heRef Num
CFragConnectionl D  fragment Connl D) ;

t heRef Num Reference number of the driver to be replaced.

f ragnent Connl D CFM connection ID for the new driver fragment.

Given the unit table reference number of an installed driver int heRef Num

Repl aceDri ver Wt hFragnment replaces that driver with a new driver contained in a
CFM fragment identified by f r agment Connl D. It sends replace and superseded calls to
both drivers, as described in “Replace and Superseded Routines” beginning on page 104.

Note

The CFM connect i onl Dvariable should be freed
when the driver is unloaded. O

noErr 0 No error
All CFM errors (See Inside Macintosh: PowerPC System Software)
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RenameDriver

DESCRIPTION

RenaneDr i ver changes the name of a driver.

OSErr RenaneDri ver (DriverRef Num ref Num
StringPtr newDr i ver Nane) ;

ref Num Reference number of the driver to be renamed.
newDr i ver Name  Pointer to the driver’s new name in a Pascal string.

Given the unit table reference number of an installed driver in r ef Num RenaneDr i ver
changes the driver’s name to the contents of a string pointed to by newDr i ver Nane.

RESULT CODES
noErr 0 No error
badUni t Err -21 Bad unit number
uni t Enpt yErr -22 Empty unit number
Driver Migration
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Driver migration is the process of converting current 68K-based programming interfaces
and run-time architectures to their PCI native driver equivalents.

Resources of type ' DRVR' in Mac OS are used to solve a broad variety of problems.
Some ' DRVR' resources drive devices through the use of an I/O manager. For example,
SCSI disk device drivers use the SCSI Manager’s I/O interface to access disks on the
SCSI bus. These I/ O manager-based ' DRVR resources need not migrate to the new
services and run-time model. However, the ' DRVR resources that control physical
devices attached to a PCI bus must operate in a new, more restrictive environment.

This section covers changes to existing driver mechanisms, as well as the replacement
calls. Please note that these are guidelines; for exact calling sequences and parameter
descriptions you must refer to the chapters that cover each of the new routines.

Driver Services That Have No Replacement

The services described in this section are limited for native drivers or are not supplied.

Device Manager

Native drivers are no longer part of the Toolbox environment. The implication of this
change is that while 68K drivers made PBOpen, PBCl ose, and PBCont r ol calls, these
services are not available to drivers in the native device driver environment. Drivers do
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not make calls to other drivers through the Device Manager. Subsystems designed to
communicate in this way must be reimplemented.

In the AppleTalk implementation available with System 7.1 and earlier, the AppleTalk
protocol modules are layered on top of networking device drivers using the Device
Manager as the interface mechanism between these cooperating pieces of software. The
native AppleTalk implementation uses UNIX"-standard STREAMs communication
mechanisms to stack protocol modules on top of drivers. AppleTalk drivers are written
to conform with the native device driver model and operate within the Open Transport
family of devices. For further information, see Chapter 12, “Network Drivers.”

Exception Manager

Native device drivers must not make calls to the Exception Manager. In the past, drivers
made use of the microprocessor’s bus error mechanism to probe for hardware. Drivers
should instead use the Name Registry to find all devices and their properties.

Gestalt Manager

Gestalt calls are available to only to applications, not to drivers. Drivers may provide
driver Gest al t services via the St at us selector to DoDr i ver | Oor may alternatively
present device information through the Name Registry. The Name Registry is a unifying
mechanism and is the preferred means for representing system information.

Mixed Mode Manager

Native device drivers must be written entirely in native PowerPC code. Calls to the
Mixed Mode Manager are not allowed. Future releases of Mac OS will not provide
any emulation facilities for device drivers.

Notification Manager

The Notification Manager is not currently available to native drivers, but will be
available in future versions of Mac OS. Native drivers can use software interrupt
mechanisms instead.

Power Manager

In general, native driver writers should exercise caution using the Macintosh Power
Manager, because doing so may limit the driver’s compatibility with future releases of
Mac OS. In some cases, native experts provide power management facilities for client
drivers, in which case native drivers should support such expert functionality.

Resource Manager

Resource Manager calls are not permitted, not even in the driver initalization routine.
Instead, drivers use the Name Registry to manage initialization and configuration. The
CEM provides dynamic loading of code fragments. See the discussion in “Driver Loader
Library” beginning on page 117.
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Segment Loader

No Segment Loader calls are allowed. The Segment Loader is replaced by the Code
Fragment Manager, which provides a mechanism for dynamically loading and
unloading code fragments.

Shutdown Manager

Shutdown queue routines are no longer needed The driver’s CFM termination routine is
called before shutdown.

Slot Manager

The Name Registry replaces the Slot Manager in most cases. For special bus-specific
I/O requests, see Chapter 10, “Expansion Bus Manager.”

Vertical Retrace Manager

Vertical blanking (VBL) facilities are intended to provide support to graphics and video
display devices. This functionality is provided to video devices by the video display
expert that is responsible for the display family. Devices outside the display family may
not make VBL calls. Timing services are provided to all devices.

New Driver Services

This section describes new services that the Macintosh system software provides for
native drivers.

Registry Services

Chapter 8, “Macintosh Name Registry,” introduces the concept of the Name Registry.
The Registry interface provides new mechanisms that allow drivers to expose
information. Any data that might be of use to a configuration or debugging utility may
be installed in the Registry and be directly available to the configuration application
through the Registry programming interface.

WARNING

Only a small set of Registry services are available at primary or
secondary interrupt level. The set of services available at nontask level
are gets and sets of properties associated with a single device entry. For
further information, see “Service Limitations” beginning on page 282. a

Operating-System Services

A standard set of operating-system utilities is provided in the Driver Services Library.
These services include

s SysDebug and SysDebugSt r
» PBEnqueue and PBDequeue
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s Cand Pascal string manipulation routines
= Bl ockCopy

For a more complete set of driver services, see Chapter 9, “Driver Services Library.”

Timing Services

The Time Manager calls | nsTi e, Pri meTi me, and RnwTi me have been replaced with a
new set of services, described in “Timing Services” beginning on page 268. The timing
routines available are

= SetlnterruptTimer
= Cancel Ti nmer

s UpTi ne

= Ti meBasel nfo

In the past, there have been special services provided to 68K drivers to allow for delayed
processing. These mechanisms, such as dNeedTi e, dr vr Del ay, and accRun, are
specific to the Macintosh Toolbox and the Process Manager. These facilities will continue
to be provided for Toolbox code resources; drivers written to be compatible with the
native driver specification will never run in a Toolbox context and hence may not make
use of these facilities.

Memory Management Services

Native drivers may not call Toolbox memory management routines, particularly
= NewPtr

= NewPtr Sys

= NewHandl e

= Set Zone

Memory allocation requests should use either a device family—specific allocation
mechanism or the new memory management services. The memory management
allocation and deallocation routines are

s Pool Al | ocat eResi dent

= Pool Deal | ocat e

An example of a family specific allocation mechanism is ' al | ocb' for STREAMS
drivers. Al | ocb is an exported allocation mechanism provided to all STREAMS drivers
and protocol modules. Al | ocb uses the appropriate memory management services to its
underlying operating system.

The Macintosh native driver memory management services are listed and described in
Chapter 9, “Driver Services Library.”
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Primary Interrupt Mechanisms

To install an interrupt handler, you use | nst al | | nt er r upt Funct i ons, which
replaces the earlier Slot Manager routine Sl nt I nstal | .

The declarations for the interrupt handler, enabler, and disabler are the following;:

typedef | nterrupt Menber Nunber (*InterruptHandl er)
(I nterrupt Set Menber | STnenber,

void * r ef Con,
Ul nt 32 t hel nt Count) ;
t ypedef void (*Interrupt Enabl er)
(I'nterrupt Set Menber nenber,
void * r ef Con) ;

typedef InterruptSourceState (*InterruptD sabler)
(I'nterrupt Set Menber nenber,
void * r ef Con) ;

The interrupt set ID and interrupt member number values are available as dri ver - i st
properties associated with each device entry in the Name Registry. For a complete
discussion of native driver interrupt handling, see “Interrupt Management” beginning
on page 240.

Secondary Interrupt Services

The Deferred Task Manager call DTI nstal | (dt TaskPtr: QEl enPtr) isreplaced by
QueueSecondar yl nt er r upt Handl er and Cal | Secondar yl nt er r upt Handl er 2.
These routines are discussed in “Secondary Interrupt Handlers” beginning on page 263.

The Deferred Task Manager maintains a queue of deferred tasks that run after hardware
interrupts but before the return to the application level. The new mechanisms allow a
deferred task, now called a secondary interrupt handler, to be queued or run on the fly. The
operating-system mechanisms used to manage secondary interrupts are no longer visible
to clients of the scheduling routines. The deferred task structure itself is no longer part of
the requesting application’s context.

Device Configuration

All device configuration information is stored in the Name Registry. All resources
required by the driver will be provided to device drivers in a family-specific way or
through the Name Registry. Device driver writers must follow these rules:

= Do not use the Resource Manager.
= Do not use the file system.

= Do not use the PRAM utilities.
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Support for these mechanisms is not available to drivers after the first generation of
Power Macintosh computers. The Name Registry provides two kinds of persistant
storage; see Chapter 8, “Macintosh Name Registry,” for details on how these facilities are
used. In short and in general, do not use the Macintosh Toolbox from main driver code.

All information required by device drivers is located in the Name Registry. Native driver
initalization routines are passed a Name Registry node pointer that identifies the
corresponding device. The Name Registry programming interface provides access
routines to the interesting properties required by devices. See “Standard Properties”
beginning on page 193, for names and values of properties of interest to PCI drivers for
use with Mac OS.

Native drivers should not make calls to, or expect data from, the Resource Manager.
There are two reasons for this rule:

» The Resource Manager is an application service, not a system service.

» Information stored in resources is unwieldy because it is impossible to distinguish
code from data resources in a paging-protected or memory-protected way.

Configuration data must be supplied by the expert controlling the device or stored as
property data in the Name Registry.
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This chapter describes the Name Registry, a data structure maintained by Mac OS
that stores hardware and software configuration information in the second generation
of Power Macintosh computers.

This chapter presents general concepts followed by a detailed discussion of the
Name Registry programming interface. Because native device drivers must access
the Registry, developers writing new device drivers or upgrading existing drivers
should read this chapter.

Concepts
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People identify things by giving them names. In computer systems, names are used to
identify machines, files, users, devices, and so on. The Name Registry provides device
driver and system software with a way to store names. The Registry does not store the
things named, just important pieces of information about the things. The information
stored is determined by the creator of the name entry and may include such data as the
physical location of the thing, technical descriptions of it, and logical addresses.

Name entries are created in the Name Registry by expert software. Each expert owns
specific entries and is responsible for removing them when they are no longer needed.
Clients search for entries the expert has placed in the Registry, making the Registry

a rendezvous point for clients and experts. The Registry does not provide general
communication between clients and experts; it only helps clients and experts find
each other. After clients and experts find each other, different software helps them
communicate directly.

The Macintosh Name Registry is similar to the name services used in some other
computing environments. In concept it resembles the X.500 or BIND (named) network
name services. However, the present implementation of the Macintosh Name Registry is
less general; it is optimized for the specific needs of hardware and device driver
configuration.

The Name Graph

Name entries in the Name Registry are connected together. At present the connections
form a hierarchy, but in the future the names may be connected in a more general
graph structure.

Note
Code must not depend on the order in which name
entries are found in the Registry. O

Software finds new name entries in the Registry by locating ones that it already knows
and by examining entries found nearby. By knowing to what a name entry refers, a
program can find other entries that might be used for a similar or related purpose.
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The hierarchical name graph is based on an origin entry called the root. All name entries
in the graph may be described by a pathway through the graph starting from the root.
Future versions of the Registry may provide multiple paths to some entries.

Name Properties

Each name entry in the Registry is accompanied by a set of properties. Each property has
a name and a value. By looking at the properties associated with a name entry, software
can determine what the entry identifies and what its uses are.

Software uses Registry properties to find other software. For example, if a user specifies
a name while running an application, the application may look up the name in the
Registry and use the properties associated with it to determine what the name represents
in the system. For example, a distributed application could ask the user to choose a
network interface. From the properties that accompany the name of the interface in the
Registry, the application could find the device driver that controls the network interface
and the parameters needed to open the network device, as diagrammed in Figure 8-1.

Figure 8-1 Using name properties

Frubars
Properties:
¢ > Narme = "Frubars"
Frubar Root = ""

) (L

{ |

Frubar Driver

Jan's Frubar Jon's Frubar
Properties: Properties:
Name = "Jan's Frubar" Name = "Jon's Frubar"
<: Location = "Jan's Ofice" Location = "Cafeteria"
Address = "129.468. 1111" Address = "129. 484. 1234"
Driver = "Frubar Driver" Driver = "Frubar Driver"

How the Registry Is Built

During system startup, the Open Firmware support code in the Macintosh ROM
creates a device tree, as described in Chapter 4, “Startup and System Configuration.”
When Mac OS is launched, it extracts device information from the device tree in the
following steps:

1. Search for devices.

2. Add a name entry and a set of properties to the Registry for each device.

Concepts 161



CHAPTER 8

Macintosh Name Registry

3. Find a driver for each device.
4. Initialize the driver.

Connections between name entries are formed when the entries are added to the
Registry. The connections have direction and point from an existing entry to the new one.

The Expansion Bus Manager places most of the name entries in the Registry during
system startup. However, some hardware provides standard ways to probe for devices
and return information describing them. In this case, the low-level expert responsible for
that variety of hardware finds the devices and adds their names to the Registry. The
low-level expert attaches descriptive information for each device to the name entry as
properties. Low-level experts are described in “Terminology” on page 61. In a few cases,
drivers may enter names and properties in the Registry directly.

The software entity that creates a name entry owns it, whether it is the Expansion Bus
Manager, a low-level expert, or a device driver. Only the owner should remove a name
entry. Since most device drivers do not create entries in the Registry, most drivers never
remove them.

Name Registry Overview
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This section summarizes the scope, design goals, limitations, and terminology of the
Macintosh Name Registry.

Scope

The naming services provided by the Name Registry are intended to serve local clients
on a single computer only. Experts that create name entries include the low-level experts
and the Expansion Bus Manager. Clients include device drivers, control panels
(resources of type ' CDEV' ), family experts, and other device management software.

Limitations

The Name Registry supports a relatively small number of entries. Other limitations
include the following:

= Because all Registry contents reside in RAM, the number of name entries supported is
limited by the available RAM space.

= Name entry creation and searching processes do not have to be fast.

= The Registry’s information is volatile; information in it is lost when the system is
restarted unless the information is saved to NVRAM or disk storage.
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Terminology

The Macintosh Name Registry uses these special terms:

name: a null-terminated character string representing a thing or a concept

name entry: the representation of a name in the Name Registry. Name entries are
connected to form a name graph.

entry ID: a unique ID that Mac OS gives to a name entry
path: a sequence of colon-separated names

property: a name-and-value pair associated with a name entry, which describes some
characteristic of the thing represented by the entry

modifier: hardware- or implementation-specific information associated with a name
entry or property. Modifier information is stored as bits in a 32-bit word.

Registry Topology

The topology of the Name Registry can be summarized as follows:

An unnamed root exists at the top of the Registry tree.

A Devi ces name entry exists under the root. It represents the I/ O universe for
the computer.

The device tree exists as a descendant (child) of the Devi ces name entry, with a new
name devi ce-t r ee, which is machine independent. This descendant represents the
Power Macintosh I/O hardware.

The gest al t entry is another child of the root, making it a peer to Devi ces.

These relationships are diagrammed in Figure 8-2.

Figure 8-2 Typical Name Registry structure

Unnamed
root

"Devi ces" "Gestalt"

" devi ce-tree"

"hammer head"| e e e "bandit"
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The Device Tree

The device tree is a data structure that the Macintosh startup firmware creates in system
RAM to provide information about configured PCI devices to other software, including
firmware on PCI cards. Attached to it are the drivers and support software that PCI
devices need to operate. The device tree in PCI-compatible Power Macintosh computers
is similar to the sResource table previously used in NuBus-compatible Macintosh
computers. For further information, see “Startup Firmware” beginning on page 30.

The device tree is the structure from which Mac OS extracts the original information to
create the device portion of the Name Registry. A device tree entry may be a device entry
(a entry that serves one hardware device) or a property entry (a list of name-and-value
pairs associated with a device entry). Device nodes may have child device nodes,
creating a branching tree structure; however, the tree begins with a single root entry.
Device nodes in the single systemwide device tree may serve devices that are connected
to the PowerPC processor bus through different bridges. Each device entry in the tree
has one or more property nodes. An important use of property nodes is to store drivers
associated with PCI card devices.

You can view the Name Registry generally as a global tree structure with a large branch
equal to the original Open Firmware device tree plus and minus a few properties. When
bringing the Open Firmware device tree to Mac OS through the Open Firmware client
interface, the only pruning of the original tree is to delete drivers for other operating
systems that may be stored there. All drivers with adri ver, AAPL, MacCS, Power PC
property are brought into the Mac OS Name Registry.

The device tree for a PCl-based Power Macintosh computer (the Power Macintosh 9500)
is shown in Listing 8-1. Note that the Bandit and Hammerhead ASICs are also shown in
Figure 8-2.

Listing 8-1 A typical device tree
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/ bandi t @2000000
/gc@o0
/53¢c94@.0000
/sd@, 0
/ mace@. 1000
/ escc@3020
/ escc@ 3000
/ awacs@.4000
/ swi nMB@.5000
/ vi a- cuda@. 6000
/adb@, 0
/ keyboard@, 0
/ nbuse@, O
/ pram@, 0
/rtc@, 0
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/ power - ngt @, 0
/ nesh@.8000
/sd@, 0
/ bandi t @
/ AAPL, 8250@E
/ bandi t @4000000
/ bandi t @
| ATY, mach64 @
/ hanmer head @8000000

Real and Virtual Devices

Name entries can be associated with many different things, including real devices and
virtual devices. A virtual device is represented by a name entry for which there is no
hardware. Any piece of software can add a virtual device just by creating a new entry in
the Devi ces section of the Name Registry. It can mimic hardware to any degree by its
selection of properties and its location in the tree topology. For example, a virtual device
might enter only a logical address, using an AAPL, addr ess property, or it might enter a
full set of properties to mimic the behavior of a real device such as a SCSI controller.

Future versions of Mac OS will use the Name Registry to store information about many
kinds of system components besides devices.

Note

You can also use the DLL (discussed in “Driver Loader Library”
beginning on page 117) to load a native driver without any associated
hardware device. Just pass ni | in RegEntryl DPtr to the DLL
installation service. O

Using the Name Registry

This section describes the Macintosh Name Registry programming interface available to
device drivers and other device control software in the second generation of Power
Macintosh computers.

Determining If the Name Registry Exists

You can use the Macintosh Gestalt Manager to determine if the Name Registry exists in
the user’s version of Mac OS, using the gestalt selector ' nr eg' . Check the routine’s
error return first; Gest al t will return gest al t Undef Sel ect or Er r if the Name
Registry is not present. If the routine was successful, check the gestalt return for the
Name Registry version number (currently 0). The Gestalt Manager is discussed in Inside
Macintosh: Operating System Utilities. Its use in the second generation of Power Macintosh
computers is described in “Macintosh System Gestalt” beginning on page 202.

If the Name Registry is not present, the computer does not support PCI cards.
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PCI Bus Identification

When the user’s system is running Mac OS, you can use the Name Registry to determine
if a PCI bus exists in it. Use the Regi st r yEnt r ySear ch routine, described on page 178,
to locate a name entry that has a property named " devi ce-t ype" with a property
value " pci ". If the routine returns noEr r and its done parameter returns f al se, then a
PCI bus exists.

Name Entry Management

The name graph is based on an anonymous, unnamed root entry under which all other
entries live. This root does not appear in pathnames, and it can be referenced only
indirectly, using nul | for its parent ent r y| Dvalue.

Given a parent ent r yl Dvalue and the pathname : aaaa: bbbb, aaaa is a child of the
specified parent name entry. If the specified parent name entry is nul | , the root entry is
assumed to be the parent and the path is equivalent to an absolute path.

Names for the entries just below the root (children of the root) are generic names
representing categories of things such as devices, processes, volumes, and so on. As you
move down the tree the things become more specific, depending on their organization
within each category.

Name Entry Identifiers

Each name entry in the Name Registry is given a unique ID, of type RegEnt r yI D, that
code can use to reference the entry. The structure of this ID is opaque—it is accessible
only to system code and may change in future releases of Mac OS. For a discussion of
opaque IDs, see the note on page 216.

Name entry identifiers might contain allocated data, so Mac OS includes operations to
copy and dispose of them. See “ID Management” beginning on page 170.

Pathnames

Name Registry paths are colon-separated lists of name components. Name components
may not contain colons themselves.

Paths and name components are presented as null-terminated character strings.

Paths follow parsing rules similar to Apple file system absolute and relative pathnames.
However, the Apple double colon (: : ) parent directory syntax is not currently supported.

Absolute pathnames are assumed to be rooted to the anonymous root. For example, in
the pathname aaaa: bbbb, aaaa is a child of the root and bbbb is a child of aaaa.
Relative pathnames are rooted to a specified parent name entry identified using an
entryl Dvalue.

Pathnames, both absolute and relative, should not be hard coded in expert or driver code
unless it is certain that the subset of the tree represented by the pathnames will remain
static. The location of things in the tree can and will change over time, thus changing the
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pathnames. For example, a card can be inserted into one of several slots and potentially
change the parent name entry that represents the slot. However, pathnames are useful
for displaying the current topology of the tree or subtree or for referencing static
portions of the tree.

Finding Registry Components

Objects in the Registry should be located by means of search or iterate calls using
properties to identify the desired things. Code can search for properties (name and value
combinations) that uniquely identify the what it is looking for. Searching for generic
names such as " SCSI " or " ADB" is not a good idea because it can find many unrelated
entries.

Using Iterate Routines

Writing code to traverse a set of names consists of a call to begin the iteration, the
iteration loop, and a call to end the iteration. The call to end the iteration should be made
even in the case of an error, so that allocated data structures can be freed. Here is the
basic code structure for traversing names in the Name Registry:

Create(...)
Set(...) /1 optional
do {
Iterate(...); [/ or Search(...);
} while (!done);
Di spose(...);

Two different name entry iterations are provided, direction oriented and search oriented.
The type of iteration is indicated by the call used to retrieve the next name entry. All the
Mac OS routines used are described in “Name Iteration and Searching” beginning on
page 174. Rules for direction iteration are given below; rules for search iteration are
given in the next section.

= Regi stryEntrylterate, described on page 176, is used to traverse and explore the
Name Registry. An iteration operation begins at a starting entry and moves in a
direction defined by the r el at i onshi p parameter. Each iterate call returns the next
entry encountered along the designated path. You can change the direction at any
time by specifying a new r el at i onshi p parameter in your next iterate call. You
can continue in the current direction by specifying kRegl t er Cont i nue for the
rel ati onshi p parameter. Remember that the direction is relative to the last entry
returned from the previous iterate call.

= When an entry iterator is created viaRegi st ryEnt ryl t er at eCr eat e, it is initialized
to the default starting entry r oot and to the relationship kRegl t er Descendant s.
This lets you iterate over the entire Name Registry.

= You can use Regi stryEntrylterateSet to set the iterator to some name entry
other than r oot , limiting the iteration to some subset of the Name Registry. To change
the default relationship, specify a new relationship as a parameter to your first
iterate call.
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An iteration sequence is complete when either it finds what it is looking for or the
done parameter returns t r ue, indicating that there are no more entries in the
specified direction. When done is t r ue no error code is returned and the contents
of f oundEnt ry are indeterminate. The iterator must be reset, using

Regi stryEntryl terat eSet, before it can be used again for a subsequent search
or iterate operation.

Each iterate call should describe the next relation.

Don’t mix iterators for iterate and search routines without reinitializing the iterator
value by means of Regi st ryEntryl t erat eSet .

Here are some hints for using relationships while iterating:

To iterate through all the descendants of an entry, specify kRegl t er Descendant s
on the first iterate call and then specify kRegl t er Cont i nue until done is t r ue.

To iterate through the children of an entry, specify kRegl t er Chi | dr en on the first
iterate call and then specify kRegl t er Cont i nue until done is t r ue.

To iterate through the siblings of an entry, specify kRegl t er Si bl i ngs on the first
iterate call and then specify kRegl t er Cont i nue until done is t r ue. Siblings do not
include the current entry.

To iterate through the parents of an entry, specify kRegl t er Par ent s on the first
iterate call and then specify kRegl t er Cont i nue until done is t r ue. Note that
there is only one parent now, but this may change in future implementations of the
Name Registry.

To navigate down the registry hierarchy, specify kRegl t er Chi | dr en until you find
the level you are looking for or until done is t r ue (which indicates that you have
reached the bottom). The latter case is useful when deleting a subtree, because you
must delete the children before you can delete a parent.

To navigate up the Registry hierarchy, specify kRegl t er Par ent s until you find the
level you are looking for or until done is t r ue (which indicates that you have reached
the root).

Using Search Routines

Regi stryEntrySear ch, Regi st ryEntryPropert yMd, and Regi stryEnt ryMd
are used to search the Name Registry for entries having a specific property or set of
modifiers. The set of entries to be searched is defined by a starting entry and a relation-
ship. The relationship determines which entries relative to the starting entry are to be
included in the search—children, parents, siblings, or descendants.

Follow these rules when using search routines:

When an entry iterator is created via Regi st ryEntryl terat eCreat e, itis
initialized to the default starting entry r oot and to the relationship

kRegl t er Descendant s. A subsequent search call using these default values
will include all entries in the Name Registry.

You can use Regi stryEntryl t erat eSet to set the iterator to some name entry
other than r oot , limiting the iteration to some subset of the Name Registry. To
change the default relationship, specify a new relationship as a parameter to your
first search call.
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= Search routines are designed to be iterative, allowing you to search for multiple
instances of the same thing within a set of entries. To continue a search, make the
same call again, specifying kRegl t er Cont i nue as the relationship. The routine will
continue where it left off and will find new entries that meet the same search criteria.

= To change the search criteria (property name, value, or modifiers) or the set of entries
to be searched, reset the iterator. Use Regi stryEntryl t er at eSet to set a new
starting entry and then specify a new relationship in the next search call.

= An search operation is complete when either it finds what it is looking for or the done
parameter returns t r ue, indicating that there are no more name entries that meet
the search criteria. When done is t r ue no error code is returned and the contents
of f oundEnt ry are indeterminate. The iterator must be reset, using
Regi stryEntryl t erat eSet, before it can be used again for a subsequent search
or iterate operation.

Here is a typical search sequence:

1. Get an iterator.

2. Set the starting point if it is other than the root.

3. Set the relationship in the first search call.

4. Do the search call.

5. Repeat the search call with the relationship set to kRegl t er Cont i nue.

Coding Conventions

The header file declaring the Name Registry programming interface should be included
as follows:

#i ncl ude <NanmeRegi stry. h>

No other header files are required.

Data Structures and Constants

Pathnames may be of any length, but components of a pathname are limited as follows:

enum
{
kRegCSt r MaxEnt r yNanmeLengt h = 31
kRegMaxi munPr opert yNameLength = 31
1
typedef char RegCst r Pat hNane;

t ypedef unsigned | ong RegPat hNanmeSi ze;
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t ypedef char RegCst r Ent r yNane,
*RegCSt r Ent r yNamePt r
RegCSt r Ent r yNanmeBuf [ kRegCSt r MaxEnt r yNanmeLengt h] ;

t ypedef char RegPr opert yNane,
*RegPr opertyNanmePt r
RegPr oper t yNameBuf [ kRegMaxi nunPr opert yNanmeLengt h] ;

struct RegEntryl D {
unt8 opaque[ 16] ;
b

typedef struct RegEntryl D RegEntryl D, *RegEntryl DPtr

Software must use directed moves when examining a neighborhood in the Registry’s
name graph. The following constants indicate the direction of movement during
traversals of the hierarchical Registry graph:

t ypedef unsigned | ong Reglterati onQp;

typedef ReglterationQ RegEntrylterationQp;

enum
{

kRegl t er Root = 0Ox2L, // absolute |ocations

kRegl t er Parent s = O0x3L, // include all parent(s) of entry

kRegl ter Chi |l dren
kRegl t er Descendant s
kRegl ter Si bling
kRegl t er Conti nue

0x4L, [// include all children

0x5L, // include all subtrees of entry
Ox6L, // include all siblings

Ox1L // keep doing the sane thing

b

ID Management

Mac OS provides several routines, described in this section, to create and manage name
entry IDs. These IDs are discussed in “Name Entry Identifiers” on page 166.

RegistryEntryIDInit

170

Regi stryEntryl DI ni t initializes a RegEnt r yl Dstructure to a known, invalid state.
OSStatus RegistryEntrylDinit (RegEntryl D *id);

id Identifier to be initialized.
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DESCRIPTION

Since RegEnt r y| Dvalues are allocated on the stack, it is not possible to determine
whether one contains a valid reference or uninitialized data from the stack.

Regi stryEntryl DI ni t corrects this problem. It should be called before a
RegEnt r yl Dstructure is used.

RESULT CODES

noErr 0 No error
par ankrr -50 Bad parameter

RegistryEntryIDCompare

Regi st ryEnt ryl DConpar e compares RegEnt r yl Dvalues to see if they are equal. It
can also be used to determine if a RegEnt r yl D value is set to an invalid state.

Bool ean Regi stryEntryl DConpare ( const RegEntrylD *id1,
const RegEntryl D *id2);

idl First identifier.
id2 Second identifier.

DESCRIPTION

Regi st r yEnt r yl DConpar e is useful for comparing two RegEnt r yl Dvalues to see
whether they reference the same name entry as well as to check if a RegEnt r yl Dvalue
is a valid reference. It returns t r ue if the two ID values are equal.

If anul | value is passed in either i d1 ori d2, Regi st ryEnt r yl DConpar e compares
the other ID with the intialized value returned by Regi st ryEnt ryl DI ni t . If both ID
values are nul |, Regi st ryEnt ryl DConpar e returns t r ue.

RESULT CODES

fal se 0 ID values different
true 1 ID values equal
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RegistryEntryIDCopy

Regi st ryEnt ryl DCopy copies the identifier for a name entry, including any internally
allocated data.

voi d Regi stryEntryl DCopy (const RegEntryl D *src,
RegEntryl D *dst);

src ID to be copied.
dst Destination ID.

DESCRIPTION

Given an existing RegEnt r y| Dvalue, Regi st r yEnt r yl DCopy sets another
RegEnt r yl Dto be functionally the same.

RESULT CODES

nokErr 0 No error
par ankrr =50 Bad parameter

RegistryEntryIDDispose

Regi st ryEnt ryl DDi spose disposes of a Name Registry identifier.
voi d Regi stryEntryl DDi spose (RegEntryl D *id);

id RegENt r yl Dvalue to be disposed of.

DESCRIPTION
Regi st ryEnt ryl DDi spose disposes of the identifier for a name entry pointed to by
i d, including its allocated data.
RESULT CODES
noErr 0 No error
par anerr -50 Bad parameter

Name Creation and Deletion

The following routines add new name entries to the Name Registry and remove existing
name entries from it.
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RegistryCStrEntryCreate

Regi st ryCSt r Ent r yCr eat e creates a new child name entry in the Name Registry.

OSErr Regi stryCStrEntryCreate (const RegEntryl D *parentEntry,
const RegCsStr Pat hName *nane,
RegEnt ryl D *newent ry) ;
parent Entry RegEnt r yl Dvalue that identifies the parent name entry.
nane Pathname of the new entry relative to the parent, as a C string.
newent ry Returned RegEnt r yl Dvalue of the new name entry.

DESCRIPTION
Given the RegEnt r yl Dvalue of a parent name entry, Regi stryCStrEntryCreate
creates a new entry that is a descendant of the parent, with the C string pathname nane.
It returns the RegEnt r yl Dvalue that identifies the new name entry.
The rules for composing pathnames are given in “Pathnames” on page 166. Note that the
pathname in name includes the name of the new entry. If par ent Ent ry is NULL, nane
is a pathname relative to the root.
RESULT CODES
noErr 0 No error
par ankrr -50 Bad parameter
nr Not EnoughMenor yEr r -2537  Not enough space in the system heap
nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Pat hNot Found -2539 Path component lookup failed
nr Not Cr eat edErr —2540 Entry or property could not be created
CODE SAMPLE
Listing 8-2 shows code that uses Regi st r yCSt r Ent r yCr eat e to add a name entry for
a new child device to the Name Registry.
Listing 8-2 Adding a name entry to the Name Registry
OsSt at us
AddDevi ce(
const RegEntryl D *parent Entry,
const RegCStr Ent ryName *devi ceNane,
RegEnt ryl D *devi ceEntry
)
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{
RegCst r Pat hNane devi cePat hBuf [ kRegCSt r MaxEnt r yNaneLengt h + 2]
= { kRegPat hNameSepar at or , kRegPat hNaneTer m nat or};
RegCst r Pat hNane *devi cePat h = &devi cePat hBuf [ 0] ;
OSSt at us err = nokrr;
/*
* Need to construct a relative path nane since we are not
* attaching the new entry to the root.
*/
devi cePath = strcat (devi cePat h, devi ceNane);
err = RegistryCStrEntryCreate(parentEntry, devicePath, deviceEntry);
return err;
}
RegistryEntryDelete
Regi st ryEnt r yDel et e deletes a name entry from the Name Registry.
OSErr Regi stryEntryDel ete (const RegEntrylD id);
id RegEnt r yl Dvalue of name entry to delete.
DESCRIPTION
Given the RegEnt r yl Dvalue of a name entry in the Name Registry,
Regi st ryEnt r yDel et e deletes it.
RESULT CODES
nokErr 0 No error
par amerr -50 Bad parameter
nrLockedErr —2536 Entry or property is locked
nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
Name Iteration and Searching
The Registry name entry iteration functions communicate through an iterator parameter
with the following type:
t ypedef struct RegEntrylter { void *opaque; }
RegEntrylter,
*RegEntrylterPtr;
174 Using the Name Registry



CHAPTER 8

Macintosh Name Registry

RegistryEntrylterateCreate

Regi st ryEntryl t er at eCr eat e creates an iterator named cooki e that is used by
iterate and search routines. The iterator is initialized to the default starting entry r oot
and to the relationship kRegl t er Descendant s, so it can be used to access the whole
Name Registry.

OSErr RegistryEntrylterateCreate (RegEntrylter *cookie);

cooki e Iterator used by iterate and search routines.

DESCRIPTION

Regi st ryEntryl t er at eCr eat e sets up the iteration process for finding device
names in the Name Registry and returns an iterator in cooki e that is used by
Regi stryEntrylterateorRegi stryEntrySearch.

RESULT CODES

noErr 0 No error
par ankrr -50 Bad parameter

RegistryEntrylterateSet

Regi stryEntryl terateSet setsacooki e value to identify a specified starting
name entry.

OSSt at us Regi stryEntrylterateSet
(RegEntrylter *cooki e,
const RegEntryl D *startEntryl D);

cooki e Iterator used by iterate and search routines.

startEntryl D RegEnt r yl Dvaluethat identifies name entry to start iteration.

DESCRIPTION

When an iterator is first created, it is set to the root of the Name Registry with a relation
of kRegl t er Descendant s. Regi stryEntryl t er at eSet lets you adjust this starting
point to a known name entry so you can iterate or search over a subset of the device tree.

The relation part of the iterator can be set by specifying a new relation in a subsequent
iterate or search call.
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RESULT CODES

nokErr 0 No error

par anerr =50 Bad parameter

nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
RegistryEntrylterate

DESCRIPTION

RESULT CODES

CODE SAMPLE

176

One kind of iteration call, Regi st r yEntryl t er at e, retrieves the next name entry in
the Name Registry by moving in a specified direction.

OSErr Regi stryEntrylterate

(RegEntrylter *cooki e,

RegEntrylterati onOp rel ati onshi p,

RegEntryl D *foundEntry,

Bool ean *done) ;
cooki e Iterator used by iterate and search routines.
rel ati onship Iteration direction (values defined on page 170).
foundEntry ID of the next name entry found.
done Value of t r ue means iteration is completed.

Regi st ryEntryl t er at e moves from entry to entry in the Name Registry, marking its
position by changing the value of cooki e. The direction of movement is indicated by
rel ati onshi p. Regi stryEntrylterate returns the RegEnt r yl Dvalue that
identifies the next name entry found in f oundEnt ry, or t r ue in done if all name entries
have been found.

noErr 0 No error
par ankrr -50 Bad parameter

Listing 8-3 shows code using Regi stryEntryl t er at e and Regi stryEntryDel ete
that finds and remove all immediate child entries of a given parent entry.
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Listing 8-3 Finding and removing child entries
OSSt at us
RenoveDevi ces(
const RegEntryl D *parentEntry
)
{
RegEntryl D entry;
RegEntrylter cooki e;
RegEntrylterati onOp iterOp;
Bool ean done;
OSSt at us err = nokrr;

Regi stryEntryl DI nit(&entry);

err = RegistryEntrylterateCreate(&cookie);

if (err !'= noErr)
return err;
/*
* Reset iterator to point to our parent entry
*/

err = RegistryEntrylterateSet (&cookie, parentEntry);

if (err == noErr) {

/*

* Include just imediate chidren, not all descendants
*/

iterOp = kReglterChildren;

do {

err = RegistryEntrylterate(&cookie, iterQp, &entry, &done);

if (!done && err == noErr) {
err = RegistryEntryDel ete(&entry);
Regi stryEntryl DDi spose( &entry);

}

iterOp = kReglterContinue;

} while (!done && err == noErr);

}
Regi stryEntrylterateD spose(&cooki e);

return err;
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RegistryEntrySearch

DESCRIPTION

RESULT CODES

CODE SAMPLE

178

Another kind of iteration call, Regi st r yEnt r ySear ch, retrieves the next name entry in
the Name Registry that has a specified matching property.

OSErr Regi stryEntrySearch

(RegEntrylter *cooki e,
RegEntrylterati onOp rel ati onshi p,
RegEnt ryl D *foundEntry,
Bool ean *done,
const RegPropertyNanme *propertyNane,
const void *propertyVal ue,

RegPr opertyVal ueSi ze propertySi ze);

cooki e Iterator used by iterate and search routines.
rel ati onship Search direction (values defined on page 170).
foundEntry ID of the next name entry found.

done Value of t r ue means searching is completed.
propertyNane Pointer to name of property to be matched.

propertyVal ue  Pointer to value of property to be matched.
propertySi ze Size of property to be matched.

Regi st r yEnt r ySear ch searches for a name entry with a property that matches certain
criteria and returns the RegEnt r y| D value that identifies that entry in f oundEnt ry, or
t r ue in done if all matching name entries have been found.

Regi st ryEnt r ySear ch returns only entries with properties that simultaneously
match the values of pr oper t yNane, pr opert yVal ue, and pr opert ySi ze. If the
propertyVal ue pointeris nul | or propertySi ze is 0, then any property value is
considered a match.

nokErr 0 No error
par ankrr =50 Bad parameter

Listing 8-4 shows code that uses Regi st r yEnt r ySear ch to count the number of SCSI
interface devices for a given parent device.
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Listing 8-4 Using Regi st ryEntrySear ch

OSSt at us

Fi ndSCSI Devi ces(
const RegEntryl D *parent Entry,
i nt *nunber OF SCSI Devi ces
)

{
RegEntrylter cooki e;
RegEntryl D SCSI Entry;
RegEntrylterati onOp iterOp;
Bool ean done;
OSSt at us err = noErr;
#def i ne kSCSI Devi ceType "scsi"

Regi stryEntryl DIl nit (&SCSI Entry);
*nunber OF SCSI Devi ces = 0;

err = RegistryEntrylterateCreate(&cookie);
if (err !'= noErr)
return err;

/*

* Reset iterator to point to our parent entry

*/

err = RegistryEntrylterateSet(&cookie, parentEntry);

if (err == noErr) {

/*

* Search all descendants of the parent device.
*/

iterOp = kReglterDescendants;

do {

err = RegistryEntrySearch(&cookie, iterQp, &SCSlEntry, &done,
"devi ce-type", kSCSI Devi ceType, sizeof (kSCSI Devi ceType));

if (!done && err == noErr) {
*nunber O SCSI Devi ces += 1;
Regi stryEnt ryl DDi spose( &SCSI Entry) ;

}
iterOp = kReglterConti nue;

} while (!done && err == noErr);

}
Regi stryEntrylterateb spose(&cookie);
return err;
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RegistryEntrylterateDispose

DESCRIPTION

RESULT CODES

Regi stryEntryl t er at eDi spose disposes of the iteration structure after searching
is finished.

voi d RegistryEntrylterateD spose (RegEntrylter *cookie);

cooki e Iterator used by iterate and search routines.

Given the cooki e value used previously, Regi st ryEnt ryl t er at eDi spose disposes
of resources used for iterating or searching.

noErr 0 No error
par ankrr -50 Bad parameter

Name Lookup

Regi st ryCSt r Ent r yLookup provides a fast, direct mechanism for finding a name
entry in the Registry.

RegistryCStrEntryLookup

DESCRIPTION
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Regi st ryCSt r Ent r yLookup finds a name entry in the Name Registry by starting from
a designated point and traversing a defined path. This makes it faster than most search
or iterate routines.

OSErr Regi stryCStrEntryLookup

(const RegEntryl D *sear chPoi nt | D,
const RegCStr Pat hName *pat hNane,
RegEntryl D *foundEntry);

searchPointI D  RegEntryl Dvalue that identifies starting point of search.
pat hNane Pathname of entry to be found.
foundEntry RegEnt r yl Dvalue of found name entry.

Regi st ryCSt r Ent r yLookup finds a name entry in the Registry based on pat hNang,
starting from the entry designated by sear chPoi nt | D.

If sear chPoi nt | Dis NULL, the path is assumed to be a rooted path and pat hNane
must contain an absolute pathname. If the pathname begins with a colon, the path is
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relative to sear chPoi nt | Dand pat hName must contain a relative pathname. If the
pathname does not begin with a colon, the path is a rooted path and pat hName must
contain an absolute pathname.

After using Regi st r yCSt r Ent r yLookup, dispose of the f oundEnt r y ID by calling
Regi st ryEnt ryl DDi spose.

Note

A reverse lookup mechanism has not been provided because some name
services may not provide a fast, general algorithm. To perform reverse
lookup, the process described in “Name Iteration and Searching”
beginning on page 174 should be used. O

RESULT CODES
noErr 0 No error
par angrr -50 Bad parameter
nrlnval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Pat hNot Found -2539 Path component lookup failed

CODE SAMPLE

Listing 8-5 shows code that uses Regi st r yCSt r Ent r yLookup to obtain the entry ID
for a child device.

Listing 8-5 Obtaining an entry ID

OSSt at us
Locat eChi | dDevi ce(
const RegEntryl D *parent Entry,
const RegCstr Ent ryNane *devi ceNane,
RegEntryl D *devi ceEntry
)
{
RegCsSt r Pat hNane devi cePat hBuf [ kRegCSt r MaxEnt r yNanmeLengt h + 2]
= { kRegPat hNanmeSepar at or , kRegPat hNaneTer m nat or};
RegCst r Pat hNane *devi cePat h = &devi cePat hBuf [ 0] ;
OSSt at us err = nokrr;
/*
* Need to construct a relative path nane fromthe parent entry.
*/

devi cePath = strcat (devi cePat h, devi ceNane);

err = RegistryCStrEntryLookup(parentEntry, devicePath, deviceEntry);
return err;
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Pathname Parsing

The routines defined in this section convert a RegEnt r yl Dvalue to the equivalent full
pathname, give the pathname’s length, and parse the pathname into its components.

RegistryEntryToPathSize

Regi st ryEnt r yToPat hSi ze returns the size of the pathname to a specified
name entry.

OSErr Regi stryEntryToPat hSi ze
(const RegEntryl D *entryl D,

RegPat hNaneSi ze *pat hSi ze) ;
entryl D RegEnt r yl Dvalue that identifies a name entry.
pat hSi ze Returned size in bytes of the pathname to the entry.

DESCRIPTION
Regi st ryEnt ryToPat hSi ze returns in pat hSi ze the length (in bytes) of the absolute
pathname of the name entry designated by ent r yl D, including the pathname’s
terminating character.

RESULT CODES
noErr 0 No error
par antrr -50 Bad parameter
nrlnval i dNodeErr —-2538 RegEnt r yl Dvalue not valid

RegistryCStrEntryToPath

Regi st ryCSt r Ent r yToPat h returns the pathname of a name entry in the
Name Registry.

OSErr Regi stryCStrEntryToPath
(const RegEntryl D entryl D,
RegCst r Pat hNane * pat hNare,
RegPat hNareSi ze pat hSi ze) ;

entryl D RegEnt r yl Dvalue that identifies a name entry.
pat hNane Returned pathname to the entry.
pat hSi ze Size (in bytes) of the pathname buffer pointed to by pat hNane.
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Given a RegEnt r yl Dvalue that identifies a name entry, Regi st ryCSt r Ent r yToPat h
returns its pathname in pat hNarre. If the buffer provided is too small, it returns
nr Pat hBuf f er TooSnal | .

noErr 0 No error

par ankrr -50 Bad parameter

nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Pat hBuf f er TooSnal | -2543 Buffer for pathname too small

RegistryCStrEntryToName

DESCRIPTION

RESULT CODES

Regi st ryCSt r Ent r yToNane retrieves the name component of a name entry and
returns the ID of the entry’s parent.

OSErr Regi stryCstrEnt ryToNane
(const RegEntryl D *entryl D,

RegEntryl D *parent Entry,
RegCSt r Ent r yNanme *nanmeConponent ,
Bool ean *done) ;
entryl D RegEnt r yl Dvalue that identifies a name entry.
parent Entry Returned RegEnt r y| Dvalue of the entry’s parent entry.

narreConponent Returned name of the entry as a C string.
done Returns t r ue when par ent Ent r y is the root.

Given a RegEnt r yl Dvalue that identifies a name entry, Regi st r yCSt r Ent r yToNane
returns the RegEnt r y| Dvalue that identifies its parent entry in par ent Ent ry and the
name component of the name entry in nameConponent . Regi st ryCSt r Ent r yToNane
is useful for locating the parent of a name entry and for constructing a relative pathname
from the parent to the entry.

nokErr 0 No error
par ankrr -50 Bad parameter
nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
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CODE SAMPLE

Listing 8-6 shows code that uses Regi st r yCSt r Ent r yToName to obtain the parent
entry for a given child entry.

Listing 8-6 Obtaining a parent entry

OSSt at us
Locat ePar ent Devi ce(
const RegEntryl D *devi ceEntry,
RegEntryl D *parentEntry
)
RegCst r Ent r yNane devi ceNaneBuf [ KRegCSt r MaxEnt r yNanmeLengt h+1] ;
Bool ean done;
OSSt at us err = noErr;

184

err = RegistryCStrEntryToNane(devi ceEntry, parentEntry,
&devi ceNaneBuf[ 0], &done);
if (err !'= noErr)
return err;

/*

* | f done == true, we have reached the root, there is no parent!
*/

if (done)

err = kNot FoundErr;

return err;

Property Management

Properties describe what a name entry represents or how it may be used. Each name
entry has a set of named properties, which may be empty. Each property consists of a
name string and a value. The value consists of 0 or more contiguous bytes. Property
names are null-terminated strings of at most kRegMaxi munPr oper t yNaneLengt h
bytes (31 bytes). Name property data structures and constants are listed in “Data
Structures and Constants” on page 169.

Creation and Deletion

The routines described in this section add new properties to or remove existing
properties from a name entry in the Name Registry.
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RegistryPropertyCreate

DESCRIPTION

RESULT CODES

CODE SAMPLE

Regi st ryPropert yCr eat e adds a new property to a name entry.

OSErr Regi stryPropertyCreate

(const RegEntryl D *entryl D,
const RegPropertyNane *propertyNane,
const void *propertyVal ue,
RegPr opertyVal ueSi ze propertySi ze);
entryl D RegEnt r yl Dvalue that identifies a name entry.

propertyName Name of the property to be created.
propertyVal ue  Value of the new property.
propertySi ze Size of the new property.

Given a RegEnt r yl Dvalue that identifies a name entry, Regi st ryPropert yCreate
adds a new property to that entry with name pr oper t yNane and value pr oper t yVal ue.
The ent r y| D parameter may not be nul | .

The pr oper t ySi ze parameter must be set to the size (in bytes) of pr oper t yVal ue.

Property names may be any alphanumeric strings but may not contain slash (/) or
semicolon (:) characters.

nokErr 0 No error

par ankrr -50 Bad parameter

nr Not EnoughMenor yEr r -2537  Not enough space in the system heap

nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid

nr Not Cr eat edEr r -2540 Entry or property could not be created

nr NameEr r 2541 Name invalid, too long, or not terminated

In Listing 8-7, Regi st ryPropert yCreat e, Regi st ryPropertyGet Si ze,and
Regi st ryPropertySet are used to update the value of a given property of a name
entry. If the property exists, its value is updated. If it doesn’t exist, a new property

is created.

Using the Name Registry 185



CHAPTER 8

Macintosh Name Registry

Listing 8-7 Updating or creating a property

OSSt at us
Updat eDevi cePr opert y(
const RegEntryl D *devi ceEntry,
const RegPropertyNane *propertyNane,
const void *newPr opert yVal ue,
const RegPropertyVal ueSi ze newPropertySize
)
{
RegPr opertyVal ueSi ze PrevPropertySi ze;
OSSt at us err = noErr;
/*
* Regi stryPropertyCet Si ze used here to see if the property exists.
*/

err = Regi stryPropertyGet Si ze(devi ceEntry, propertyNane, &r evPropertySi ze);

if (err == noErr) {
err = RegistryPropertySet (devi ceEntry, propertyNang,
newPr opertyVal ue, newPropertySize);
return err;

} else if (err == nrNot FoundErr)
err = RegistryPropertyCreate(deviceEntry, propertyNane,
newPr opertyVal ue, newPropertySize);

return err;

RegistryPropertyDelete

Regi st ryPropertyDel et e deletes a property from the Name Registry.

OSErr Regi stryPropertyDel ete

(const RegEntryl D *entryl D,
const RegPropertyName *propertyNane);
entryl D RegEnt r yl Dvalue that identifies a name entry.

propertyNane Name of the property to be deleted.
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Regi st ryPropertyDel et e deletes the property named pr oper t yNane from the
name entry identified by ent r yl D.

nokErr 0 No error

par ankrr -50 Bad parameter

nr LockedErr -2536 Entry or property locked

nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Not FoundEr r -2539 Search failed to match criteria

Property Iteration

Traversing the set of properties associated with a name entry is similar to iteration over
names in the Registry, described in “Name Iteration and Searching” beginning on
page 174.

Only one form of property iteration is provided—iteration over the set of properties
associated with a single name entry.

A property iteration loop has this general form:

Create(...)
do {
Iterate(...);
} while (!done);
Di spose(...);

Property iteration functions communicate by means of an iterator parameter that is a
RegPr opertylter data structure:

t ypedef struct RegPropertylter { void *opaque; }
RegPropertylter,
*RegPropertylterpPtr,;

RegistryPropertylIterateCreate

The starting routine Regi st ryPropertyl t er at eCr eat e starts an iteration over all
the properties associated with a name entry.

CSErr Regi stryPropertylterateCreate
(const RegEntryl D *entry,

RegPropertylter *cooki e);
entry RegEnt r yl Dvalue that identifies a Name Registry name entry.
cooki e Iterator used by property iterate routines.
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DESCRIPTION

Regi st ryPropertylterateCreat e creates a property iterator (cooki e) that can be
used to iterate the properties of the name entry identified by ent r y. The value it returns
in cooki e is used by Regi st ryPropertyl t er at e, described next.

RESULT CODES

nokErr 0 No error
par anerr -50 Bad parameter
nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid

RegistryPropertylterate

Repeated calls to Regi st ryPropertyl t er at e use the iterator returned by
Regi stryPropertylterateCreat e to iterate through a succession of properties.

CSErr Regi stryPropertylterate

(RegPropertylter *cooki e,
RegPr opert yName *f oundPr operty,
Bool ean *done) ;
cooki e Iterator used by property iterate routines.

foundProperty  Name of the property found.

done Value is t r ue if all properties have been found.

DESCRIPTION

Regi stryPropertylteratemoves from property to to property among the properties
of the name entry specified in a prior Regi st ryPropertyl terat eCreat e call (see
previous section). It returns the name of the next property in f oundPr operty, ortrue
in done if all properties have been iterated through.

RESULT CODES

noErr 0 No error
par amerr -50 Bad parameter

CODE SAMPLE

Listing 8-8 shows code that uses Regi st ryPropertylterat e to iterate through all the
properties for a given name entry.
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Listing 8-8 Iterating through properties

0SSt at us
It erateDevi ceProperties(

const RegEntryl D *devi ceEntry

)
{

RegPr oper t yNameBuf pr opertyNane;

RegPropertylter cooki e;

Bool ean done;

OSSt at us err = noErr;

err = RegistryPropertylterateCreate(deviceEntry, &cookie);

if (err !'= noErr) {

do {
err = RegistryPropertylterate(&cookie, &propertyNane[0], &done);
if (err !'= noErr)
br eak;
/*

* Do sonething with the property, given the property nane

* you can use RegistryPropertyGetSize to determ ne the size

* of the value and and Regi stryPropertyGet to retrieve the val ue.
*/

} while (!done && err == noErr);

}
Regi stryPropertylterateD spose(&cookie);
return err;

RegistryPropertylIterateDispose

Regi stryPropertylterateD spose completes the property iteration process.
voi d Regi stryPropertylterateDi spose (RegPropertylter *cookie);
cooki e Iterator used by iterate and search routines.

DESCRIPTION

Regi stryPropertylterateD spose disposes of the iterator used to find properties.

It should be called even in the case of an error, so that allocated data structures can
be freed.
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noErr 0 No error

par anerr =50 Bad parameter

Property Retrieval and Assignment

The value of an existing property may be retrieved or modified using the routines
defined in this section.

RegistryPropertyGetSize

DESCRIPTION

A property’s value may have any length. If the length of a property’s value is not known,
use Regi st ryPropert yGet Si ze to determine its size so you can allocate space for it.

OSErr RegistryPropertyCet Si ze

(const RegEntryl D *entryl D,
const RegPropertyName *propertyNane,
RegPr opertyVal ueSi ze *propertySi ze);
entryl D RegEnt r yl Dvalue that identifies a name entry.

propertyName Name of the property.
propertySi ze Returned size of the property’s value.

Regi st ryPropertyCet Si ze returns in pr oper t ySi ze the length (in bytes) of the
property named pr oper t yNane and associated with the name entry identified
by ent ryl D.

EXECUTION CONTEXT

RESULT CODES

CODE SAMPLE
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Regi st ryPropert yGet Si ze may be called from software interrupt level only, not
from task level or hardware interrupt level.

noErr 0 No error

par ankrr -50 Bad parameter

nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Not FoundEr r —2539 Search failed to match criteria

In Listing 8-9, Regi st r yPropert yGet Si ze and Regi st ryPropertyGet are used to
obtain the value of a property.
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Listing 8-9 Obtaining a property value

OSSt at us
Get Devi cePropert y(
const RegEntryl D *devi ceEntry,
const RegPropertyNamne *propertyNane,
RegPr opertyVal ue propertyVal ue,
RegPr opertyVal ueSi ze *propertySi ze
)
{
RegPr opertyVal ueSi ze si ze;
OSSt at us err = noErr;
/*
* CGet the size of the value first to see if our buffer is big enough.
*/
err = RegistryPropertyGetSi ze(deviceEntry, propertyName, &size);
if (err == noErr) {

if (size > *propertySize)
return kPropBufferTooSnmall ;
/*
* Note, we return the actual property size.
*/
err = RegistryPropertyGet (devi ceEntry, propertyNane, propertyVal ue,
propertySi ze);

}

return err;
}
RegistryPropertyGet

Regi st ryPropertyGCet retrieves the value of a property in the Name Registry.

OSErr Regi stryPropert yGet

(const RegEntryl D *entryl D,
const RegPropertyName *propertyNane,
voi d *propertyVal ue,
RegPr opertyVal ueSi ze *propertySi ze);
entryl D RegEnt r yl Dvalue that identifies a name entry.

propertyName Name of the property.
propertyVal ue  Returned value of the property.

propertySi ze In call: size of the property buffer. On return: actual size of the
property’s value.
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DESCRIPTION
Regi st ryPropertyGCet retrieves the value of the property named pr oper t yNane
and associated with the name entry identified by ent ryl D. The pr opertySi ze
parameter must be set to the size in bytes of the buffer pointed to by pr oper t yVal ue.
Upon return, the value of pr oper t ySi ze will be the actual length of the value in bytes.
EXECUTION CONTEXT
Regi st ryPropert yGet may be called from software interrupt level only, not from task
level or hardware interrupt level.
RESULT CODES
noErr 0 No error
parantrr -50 Bad parameter
nrlnval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Not FoundEr r -2539 Search failed to match criteria
RegistryPropertySet
Regi st ryPropertySet sets the value of a property in the Name Registry.
OSErr Regi stryPropertySet
(const RegEntryl D *entryl D,
const RegPropertyName *propertyNane,
const void *propertyVal ue,
RegPr opertyVal ueSi ze propertySi ze);
entryl D RegEnt r yl Dvalue that identifies a name entry.
propertyNane Name of the property.
propertyVal ue  Value to which to set the property.
propertySi ze Size of the property.
DESCRIPTION
Regi st ryPropertySet sets the value of the property named pr oper t yNanme and
associated with the name entry identified by ent ryl D. The pr oper t ySi ze parameter
must be set to the size (in bytes) of the value pointed to by pr opert yVal ue.
IMPORTANT
Regi st ryPropertySet cannot be used to change the
size of a property from secondary interrupt level. a
EXECUTION CONTEXT

Regi st ryPropert ySet may be called from software interrupt level only, not from task
level or hardware interrupt level.
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noErr

parantrr

nr LockedErr

nr Not EnoughMenor yEr r
nrlnval i dNodeErr

nr Not FoundEr r

nr NameEr r

Standard Properties

0 No error
=50 Bad parameter
—2536 Entry or property locked
2537  Not enough space in the system heap
—2538 RegEnt r yl Dvalue not valid
-2539 Search failed to match criteria
-2541 Name invalid, too long, or not terminated

Some standard Name Registry properties names are specified for device entries. These
names should not be used for other purposes. Standard reserved property names used
by PCI expansion cards are listed in Table 8-1.

Table 8-1 Reserved Name Registry property names

Name

Description

Open Firmware standard properties

addr ess
conpati bl e

devi ce-type

f code-rom of f set
interrupts

nodel

name

reg

status

Defines large virtual address regions

Defines alternate nane property values’

The implemented interface

Location of node’s FCode in the expansion ROM
Defines the interrupts used

Defines a manufacturer’s model

Name of the name entry (nameSt r i ng); see page 142
The package’s physical address space request

Indicates the device’s operations status

Properties defined by PCI binding to Open Firmware

alternate-reg

assi gned- addr esses
cl ass- code
device-id
devsel - speed
driver, xxx, yyy, zzz

driver-reg, xxx,
yyy, zzz
f ast - back-t o- back

max- | at ency

Using the Name Registry

Alternate access paths for addressable regions
Assigned physical addresses

Value from corresponding PCI configuration register
Value from corresponding PCI configuration register
Value from corresponding PCI configuration register
Driver code for xxx,yyy,zzz platform

Descriptor of location for driver code for xxx,yyy,zzz
platform (not supported by Mac OS)

Value from corresponding PCI configuration register
Value from corresponding PCI configuration register

continued
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Table 8-1 Reserved Name Registry property names (continued)
Name Description
m n- gr ant Value from corresponding PCI configuration register

power - consunpti on
revision-id

vendor-id

Function’s power requirements
Value from corresponding PCI configuration register

Value from corresponding PCI configuration register

Properties specific to the Power Macintosh platform

AAPL, addr ess
AAPL,interrupts
AAPL, sl ot - nane
depth

dri ver, AAPL, MacCs,
Power PC

driver-description
driver-i st
driver-ptr
driver-ref

hei ght

I i nebytes

wi dt h

Vector to logical address pointers’

Internal interrupt number

Physical slot identifier

Color depth of each pixel (for display device node only)
Driver code for Mac OS

Property that contains the driver description structure
IST member and set value, used to install interruptsjF
Memory address of driver code

Reference to driver controlling a specific name entry

Height in pixels (for display device node only)

Number of bytes in each line (for display device node only)

Width in pixels (for display device node only)

" See “Matching Drivers With Devices” beginning on page 142.
* See “1/O Space Cycle Generation” beginning on page 300.
See “Interrupts and the Name Registry” beginning on page 247.

Normally, the device tree shows several properties attached to each device. Most of these

properties are created and used by Open Firmware and are described fully in IEEE
Standard 1275, described on page xxiv. Some properties are Apple specific and are
required only by Power Macintosh computers or Mac OS. Following are some notes on
the properties listed in Table 8-1:

» Manufacturers of PCI cards should use their United States stock symbol (if they are a
publicly traded company) as the hardware manufacturer’s ID in the name property.
Otherwise, they can ask the IEEE to assign a 24-bit ID number by contacting

Registration Authority Committee

IEEE, Inc.
445 Hoes Lane

Piscataway, NJ 08855-1331
Telephone 809-562-3812
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= Mac OS native drivers should use the following value for their dri ver property:
driver, AAPL, MacGS, Power PC

= A standard property that is important to native drivers is the assi gned- addr esses
property defined in PCI Bus Binding to IEEE 1275-1994, currently available from the
IEEE as described in a note on page xxiv. The assi gned- addr esses property tells
the driver where a card’s relocatable address locations have been placed in physical
memory. With all routines except the Expansion Bus Manager I/O functions, driver
code must resolve assi ghed- addr esses values to AAPL, addr ess values before
using them. Sample code that retrieves an assi gned- addr esses property from the
Name Registry is shown in Listing 7-15 on page 146.

s Drivers can use the vendor -i d, devi ce-i d, cl ass-code,and revi si on-i d
properties to distinguish one card from another. However, these values typically refer
to the controller on the card rather than the card itself. For example, software will be
unable to use these properties to distinguish between two video cards that use the
same controller chip. Driver writers can make the cards distinct by giving different
names to them in their FCode assignments.

= Thef code-rom of f set property contains the location in the PCI card’s expansion
ROM at which the FCode that produces the node is found. The FCode Tokenizer tool
(described in “Tools” beginning on page 391) can use the value of this property to
determine the values of other properties, such as dri ver. If a card’s expansion ROM
contains no FCode, the f code- r om of f set property will be absent from the card’s
Name Registry entry.

s Thedriver-ref pointer can be important. This property is created by the system
when a device driver is installed; it is the driver reference as defined by Inside
Macintosh: Devices. The property is removed when the driver is removed. The
presence of this property can be used to determine whether a particular device is open.

= Thedriver-description property is a structure taken from the driver header; it
defines various characteristics of the device. For NuBus cards in a NuBus expansion
chassis, a property of this type may be constructed from information in the slot
resources of the card’s expansion ROM. The contents of this property are defined in
“Driver Description Structure” beginning on page 88.

= The AAPL, addr ess property is a vector to an array of logical address pointers, as
described in “I/O Space Cycle Generation” beginning on page 300.

= The AAPL, i nt er r upt s property is an internal interrupt number that the Open
Firmware startup process creates before any FCode is read from the card.

= The AAPL, sl ot - nane property is an identifier for the hardware slot in which the
card is plugged. This property is created by the Open Firmware startup process before
any FCode is read from the card. Its value may be different with different Power
Macintosh models.

= The hei ght, wi dt h, | i nebyt es, and dept h properties are attached to the Name
Registry entries of graphic display devices to define each display’s characteristics.

s The property dri ver, xxx, yyy, zzz provides access to driver code. An expansion card
ROM may contain a number of different drivers suited to different operating systems
and machine architectures. The value of xxx specifies the manufacturer of the
hardware (AAPL for Apple Computer, Inc.), yyy specifies the operating system
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(Mac0S), and zzz specifies the instruction set architecture (Power PC). The value of
driver, xxx, yyy, zzz is the driver code itself, which can be quite large; there is no
defined upper limit to the size of a property’s data. Although a PCI card may define a
number of drivers, only drivers appropriate to an available operating system will be
placed in the device tree, and therefore only these drivers can be accessed through the
Name Registry.

Modifier Management

Modifiers, described in this section, convey special characteristics of names and
properties. They are provided for use by low-level experts designed for specific
platforms. Modifiers may be supported for some names and not others. Support may
change from one hardware platform to another. Hence, device drivers should not rely on
modifiers to determine device functionality.

Data Structures and Constants

Modifiers are specified as bits in a 32-bit word. The low-order 16 bits are reserved for
modifiers applicable to both names and properties. The next 8 bits are reserved by the
name space and are redefined for each name space. The high-order 8 bits are reserved for
each name and property set and are redefined for each name entry.

The following types are used to declare modifier words:

t ypedef unsigned | ong Reghbdi fi ers;
t ypedef RegMbdifiers RegEnt ryModi fi ers;
typedef RegMbodifiers RegPr opertyModi fiers;

The following constants are used to mask bits in modifier words:

Name Value Description

kRegNoModi fi ers 0x00000000 No entry modifiers in place

kRegUni ver sal Modi fi er Mask 0x0000FFFF Modeifiers to all entries

kRegNaneSpaceModi fi er Mask 0x00FF0000 Modifiers to all entries within
the name space

kRegModi f i er Mask 0xFF000000 Modifiers to just this entry

The following constants have meaning for property modifiers:

Name Value Description
kRegPr oper t yVal uel sSavedToNVRAM 0x00000001 Saved in NVRAM

kRegPr opert yVal uel sSavedTobDi sk 0x00000002 Saved to disk
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Modifier-Based Searching

Mac OS provides two routines to simplify searching for name entries or properties that
have particular modifiers.

RegistryEntryMod

Regi st r yEnt r yMod searches for name entries that have specified modifiers.

OSErr Regi stryEntryMd

(RegEntrylter *cooki e,

RegEntrylterati onOp rel ati onshi p,

RegEntryl D *foundEnt ry,

Bool ean *done,

RegEnt ryModi fi ers mat chi nghodi fi ers);
cooki e Iterator used by name entry iterate and search routines.
rel ati onship Search relationship (values defined on page 170).
foundEntry ID of the next name entry found.
done Value of t r ue means searching is completed.

mat chi nghodi fi ers  Modifiers to be matched.

DESCRIPTION
Regi st r yEnt r yMod searches for name entries, using the relation indicated by
rel ati onshi p, that have a specified modifier. Regi st r yEnt r yMod returns the
RegEnt r yl Dvalue that identifies the next name entry found in f oundEnt ry, or
t r ue in done if all entries have been exhausted.

Regi st r yEnt r yMod returns only name entries with modifiers that match the value of
mat chi ngModi fi ers. It uses a bit AND operation to determine when the bits set in
mat chi ngModi fi er s are also set in the entry.

RESULT CODES

nokErr 0 No error
par amerr -50 Bad parameter
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RegistryEntryPropertyMod

DESCRIPTION

RESULT CODES
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Regi st ryEnt r yPr oper t yMod searches for name entries that have a property with a
specified modifier.

OSErr Regi stryEntryPropertyhMd

(RegEntrylter *cooki e,

RegEntrylterati onOp rel ati onshi p,

RegEnt ryl D *foundEntry,

Bool ean *done,

RegEnt ryModi fi ers mat chi nghodi fi ers);
cooki e Iterator used by iterate and search routines.
rel ati onship Search relationship (values defined on page 170).
foundEntry ID of the next name entry found.
done Value of t r ue means searching is completed.

mat chi nghbdi fiers Modifiers to be matched.

Regi st ryEnt r yPr oper t yMod searches for name entries, using the relation indicated
by rel ati onshi p, that have a property with a specified modifier. It returns the
RegEnt r yl Dvalue that identifies the next name entry found in f oundEntry, ort r ue
in done if all entries have been exhausted.

Regi st ryEnt r yPr oper t yMod returns only name entries with properties that have
modifiers that match the value of mat chi ngModi f i er s. It uses a bit AND operation to
determine when the bits set in mat chi ngModi f i er s are also set in the property.

nokErr 0 No error
par ankrr =50 Bad parameter

Name Modifier Retrieval and Assignment

Existing name entries and properties may have their modifier word’s value set or
retrieved. Code can accomplish this by using the routines described in this section.

IMPORTANT

In the current implementation of the Name Registry, the only modifiers
that you can change are kRegPr opert yVal uel sSavedToNVRAMand
kRegPr oper t yVal uel sSavedToDi sk. Changing other modifiers is
reserved for future versions of Mac OS. a
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RegistryEntryGetMod

DESCRIPTION

RESULT CODES

CODE SAMPLE

Regi st r yEnt r yGet Mod fetches the modifiers for a name entry in the Registry.

OSErr Regi stryEnt ryGet Mod

(const RegEntryl D *entry,
RegEnt ryModi fi ers *nodi fiers);
entry RegEnt r yl Dvalue that identifies a name entry.

nodi fi ers Return value of modifiers.

Regi st r yEnt r yGet Mod returns in nodi f i er s the current modifiers for the name
entry identified by ent ry.

nokErr 0 No error
par antrr -50 Bad parameter
nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid

In Listing 8-10, Regi st r yEnt r yGet Mbd and Regi st r yEnt r ySet Mod are used to save

a property to disk.

Listing 8-10 Saving a property to disk

OSSt at us

SaveDevi ceProperty(

const
const

)

RegEnt ryl D *devi ceEntry,
RegPr oper t yNane *propertyName

RegPropertyMdifiers propertyMdifiers;

OSSt at us

/*

err = nokErr;

* CGet the existing nodifiers first.

*/
err

Using the Name Registry
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if (err == noErr) {
/*
* Set the save-to-disk nmodifier preserving the
* al ready existing ones.
*/
propertyMdifiers = propertyMdifiers
& kRegPropertyVal uel sSavedToDi sk;
err = Regi stryPropertySet Mod
(deviceEntry, propertyNane, propertyMdifiers);

}
return err;
}
RegistryEntrySetMod

DESCRIPTION

RESULT CODES
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Regi st r yEnt r ySet Mod sets the modifiers for a name entry in the Registry.

OSErr Regi stryEntrySet Mod
(const RegEntryl D *entry,
const RegEntryModifiers nodi fiers);

entry RegEnt r yl Dvalue that identifies a name entry.
nodi fi ers Value of modifiers to set.

Regi st ryEnt r ySet Mod sets the modifiers specified in nodi f i er s for the name entry
identified by ent ry. The caller is responsible for preserving bits that should remain set
by reading the current modifier value, changing it, and then assigning the new value.

nokErr 0 No error
par ankrr =50 Bad parameter
nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid

Property Modifier Retrieval and Assignment

The two routines described in this section retrieve and assign property modifiers.
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RegistryPropertyGetMod

DESCRIPTION

RESULT CODES

Regi st ryPropert yGet Mod fetches the modifiers for a property in the Registry.

OSErr Regi stryPropertyGet Mod

(const RegEntryl D *entry,
const RegPropertyNane *nanme,
RegPropertyModi fiers *nodi fiers);
entry RegEnt r yl Dvalue that identifies a name entry.
name Property name.

nmodi fiers Returned value of property modifiers.

Regi st ryPr opert yGet Mod returns in modi f i er s the current modifiers for the
property with name nane in the name entry identified by ent r y.

noErr 0 No error

par amerr -50 Bad parameter

nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Not FoundEr r -2539 Search failed to match criteria

RegistryPropertySetMod

DESCRIPTION

Regi st ryPr opert ySet Mod sets the modifiers for a property in the Registry.

OSErr Regi st ryPropertySet Mod

(const RegEntryl D *entry,
const RegPropertyNane *nanme,
RegPropertyModifiers nodi fiers);
entry RegEnt r yl Dvalue that identifies a name entry.
name Property name.

nmodi fiers Value of property modifiers to set.

Regi st ryPropert ySet Mod sets the modifiers specified in modi f i er s for the
property with name nane in the name entry identified by ent ry. The caller is
responsible for preserving bits that should remain set by reading the current modifier
value, changing it, and then assigning the new value.
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nokErr 0 No error

par anerr =50 Bad parameter

nrl nval i dNodeErr —2538 RegEnt r yl Dvalue not valid
nr Not FoundEr r —2539 Search failed to match criteria

Macintosh System Gestalt
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When it builds the device tree, the Macintosh ROM installs a node at its root, called the
gestalt node, that contains information about the Macintosh system on which it is
running. The names of the properties of this node are the standard Macintosh gestalt
selectors, as described in Inside Macintosh: Operating System Utilities. This book is
described in “Supplementary Documents” beginning on page xxi. Some of the available
Gestalt properties of interest to PCI drivers are shown in Table 8-2.

Table 8-2 Gestalt properties

Name Description

"fpu " Floating-point unit type

" hdwr " Low-level hardware configuration attributes
“kbd " Keyboard type

“Irant Logical RAM size

"mach"” Macintosh model code

"mu Memory management unit type
"nreg" Name Registry version

"pgsz" Logical page size

"proc” Microprocessor type

"prty" Parity attributes

"ram" Physical RAM size

"rom" System ROM size

"rom" System ROM version

"ser " Serial hardware attributes

"snd " Sound attributes

"tv " TV support version

"vers" Gestalt version

"vm " Virtual memory attributes
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Note

Specific Macintosh computer models may lack some of the
gestalt values listed in Table 8-2, so the corresponding
properties will not appear in the gestalt node. O

PCI expansion card firmware and driver code can explore the gestalt name entry in the
Name Registry to determine the hardware and firmware environment available to it. For
example, Listing 8-11 shows typical code to extract the 32-bit value of the Macintosh
virtual memory attributes from the "vm " property of the gestalt name entry.

Listing 8-11 Sample code to fetch virtual memory gestalt

RegEntryl ter cooki e;

RegEntryl D gestaltEntry;

RegPropertyVal ueSi ze gestal tEntrySi ze = sizeof (Ul nt32);
Bool ean done;

CSEr r err,

err = RegistryEntrylterateCreate(&cookie);
if ( err !'= noErr )
return err;

err = Regi stryEntrySearch (&cooki e,
kRegl t er Root ,
&gestal tEntry,
&done,

vm ",
nil,
0);
if ( err !'= noErr )
return err;

err = RegistryPropertyCGet ( &gestaltEntry,

vm ",
&m sOn,
&gestal t EntrySi ze );

if ( err !'= noErr )
return err;

Regi st ryEntryl terat ebDi spose (&cookie);
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Code Samples

This section contains code samples that illustrate common Name Registry operations.

Adding a Device Entry

For all physical devices, adding a device entry to the Name Registry is handled by the
device’s expert. Device drivers normally do not need to add their devices to the Registry.

Adding a new device to the system consists of entering a new name entry in the Registry
and setting the appropriate property values. The example shown in Listing 8-12 adds a
new name entry to the Registry with a single property.

Listing 8-12 Adding a name entry to the Name Registry
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#i ncl ude <NanmeRegi stry. h>

OSSt at us JoePr o_AddName(
const RegCst r Pat hNane *nane,
const RegPropertyNane *prop,
const void *val
const RegPropertyVal ueSi ze | en

)

OSSt at us err = nokErr;
RegEntryl D where, new entry;

err = JoePro_Fi gureCut Wher e( &here) ;

if (err == noErr) {
err = JoePro_Ent er Name( &where, nanme, &new entry);
Regi st ryEnt ryl DDi spose( &wher e) ;

if (err == noErr) {
err = JoePro_AddProperties(&ew entry, prop, val, len);
Regi st ryEnt ryl DDi spose( &ew entry);

}

return err;
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OSSt at us
JoePro_Fi gureCQut Wher e( RegEnt ryl D *wher e)

{

CSErr err = noErr
RegEntrylter cooki e;

Bool ean done = FALSE
/*

* W want to search all the nanes, which is
* the default, so we just need to continue.
*/

RegEntrylterati onOp op = kReglterConti nue;

/*
* For this exanple, the existence of the
* “Joe Pro Root” property is used to find
* out where to put the “Joe Pro” devi ces.

* |nitialization code will need to have
* created this entry.

*/

RegPr oper t yNameBuf name;

RegPr opertyVal ue val = NULL

RegPr opertyVal ueSi ze siz = 0;
strncpy(nane, "Joe Pro Root", sizeof(nane));

/*
* Figure out where to put the driver.

*

* By convention, there is one “Joe Pro Root”

* so we don’t need to | oop.

*/

err = RegistryEntrylterateCreate(&cookie);

if (err == noErr) {

err = Regi styEntrySearch(&cooki e, op, &where,

nane, val, siz);

}

Regi stryEntryl teratebDi spose(&cookie);

/*

* Check if we conpleted the search wi thout
* finding the “Joe Pro Root”.

*/

assert(err !'= noErr || !done);

return err;

Code Samples
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OSSt at us JoePr o_Ent er Nane(

const RegEntrylD *wher e,
const RegCStr Pat hNane *nane,
RegEntryl D *entry
)
{
/*
* Assunption: This call will return an error
* if the name entry is already in the Registry.
*/
return Regi stryCStrEntryCreate(where, nane, entry);
}
OSSt at us
JoePro_AddProperti es(
const RegEntryl D *entry,
const RegPropertyNane *prop,
const void *val ,
const RegPropertyVal ueSize siz
)
{
return Regi stryPropertyCreate(entry, prop, val, siz);
}

Since all name entries in the registry are connected to at least one other entry, either an
existing name entry must be provided when creating a new entry or it will be assumed
that the path is specified relative to the root entry.

Note

Although the current Registry supports only a hierarchy of
names, future versions of the Registry may provide other
kinds of connections between names. O

The creator of a name entry must determine where in the tree it should appear. This
determination may be made by convention, as shown in the foregoing example, or may
be made by the user, running an administrative application.

Finding a Device Entry

Every device driver typically needs to retrieve information about the device from the
Name Registry. The example in Listing 8-13 retrieves the value of a single property for a
specified name entry in the Name Registry.
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Listing 8-13 Retrieving the value of a property

#i ncl ude <NaneRegi stry. h>

OSSt at us

JoePr o_LookupProperty(
const RegCstr Pat hNane *nane,
const RegPropertyNane *prop,

RegPr opertyVal ue *val ,
RegPr opertyVal ueSi ze *sjz
)
{
OSErr err = noErr;
RegEntryl D entry;
err = JoePro_Fi ndEntry(name, &entry);
if (err == noErr) {
err = JoePro_GetProperty(&entry, prop, val, siz);
Regi stryEntryl DD spose(&entry);
}
return err;
}

0SSt at us JoePr o_Fi ndEnt ry(
const RegCSt r Pat hNane *nane,

RegEntryl D *entry
)

{
return RegistryCstrEntryLookup(

NULL /* start root */, name, entry);

}

OSSt at us JoePr o_Get Propert y(
RegEntryl D *entry,
RegPr opert yNane *prop,
RegPr opertyVal ue *val ,
RegPr opertyVal ueSi ze *siz
)

{

CSErr err = noErr;
/*

* Figure out how big a buffer we need for the val ue
*/
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err = RegistryPropertyGetSize(entry, prop, Siz);
if (err == noErr) {
*val = (RegPropertyVal ue) malloc(*siz);

assert(*val !'= NULL);

err = RegistryPropertyCet(entry, prop, val, siz);
if (err '=noErr) {

free(*val);

*val = NULL;

}

return err;

Removing a Device Entry

When a device is permanently removed from the system, the information pertaining to
the device must be removed from the Name Registry. When a name entry is removed
from the Registry, all properties associated with that entry are automatically removed as
well. Listing 8-14 illustrates removing a device entry from the Registry.

Note

In the current Macintosh system, all children of a parent entry are
removed when the parent is removed. Removing a parent entry, thereby
creating orphan entries, may not be supported in future releases. O

Listing 8-14 Removing a device entry from the Name Registry
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#i ncl ude <NaneRegi stry. h>

OSSt at us
JoePro_RenNanme(const RegCStrPat hName *nane)
{

OSErr err = noErr;

RegEntryl D entry;

/* from previous exanple */
err = JoePro_Fi ndEntry(name, &entry);
if (err == noErr) {
err = JoePro_RenEntry(&entry);
Regi stryEntryl DD spose(&entry);
}

return err,

Code Samples



CHAPTER 8

Macintosh Name Registry

OSSt at us
JoePro_RenkEntry(RegEntryl D *entry)

{
return RegistryEntryDel ete(entry);

Listing Devices

Administrative software must be able to find various devices in the system. The example
shown in Listing 8-15 contains two procedures. The first loops through name entries,
invoking a callback function for each one. The second loops through the properties for

a name entry, invoking a callback function for each property. It is up to the caller to
determine what the callback functions will do, but they could (for example) display a
graph of names and properties in a window or identify all name entries that match a
complex set of search criteria.

Listing 8-15 Listing names and properties

#i ncl ude <NanmeRegi stry. h>

OSSt at us JoePro_Li st Devi ces(
void (*call back) (
RegCst r Pat hNane *nane,
RegEntryl D *entry

)

OSErr err = noErr;
RegEntryl ter cookie;
Bool ean done;

/*

* Entry iterators are created pointing to the root
* with a RegEntrylterati onOp of kReglterDescendants.
* So, we just need to continue.

*/

RegEntrylterati onOp op = kReglterContinue;

err = RegistryEntrylterateCreate(&cookie);
if (err == noErr) do {
RegEntryl D entry;
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err = RegistryEntrylterate(&cookie, op, &entry, &done);
if (!done) {

RegCSt r Pat hName  *nane;

RegPat hNaneSi ze | en;

err = RegistryCStrEntryToPat hSi ze(&entry, &l en);
if (err == noErr) {
name = (RegCStrPat hName*) mal |l oc(len);

assert(nane != NULL);

err = RegistryCStrEntryToPat h(&entry, nane, |en);
if (err == noErr) {
(*cal | back) (name, &entry);
}
free(nane);
}
Regi st ryEnt ryl DDi spose( &entry);
}
} while (!done);
Regi stryEntryl terateD spose(&cookie);
return err;

}

OSSt at us JoePro_Li stProperties(
const RegCStr Pat hNane *nane,

const RegEntryl D *entry,
voi d (*cal | back) (
RegPr oper t yNane*,

RegPr opertyVal ue,
RegPr opertyVal ueSi ze

)

CSErr err = noErr;
RegPropertylter cookie;
Bool ean done;

err = RegistryPropertylterateCreate(entry, &cookie);
if (err == noErr) do {
RegPr oper t yNameBuf property,
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err = RegistryPropertylterate(&cookie, property, &done);
if (!done) {

RegPr opertyVal ue val

RegPr opertyVal ueSi ze si z;

err = JoePro_GCetProperty(entry, property, &val, &siz);
if (err == noErr) {
(*cal | back) (property, val, siz);

}
} while (!done);
Regi st ryPropertylterateD spose(&cookie);
return err;

Code Samples
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This chapter describes the routines that are provided for every native driver by the
Macintosh Driver Services Library. The driver loader, part of Mac OS, automatically links
the library to each generic driver when the driver is loaded. The routines included in the
Driver Services Library implement all the system programming interfaces (SPIs) that
Mac OS provides for drivers. Additional functionality may be made available to drivers
within certain families or categories through family programming interfaces (FPIs)
maintained by family experts.

As described in the next section, device drivers run in their own environment without
access to the Macintosh Toolbox. This chapter describes the services available in the
device driver run-time environment. The services are categorized as follows:

= memory management
= interrupt management
= timing services

= atomic operations

= queue operations

= string operations

= debugging support

= service limitations

These services are also available to family drivers to support their basic needs. Mac OS
provides some added family-specific services that are not discussed in this chapter. For
further information about family-specific services, see Chapters 11 through 13.

Device Driver Execution Contexts
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As explained in “Noninterrupt and Interrupt-Level Execution” beginning on page 67,
code in PCI-based Macintosh computers may run in any of three execution contexts:

= Hardware interrupt level is the execution context provided to a device driver’s
interrupt handler. Page faults are not allowed at this context. Hardware interrupt level
is also known as primary interrupt level.

= Secondary interrupt level is the execution context similar in concept to the previous
Mac OS deferred task environment. Page faults are not allowed at this context.

= Noninterrupt level, usually called task level, is the context where all other code is
executed. Page faults are allowed at this context.

Note

Many device driver services are available in only one or two of the
execution contexts just listed. It is the responsibility of the driver writer
to conform to these limitations. Drivers that violate them will not work
with future releases of Mac OS. For lists of service availability, see
“Service Limitations” beginning on page 282. O

Device Driver Execution Contexts



CHAPTER 9

Driver Services Library

CurrentExecutionLevel

The function Cur r ent Execut i onLevel lets code determine its execution context.

Executi onLevel Current ExecutionLevel (void);

DESCRIPTION
Current Execut i onLevel returns one of the result codes shown below.
EXECUTION CONTEXT
Current Execut i onLevel may be called from task level, software interrupt level, or
hardware interrupt level.
RESULT CODES
kTaskLevel 0 Noninterrupt level
kSecondar yl nt err upt Level 5 Secondary interrupt level
kHar dwar el nt er r upt Level 6 Hardware interrupt level

Miscellaneous Types

This section introduces some basic data types that are used throughout the Driver
Services Library.

t ypedef unsigned | ong Byt eCount ;
t ypedef unsigned | ong | t enCount ;
typedef | ong OSSt at us;

t ypedef unsigned | ong OptionBits;

For a description of OSSt at us, see “Error Returns” on page 72.
The constant KNi | Opt i ons (= 0) is provided for clarity.

IDs are used whenever you create, manipulate, or destroy a object. All IDs are
derived from the type Ker nel | D:

typedef struct OpaqueRef *KernellD;

You should use the derived ID types whenever possible to make their code
more readable.
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Note

Derived ID types are all 32-bit opaque identifiers that specify various
kernel resources. There is a separate ID type for each kind of resource—
for example, separate types for Taskl Dand Addr essSpacel D. All
kernel services that create or allocate a resource return an ID; the ID is
later used to specify the resource to perform operations on it or delete it.
These IDs are opaque because the value of the ID tells you nothing—
you can't tell from an ID which resource it identifies without calling the
kernel, you can’t tell what ID you'll get back the next time you create a
resource, and you can’t tell the relationship between any two resources
by the relationship between their IDs. When a resource is deleted, its ID
usually becomes invalid for a long time. This helps your code catch
errors, because if you accidentally use an ID for a resource that has been
deleted, chances are you’ll get an error instead of just doing something
to a different resource. O

The value kl nval i dl D(=0) is reserved to mean no ID.

Memory Management Services
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This section describes the memory management services that the Driver Services Library
provides to drivers.

Addressing

System 7 provides a single address space that is used by all software. Future versions of
Mac OS may provide memory protection and separate address spaces for different
software entities. The Mac OS 7.5 services described in this chapter are designed to be
compatible with multiple address spaces, and drivers using these services must be
written for a multiple address space environment.

One concept that applies to multiple address spaces is that of static logical mapping, the
ability to address client buffers logically regardless of the current address space. Static
logical mapping is important because drivers in a multiple address space environment
cannot depend on the client buffer’s logical address to remain directly accessible for the
duration of an I/O operation.

Another concept that applies to multiple address spaces is that of memory protection, the
ability to prevent inadvertent access to data. Drivers must respect the protection of client
buffers, even though they may access the buffers through means such as hardware direct
mMemory access.

Note

Restrictions on the execution contexts in which memory allocation and
deallocation services can be used are given in “Service Limitations”
beginning on page 282. O
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I/O Operations and Memory

Several aspects of the operating system, the main processor, cache memory, and the
memory hardware must be coordinated when an I/O operation is performed between
an external device and a buffer in system memory:

s Memory protection: The I/O operation must not violate the access restrictions of
the buffer.

s Residency: The 1/O operation must not generate page faults when accessing the buffer.
The buffer must also have physical memory assigned to it for the duration of the
I/0O operation.

» Addressability: When using DMA hardware to perform an I/O operation, it is
necessary to convert a logical buffer specification into a physical specification. When
using programmed /O, it is necessary to convert the buffer specification (either
logical or physical) to a logical specification that is addressable regardless of the
current address space.

= Memory coherency: Coherency ensures that the data being moved is not stale and that
the effects of the data movement are apparent to the processor and any associated
data caches. Guaranteed coherency potentially applies to cache operations before and
after the I/ O operation.

The DSL provides services that ensure this coordination. One service assigns physical
memory to the buffer, generates an appropriate buffer specification, and performs all
necessary cache manipulations prior to the I/O operation. Another routine cleans up
following the I/O operation. These services operate according to the computer’s cache
topology, taking into account whether the caches are logical or physical and whether the
overall hardware architecture guarantees coherency. This shields drivers from having to
compensate for the system memory architecture.

Memory Management Types

This section defines some types and values that are fundamental to memory management
for native drivers.

Values of type Logi cal Addr ess represent a location in an address space:
typedef void *Logi cal Address;

Values of type Physi cal Addr ess represent location in physical memory. They are used
primarily with DMA I/O operations:

typedef void *Physical Address;
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ALogi cal Addr essRange structure is a description of a single logically addressed buffer:

struct Logi cal Addr essRange
{

Logi cal Addr ess addr ess;
Byt eCount count;

}s

typedef struct Logi cal AddressRange Logi cal Addr essRange;
typedef struct Logi cal AddressRange *Logi cal Addr essRangePtr ;

A Physi cal Addr essRange structure is a description of a single physically
addressed buffer:

struct Physi cal Addr essRange

{
Physi cal Addr ess addr ess;

Byt eCount count;
b

t ypedef struct Physical AddressRange Physi cal Addr essRange;
t ypedef struct Physical AddressRange *Physi cal Addr essRangePtr;

An Addr essRange structure is a description of a single buffer, in which the buffer
address may be either logical and physical:

struct AddressRange
{

voi d *base;
Byt eCount | engt h;

i
typedef struct AddressRange AddressRange;

Address spaces are referred to by values of type Addr essSpacel D. The value
kCur r ent Addr essSpacel Drefers to the current address space:

t ypedef Kernel | D AddressSpacel D
enum

{
kCurrent AddressSpacel D = 0

}s
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Memory Services Used During I/O Operations

The DSL provides two routines that help drivers coordinate I/ O software with
system memory:

= The Pr epar eMenor yFor | Ofunction tells Mac OS that a particular buffer will be
used for I/O transfers. It checks memory protection, assigns physical memory to
the buffer, provides addressing information, and prepares the processor’s caches
for the transfer.

= The Checkpoi nt | Ofunction tells the operating system that the previously started
transfer is complete. It assures processor cache coherency and either prepares for
further transfers or, if its parameters specify that no more transfers will be made,
deallocates the resources associated with the buffer preparation. Once the prepara-
tion’s resources have been deallocated, subsequent I/O operations with the buffer
must be preceded by another call to Pr epar eMenor yFor | O

The memory coordination that these routines provide is summarized in “I/O Operations
and Memory” beginning on page 217.

WARNING

Failure to use these I/O related services properly can result in data
corruption or fatal system errors. Correct system behavior is the
responsibility of the operating system and all I/ O components including
hardware, drivers, and other software. a

Preparing Memory for /O

This section describes the Pr epar eMenor yFor | Ofunction and its associated data
structures. Different ways of employing Pr epar eMenor yFor | Oare discussed in “Using
PrepareMemoryForIlO” beginning on page 224.

PrepareMemoryForlO Data Structures

The Pr epar eMenor yFor | Ofunction has a single parameter, a pointer to an
| OPr epar ati onTabl e structure.

Some fields of the | OPr epar at i onTabl e structure contain pointers to subsidiary
structures. There are three types of subsidiary structures:

= AlLogi cal Mappi ngTabl ePt r value is a pointer to an array of Logi cal Addr ess
values. The Logi cal Addr ess table is where Pr epar eMenor yFor | Oreturns the
static logical addresses the driver can use to logically access the client buffer:

t ypedef Logi cal Address *Logi cal Mappi ngTabl ePtr
= A Physi cal Mappi ngTabl ePt r value is a pointer to an array of Physi cal Addr ess
values. The Physi cal Addr ess table is where Pr epar eMenor yFor | Oreturns the

physical addresses the driver can use to access the client buffer physically:

t ypedef Physi cal Address *Physi cal Mappi ngTabl ePt r
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= An Addr essRangeTabl ePt r value is a pointer to an array of Addr essRange
specifications. All ranges in a given Addr essRange array are of the same kind, either
all logical or all physical. The Addr essRange table is where the driver can specify a
user buffer that consists of multiple ranges (that is, a scatter-gather buffer as described
in “Scatter-Gather Client Buffers” on page 226):

typedef struct AddressRange *AddressRangeTabl ePtr;

The | OPr epar at i onTabl e structure and its subsidiary structures are diagrammed in
Figure 9-1 on page 221.

Note

In Figure 9-1, gray areas are filled in by the Pr epar eMenor yFor |1 O
function and white areas are filled in by the calling software. The
prepar at i onl Dfield is used both ways. O

The | OPr epar at i onTabl e structure is defined as follows:

struct | OPreparationTable

{
| OPreparati onOpti ons options;
| OPreparationState st at e;
| OPreparationl D prepar ati onl D,
Addr essSpacel D addr essSpace;
Byt eCount granul arity;
Byt eCount firstPrepared,;
Byt eCount | engt hPr epar ed;
I t emCount mappi ngEnt r yCount ;
Logi cal Mappi ngTabl ePtr | ogi cal Mappi ng;
Physi cal Mappi ngTabl ePtr physi cal Mappi ng;
uni on
{
Addr essRange range;
Mul ti pl eAddr essRange mul ti pl eRanges;
} rangel nf o;

i

typedef struct | OPreparationTabl e | OPreparationTabl e;
typedef OptionBits | OPreparationQOptions;

enum {
kl OWul ti pl eRanges = 0x00000001,
kl CLogi cal Ranges = 0x00000002,
kl OM ni mal Logi cal Mappi ng = 0x00000004,
kl Cshar eMappi ngTabl es = 0x00000008,
kl O sl nput = 0x00000010,
kl O sQut put = 0x00000020,
kl OCoher ent Dat aPat h = 0x00000040,
kl OCl i ent | sUser Mode = 0x00000080

b
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Figure 9-1 | OPr epar at i onTabl e structure

IOPreparationTable

options LogicalMappingTable
state LogicalAddress
preparationlD LogicalAddress
addressSpace Z /
ranulari
: hd LogicalAddress
firstPrepared
lengthPrepared
PhysicalMappingTable
mappingEntryCount
. . PhysicalAddress
logicalMapping
physicalMapping PhysicalAddress
range entryCount / /
(address range)
Tabl
range ae PhysicalAddress

AddressRangeTable

base

length

Address base
range

length

base

length

typedef OptionBits | OPreparationState;
enum {
kl Ost at eDone = 0x00000001

1
typedef struct Miltipl eAddressRange Mil ti pl eAddr essRange;

struct Ml tipl eAddr essRange

{
I t emCount ent ryCount ;

Addr essRangeTabl ePt r rangeTabl e;
b
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The | OPr epar at i onTabl e structure specifies the buffer to be prepared and provides
storage for the mapping and other information that are returned. Its fields contain the
following information:

options

state

preparationl D

addr essSpace

granul arity
firstPrepared

| engt hPr epar ed

Optional characteristics of the | OPr epar at i onTabl e structure
and the transfer process. Possible values in this field are discussed
in “IOPreparationTable Options” on page 223.

Filled in by Pr epar eMenor yFor | Oto indicate the state of the
| OPr epar at i onTabl e structure. The kI OSt at eDone flag
indicates that the buffer has been prepared up to the end of the
specified range. See “Partial Preparation” on page 227.

Filled in by Pr epar eMenor yFor | Oto indicate the identifier that
represents the I/O transaction. When the I/ O operation is completed
or abandoned, the | OPr epar at i onl Dvalue is used to finish the
transaction, as described in“Finishing I/ O Transactions” beginning
on page 228.

The address space containing the buffer to be prepared. Mac OS 7.5
provides only one address space, which it automatically passes to
native drivers through doDr i ver | O Otherwise, this field must be
specified as kCur r ent Addr essSpacel D.

Information to reduce the memory usage of partial preparations.
See “Partial Preparation” on page 227.

The byte offset into the buffer at which to begin preparation. See
“Partial Preparation” on page 227.

Filled in by Pr epar eMenor yFor | Oto indicate how much of the
buffer was successfully prepared, beginning at f i r st Pr epar ed.
See “Partial Preparation” on page 227.

mappi ngEnt r yCount

| ogi cal Mappi ng

physi cal Mappi ng

rangel nfo

Number of entries in the logical and physical mapping tables
supplied. Normally, the driver should allocate as many entries as
there are pages in the buffer. The number of pages in a memory
range can be calculated from the range’s base address and length. If
there are not enough entries, a partial preparation is performed
within the limit of the tables. See “Partial Preparation” on page 227.

The address of an array of Logi cal Addr ess values.

Pr epar eMenor yFor | Ofills the logical mapping table with the
static logical mappings for the specified buffer. This table is
optional. Mapping tables are discussed in “Mapping Tables” on
page 225.

The address of an array of Physi cal Addr ess values.

Pr epar eMenor yFor | Ofills the physical mapping table with the
physical addresses corresponding to the specified buffer. This table
is optional. Mapping tables are discussed in “Mapping Tables” on
page 225.

The buffer to prepare. A simple buffer is represented by a single
Addr essRange value. A scatter-gather buffer is specified by a

Mul ti pl eAddr essRange structure. If the kIl OWul ti pl eRanges
flag is omitted from opt i ons, r angel nf o is interpreted as an
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Addr essRange value named r ange. If kI OMul t i pl eRanges

is specified in opt i ons, r angel nf o is interpreted as a

Mul t i pl eAddr essRange structure named nul ti pl eRanges.
Scatter-gather buffers are discussed in “Scatter-Gather Client
Buffers” on page 226. Because there might be insufficient resources
to prepare the entire buffer, the buffer can be prepared in pieces.
This procedure is discussed in “Partial Preparation” on page 227.

IOPreparationTable Options

This opt i ons field of the | OPr epar at i onTabl e structure contains flags that have the
following meanings:

= kI OMul ti pl eRanges specifies that the r angel nf o field is to be interpreted as
Mul ti pl eAddr essRange, enabling a scatter-gather memory specification.

= kI OLogi cal Ranges specifies that the base fields of the Addr essRange structures
are logical addresses. If this option is omitted, the addresses are treated as physical
addresses. Mac OS 7.5 does not support specifying physical buffers, so the driver
must specify kI OLogi cal Ranges.

= kI OM ni nal Logi cal Mappi ng specifies that the Logi cal Mappi ngTabl e structure
is to be filled in with just the first and last mappings of each range, arranged in pairs.
Minimal logical mappings are discussed in “DMA Alignment Requirements” on
page 227.

= Kkl OShar eMappi ngTabl es specifies that the system can use the driver’s mapping
tables instead of maintaining its own copies of the tables. Sharing mapping tables
is discussed in “Reducing Memory Usage” on page 226.

= kI O sl nput specifies that data will be moved into main memory.
= kI O sCQut put specifies that data will be moved out of main memory.

= kI OCoher ent Dat aPat h indicates that the data path that will be used to access
memory during the I/O operation is fully coherent with the main processor’s data
caches, making data cache manipulations unnecessary. Memory coherency with the
instruction cache is not implied, however, so the appropriate instruction cache
manipulations are performed regardless. This option is useful when the overall
hardware architecture is not coherent, but the driver knows that the transfer will
occur on a particular hardware path that is coherent. (Pr epar eMenor yFor | O
operates according to the overall architecture and has no implicit way of knowing
about individual data paths.) When in doubt, omit this option. Incorrectly omitting it
merely slows operation, whereas incorrectly specifying this option can result in
erroneous behavior and crashes.

= kI OCl i ent| sUser Mbde indicates that Pr epar eMenor yFor | Ois being called on
behalf of a nonprivileged client. If this option is specified, the memory ranges are
checked for user-mode accessibility. If this option is omitted, the memory ranges
are checked for privileged-level accessibility. Drivers can obtain the client’s execution
mode through the device’s family programming interface (FPI). This option is not
implemented in Mac OS 7.5. For compatibility with future Mac OS releases, drivers
should omit it from the options. The FPI will perform the buffer access level checks on
behalf of the driver.
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Using PrepareMemoryForlO

Pr epar eMenor yFor | Ocoordinates data transfers between devices and one or more
memory ranges in the system, the main processor caches, and other memory facilities.
Preparation includes ensuring that physical memory remains assigned to the memory
ranges until Checkpoi nt | Orelinquishes it. Depending on the I/O direction and data
path coherence that are specified, Mac OS manipulates the contents of the processor’s
caches, if any, and may make parts of physical memory noncacheable.

PrepareMemoryForlO

CSSt at us
Pr epar eMenoryFor 1 O (I OPrepar ati onTabl e *t hel OPrepar ati onTabl e) ;

t hel OPrepar ati onTabl e Pointer to an | OPr epar at i onTabl e structure

DESCRIPTION

Pr epar eMenor yFor | Ocoordinates data transfers between devices and one or more
memory ranges with the operating system, the main processor caches, and other data
buffers. Preparation includes ensuring that physical memory remains assigned to the
memory ranges until Checkpoi nt | Orelinquishes it. Depending on the I/O direction
and data path coherence that are specified, Mac OS manipulates the contents of the
processor’s caches, if any, and may make parts of the ranges noncacheable.

A native driver can call Pr epar eMenor yFor | Ofrom its doDr i ver | Ohandler. The
doDr i ver | Oentry point is discussed in “DoDriverlO Entry Point” beginning on
page 93.

The driver or other software must perform I/O preparation before permitting data
movement. For operations with block-oriented devices, preparation is best done just
before moving the data, typically by the driver. For operations upon buffers such as
memory shared between the main processor and a coprocessor, frame buffers, or buffers
internal to a driver, preparation is best performed when the buffer is allocated. This
technique is discussed more fully in “Multiple Transfers” on page 226. The PCI Card
Device Driver Kit contains code samples that use Pr epar eMenor yFor | O for information
about obtaining it, see Appendix A, “Development Tools.”

Calls to Pr epar eMenor yFor | Oshould be matched with calls to Checkpoi nt | Q even
if the I/ O operation was aborted. In addition to applying finishing operations to the
memory range, Checkpoi nt | Odeallocates resources used in preparing the range.

EXECUTION CONTEXT

Pr epar eMenor yFor | Omay be called only at task level from a driver’s DoDr i ver | O
routine or from a subroutine called by DoDr i ver | O
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noErr 0 No error

par anerr -50 Bad parameter

Logical and Physical Memory Preparation

The two most common Pr epar eMenor yFor | Ooperations are preparing logical or
physical I/O when the client has specified a single, logically-addressed buffer. The
following lists show how the driver would set up the | OPr epar at i onTabl e for these
cases. The only difference between the two cases is which mapping table is supplied.

Pr epar eMenor yFor | Oinfers whether the transfer will be physical (DMA) or logical
(programmed I/O) based on whether the mapping table is physical or logical.

To perform logical I/O with single logical buffer, set | OPr epar at i onTabl e as follows:

options kl OLogi cal Ranges and either kI O sl nput
or kl O sQut put
addr essSpace default or kCur r ent Addr essSpacel D (see page 222)
granularity 0
firstPrepared 0
mappi ngEnt r yCount Number of pages in buffer
| ogi cal Mappi ng Address of table containing mappi ngEnt r yCount entries
physi cal Mappi ng nil
range. base Buffer address
range. | ength Buffer length

For physical I/O with single logical buffer, set | OPr epar at i onTabl e as follows:

options kl OLogi cal Ranges and either kl O sl nput or
kl A sQut put

addr essSpace kCur r ent Addr essSpacel D

granularity 0

firstPrepared 0

mappi ngEnt r yCount Number of pages in buffer

| ogi cal Mappi ng nil

physi cal Mappi ng Address of table containing mappi ngEnt r yCount entries

range. base Buffer address

range. | ength Buffer length

Mapping Tables

The logical and physical mapping tables are where Pr epar eMenor yFor | Oreturns the
addresses the driver can use to access the client’s buffer. The first entry of a range’s
mappings will be the exact mapping of the first prepared address in that range,
regardless of page alignment, while the remaining entries will be page aligned. If
multiple address ranges were specified, the mapping table is a concatenation, in order,
of the mappings for each range.
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There are no explicit length fields in the mapping tables. Instead, entry lengths are
implied by the entry’s position in the range’s mappings, the overall range length, and
the page size. The length of the first entry generally runs to the next page alignment, the
length of the intermediate entries (if any) is the page size, and the length of the last
element in the range is what remains by subtracting the previous lengths from the
overall range length. If the prepared range fits within a single page, there is only one
prepared entry and its length is equal to the range length.

Scatter-Gather Client Buffers

Drivers may be asked to transfer data from buffers that are not contiguous. In this case,
the client buffer may be specified as a Mul t i pl eAddr essRange scatter-gather list.

A Ml tipl eAddr essRange structure specifies an array of Addr essRange entries. Its
fields have the following meanings:

ent r yCount The number of entries in the r angeTabl e structure.

rangeTabl e The address of an array of Addr essRange elements (an
Addr essRangeTabl e structure). See the description of
Addr essRange in “PrepareMemoryForlO Data Structures”
beginning on page 219. The specified ranges may overlap.

The opt i ons and addr essSpace specifications apply equally to each range.

Thegranul arity, firstPrepared,and| engt hPrepar ed fields apply to the overall
buffer. These fields are discussed in “Partial Preparation” on page 227.

The resulting mapping tables concatenate, in order, the mappings for each range.

Multiple Transfers

This DSL memory management services allow efficient coordination for both single and
multiple I/O transactions to a given buffer. A single transaction—such as reading
page-faulted data into a client’'s memory—uses a Pr epar eMenor yFor | Ocall before the
transfer and a single Checkpoi nt | Ocall when the transfer is complete. A multiple
transaction scenario—such as a network driver that transfers from its own buffers and
divides blocks in and out of the client buffer—uses a single Pr epar eMenor yFor | Ocall
during driver initialization and a Checkpoi nt | Ocall before and after each transfer. The
intermediate calls to Checkpoi nt | Owould include the kI OMbr eTr ansf er s option, so
the memory preparation remains in effect.

Reducing Memory Usage

Pr epar eMenor yFor | Onormally keeps its own copy of the mapping tables in addition
to the tables the driver has allocated. Hence, memory usage can be reduced if the driver
shares its mapping tables with the operating system. The kI OShar eMappi ngTabl es
option specifies that Pr epar eMenor yFor | Ocan use the driver’s mapping tables rather
than maintain its own copies. The shared mapping tables must be located in logical
memory that cannot page fault until the final Checkpoi nt | Ocall finishes (that is, the
memory is locked). In addition, the mapping tables must remain allocated and the

Memory Management Services



CHAPTER 9

Driver Services Library

entries unaltered until after the final Checkpoi nt | Ocall. It is not necessary for the
driver to provide both tables.

A full-sized mapping table contains as many entries as there are pages in the client
buffer. However, the driver can use a smaller table if it calls Pr epar eMenor yFor | O
more than once for a given client buffer. This technique is discussed in “Partial
Preparation” on page 227.

The granul ari ty specification can reduce memory usage in the event of a partial
preparation. Granularity is discussed in “Partial Preparation” on page 227.

Certain DMA transactions require both mapping tables. However, the size of the logical
mapping table can be easily reduced. The kI OM ni nal Logi cal Mappi ng option is
discussed in “DMA Alignment Requirements” on page 227.

Reducing Execution Overhead

If memory must be prepared long in advance of the transfer, the driver can reduce

the execution overhead by postponing cache manipulations. This is because cache
manipulations are wasted if the buffer will be accessed normally before the transfer.
By omitting both kI O sl nput and kl O sQut put from the opt i ons field, the driver
prevents Pr epar eMenor yFor | Ofrom manipulating the caches at that time. Later, the
driver calls Checkpoi nt | Ojust prior to the transfer to prepare the caches. This is part
of the technique discussed in the “Multiple Transfers” on page 226.

DMA Alignment Requirements

A variation on the physical transfer of data occurs when the client’s buffer does not meet
the alignment requirements of the DMA hardware. In this case, the driver needs to
supply a logical mapping table in addition to the physical mapping table, so that
programmed I/O can be performed in the unaligned beginning and /or end of the buffer.
Otherwise, the driver would have to prepare the beginning and end separately from the
middle portion.

Because only the beginning and the end of the buffer will be transferred with programmed
I/0, only the first and last logical mapping table entries are actually needed—the

middle entries are page aligned, which is sufficient for DMA alignment. To reduce
memory usage, the driver may limit the size of the logical mapping table to just two
entries per range and may specify the k| OM ni mal Logi cal Mappi ng option.

Pr epar eMenor yFor | Owill fill in the first logical mapping table entry of each range as
usual and will fill the second entry with the static logical mapping of the last page in the
range. Two entries per range are used, regardless of the range sizes. However, the value
of the second entry of the pair is undefined if the range is contained within a single page.

Partial Preparation

If insufficient resources are available to prepare the whole range of memory that is
specified, Pr epar eMenor yFor | Owill prepare as much as possible, indicate to the
driver how much memory was prepared, clear the k| CSt at eDone bitint abl eSt at e,
and return noEr r. This is called a partial preparation.
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Examples of resources that may limit the preparation are insufficient physical page
frames to make the buffer resident, mapping table size too small, and not enough
operating-system pool space. Because not all of these resources are under the control
of the driver, every driver that calls Pr epar eMenor yFor | Omust be written to handle
a partial preparation. One possibility is to make a final Checkpoi nt | Ocall to verify
the preparation and return an error to the client. Another possibility is to perform the
transfer as a series of partial transfers.

Thefirst Prepared,| engt hPrepar ed, and gr anul ari ty fields of the

| OPr epar at i onTabl e structure (shown in Figure 9-1 on page 221) control partial
preparations. When calling Pr epar eMenor yFor | Othe first time, specify 0 for
firstPrepared.]If the resulting t abl eSt at e value does not indicate k| OSt at eDone,
a partial preparation was performed, and | engt hPr epar ed indicates how much
memory was successully prepared. After the data transfer and final call to

Checkpoi nt | Q another Pr epar eMenor yFor | Ocall can be made to prepare as

much as possible of the ranges that remain. This time, f i r st Pr epar ed should be

the sum of the currentf i r st Prepar ed and | engt hPr epar ed. This sequence prepare,
transfer, and final checkpoint can be repeated until | OPr epar at i onSt at e indicates

Kl Cst at eDone.

The granul ari ty field gives a hint to Pr epar eMenor yFor | Ofor partial preparation.
It is useful for transfers with devices that operate on fixed-length buffers. The length
prepared will be 0 (with an error status returned) or a multiple of granul arity
rounded up to the next greatest page alignment. This prevents preparing more memory
than the driver is willing to use. A value of 0 for gr anul ar i t y specifies no granularity.
No check is made for whether the specified range lengths are multiples of gr anul ari ty.

Finishing 1/0 Transactions

This section describes the Checkpoi nt | Ofunction and its options.

CheckpointIO

228

OSSt at us Checkpointl O (1 OPreparationlD t hel OPrepar ati on,
| OCheckpoi nt Opti ons t heOpti ons);

t hel OPreparati on Value from the | OPr epar at i onl Dfield in the
| OPr epar at i onTabl e structure.

t heOpti ons Options.

typedef OptionBits | OPreparati onOptions;
enum{

kNext | O sl nput = 0x00000001,
kNext | O sCQut put = 0x00000002,
kMorel OTransfers = 0x00000004

b
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Checkpoi nt | Operforms the necessary follow-up operations for a device I/O transfer
and optionally prepares for a new transfer or reclaims the system resources associated
with memory preparation. To reclaim resources, Checkpoi nt | Oshould be called even if
the I/O operation was abandoned.

Mac OS supports multiple concurrent preparations of memory ranges or portions of
memory ranges. In this case, cache actions are appropriate and individual pages are not
unlocked until all transactions have been finalized.

Parametert hel OPr epar at i on is the | OPr epar at i onl Dvalue for the I/O operation,
as returned by a previous call to Pr epar eMenor yFor | O This ID is not valid following
Checkpoi nt | Oif the kMor eTr ansf er s option is omitted.

The Opt i ons parameter specifies optional operations. Values for this field are
the following:

kNext I O sl nput Data will be moved into main memory.

kNext | O sCQut put Data will be moved out of main memory.

kMor el OTr ansfers Further I/O transfers will occur to or from the buffer. If
kMor el OTr ansf er s is omitted, the buffer is allowed to page
and | OPr epar ati onl Dis invalidated.

EXECUTION CONTEXT

RESULT CODES

Checkpoi nt | Omay be called from task level or software interrupt level but not from
hardware interrupt level.

nokErr 0 No error
parantrr -50 Bad parameter

Cache Operations

Unlike some previous Macintosh drivers, native PCI drivers do not need to flush the
PowerPC processor cache. The Power Macintosh hardware supports processor cache
snooping, which guarantees that the RAM and cache memory domain is coherent.
Future PCI-based Macintosh systems will maintain this coherency.

Nevertheless, driver writers may want to perform cache manipulation to improve driver
performance. The Driver Services Library provides several routines and data types,
described in this section, that allow drivers to get information about cache, alter the
default cache modes, and flush the processor cache.The Set Pr ocessor CacheMbde
function, described on page 233, forces the cache mode for selected pages of memory.
The FI ushPr ocessor Cache function, described on page 234, forces data from cache
out to main memory. These functions lets special-purpose drivers optimize their I/O
performance.

Memory Management Services 229



CHAPTER 9

Driver Services Library

A WARNING
Take care when using the Set Pr ocessor CacheMyde and
Fl ushPr ocessor Cache functions, because they may conflict
with the cache mode operations of Mac OS. Most drivers need
use only Pr epar eMenor yFor | Oand CheckPoi nt 1 O a

Getting Cache Information

The functions described in this section let you determine the structure of the processor
cache. Get Logi cal PageSi ze and Get Dat aCachelLi neSi ze define the structure of
the cache, and Get Pagel nf or mat i on returns information about each logical page in an
address range.

GetLogicalPageSize

Byt eCount Get Logi cal PageSi ze (voi d);

DESCRIPTION
The Get Logi cal PageSi ze function returns the logical page size of the cache, in bytes.

EXECUTION CONTEXT

Cet Logi cal PageSi ze may be called from task level, software interrupt level, or
hardware interrupt level.

GetDataCacheLineSize

Byt eCount Get Dat aCacheli neSi ze (void);

DESCRIPTION
The Get Dat aCacheLi neSi ze function returns the line size of the cache, in bytes.

EXECUTION CONTEXT

Cet Dat aCachelLi neSi ze may be called from task level, software interrupt level, or
hardware interrupt level.
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GetPagelnformation

OSSt at us Get Pagel nf or mati on (AddressSpacel D t heAddr essSpace,
Logi cal Addr ess t heBase,
Byt eCount t heLengt h,
PBVer si on t heVer si on,
Pagel nformati on *thePagel nf0);

t heAddr essSpace ID of address space to be examined.

t heBase Starting address in address space.

t heLength Length of address range, in bytes.

t heVersi on Version of the page information structure.
t hePagel nf o Page information structure.

struct Pagel nfornmation

{
Areal D ar ea,;
I t emCount count;
PageSt at el nformation i nformation [1];

b

t ypedef unsigned | ong PageSt at el nfornati on;

enum {
kPagel sProt ect ed = 0x00000001,
kPagel sProt ect edPrivi |l eged = 0x00000002,
kPagel shbdi fi ed = 0x00000004,
kPagel sRef erenced = 0x00000008,
kPagel sLocked = 0x00000010,
kPagel sResi dent = 0x00000020,
kPagel sShar ed = 0x00000040,
kPagel sWiteThroughCached = 0x00000080,
kPagel sCopyBackCached = 0x00000100

b

t ypedef struct Pagel nformati on Pagel nfornmati on,
*Pagel nformati onPtr;

DESCRIPTION

The Get Pagel nf or mat i on function returns information about each logical page in a
specified range. Parameter t heAddr essSpace specifies the address space containing
the range of interest. Parameter t heBase is the first logical address of interest.
Parameter t heLengt h specifies the number of bytes of logical address space, starting at
t heBase, about which information is to be returned.

Memory Management Services 231



CHAPTER 9

Driver Services Library

Parameter t heVer si on specifies the version number of the Pagel nf or mat i on type to
be returned, thereby providing backward compatibility.

Parameter t hePagel nf o is filled in with information about each logical page. This
buffer must be large enough to contain information about the entire range. The page
information fields are the following:

» ar ea will identify a group of pages in future releases of Mac OS; currently the value
of this field is always kNoAr eal D.

» count indicates the number of enties in which information was returned.

= i nformation contains one PageSt at el nf or mat i on entry for each logical page.
The bits of PageSt at el nf or mat i on are the following;:

» pagel sProt ect ed: the page is write-protected against unprivileged software.

» pagel sProtectedPrivil eged: the page is write-protected against privileged
software.

= pagel sModi fi ed: the page has been modified since the last time it was mapped in
or its data was released.

» pagel sRef er enced: the page has been accessed (by either a load or a store
operation) since the last time the memory system’s paging operation checked the page.

» pagel sLocked: the page is ineligible for replacement (it is nonpageable) because
there is at least one outstanding Pr epar eMenor yFor | Oor Set Pagi nghvbde (of
kPagi ngMbdeResi dent ) request outstanding that uses it.

» pagel sShar ed: the page’s underlying physical page is mapped into additional
logical pages.

RESULT CODES

noErr 0 No error

par anerr -50 Bad parameter
EXECUTION CONTEXT

232

Get Pagel nf or mat i on may be called only from task level, not from software or
hardware interrupt level.

Setting Cache Modes

Mac OS assigns default cache modes to various kinds of memory:
= main memory defaults to copyback cache mode

= PCI memory space defaults to cache-inhibited mode

With these settings, drivers do not need to perform specific cache flushing. However,
drivers may wish to alter a memory section’s default cache mode to create the highest
performance data transfer rate for their application. For example, the PowerPC processor
performs burst bus transactions to memory in copyback or writethrough cache modes.
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Drivers may also want to set areas of PCI memory space to a cacheable setting, thereby
causing the PowerPC to burst to that space; however, extreme care must be taken to
perform appropriate cache flushing when operating on cacheable PCI memory space.
Drivers that control PCI master devices may wish to experiment with different cache
modes for their DMA buffer spaces to determine the optimal setting.

SetProcessorCacheMode

OSSt at us
Set Processor CacheMbde (Addr essSpacel D
voi d
Byt eCount
Pr ocessor CacheMode

t heAddr essSpace  Address space ID of address space.

t heBase Starting address in address space.
t heLengt h Length of address range, in bytes.
t heMode Cache mode to be set.

t ypedef unsi gned | ong Processor CacheMode;
enum {

t heAddr essSpace,
*t heBase,

t heLengt h,

t heMbde) ;

kProcessor CacheModeDef aul t = 0,
kProcessor CacheMdel nhi bi t ed = 1,
kProcessor CacheMbdeWiteThrough = 2,
kProcessor CacheMbdeCopyBack =3
b
DESCRIPTION
The Set Pr ocessor CacheMdde function sets the cache mode of a specified range of
address space. The t heAddr essSpace parameter specifies the address space containing
the logical ranges to be set. With Mac OS 7.5, there is only one address space, which must
be specified as kCur r ent Addr essSpacel D.
EXECUTION CONTEXT
Set Pr ocessor CacheMbde may be called only from task level, not from software or
hardware interrupt level.
RESULT CODES

nokErr 0 No error
par ankrr =50 Bad parameter
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Synchronizing I/O

To synchronize I/O accesses, using the PowerPC ei ei 0 (enforce in-order execution of
I/0) instruction, use the Synchr oni zel Oroutine. You can call it either before or after
accesses—the object is simply to separate the accesses by ei ei 0 actions.

SynchronizelO

DESCRIPTION

A

voi d Synchroni zel O (voi d)

The Synchr oni zel Oroutine executes the PowerPC ei ei 0 instruction. This ensures
orderly code execution between accesses to noncached devices.

WARNING

Failure to use Synchr oni zel Obetween I/O accesses can misorder
PowerPC load and store operations, with unpredictable results for
program execution. a

EXECUTION CONTEXT

Synchr oni zel Omay be called from task level, software interrupt level, or hardware
interrupt level.

Flushing the Processor Cache

As explained in “Cache Operations” on page 229, drivers normally do not need to flush
the processor cache. The function described in this section is used only in rare cases to
improve performance.

FlushProcessorCache

234

OSsSt at us Fl ushProcessor Cache (AddressSpacel D spacel D,
Logi cal Addr ess base,
Byt eCount | engt h);

spacel D Target address space identifier.
base Starting address in address space.
[ ength Length of address range, in bytes.
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The FI ushPr ocessor Cache function forces data from cache out to main memory. The
spacel Dparameter specifies the address space containing the logical ranges prepared.
With Mac OS 7.5, there is only one address space, which must be specified as

kCur r ent Addr essSpacel D

EXECUTION CONTEXT

RESULT CODES

FI ushPr ocessor Cache may be called from task level, software interrupt level, or
hardware interrupt level.

noErr 0 No error
par anerr =50 Bad parameter

Memory Allocation and Deallocation

The Driver Services Library provides services to allocate and free system memory for
device drivers. The Pool Al | ocat eResi dent and Pool Deal | ocat e functions allocate
and deallocate resident memory. MemAl | ocat ePhysi cal | yCont i guous and

MenDeal | ocat ePhysi cal | yCont i guous allocate and deallocate memory that is
resident and physically unbroken. You should always use these services to obtain
dynamic memory.

PCI drivers that allocate memory may need to increase the size of the system heap. They
can do this by adding a' sysz' resource to the driver resource file, thereby extending
the system heap at startup. Typical code is shown in Listing 9-1.

Listing 9-1 Adding a' sysz' resource to the system heap

type 'sysz' {

[ ongi nt;
i
resource 'sysz' (0, "256 Kb") {

256 * 1024 /* 1/4 MB of system heap */
i

Memory allocations can be performed only at noninterrupt execution level. Memory
deallocations can be performed at either noninterrupt or software interrupt level.
Execution levels are discussed in “Driver Execution Contexts” beginning on page 85.
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PoolAllocateResident

voi d *Pool Al | ocat eResi dent (ByteCount byteSize,
Bool ean clear);

byteSi ze  The number of bytes of memory to allocate.

cl ear Whether or not the allocated memory is to be zeroed.

DESCRIPTION

The Pool Al | ocat eResi dent function allocates resident memory byt eSi ze in length.
The memory address is returned as the result of the call. Ani | result indicates that the
G owPr oc function was called and the pool is exhausted.

EXECUTION CONTEXT
Pool Al | ocat eResi dent may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES

noErr 0 No error
gErr -1 Queue element not found
menful | Err -108  Not enough room in heap

MemAllocatePhysicallyContiguous

Logi cal Address MemAl | ocat ePhysi cal | yCont i guous
(ByteCount byteSize,
Bool ean clear);

byteSi ze  The number of bytes of memory to allocate.

cl ear Whether or not the allocated memory is to be zeroed.

DESCRIPTION
MemAl | ocat ePhysi cal | yCont i guous allocates a buffer that is resident and is
guaranteed to be physically uninterrupted. It returns the buffer’s logical address.

Driver code can pass the address returned by MemAl | ocat ePhysi cal | yCont i guous
to Pr epar eMenor yFor | O(described on page 224) to obtain the buffer’s physical location.

EXECUTION CONTEXT
MemAl | ocat ePhysi cal | yCont i guous may be called only from task level, not from
software or hardware interrupt level.
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RESULT CODES
noErr 0
parantrr =50
menful | Err -108
PoolDeallocate

No error
Bad parameter
Not enough room in heap

0SSt at us Pool Deal | ocat e (Logi cal Address *Address);

Addr ess Address of pool memory chunk to deallocate.

The Pool Deal | ocat e routine returns the chunk of memory at Addr ess to the pool
from which it was allocated. It can be used to deallocate memory that was allocated with

Pool Deal | ocat e may be called only from task level, not from software or hardware

DESCRIPTION
Pool Al | ocat eResi dent .
EXECUTION CONTEXT
interrupt level.
RESULT CODES
noErr 0
gqErr -1
menful | Err -108

CODE SAMPLE

No error
Queue element not found
Not enough room in heap

The code shown in Listing 9-2 uses Pool Deal | ocat e to dispose of a property that was

obtained by calling RegistryPropertyGet.

Listing 9-2

voi d Di sposeThi sProperty(

RegPr opert yVal ue

if (*regPropertyVal uePtr

Disposing of a property

*regPropertyVal uePtr

= NULL) {

Pool Deal | ocat e( *r egPropertyVal uebPtr);

*regPropertyVal uebPtr

Memory Management Services
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MemDeallocatePhysicallyContiguous

OSSt at us MenDeal | ocat ePhysi cal | yCont i guous
(Logi cal Address address);

addr ess Address of the memory block to free.

DESCRIPTION
The MenDeal | ocat ePhysi cal | yCont i guous function deallocates memory allocated
by MemAl | ocat ePhysi cal | yCont i guous.

EXECUTION CONTEXT

MenDeal | ocat ePhysi cal | yCont i guous may be called only from task level, not
from software or hardware interrupt level.

RESULT CODES

noErr 0 No error
par antrr -50 Bad parameter
not LockedEr r -623 Specified memory range is not locked

Memory Copying Routines

The DSL provides a general routine, Bl ockCopy, for copying the contents of
memory from one location to another. It also provides several Bl ockMbve routines
that drivers may use to more precisely control the copying process and its effects on
memory coherency.

BlockCopy

Bl ockCopy copies the contents of memory from one location to another.

voi d Bl ockCopy (const void *srchtr,

voi d *destPtr,
Size byt eCount) ;
srchtr Address of source to copy.
destPtr Address of destination to copy into.

byt eCount  Number of bytes to copy.
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DESCRIPTION

The Bl ockCopy routine copies the chunk of memory at sr cPt r to dest Pt r. Parameter
byt eCount specifies how many bytes are copied.

EXECUTION CONTEXT

Bl ockCopy may be called from task level, software interrupt level, or hardware
interrupt level.

BlockMove

Bl ockCopy (described in the previous section) calls Bl ockMove, using the most
appropriate version for the current execution environment and copying task. However,
drivers may bypass Bl ockCopy and call Bl ockMbve directly. The DSL includes new
extensions to the Bl ockMbve routine that deliver improved performance for software
running in native mode. The original Bl ockMbve routine is described in Inside
Macintosh: Memory.

Table 9-1 lists the different versions of the Bl ockMove function that are in the DSL and
indicates for each one whether it can be used with buffers or other uncacheable
destination locations.

Table 9-1 Bl ockMove versions

Can be used
Version with buffers

Bl ockMove No
Bl ockMoveDat a No
Bl ockMoveDat aUncached Yes
Bl ockMoveUncached Yes
Bl ockZero No

Bl ockZer oUncached Yes

DESCRIPTION

The new Bl ockMove extensions provide several benefits for developers:

= They’re optimized for the PowerPC 603 and PowerPC 604 processors, rather than the
PowerPC 601.

s They’re compatible with the new dynamic recompilation emulator.
= They provide a way to handle cache-inhibited address spaces.

= They include new high-speed routines for setting memory to 0.
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The new Bl ockMove extensions do not use the string instructions, which are fast on the
PowerPC 601 but slow on other PowerPC implementations.

Except for Bl ockZer o and Bl ockZer oUncached, the new Bl ockMove extensions use
the same parameters as Bl ockMove. Calls to Bl ockZer o and Bl ockZer oUncached
have only two parameters, a pointer and a length, which are the same as the second and
third parameters of Bl ockMove.

IMPORTANT

The Bl ockMove versions for cacheable data use the dcbz instruction
to avoid unnecessary prefetching of destination cache blocks. For
uncacheable data, you should avoid using those routines because the
dcbz instruction faults on uncacheable or writethrough locations,
making execution extremely slow. a

EXECUTION CONTEXT

The Bl ockMove routines may be called from task level, software interrupt level, or
hardware interrupt level.

Interrupt Management
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This section discusses interrupt management for native drivers in the second generation
of Power Macintosh computers. A general description of the new interrupt model is
given first, followed by a detailed description of its programming interface. Interrupt
timing services are described in “Interrupt Timers” beginning on page 272.

Definitions

A hardware interrupt is a physical device’s method for requesting attention from a
computer. The physical device capable of interrupting the computer is known as an
interrupt source. The device’s request for attention is usually asynchronous with respect
to the computer’s execution of code.

An interrupt handler is a piece of code invoked to satisfy a hardware interrupt.
Interrupt handlers are installed and removed by drivers and act as subroutines of the
driver. A typical interrupt handler consists of two parts: a primary interrupt handler
and a secondary interrupt handler. The primary interrupt handler is the code that
services the immediate needs of the device that caused the interrupt, performing actions
that must be synchronized with it. The secondary interrupt handler is the code that
perform the remainder of the work associated with the interrupt. Secondary interrupt
handlers are executed at a lower priority than primary interrupt handlers.

Interrupt handler registration is the process of associating an interrupt source with an
interrupt handler. Interrupt dispatching is the sequence of steps necessary to invoke an
interrupt handler in response to an interrupt.
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Execution contexts for interrupt handling are discussed in “Noninterrupt and
Interrupt-Level Execution” beginning on page 67.

Interrupt Model

Interrupt dispatching and control hardware may be designed in a variety of styles
and capabilities. In some hardware systems, software must do most of the work of
determining which devices that generate interrupts need to be serviced and in what
order the system must service them. Other hardware systems may contain specific
vectorization and priority schemes that force the software to respond in predeter-
mined ways.

Designing a driver so that it can respond to the details of every interrupt mechanism in
every hardware system limits the driver’s portability and increases its complexity. As a
result, a new native driver interrupt model is introduced that replaces the traditional
interrupt-handling mechanisms used in previous Macintosh computers. This new model
provides a more standardized execution environment for interrupt processing by using
two key strategies:

= The new model formalizes the concept of primary and secondary interrupt levels for
processing interrupts. Primary interrupt level execution happens as a direct result of a
hardware interrupt request. Secondary interrupt level provides a way to defer
noncritical interrupt processing until after all hardware interrupts have been serviced,
thereby reducing hardware interrupt latency.

= The control and propagation of hardware interrupts are abstracted from the driver
software. An interrupt source for a PCI card or device is represented by a node in
hierarchical tree, called an interrupt source tree (IST). Generally the leaf nodes of the
tree represent interrupt sources for devices and the parent nodes representing
dispatching or demultiplexing points. This removes the need for drivers to respond
in detail to hardware interrupt mechanisms; they need only contain interrupt-
handling code specific to the devices they control. Driver writers no longer needs
to know how interrupts are multiplexed by a particular hardware platform (such
as through versatile interface adapters [VIAs]), or handle CPU-specific low memory
interrupt vectors.

IMPORTANT

A consequence of abstracting the interrupt-handling process from its
hardware implementation is that interrupt service routines may be
called when their devices did not cause the interrupt. To minimize
processing overhead, each interrupt service routine must quickly
determine if it is needed and return immediately if it is not. a

A more detailed description of these concepts follows.

Primary and Secondary Interrupt Levels

Primary interrupt level is also called hardware interrupt level. Primary interrupt level
execution happens as a direct result of a hardware interrupt request. To insure maximum
system performance, primary interrupt handlers perform only those actions that must
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be synchronized with the external device that caused the interrupt and then queue a
secondary interrupt handler to perform the remainder of the work associated with the
interruption. Primary interrupt handlers must operate within the restrictions of the
interrupt execution model by not causing page faults and by using a limited set of
operating-system services. Those services available to primary interrupt handlers are
listed in Table 9-2 on page 283.

Secondary interrupt level is similar to the deferred task concept in previous versions of
Mac OS; conceptually, it exists between the hardware interrupt level and the application
level. A secondary interrupt queue is filled with requests to execute subroutines that are
posted for execution by hardware interrupt handlers. These handlers need to perform
certain actions, but choose to defer the execution of the actions in the interest of
minimizing primary interrupt level execution. The execution of secondary interrupt
handlers is serialized. For synchronization purposes, noninterrupt level execution may
also post secondary interrupt handlers for execution; they are processed synchronously
from the prospective of noninterrupt level but are serialized with all other secondary
interrupt handlers.

Like primary interrupt handlers, secondary interrupt handlers must also operate within
the restrictions of the interrupt execution model by not causing page faults and by using
a limited set of operating-system services. Those services available to secondary
interrupt handlers are listed in Table 9-2 on page 283.

Note

The execution of secondary interrupt handlers may
be interrupted by primary interrupts. O

When writing device drivers that handle hardware interrupts, it is important to balance
the amount of processing done within the primary and secondary interrupt handlers
with that done by the driver’s tasks at noninterrupt level. The driver writer should make
every effort to shift processing time from primary interrupt level to secondary interrupt
level and from secondary interrupt level to the driver’s main task. Doing this allows the
system to be tuned so that the driver does not seize an undue amount of processing time
from applications and other drivers.

Interrupt Source Tree Composition

An interrupt source tree is composed of hierarchically arranged nodes. Each node
represents a distinct hardware interrupt source. Nodes are called interrupt members
and are arranged in interrupt sets.

An interrupt set is identified by an | nt er r upt Set | Dvalue and is characterized as the
logical grouping of all of the direct child nodes of a parent node. An | nt er r upt Set | D
value has no meaning other than being unique among all | nt er r upt Set | D values.

An interrupt member is identified by an | nt er r upt Menber Nunber value, which lies in
the range from 1 to the number of members in the interrupt set to which the interrupt
member belongs. Together, an | nt err upt Set | Dand | nt er r upt Menber Nunber
group form an | nt er r upt Set Menber identifier that uniquely identifies a node in

the IST.
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Each interrupt set in the hierarchy represents a finer categorization of an interrupt
source. The top of the tree consists of a single interrupt member that has no parent
members and is referred to as the root member. The rest of the interrupt members in the
tree branch down from the root member with each interrupt member acting as a child
member to the interrupt members above it, and as a parent member to the interrupt
members below it. When an interrupt member has no child members, it is referred to as
a leaf member.

An interrupt source tree can have any number of branches, and any branch can have any
number of levels. Figure 9-2 illustrates a simplified example of an interrupt source tree.

Figure 9-2 Interrupt source tree example
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Interrupt Registration

An interrupt member (a node in the IST) can have four kinds of information attached
to it:

a pointer to an interrupt service routine (ISR)

a pointer to an interrupt enabler routine (IER)

a pointer to an interrupt disabler routine (IDR)
= a reference constant (r ef Con)

Installation of this information is done by drivers and I/O experts during initialization.
The process of attachment is called registration. Once registered to an interrupt member,
the information persists until the next system startup.
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There are two types of ISRs. The first type, called a transversal ISR, routes interrupt
processing from a member to one of its child members. Transversal ISRs are always
attached to root or parent/child members. The second type of ISR directly handles a
device’s request for service. This type, called a handler ISR, is always attached to a leaf
member. Transversal ISRs never directly handle a device’s request for service, and
handler ISRs never route the processing of an interrupt.

When a handler ISR is invoked, it is supplied with three parameters. The first parameter
indicates the source of the interrupt and consists of an | nt er r upt Set | Dand

I nt errupt Menber Nurber, forming the | nt er r upt Set Menber parameter. This
allows a single ISR that has been registered with multiple interrupt sources to determine
which source caused the current interrupt. The second parameter is the reference
constant value that was registered along with the ISR. The reference constant is not used
by the system; its use is completely up to the driver writer. The third parameter is a
numeric value that tells an ISR whether it has been invoked more than once in a single
interrupt tree traversal process. See “InterruptHandler” beginning on page 252 for more
information.

AnIER turns on an interrupt source’s ability to generate a hardware interruption.
Enabling a root member or parent/child member also allows any pending interrupt
requests from any hierarchically lower child to propagate.

An IDR turns off an interrupt source’s ability to generate a hardware interruption. It
returns the previous state of the interrupt source (enabled or disabled), which can be
used to decide if subsequent enable operations are required. Disabling a root member
or parent/child member also prevents any pending interrupt requests from any
hierarchically lower child from propagating.

Interrupt Dispatching

ISRs do all of the actual processing to service a hardware interrupt. When a device
generates a hardware interrupt request, the interrupt dispatching process designates the
root member of the IST the current parent member and invokes its ISR routine. The ISR
decides which of the root member’s child members should be designated as the current
parent member for continued categorization of the interrupt and returns the

I nt er rupt Merrber Nurrber value of that child member. As each subsequent child
member is designated as the current parent member, its ISR is invoked to decide which
of its child members should next be designated in the same way. Ultimately a leaf
member is reached, which represents the specific interrupt source. When the leaf
member’s ISR is invoked, it services the specific requesting interrupt source. It then
signals that processing for the interrupt is completed by returning the kl sr 1 sConpl et e
constant. If the leaf member’s ISR is nul | , the interrupt request is dismissed as a
spurious interrupt and ignored.

Consider an example using the simplified IST diagrammed in Figure 9-2 on page 243.
Assume that the interrupt source represented by the IST member set D,

I nt errupt Menber Nunber value 1, requests an interruption. Interrupt dispatching
begins by invoking the ISR of member set A, | nt er r upt Menber Nunber value 1, which
returns an | nt er r upt Menmber Nunber value of 2. This invokes the ISR of member set B,
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I nt err upt Menrber Nunber value 2, which returns an | nt er r upt Menber Nunber
value of 3. The ISR of member set C, | nt er r upt Menber Nunber 3 is then invoked, and
it returns an | nt er r upt Menber Nunber of 1. Finally, the ISR of IST member set D,

I nt er rupt Menber Nunber 1, is invoked, which tries to service the requesting device.
The ISR returns kI sr | sConpl et e if the device was successfully serviced and

kI srl sNot Conpl et e if it was not successfully serviced.

At this point the dispatching process is not complete; the tree must now be traversed
back to the root. This must be done because each interrupt member set can have
dispatching options attached to the set that modifies dispatching behavior. Once a leaf
member’s ISR has been invoked, the traversal path must be retraced toward the root to
see if any parent members on the path belong to an interrupt set with dispatching
options. These options can take two forms:

» reinvoke a child’s parent ISR function when the child member returns
kl srlsConpl ete

» reinvoke a child’s parent ISR function when the child member returns
kl srl sNot Conpl et e

Using kisrlsComplete

An ISR returning k1 sr | sConpl et e starts the dispatching process back toward the root.
In the current example, assume that interrupt set C has its dispatching modifier option
set to reinvoke the parent when kl sr 1 sConpl et e is returned. When the traversal
toward the root encounters the | nt er r upt Menber Nunber 3 of member set C, parent
set member B of | nt er r upt Merrber Nunber 2 has its ISR reinvoked. This ISR might
then, for example, return an | nt er r upt Merrber Nunber value of 2, which would
invoke the ISR of member set C, Inter r upt Menber Nunber value 2. This ISR would
service its device and returns kI sr |1 sConpl et e. Since no higher interrupt set has

any dispatching modifier options, the dispatching process will arrive at the root and
be finished.

In this way, the kl sr 1 sConpl et e dispatching option is typically used to give a parent
member a chance to service additional children without having to reenter the
dispatching process.

Using kisrlsNotComplete

An ISR returning k| sr | sNot Conpl et e produces slightly more complex behavior. An
ISR returns k1 sr 1 sNot Conpl et e only when its device was not the device requesting
service. Even though a leaf ISR was invoked, the interrupt request is still outstanding
and the ISR for the requesting device must be found. If the member set containing the
ISR just invoked has no dispatching modifing options, then the next interrupt member in
the set will have its ISR invoked. In the current example, the ISR of IST member set D,

I nt er r upt Menber Nunmber 2, would be invoked. Assuming that this ISR serviced its
device and returned kI sr | sConpl et e, dispatching would be complete since no higher
interrupt set had any dispatching modifier options set.
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If the ISR of IST member set D, | nt er r upt Merrber Nunber 2, also returned

KI sr1 sNot Conpl et e, however, the ISR of the next interrupt member in the parent set
would be invoked. In the example, | nt er r upt Merber Nunber 3 of member set C is
already the last member in set C, so this set is skipped and the next higher set is
examined (in this case, set B). Set B is found to have higher members, resulting in the ISR
of member set B, | nt er r upt Menber Nunber 3, being invoked. Assuming that this ISR
serviced its device and returned k| sr | sConpl et e, dispatching would be finished.

The behavior just described is a classic left-branch recursive tree walk. It is employed
when no means exist for directly identifying exactly which device is requesting service.
Devices must be polled, by invoking their ISRs, to find and service the requesting device.

While this behavior will correctly poll for the requesting device, it is sometimes
inappropriate to poll devices in the order that they appear in the member set. In the
example, assume that interrupt set B has its dispatching modifier option set to reinvoke
the parent ISR if kI sr | sNot Conpl et e is returned. In the example just cited, when

the traversal toward the root encounters | nt er r upt Menber Nunber 2 of member set B,
the parent set member A, | nt er r upt Menber Nunber 1, has its ISR reinvoked. This

ISR could then return | nt er r upt Menber Nurber 4 to invoke member set B,

I nt er rupt Menber Nunber 4. In this way, kI sr 1 sNot Conpl et e should be used when
the priority of devices is not the same as the order in which devices appear in their
member sets.

Interrupt Priority

Note that there is no explicit prioritization scheme reflected in this process, but that
implied prioritization does take place. The fact that tree transversal proceeds from the
root member toward leaf members gives members closer to the root a higher priority.
Hence, the hierarchichal structure of the IST determines the system’s fixed interrupt
priority structure. Conversely, a transversal ISR is free to use any algorithm to decide
which child member’s ISR should be invoked—for example, an anti-starvation algorithm
or a priority based on the value of | nt er r upt Menber Nunber. Whatever method is
used, transversal ISRs provide the dynamic aspect of system’s interrupt priority
structure. Implementing the IST structure and ISR usage sets the implied prioritization
of all interrupts.

Interrupt Source Tree Construction

The Mac OS startup process automatically performs the initial construction and
maintenance of the IST for all built-in I/ O ASICs, and both PCI expansion cards, and
PCI-to-PCI bridges that use the default PCI bridge IST extensions.

Note

Expansion card developers normally have no need to construct the IST
but may need to extend it as described in “Explicit IST Extension”
beginning on page 249. The following description of the initial
construction process is included for completeness. O
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The interrupt tree is constructed by creating new sets of child members under existing
child members, which thus become parent members. The preexisting root member is
used as the parent member for the first layer of the tree. As each new child member is
created, a null ISR is installed and its IER and IDR routines are inherited from the parent.
If built-in interrupt controller hardware can enable and disable interrupts for each of the
interrupt members in the new interrupt set, IERs and IDRs tailored to each interrupt
member are installed. When a child member becomes a parent member, a transversal ISR
is installed on top of the null ISR for dispatching its child members. This process is
repeated for as many layers and IST members as required. For an example, see the
simplified IST diagrammed in Figure 9-2 on page 243. Typically, the default IST
originally created services all the fixed hardware devices and slots on the Power
Macintosh main logic board.

Having child members inherit their parents’ IERs and IDRs allows devices that don’t
have hardware enabling and disabling support on the main logic board to still use IER
and IDR functions. Invoking an IER or IDR for such a device will transparently invoke
the parent member’s IER or IDR. At some point up the interrupt tree, main logic board
hardware will physically enable or disable interrupts intended for the device.

IMPORTANT

Default enablers, disablers, and transversal ISRs for all Macintosh
built-in I/O devices are provided and installed by Apple I/ O experts.
Drivers that use them are more portable and are more likely to be
compatible with future Apple products. a

WARNING

The Apple built-in handlers can be overridden by other software.
However, built-in interrupt enablers, disablers, and transversal ISRs
are very specific to the hardware platform. Detailed knowledge of
the built-in interrupt controller hardware is required to successfully
override one. a

Interrupts and the Name Registry

Once the IST is constructed and initialized, drivers need a mechanism to find the IST
member that represents the interrupt source the driver is controlling. This is done
through the Name Registry discussed in Chapter 8. As explained in “Initialization and
Finalization Routines” beginning on page 98, a driver’s initialization command call
contains a RegEnt r yl Dvalue that refers to the set of Registry properties for the device
the driver controls. Besides the standard set of PCI properties, a number of Apple-
specific properties are included, as shown in Table 8-1 on page 193. The Apple property
used for interrupts is dr i ver - i st, which contains an array of interrupt sources
logically associated with a device.

Each dri ver-i st property is stored as type | STPr oper t y, which is an array of three
I nt er r upt Set Menber values, and conforms to the following rules:

» The first | nt er r upt Set Menber value contains the interrupt member for the device’s
controller chip or hardware interrupt source—for example, a serial controller chip or a
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card in an expansion slot. This interrupt member must always be defined for
hardware that is capable of requesting hardware interrupts.

s If the device is capable of generating direct memory access (DMA) output interrupts,
the second | nt er r upt Set Menber value contains the interrupt member for the
interrupt source of the device’s DMA output interrupts. Otherwise, it contains
null values.

» If the device is capable of generating DMA input interrupts, the third
I nt errupt Set Menber value contains the interrupt member for the interrupt
source of the device’s DMA input interrupts. Otherwise, it contains null values.

s If the device generates both DMA input and output interrupts with the same interrupt
source, the second | nt er r upt Set Menber value contains the interrupt member for
both DMA input and output interrupts. In this case, the third | nt er r upt Set Menber
contains null values.

Note that grouping these interrupt members in one dr i ver - i st property is purely a
logically grouping. Any one of the three interrupt members can be located anywhere
within the IST hierarchy.

Extending the Interrupt Source Tree

This section discusses the ways that the IST can grow to accommodate PCI devices
and bridges.

Automatic IST Extension

The construction process described in “Interrupt Source Tree Construction” on page 246
builds an IST for all devices that are connected directly to the main logic board’s PCI bus.
This includes all devices on the Power Macintosh main logic board plus expansion slots
that are populated with single-function expansion cards. However, additional devices
may exist that are indirectly connected to the main logic board’s PCI bus by means of
PCI-to-PCI bridges. Examples of such devices are PCI-to-PCI expansion chassis cards
and multifunction expansion cards that use controller chips with built-in PCI interfaces.

A single-function device that is plugged into a main logic board slot will always have a
pre-built IST member available because the slot is always present and accounted for
when constucting the IST. Multifunction devices, based on PCI-to-PCI bridge devices,
aren’t treated so simply. While the pre-built IST member for the slot is still available for
use by the multifunction device, the number of devices on the other side of the PCI-to-PCI
bridge is unknown and must be accounted for.

Therefore, Mac OS dynamically extends the IST and the NameRegistry during system
initialization for all PCI-to-PCI bridges and for all devices behind them. Each PCI-to-
PCI bridge and functional device gets its own NameRegistry entry and IST member.
This makes each PCI-to-PCI bridge and functional device appear separately in the
NameRegistry and IST regardless of how many devices are physically bundled together
on the same expansion card. This is convenient for expansion cards that contains more
than one copy of a controller chip (for example a 4-port Ethernet card). The driver
developer needs only develop a driver that knows how to control a single controller chip
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or port; Mac OS will automatically create an instance of the driver for each device that
matches the driver. While the driver developer can choose to override the default
mechanism, using this service can greatly decrease the complexity of some drivers.

Automatic IST Extension Operation

The nature of the PCI-to-PCI bridge devices available on the market today imposes some
limitations on automatic IST extensions. While today’s PCI-to-PCI bridge devices
transparently handle the addressing aspects of PCI buses, they do not do the same for
interrupt request signals. Also, there is no current standard among card vendors for
providing hardware registers that indicate which device is requesting service. Hence,
card vendors often simply wire the interrupt request signals from all devices together
into a single signal and feed that directly to the main logic board’s slot. The IST that is
constructed for the main logic board can tell that something wants service on the
multifunction expansion card, but it cannot tell exactly which device. To accommodate
this “lowest common denominator” behavior, the IST extensions from the slot IST
member uses dispatching modification options to poll the extended IST members, as
described in “InterruptHandler” beginning on page 252.

When polling is used, certain actions must be observed by the ISRs, IERs, and IDRs
attached to the extended IST members. Each PCI-toPCI bridge’s IST member has a
special bridge dispatching ISR installed. This transversal ISR handles all the devices
requesting interrupt service during a single IST transversal. Once all of the device’s ISRs
return kIl sr | sNot Conpl et e, the transversal ISR returns kl sr 1 sConpl et e to the
dispatcher to indicate that interrupt processing is complete. The transversal ISR also
implements a simple fairness algorithm that keeps any one device from dominating the
interrupt service requests. It makes sure that the same device isn’t serviced twice in a
row (unless only one device is requesting service), regardless of the number of IST
transversals.

In addition, separate software flags are maintained for each extended IST member to
enable and disable interrupt servicing. Invoking an extended IST member’s IDR and IER
functions has two implicit effects. First, invoking the IDR only prevents the extended IST
member’s ISR from being invoked; it does not disable the device’s ability to request an
interrupt. It is the responsibility of the driver to disable interrupt requests from the
actual device. Second, invoking the IER not only allows the extended IST member’s ISR
to be invoked; it also traverses the IST back to the main logic board’s slot IST member,
invoking the IER of each IST member encountered. Thus, a driver needs only invoke its
device’s IER to allow interrupt requests through the IST.

Explicit IST Extension

By the time the PCI devices built into the Macintosh system are initialized, an IST has
been constructed and populated with nodes for every interrupt source within the
system, including all PCI expansion cards and PCI-to-PCI bridges that use the default
PCI bridge IST extensions.

However, PCI expansion devices that cannot use the default PCI bridge IST extensions
or that have special requirements will not automatically receive nodes in the IST.
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Examples of such devices are multifunction cards with non-PCI controller devices and
PCI-to-NuBus expansion chassis. Because these devices still represent additions to the
system hardware, the third-party driver writer needs to provide software that extends
both the Name Registry and the Apple-provided IST.

Note

PCI-to-NuBus expansion bus cards are a special case. NuBus devices

are controlled by 68K drivers and so require the Macintosh facilities
normally provided for NuBus devices. The interrupt handler for the
PCI-to-NuBus bridge must use or provide Slot Manager dispatching and
interrupt registration for NuBus device drivers. The initialization of a
PCI-to-NuBus bridge does not need to extend the Registry or the IST. O

If you are extending the system by means of PCI bus slots or a multifunction device, the
work to be done includes several basic steps:

= When the device initialization code is first invoked, it will be passed the RegEnt r yl D
value of the Registry node that represents the PCI expansion slot that the device
occupies. Use the Regi st ryPropertyCet function to get the dri ver-i st property
for the PCI expansion slot, which will have the | nt er r upt Set Menber value for the
slot’s interrupts.

» Pay particular attention to the fact that the parent (or bridge or multifunction)
initialization code must be marked as initialize and open upon discovery. This is a
requirement because extension devices must be available in the Name Registry before
family experts are run. If this requirement is not met, extension devices may not be
made available to the system because their child devices will not be found. Initialize
and open upon discovery is described in “Driver Run-Time Structure” beginning on
page 90.

» Use the Get | nt errupt Funct i ons function with the slot’s | nt er r upt Set Menber
value to get the default IDR registered with the parent member. Call the IDR to
disable the parent member’s interrupt propagation. This keeps spurious interrupts
from occurring before the IST extension is complete.

» The device initialization code must extend the IST. Use the Cr eat el nt er r upt Set
function to create a new interrupt set with the slot’s | nt er r upt Set Menber value as
the parent member. Make the interrupt set size the same as the number of new PCI
bus slots or the number of functions (in a multifunction device).

= Register a transversal ISR with the parent member, using the slot’s
I nt err upt Set Menber value. When invoked, this transversal ISR should
further route the slot interrupt to one of the interrupt members in the newly
created interrupt set.

s If the device’s interrupt controller hardware can enable and disable interrupts for each
of the interrupt members in the new interrupt set, register tailored IERs and IDRs
with each of the interrupt members. Otherwise, the IER and IDR that the interrupt
members inherited from the parent member will moderate interrupts transparently to
the caller.

s For each additional device or function, a node must also be added to the Name
Registry. Adding nodes to the Registry is described in “Name Creation and Deletion”
beginning on page 172.

Interrupt Management



CHAPTER 9

Driver Services Library

= Each new child entry in the Registry requires a complete set of properties to allow the
device to be located by its family experts. A complete set of properties is the set of
properties described by and installed by Open Firmware. For details, see the Open
Firmware standard and Table 8-1 on page 193.

» In addition to the Open Firmware requirements, each new child entry in the Registry
must also have adri ver - i st property installed. This lets subsequent drivers that
want to register an ISR with one of the newly created interrupt members find the
correct | nt er r upt Set Menber value.

= Create properties using the rules described in the previous section and in “Property
Management” beginning on page 184. For each new child entry in the Registry, create
adriver-ist property with the corresponding new interrupt members that were
used to extend the IST.

= Call the IDR for each of the newly created interrupt members to keep spurious
interrupts from occurring.

= Call the IER for the parent member to enable interrupts for the system extension as
a whole.

Note

There will always be at least one new interrupt member created for each
new child entry in the Name Registry. However, keep in mind that the
driver-i st property is a logical grouping of interrupt members for a
device or function. Because of this grouping, you might end up creating
more interrupt members than child entries in the Registry. O

Native drivers can now be loaded against any of the new devices, as created by the
extension to the IST and the Name Registry, just like other native drivers.

IMPORTANT

There is no removal mechanism for sets or members. The current release
of Mac OS does not yet support hot-swappable plug-and-play devices. a

Basic Data Types

This section defines some data types and values that are fundamental to interrupt
management.

typedef Kernell D |InterruptSetlD;
typedef | ong I nt errupt Menber Nunber ;

typedef struct |nterruptSetMenber {
InterruptSetl D set;
I nt errupt Menber Nunber nmenber ;
} Interrupt Set Menber ;
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enun{
kl STChi pl nt err upt Sour ce =

kl STQut put DMAI nt er r upt Sour ce
k1 STI nput DMAI nt er r upt Sour ce
kl STPr opert yMermber Count

|
w N - O

s
typedef InterruptSet Menber | STProperty[ kI STPropertyMenber Count ];
#defi ne kl STPropertyNanme "driver-ist"”

t ypedef |ong | nterruptReturnVal ue;

enum
{
kFi r st Menber Nunber = 1,
kMenber Number Parent = -2,
kl srl sNot Conpl et e = -1,
kl srl1sConpl ete = 0
1
t ypedef Bool ean I nterrupt SourceSt at e;
enum
{
kSour ceWasEnabl ed = true,
kSour ceWasDi sabl ed = fal se
s

Control Routines

This section describes three interrupt control routines, | nt er r upt Handl er,

I nt errupt Enabl er, and I nt er r upt Di sabl er. Their use by native drivers is described
in “Primary Interrupt Mechanisms” beginning on page 156. See also the sample code in
Listing 9-3 on page 266.

InterruptHandler

I nt errupt Menber Nunber | nt er r upt Handl er
(I nterrupt Set Menber nenber,

void * r ef Con,

Ul nt 32 i nterrupt Count);
menber Member set ID of the IST member requesting service.
ref Con 32-bit reference constant registered with the IST member.

i nterrupt Count  Count of the number of interrupts processed, including the
current one.
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DESCRIPTION

When an ISR is invoked, menber contains the ID of the IST member that is the currently
interrupting source. Since an ISR can be registered with multiple IST members, the
menber parameter allows a single ISR to distinguish multiple interrupt sources. Ref Con
contains the reference constant that was installed along with the ISR.

If the ISR returns a positive number, the dispatcher uses that number to identify which
child member should be invoked next.

If the ISR returns ki sr 1 sConpl et e, the interrupt dispatcher stops any further traversal
of the IST and treats the interrupt request as serviced. If the IST member’s interrupt

set has the kRet ur nToPar ent WhenConpl et e option set, the parent IST member is
reinvoked to give the parent a chance to have another child member invoked. Otherwise,
the dispatcher starts looking for interrupt sets between the parent and the root that have
dispatching options.

If the ISR returns kI sr | sNot Conpl et e, the dispatcher’s default behavior is to invoke
the next interrupt set member (menber . menber + 1)in an attempt to satisfy the
interrupt request. If all of the members of the set have been invoked, the dispatcher
continues traversing the tree between the parent and the root, looking for an ISR to
satisfy the interrupt request.

If the IST member’s interrupt set has the kRet ur nToPar ent WhenNot Conpl et e option
set, the parent IST member is reinvoked to allow it to decide which child member should
be invoked next. This process is repeated until one of the children members returns

kI sr1sConpl et e or the parent returns kI sr1 sNot Conpl et e. In the latter case, the
dispatcher continues traversing the tree between the parent and the root, looking for an
ISR to satisfy the interrupt request. If the root is reached, the interrupt request is treated
as spurious.

IMPORTANT

Since an ISR can be invoked when the device the ISR services is not
requesting service, an ISR must be able to detect this situation and
return kI sr 1 sNot Conpl et e to the dispatcher. This lets the dispatcher
continue looking for the actual ISR that will service the interrupt
request. a

The i nt er r upt Count parameter can be used by transversal interrupt handlers to
determine if they have been reinvoked by the dispatcher. On each new interrupt tree
transversal, this value is unique. This means that i nt er r upt Count will be a different
value the first time a tranversal ISR is invoked. However, if the transversal ISR is
reinvoked during the same transversal process, the i nt er r upt Count value will be the
same as the first time it was invoked. By saving the value of i nt er r upt Count during
the previous tree traversal and verifying that the current value is the same, a transversal
ISR can tell when it is being reinvoked.

Note that the i nt er r upt Count value will never be equal to ni | . On ISR installation,
the ISR’s saved copy of i nt er r upt Count should be initialized to ni | so that the first
invocations of the ISR can behave properly.
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IMPORTANT

The actual value of i nt er r upt Count shouldn’t interpreted in any way.
How this value is computed may change in the future. The only valid
interpretation of i nt er r upt Count is that it is unique for each interrupt
tree transversal process. a

InterruptEnabler

DESCRIPTION

voi d I nterrupt Enabl er (I nterrupt Set Menber nenber,

void * r ef Con) ;
menber Member set ID of the IST member requesting service.
ref Con 32-bit reference constant registered with the IST member.

Apple-defined enabler functions do not use the passed values of r ef Con and should
therefore be passed ni | . The r ef Con value lets user-defined enabler functions receive a
reference constant of the programmer’s choice. Invoking | nt er r upt Enabl er reenables
the interrupt member’s ability to propagate interrupts to Mac OS.

InterruptDisabler

DESCRIPTION
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I nterrupt SourceState I nterruptDi sabler
(I nterrupt Set Menber nenber,

void * r ef Con) ;
menber Member set ID of the IST member requesting service.
r ef Con 32-bit reference constant registered with the IST member.

Apple-defined enabler functions do not use the passed values of r ef Con and should
therefore be passed ni | . The r ef Con value lets user-defined enabler functions receive a
reference constant of the programmer’s choice. Invoking | nt er r upt Di sabl er disables
the interrupt member’s ability to propagate interrupts to Mac OS. On return, this routine
returns the interrupt member’s ability to propagate interrupts as it was before this
routine was invoked. A returned value of Sour ceWAsEnabl ed means that the interrupt
member’s propagation state was enabled; a returned value of Sour ceWasDi sabl ed
means it was disabled.
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Interrupt Set Creation and Options

The routines described in this section deal with interrupt sets. Cr eat el nt er r upt Set
extends an IST by creating a new interrupt set. Get | nt er r upt Set Opt i ons helps an
expert determine how the interrupt dispatcher will handle an interrupt set, and
Changel nt er r upt Set Opt i ons helps it change that behavior.

IMPORTANT

The Macintosh system’s IST for PCI cards is initialized and activated by
Apple software. Third-party I/O software needs only to update member
functions as necessary to support PCI cards. Extending the IST is
required only for multifunction cards and bridges that don’t use the
default PCI bridge IST extensions. a

CreatelnterruptSet
OSStatus CreatelnterruptSet(InterruptSetlD par ent Set ,
I nt errupt Menber Nunber  par ent Menber,
I nt errupt Menber Nunber setSi ze,
InterruptSetlD *set | D,
I nt errupt Set Opti ons options);
par ent Set Member set ID.
par ent Menber Set member number.
set Si ze Number of child members to create.
setl D Interrupt set ID.
options Options (see “Basic Data Types” on page 251).
DESCRIPTION

The Cr eat el nt er r upt Set function extends an IST. When calling it, pass the member
set ID and the set member number in par ent Set and par ent Menber to uniquely
identify which leaf member is to become the parent member. Pass the number of child
members to create in set Si ze. Pass a pointer to a variable of type | nt err upt Set | Din
set | D. Cr eat el nt er r upt Set returns noEr r if the creation process suceeded, and the
variable pointed to by set | D contains the member set ID of the new set’s child members.

The options parameter operates in these ways to modify the default interrupt
dispatching behavior:

= Option kRet ur nToPar ent WhenConpl et e modifies the behavior for successful
interrupt completion. Any time a child in a set with this option returns
Kl srlsConpl et e, the dispatcher reinvokes the parent’s transversal ISR. A parent
can thus reevaluate its children’s interrupt requests and can have another child
serviced immediately instead of having to traverse the entire interrupt tree again.
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= Option kRet ur nToPar ent WhenNot Conpl et e modifies the behavior for unsuccess-
ful interrupt completion. Any time a child in a set with this option returns
Kl sr1 sNot Conpl et e, the dispatcher reinvokes the parent’s transversal ISR. The
parent can then invoke another child to try to service the interrupt request. This
process is repeated until one of the children members returns kI sr 1 sConpl et e or
the parent returns kI sr 1 sNot Conpl et e. In the latter case, the dispatcher continues
traversing the tree between the parent and the root, looking for an ISR to satisfy the
interrupt request. If the root is reached, the interrupt request is treated as spurious.

= If no options are set, the dispatcher traverses the tree toward the root, looking for an
IST member’s interrupt set that has options set, until it arrives at the root.

The kRet ur nToPar ent WhenConpl et e and kRet ur nToPar ent WhenNot Conpl et e
options are defined in “Basic Data Types” on page 251.

EXECUTION CONTEXT

Cr eat el nt er r upt Set may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES
noErr 0 No error
par ankrr -50 Bad parameter
menful | Err -108  Not enough room in heap

GetInterruptSetOptions

OSStatus Getlnterrupt Set Options (InterruptSetlD set,
I nterrupt Set Opti ons *options);

set Interrupt set ID of the interrupt set.
options Current dispatching options.

DESCRIPTION

Cet | nt er rupt Set Opt i ons returns in opt i ons the dispatching behavior options for
the interrupt set identified by set .

EXECUTION CONTEXT

Get | nt er r upt Set Opt i ons may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES
noErr 0 No error
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ChangelnterruptSetOptions

DESCRIPTION

OSSt at us Changel nterrupt Set Options (InterruptSetlD set | D,
I nterrupt Set Opti ons *options);

setID Interrupt set ID of the interrupt set.
options New dispatching options.

Changel nt er r upt Set Opt i ons lets an expert change the behavior of the interrupt
dispatcher for a specified interrupt set. The default behavior for most set members is to
return to the root. For example, with a multifunction PCI card the desired behavior
might be to return to the parent, so the interrupt dispatcher can revisit all set members to
determine whether all interrupts have been serviced or there is another to handle.

EXECUTION CONTEXT

RESULT CODES

Changel nt er r upt Set Qpt i ons may be called only from task level, not from software
or hardware interrupt level.

noErr 0 No error

Control Routine Installation and Examination

To install an interrupt handler, use | nst al | | nt er r upt Funct i ons. This routine
replaces the earlier Slot Manager routine Sl nt | nst al | . After an ISR has been installed,
Get | nt er r upt Funct i ons lets you examine it.

Note

ISR functions are never explicitly removed. To deregister an ISR,
reinstall the ISR function that was obtained by means of the

Cet I nt er rupt Funct i ons routine before the ISR was originaly
installed. Then call the IST disabler function to keep any further
interrupts from requesting service. O

The declarations for the interrupt handler, enabler, and disabler are the following;:

typedef Interrupt Menber Nunber (*InterruptHandl er)
(I nterrupt Set Menber | STnenber,
void * r ef Con,
Ul nt 32 t hel nt Count) ;
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t ypedef void (*Interrupt Enabl er)
(I'nterrupt Set Menber nenber,
void * r ef Con) ;

typedef InterruptSourceState (*InterruptD sabler)
(I'nterrupt Set Menber nenber,
void * r ef Con) ;

The interrupt set ID and interrupt member number values are available as dri ver -i st
properties associated with each device entry in the Name Registry. Primary, secondary,
and software interrupt mechanisms are described in “Interrupt Management” beginning
on page 240.

InstallInterruptFunctions

DESCRIPTION
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The I nstal | | nt errupt Funct i ons function installs interrupt service routines in an
interrupt member.

CSStatus InstalllnterruptFunctions

(I'nterruptSetlD set | D,

I nt errupt Menber Nunber nenber,

voi d *r ef Con,

I nt errupt Handl er handl er Functi on,

I nt errupt Enabl er enabl eFuncti on,

I nterrupt D sabl er di sabl eFuncti on);
setlD Interrupt set ID of the IST member to be installed.
nmenber Set member number of the IST member to be installed.
r ef Con 32-bit reference constant to be registered with the IST member.

handl er Funct i on Pointer to interrupt service routine (ISR).
enabl eFuncti on Pointer to interrupt enabler routine (IER).

di sabl eFuncti on Pointer to interrupt disabler routine (IDR).

Given the ID of an interrupt set in the interrupt tree and the number of a member in that
set, I nstal | I nt errupt Functi ons installs the designated interrupt handler, enabler,
disabler, and acknowledge routines. Interrupt sets and the interrupt tree are discussed in
“Interrupt Management” beginning on page 240.

Parameter r ef Con can be any 32-bit value. Mac OS does not use it; it is merely stored
and passed to each invocation of the most recently installed ISR routine. Placing ni |

in a handl er Funct i on, enabl eFuncti on, or di sabl eFunct i on parameter will not
install a new routine—it will leave the current routine installed.

I nstal | I nterruptFuncti ons returns noEr r if the installation succeeded.
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EXECUTION CONTEXT
I nstal | I nterrupt Functi ons may be called only from task level, not from software
or hardware interrupt level.

RESULT CODES

noErr 0 No error
par anerr -50 Bad parameter

GetInterruptFunctions

OSSt at us
Get | nt er rupt Functi ons (InterruptSetlD set | D,
I nt errupt Menber Nunber nenber,
voi d **r ef Con,
I nt errupt Handl er *handl er Functi on,
I nt errupt Enabl er *enabl eFuncti on,
I nterrupt D sabl er *di sabl eFuncti on);
setl D Interrupt set ID of the IST member.
nenber Member set ID of the IST member.
r ef Con Pointer to returned reference constant.

handl er Functi on  Pointer to returned interrupt handler.
enabl eFuncti on Pointer to returned interrupt enabler function.

di sabl eFunction  Pointer to returned interrupt disabler function.

DESCRIPTION

The Get | nt er r upt Funct i ons function fetches interrupt control routines installed in
an interrupt member. The caller passes the member set ID and the set member number in
set | Dand nmenber to uniquely identify the interrupt member in the tree.

Upon successful completion, Get | nt er r upt Funct i ons returns the reference constant,
the ISR, the IER, and the IDR to the caller.

EXECUTION CONTEXT
Get | nt er r upt Funct i ons may be called only from task level, not from software or
hardware interrupt level.

RESULT CODES

noErr 0 No error
par antrr -50 Bad parameter
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Software Interrupts

The Driver Services Library provides several routines to create, run, and remove
software interrupts. Some of these routines can be called only from certain execution
levels, as described in “Device Driver Execution Contexts” beginning on page 214.

Three common ways that software interrupts can be used to support a PCI native device
driver are the following:

= For initializing or restarting a state machine in the driver.
= For communicating with other drivers or with application code.

» To raise the execution level of a task so it can use DSL services that are not available at
hardware interrupt level.

Software interrupt handlers communicate by means of the Name Registry, described in
Chapter 8. You can provide software interrupt communication in two ways:

= You can create a permanent software interrupt handler at noninterrupt level and store
its Sof t war el nt er r upt | Dvalue in the Registry. The driver can then retrieve the ID
and run the handler, using SendSof t war el nt er r upt . This technique does not
queue interrupts, so the handler must be able to process multiple events.

= You can store the driver’s t askl Dvalue in the Name Registry. The driver can then
retrieve the value and use it to make temporary Cr eat eSof t war el nt er r upt and
SendSof t war el nt er r upt calls in pairs. This technique forces handler to process
one event per pair of calls. It allocates and frees system resources; therefore you must
be prepared for error messages from Cr eat eSof t war el nt er r upt if system
resources become exhausted.

Using these communication means, software interrupt services allow asynchronous
operations between controlling driver code and slave noninterruptable driver code.

IMPORTANT
Software interrupts cannot be used to allocate memory. a

CurrentTaskID

DESCRIPTION

Taskl D Current Taskl D (voi d);

Cur r ent Taskl Dreturns the ID number of the currently running task. This routine can
be called only from the noninterrupt execution level.

EXECUTION CONTEXT

Cur r ent Taskl Dmay be called only from task level, not from software or hardware
interrupt level.
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CreateSoftwarelnterrupt

OSSt at us Cr eat eSof t war el nt er r upt
( Sof t war el nt er rupt Handl er  handl er,

Taskl D t ask,
const void *pl,
Bool ean persi stent,
Softwarel nterruptl D *sof twar el nterrupt)
handl er Handler for the new software interrupt.
t ask Task ID.
pl First parameter to be passed to the handler.
per si st ent Indicates whether the ID of the software interrupt should

be deleted when it is activated or should persist until
deleted by Del et eSof t war el nt err upt.

t heSof twarel nterrupt  Software interrupt ID.

DESCRIPTION
Cr eat eSof t war el nt er r upt creates a software interrupt for a specified task. It can be
called either from noninterrupt or secondary execution level.

Persistent software interrupts may be sent multiple times but only once per activation;
that is, the software interrupt must run before it can be sent again.

EXECUTION CONTEXT

Cr eat eSof t war el nt er r upt may be called from task level or software interrupt level
but not from hardware interrupt level.

RESULT CODES

nokErr 0 No error
par ankrr =50 Bad parameter

SendSoftwarelnterrupt

OSSt at us SendSof t war el nt er r upt
(Softwarelnterruptl D sof twarel nterrupt,
const void *p2);

sof twar el nt errupt Software interrupt ID.
p2 First parameter to be passed to the handler.
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DESCRIPTION

SendSof t war el nt er r upt runs a software interrupt task. It can be called from any
execution level and acts as an asynchronous function.

Note

Currently, SendSof t war el nt er r upt calls the user back at the same
execution level. In future versions of Mac OS it can be used to force
execution of code that can’t be called at interrupt level. O

EXECUTION CONTEXT

SendSof t war el nt er r upt may be called from task level or software interrupt level but
not from hardware interrupt level.

RESULT CODES
noErr 0 No error
gErr -1 Queue element not found
par ankrr -50  Bad parameter

DeleteSoftwarelnterrupt

0SSt at us Del et eSof t war el nt er r upt
(Softwarel nterruptl D softwarel nterrupt)

sof t war el nt er r upt Software interrupt ID.

DESCRIPTION
Del et eSof t war el nt er r upt removes a software interrupt.
EXECUTION CONTEXT
Del et eSof t war el nt er r upt may be called from task level or software interrupt level
but not from hardware interrupt level.
RESULT CODES
nokErr 0 No error
gErr -1 Queue element not found
par ankrr =50 Bad parameter
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Secondary Interrupt Handlers

Secondary interrupt handlers are the primary synchronization mechanism that a driver
and its primary interrupt handlers may use. Secondary interrupt handlers must conform
to the interrupt execution environment rules, including absence of page faults, severe
restrictions on using system services, and so on. For further information, see “Device
Driver Execution Contexts” beginning on page 214.

The special characteristic of secondary interrupt handlers that makes them useful is that
the operating system guarantees that at most one secondary handler is active at any
time. This means that if you have a data structure that requires complex update
operations and each of the operations uses secondary interrupt handlers to access or
update the data structure, then all access to the data structure will be atomic even
though hardware interrupts are enabled during the access.

The DSL provides timers that can run secondary interrupt handlers when they expire.
See “Interrupt Timers” beginning on page 272.

Note

Although interrupts are accepted during the execution of secondary
interrupt handlers, no noninterrupt level execution can take place. This
can lead to severely degraded system responsiveness. Use the secondary
interrupt facility only when necessary. O

Secondary interrupt handlers have the form shown in the next section.

SecondaryInterruptHandlerProc2

DESCRIPTION

typedef OSStatus (*SecondarylnterruptHandl erProc2) (void *pl,
voi d *p2);

pl First parameter.

p2 Second parameter.

The secondary interrupt handler you write must have the interface shown above, with
two parameters. You must specify the values of the two parameters at the time you
queue the handler. For queuing information, see the next section.

RESULT CODE REQUIRED
noErr 0 No error
Err -1 Routine failed
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Queuing Secondary Interrupt Handlers

Secondary interrupt handlers are usually queued during the processing of a hardware
interrupt. A secondary interrupt handler’s execution will be deferred until processing is
about to move back to noninterrupt level. You may, however, queue secondary interrupt
handlers from secondary interrupt level. In this case, the queued handler will be run
after all other such queued handlers, including the current handler, have finished.

Secondary interrupt handlers that are queued from hardware interrupt handlers
consume memory resources from the time they are queued until the time they finish
execution. They do this regardless of the execution context (see “Device Driver Execution
Contexts” beginning on page 214). You should make every attempt to limit the number
of simultaneously queued secondary interrupt handlers because the memory resources
available to them are limited.

QueueSecondaryInterruptHandler

0SSt at us QueueSecondar yl nt er rupt Handl er
(Secondar yl nt errupt Handl er 2 handl er,

Except i onHandl er excepti onHandl er,
const void *pl,
const void *p2);

handl er The handler to be queued.

excepti onHandl er Exception handler (not currently implemented).

pl First handler parameter.

p2 Second handler parameter.

DESCRIPTION
QueueSecondar yl nt er r upt Handl er queues the secondary interrupt handler
indicated by handl er. Only one kind of secondary interrupt handler, that with two
parameters, may be queued. Future versions of Mac OS may allow an exception handler
to be associated with the interrupt handler; the except i onHandl er parameter is
currently ignored.

EXECUTION CONTEXT
QueueSecondar yl nt er r upt Handl er may be called from task level, software
interrupt level, or hardware interrupt level.

RESULT CODES
noErr 0 No error
gErr -1 Queue element not found
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Calling Secondary Interrupt Handlers

Secondary interrupt handlers can be called synchronously by the function
Cal | Secondar yl nt er r upt Handl er 2. This service may be used from either
noninterrupt level or secondary interrupt level but not from hardware interrupt level.

CallSecondaryInterruptHandler2

DESCRIPTION

0SSt at us Cal | Secondar yl nt err upt Handl er 2
(Secondaryl nt errupt Handl er Proc2 handl er,

Except i onHandl er excepti onHandl er,
const void *pl,
const void *p2);

handl er The handler to be queued.

excepti onHandl er Exception handler (not currently implemented).

pl First handler parameter.

p2 Second handler parameter.

Cal | Secondar yl nt er r upt Handl er 2 calls the secondary interrupt handler indicated
by handl er. The secondary interrupt handler is invoked immediately; it is not queued.

EXECUTION CONTEXT

RESULT CODES

Cal | Secondar yl nt er r upt Handl er 2 may be called from task level or software
interrupt level, but not from hardware interrupt level.

noErr 0 No error
Err -1 Call failed

Interrupt Code Example

The code sample in Listing 9-3 shows a typical interrupt registration process during
driver initialization.
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Listing 9-3 Interrupt registration

#i ncl ude <Devi ces. h>
#i ncl ude <Interrupts. h>
#i ncl ude <NanmeRegi stry. h>

/1 useful global data within ny driver

Driver Ref Num nyDri ver Ref Num

RegEntryl D myRegEnt ryl D

I nt errupt Set Menber nmyl STMenber ;

void * t heDef aul t Ref Con;

I nt errupt Handl er t heDef aul t Handl er Functi on;
I nt errupt Enabl er t heDef aul t Enabl eFuncti on;

I nterrupt D sabl er t heDef aul t Di sabl eFuncti on;

/1 the ISR function to be registered

I nt err upt Menrber Nunber
nyl SRHandl er (| nterrupt Set Menber menber,
void * r ef Con,
Ul nt 32 t hel nt Count)
{

Bool ean nmyDevi ceVant sService( void );
voi d serviceMyDevi ce( void );

/1l see if your device was the one that requested an interrupt
i f( nmyDeviceWantsService() == false )
return klsrlsNot Conpl ete

/1 do what ever is required to service your hardware here
servi ceMyDevi ce();

/1l tell the systemthat this interrupt has been serviced
return klsrlsConplete;

}

/1 the main entry point for interrupt initialization

OSEr r
DolnitializeCommand( DriverRef Num nyRef Num
RegEntryl D nmyRegl D )
{
OSEr r St at us;
RegPr opertyVal ueSi ze propertysSi ze;
| STProperty t hel STPr operty;
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/1 renmenber our Ref Num and Registry Entry ID
myDri ver Ref Num = nyRef Num
nyRegEntryl D nyRegl D;

/1 get 'driver-ist' property fromthe Registry for ny device
propertySi ze = sizeof ( thel STProperty );

Status = RegistryPropertyGet( &rmyRegEntryl D,
kl STPr opert yNarne,
t hel STProperty,
&propertySi ze );

/1 return if we got an error
if( Status != noErr )
return Status;

/1 renmenber the first InterruptSetMenber in the 'driver-ist’

/1 as the I ST nmenber that ny driver is connected to

myl STMenber . set1 D = thel STProperty[ kI STChi pl nterruptSource ].setlD;
nyl STMenber . menber = t hel STProperty[ kil STChi pl nt errupt Source ]. nenber;

/1 get the default "enabler" function for nmy |IST nenber
Status = Getlnterrupt Functi ons( nyl STMenber. set| D,
myl STMenber . menber,
&t heDef aul t Ref Con,
&t heDef aul t Handl er Funct i on,
&t heDef aul t Enabl eFuncti on,
&t heDef aul t Di sabl eFunction );

/1l return if we got an error
if( Status !'= noErr )
return Status;

/1 register my ISRwith ny |IST nmenber. Don't register an

/1 "enabler" or "disabler"” function since the |IST nenber

/1 ny driver is connected to is a Macintosh on-board devi ce.

Status = InstalllnterruptFunctions( myl STMenber. setl D,
myl STMenber . menber,
0,
(I nterruptHandl er) nyl SRHandl er,
(I'nterrupt Enabl er) 0,
(InterruptbDisabler)0 );
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/1 return if we got an error
if( Status != noErr )
return Status;

/1 make sure that interrupts are enabled for ny | ST nenber
t heDef aul t Enabl eFunction( nyl STMenber,
0);

return Status;

}

Timing Services

The timing services that the Driver Services Library provides to device drivers allow the
precise measurement of elapsed time as well as the execution of secondary interrupt
handlers at desired times. All DSL timing services run in native PowerPC code.

The accuracy of timer operations is quite good. However, certain limitations are inherent
in the timing mechanisms. These are described below.

Time Base

Timer hardware within the system is clocked at a rate that is model dependent. This rate
is called the time base. The timing services isolate software from the time base by
representing all times in Absol ut eTi ne values, the units required by the timing
services. You may use conversion routines to convert from Nanoseconds or Dur at i on
values into Absol ut eTi me system units. This conversion can introduce errors, but
errors are typically limited to one unit of the time base.

When performing sensitive timing operations, it can be important to know the
underlying time base. For example, if the time base is 10 milliseconds, there is little value
in setting timers for 1 millisecond. You can determine the hardware time base by using
CGet Ti meBasel nf o.

GetTimeBaselnfo
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voi d Get Ti mneBasel nfo

(Ul nt32 *m nAbsol ut eTi neDel t a,
Ul nt 32 *t heAbsol ut eTi neToNanosecondNuner at or,
Ul nt 32 *t heAbsol ut eTi neToNanosecondDenoni nat or,
Ul nt 32 *t hePr ocessor ToAbsol ut eTi mneNuner at or,
Ul nt 32 *t hePr ocessor ToAbsol ut eTi neDenoni nat or) ;
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m nAbsol ut eTi meDel t a
Minimum number of Absol ut eTi me units between time changes.

t heAbsol ut eTi mreToNanosecondNuner at or
Absolute to nanoseconds numerator.

t heAbsol ut eTi mreToNanosecondDenom nat or
Absolute to nanoseconds denominator.

t hePr ocessor ToAbsol ut eTi neNuner at or
Processor time to absolute numerator.

t hePr ocessor ToAbsol ut eTi mreDenom nat or
Processor time to absolute denominator.

Representing the time base is difficult; the value is typically an irrational number.

Mac OS solves this problem by returning a representation of the time base in fractional
form—two 32-bit integer values, a numerator and denominator. If you multiply an
Absol ut eTi ne value by the value of t heAbsol ut eTi mreToNanosecondNurrer at or
and divide the result by the value of t heAbsol ut eTi neToNanosecondDenoni nat or,
the result is nanoseconds.

The mi nAbsol ut eTi meDel t a value is the minimum number of Absol ut eTi e units
that can change at any given time. For example, if the Power Macintosh hardware
changes the decrementer in quantities of 128, then the mi nAbsol ut eTi meDel t a value
returned by Ti meBasel nf o would be 128.

EXECUTION CONTEXT

Cet Ti meBasel nf 0 may be called from task level, software interrupt level, or hardware
interrupt level.

Measuring Elapsed Time

Measurement of elapsed time is done by simply obtaining the time before and after the
event to be timed. The difference of these two values indicates the elapsed time. Time, in
this context, refers to a 64-bit Absol ut eTi me count maintained by Mac OS. The count is
set to 0 by the operating system during its initialization at system startup time. Conversion
routines are provided in a shared library to convert from Absol ut eTi me to 64-bit
Nanoseconds or 32-bit Dur at i on values.

Basic Time Types

Callers wishing to specify a time relative to the present use the type Dur at i on:

typedef |ong Duration;
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Values of type Dur at i on are 32 bits long. They are interpreted in a manner consistent
with the Macintosh System 7 Time Manager—positive values are in units of
milliseconds, negative values are in units of microseconds. Therefore the value 1500

is 1500 milliseconds or 1.5 seconds while the value -8000 is 8000 microseconds or

8 milliseconds. Notice that many values can be expressed in two different ways. For
example, 1000 and —1000000 both represent exactly one second. When two representa-
tions have equal value, they may be used interchangeably; neither is preferred or
inherently more accurate.

Values of type Dur at i on may express times as short as 1 microsecond or as long as 24
days. However, two values of type Dur at i on are reserved and have special meaning.
The value 0 specifies no duration. The value Ox7FFFFFFE, the largest positive 32-bit
value, specifies that many milliseconds, or a very long time from the present.

The Driver Services Library provides the following definitions for use with values of
type Dur ati on:

enum
{
durati onM crosecond = -1
durationMI1isecond = 1,
dur ati onSecond = 1000,
durationM nute = 1000 * 60,
dur at i onHour = 1000 * 60 * 60,
dur at i onDay = 1000 * 60 * 60 * 24,
dur ati onFor ever = Ox7FFFFFFF
dur ati onl mredi at e = 0,

s

Another form for representing time is in Nanoseconds, the values of which are
represented by unsigned 64-bit integers:

t ypedef struct Nanoseconds
{
unsi gned | ong hi ;
unsi gned | ong | o;
} Nanoseconds;

A second data type, Absol ut eTi ne, is used to specify absolute times in system-defined
units 64 bits long. As discussed in “Time Base” on page 268, the real duration of
Absol ut eTi me units must be calculated:

typedef struct Absol uteTi ne
{

unsi gned | ong hi ;
unsi gned | ong | 0;
} Absol ut eTi ne;
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Obtaining the Time

You can read the internal representation of time to which all timer services are
referenced. This value starts at 0 during operating-system initialization and increases
throughout the system’s lifetime.

UpTime

Absol ut eTi me UpTi me (void);

DESCRIPTION
UpTi ne returns the time since OS initialization in Absol ut eTi e units.

EXECUTION CONTEXT
UpTi me may be called from task level, software interrupt level, or hardware
interrupt level.

Time Conversion Routines

The Driver Services Library provides the following conversion routines to convert
between Nanoseconds, Dur at i on, and Absol ut eTi e units:

Nanoseconds Absol ut eToNanoseconds (Absol uteTi me absol uteTi ne);
Nanoseconds Durati onToNanoseconds (Duration duration);
Durati on Absol uteToDuration (Absol uteTi ne absol ut eTi ne);
Absol ut eTi me NanosecondsToAbsol ute (Nanoseconds nanoseconds);
Absol ut eTi me Durati onToAbsol ute (Duration duration);

Dur ati on NanosecondsToDur ati on (Nanoseconds nanoseconds);

Absol ut eTi me AddAbsol ut eToAbsol ute (Absol uteTi ne absol ut eTi nel
Absol ut eTi me absol ut eTi me2) ;

Absol ut eTi me SubAbsol ut eFr omAbsol ut e
(Absol uteTi me | eft Absol ut eTi ne,
Absol ut eTi me ri ght Absol ut eTi ne) ;

Absol ut eTi mre AddNanosecondsToAbsol ut e
(Nanoseconds nanoseconds,
Absol ut eTi me  absol ut eTi ne);
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Absol ut eTi me AddDur ati onToAbsol ut e
(Duration durati on,
Absol ut eTi me absol ut eTi ne);

Absol ut eTi me SubNanosecondsFr omAbsol ut e
(Nanoseconds nanoseconds,
Absol ut eTi me absol ut eTi ne);

Absol ut eTi me SubDur ati onFr omAbsol ut e
(Duration durati on,
Absol ut eTi me absol ut eTi ne);

Nanoseconds Absol ut eDel t aToNanoseconds
(Absol ut eTi ne | eft Absol ut eTi ne,
Absol ut eTi me ri ght Absol ut eTi ne) ;

Durati on Absol ut eDel taToDur ati on
(Absol ut eTi ne | eft Absol ut eTi ne,
Absol ut eTi me ri ght Absol ut eTi ne) ;

Note

The value of r i ght Absol ut eTi ne is usually larger than that
of | ef t Absol ut eTi me. If you subtract ari ght Absol ut eTi ne
value from a | ef t Absol ut eTi ne value, the result is 0, not a
negative number. O

EXECUTION CONTEXT

272

The time conversion routines may be called from task level, software interrupt level, or
hardware interrupt level.

Interrupt Timers

Interrupt timers allow you to specify that a secondary interrupt handler is to run when
the timer expires. They are asynchronous in nature. You can set an interrupt timer from
any driver execution context. Each interrupt timer is identified by a timer ID:

typedef Kernel I D TimerlD,

IMPORTANT

Interrupt timers consume memory resources from the time they are
invoked until the time they expire or are canceled. They do this
regardless of the execution context (see “Device Driver Execution
Contexts” beginning on page 214). You should make every attempt to
limit the number of interrupt timers because the memory resources
available to them are limited. a
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SetInterruptTimer

DESCRIPTION

CSSt atus Setlnterrupt Ti ner

(const Absol ut eTi ne *expi rationTi ne,
Secondar yl nt er rupt Handl er 2 handl er,

voi d *pl,

Tinmerl D *timer);

expirationTime Time delay until the timer expires.

handl er Address of a secondary interrupt handler.
pl First parameter to be passed to handler.
timer Timer ID.

The parameter expi r at i onTi ne is the amount of time delay before calling the
interrupt handler.

Parameter handl er is the address of a secondary interrupt handler that is to be run
when the specified time is reached.

Parameter p1 is the value that is passed as the first parameter to the secondary interrupt
handler when the timer expires. The value of the second parameter passed to the
secondary interrupt handler is set to the current program counter at the time the

timer expired.

Parameter t i mer is updated with the ID of the timer that is created. This ID may be
used in conjunction with Cancel Ti ner, described on page 275.

EXECUTION CONTEXT

RETURN CODE

Set | nt er r upt Ti mer may be called from task level, software interrupt level, or
hardware interrupt level.

noErr 0 No error
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DelayFor
OSSt at us Del ayFor (Duration expirationTinme);
expi rationTi ne  Amount of time to delay.
DESCRIPTION
Del ayFor blocks execution for a given time. Parameter expi r at i onTi ne is the
amount of time to suspend execution, expressed as a positive number in milliseconds or
as a negative number in microseconds. Del ayFor is not available at the hardware
interrupt level.
EXECUTION CONTEXT
Del ayFor may be called only from task level, not from software or hardware
interrupt level.
RETURN CODES
noErr 0 No error
Err -1 Routine failed
DelayForHardware
OSSt at us Del ayFor Har dwar e (Absol ut eTi me absol ut eTi ne) ;
absol ut eTi me Amount of time to delay.
DESCRIPTION
Del ayFor Har dwar e spins execution for a given time, so the computer does no useful
work. Parameter absol ut eTi ne is the amount of time to delay in processor-dependent
units. You can call NanosecondsToAbsol ut e to obtain timing for the current PowerPC
processor. Del ayFor Hardware may be called at the hardware interrupt level.
EXECUTION CONTEXT
Del ayFor Har dwar e may be called from task level, software interrupt level, or
hardware interrupt level.
RETURN CODES
NoErr 0 No error
Err -1 Routine failed
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Canceling Interrupt Timers

Currently running asynchronous timers can be canceled. When you attempt to cancel an
asynchronous timer a race condition begins between your cancelation request and
expiration of the timer. It is therefore possible that the timer will expire and that your
cancelation attempt will fail even though the timer had not yet expired at the instant the
cancelation attempt was made.

With Mac OS version 7.5, if a primary interrupt handler queues a secondary handler that
is to cancel a timer by calling Cancel Ti mer, and if the secondary handler queues
another secondary handler, the operating system guarantees that the timer will either
execute or be canceled before the other secondary handler runs.

CancelTimer

0SSt atus Cancel Timer (Timerl D timer, AbsoluteTine *tinmeRemaining);

timer Timer ID.

ti meRemai ning  Time left on timer when it was canceled.

DESCRIPTION

Cancel Ti mer cancels a timer previously created by Set | nt er r upt Ti mer, described
on page 273. It returns in t i meRemai ni ng the amount of time that was left in the
timer when it was canceled. It returns an error if the timer has either already expired
or been canceled.

EXECUTION CONTEXT

Cancel Ti mer may be called from task level, software interrupt level, or hardware
interrupt level.

RETURN CODES

noErr 0 No error
Err -1 Routine failed

Atomic Memory Operations

This section describes DSL functions that manipulate the contents of memory.
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Byte Operations

The Driver Services Library provides several 32-, 16-, and 8-bit atomic memory
operations for use by device drivers. These routines take logical address pointers and
ensure that the operations are atomic with respect to all devices (for example, other
processors and DMA engines) that participate in the coherency architecture of the Power
Macintosh system.

IMPORTANT

Memory locations used by these operations must be long word aligned;
if they are stored in a structure, you should use the compiler directive
#pragnma options align=power. a

Bool ean
Conpar eAndSwap (Il ong ol dval ue, | ong newval ue, |ong *Val ue);

SInt 32 I ncrement At omi c (SInt32 *val ue);
SInt 32 Decr enent At omi ¢ (SInt32 *val ue);

Sl nt 32 AddAt onmi ¢ (SInt32 anmount, SInt32 *val ue);
Ul nt 32 Bi t AndAt oni ¢ (Ul nt 32 mask, Ul nt 32 *val ue);
Ul nt 32 BitOrAtom c (U nt32 nmask, U nt32 *val ue);
Ul nt 32 Bi t Xor At omi ¢ (Ul nt 32 mask, U nt 32 *val ue);

SInt16 I ncrement Atomi cl16 (SIntl1l6 *val ue);
SInt16 Decr enent Atomi ¢16 (SInt16 *val ue);

SInt16 AddAt omi c16 (SInt32 anmount, SInt16 *val ue);
Ul nt16 Bi t AndAt oni c16 (Ul nt 32 mask, U nt16 *val ue);
U nt 16 BitOr Atoni cl16 (U nt 32 mask, U nt16 *val ue);
U nt16 Bi t Xor At ommi c16 (Ul nt 32 mask, U ntl6 *val ue);
SInt8 Increment Atonmic8 (SInt8 *val ue);

SInt8 Decrenent Atomi ¢c8 (SInt8 *val ue);

SInt8 AddAt o c8 (SInt32 anmount, SInt8 *val ue);
unt8 Bi t AndAt om c8 (Ul nt 32 mask, Ul nt8 *val ue);
U nt8 Bit Or Atonmi c8 (U nt32 nmask, U nt8 *val ue);
unt8 Bi t Xor At ommi c8 (Ul nt 32 mask, U nt8 *val ue);

DESCRIPTION
The atomic routines perform various operations on the memory address specified
by val ue:

= The Conpar eAndSwap routine compares the value at the specified address with
ol dVal ue. The value of newVal ue is written to the specified address only if
ol dVal ue and the value at the specified address are equal. Conpar eAndSwap

276 Atomic Memory Operations



CHAPTER 9

Driver Services Library

returns t r ue if newval ue is written to the specified address; otherwise, it returns

f al se. Af al se return value does not imply that ol dVal ue and the value at the
specified address are not equal; it only implies that Conpar eAndSwap did not write
newVal ue to the specified address.

= | ncrement At omi ¢ increments the value by 1 and Decr ement At oni ¢ decrements it
by 1. These functions return the value as it was before the change.

= AddAt omi ¢ adds the specified amount to the value at the specified address and
returns the result.

= Bi t AndAt oni ¢ performs a logical and operation between the bits of the specified
mask and the value at the specified address, returning the result. Similarly,
Bi t Or At oni ¢ performs a logical OR operation and Bi t Xor At oni ¢ performs a
logical XOR operation.

EXECUTION CONTEXT

The atomic operation routines may be called from task level, software interrupt level, or
hardware interrupt level.

Bit Operations

Bool ean Test AndSet (Unt32 bit
unt8 *start Address) ;

Bool ean Test AndCl ear (Unt32 bit
unt8 *start Addr ess) ;

bi t The bit number in the range 0 through 7.
start Address  The address of the byte in which the bit is located.

DESCRIPTION

Test AndSet and Test AndCl ear set and clear a single bit in a byte at a specified
address. They return t r ue if the bit was already set or cleared and f al se otherwise.

EXECUTION CONTEXT

Test AndSet and Test AndCl ear may be called from task level, software interrupt
level, or hardware interrupt level.
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Queue Operations

DESCRIPTION

The Driver Services Library provides the following I/O parameter block queue
manipulation functions:

OSErr PBQueueCreate (QHdrPtr *gHeader);
OSErr PBQueuel ni t (QHdrPtr gHeader);
CSErr PBQueueDel ete (QHdrPtr qHeader);

void PBEnqueue (CEl enPtr qEl enment, QHdrPtr gHeader);
OSErr PBEnqueuelLast (QElenPtr gEl enent, QHdrPtr gHeader);
CSErr PBDequeue (CEl enPtr qEl enent, QHdrPtr gHeader);

OSErr PBDequeueFirst (QHdrPtr qHeader, QElenPtr *theFirstqEl en;
OSErr PBDequeuelLast (QHdrPtr qHeader, QElenPtr *thelLastqEl em;

PBQueueCr eat e creates a new I/O parameter block queue. PBQueuel ni t initializes
it and PBQueueDel et e deletes it. PBEnqueue places the element pointed to by

gEl ement next in the queue and PBEnqueueLast places it last. PBDequeue removes
the next element in the queue. PBDequeueFi r st removes the first element and
PBDequeuelast removes the last element. For detailed information about the I/O
parameter block queue, see Inside Macintosh: Devices.

EXECUTION CONTEXT

The three queue routines, PBQueuel ni t , PBQueueCr eat e, and PBQueueDel et e, may
be called only from task level, not from software or hardware interrupt level.

The five queue element routines may be called from task level, software interrupt level,
or hardware interrupt level.

RETURN CODES (QUEUE ROUTINES)

noErr 0 No error
menful | Err -108  Not enough room in heap

RETURN CODES (ELEMENT ROUTINES)
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nokErr 0 No error
gErr -1 Queue element not found
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String Operations

The DSL provides a number of C and Pascal string manipulation functions that are
available to drivers.

EXECUTION CONTEXT

All the string operation routines may be called from task level, software interrupt level,
or hardware interrupt level.

StrCopy
StringPtr PSt r Copy (StringPtr dst, ConstStr255Param src);
char *CSt r Copy (char *dst, const char *src);
DESCRIPTION
PSt r Copy copies the Pascal string from sr ¢ to dst . CSt r Copy copies characters up to
and including the null character from sr ¢ to dst C strings. These routines assume that
the two strings do not overlap.
StrNCopy
StringPtr PStrNCopy
(StringPtr dst, ConstStr255Param src, Ul nt32 max);
char *CStrNCopy (char *dst, const char *src, U nt32 max);
DESCRIPTION

PSt r NCopy copies the Pascal string from sr ¢ to dst . At most max chars are copied.
CSt r NCopy copies up to max characters from sr ¢ to dst C strings. If Sr C string is
shorter than max, dst string will be padded with null characters. If sr ¢ string is longer
than max, dst string will not be null terminated.
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StrCat

StringPtr PStrCat (StringPtr dst, ConstStr255Param src);
char *CStrCat (char *dst, const char *src);

DESCRIPTION

PSt r Cat appends characters from sr ¢ to dst Pascal strings. CSt r Cat appends
characters from sr ¢ to dst C strings. The initial character of sr ¢ overwrites the null
character at the end of dst . A terminating null character is always appended.

StrNCat

StringPtr PStrNCat
(StringPtr dst, ConstStr255Param src, U nt32 nax);
char *CStrNCat (char *dst, const char *src, U nt32 nax);

DESCRIPTION

PSt r NCat appends up to max characters from sr ¢ to dst Pascal strings. CSt r NCat
appends up to max characters from sr ¢ to dst C strings. The initial character of sr ¢
overwrites the null character at the end of dst . A terminating null character is always
appended. Thus, the maximum length of dst could be CSt r Len(dst )+max+1.

StrCmp

short PStrCnp (Const Str255Param strl, ConstStr255Param str2);
short CStrCnp (const char *strl, const char *str2);

DESCRIPTION

PSt r Cnp and CSt r Cnp compare the Pascal and C strings st r 1 and st r 2 by comparing
the values of corresponding characters in each string. These functions treat variations of
case, diacritical marks, or other localization factors as different characters.

RETURN CODES

strllessthanstr?2
strlequalsstr2
str1 greater than str2

— ok
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StrNCmp

short PStr NCnp

(Const Str255Param str1, ConstStr255Param str2, U nt32 nax);
short CStr NCnp

(const char *strl, const char *str2, U nt32 nax);

DESCRIPTION

PSt r NCnp and CSt r NCp compare the first max C and Pascal strings st r 1 and st r 2 by
comparing the values of corresponding characters in each string. These functions treat
variations of case, diacritical marks, or other localization factors as different characters.

RETURN CODES

strllessthanstr?2
strlequalsstr2
str1 greater than str2

— ok

StrLen

U nt32 PStrLen (Const Str255Param src);
U nt32 CstrLen (const char *src);

DESCRIPTION

CSt r Len returns the length of the C string sr ¢ in characters. This does not include
the terminating null character. PSt r Len returns the length of the Pascal string sr c
in characters.

PStrToCStr and CStrToPStr

void PStrToCStr (char *dst, const Str255 src);
void CStrToPStr (Str255 dst, const char *src);

DESCRIPTION
PSt r ToCSt r and CSt r TOPSt r convert Pascal strings to C strings and vice versa.
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Debugging Support

The following debugging functions are available to driver writers.

voi d SysDebug (voi d);
voi d SysDebugStr (StringPtr str);

DESCRIPTION

SysDebug lets you enter the system debugger. SysDebugSt r lets you enter the system
debugger and display the Pascal string pointed to by st r.

EXECUTION CONTEXT

The debugging routines may be called from task level, software interrupt level, or
hardware interrupt level.

Service Limitations

Table 9-2 lists the DSL routines that can be called at the different interrupt levels
described in “Device Driver Execution Contexts” beginning on page 214. A dot (®) in the
column indicates that the service is available at that level.

The righthand column in Table 9-2 identifies memory allocation services. These services
can be called only from task level, and not from a software interrupt. Memory allocation
and deallocation can occur when a native driver processes the any of following
commands:

Cl ose
Initialize
Finalize
Open

Repl ace
Super seded

The Name Registry routines Regi st r yPr opert yGet, Regi stryPropertyGet Si ze,
and Regi st ryPr opertySet are available at secondary interrupt level. All other Name
Registry routines are available only at task level.

Applications can freely use the Name Registry and the Driver Loader Library, but with
the current release of Mac OS only drivers should use the Driver Services Library.

IMPORTANT

It is the responsibility of the driver writer to conform to these
limitations; code that violates them will not work with future
releases of Mac OS. a
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Table 9-2 Services available to drivers
Software Hardware
interrupt interrupt Memory
Routine Task level level level allocation
Absol ut eDel t aToDur ati on . ° °
Absol ut eDel t aToNanoseconds ° ° °
Absol ut eToDur ati on ° ° °
Absol ut eToNanoseconds . ° °
AddAbsol ut eToAbsol ute ° ° °
AddAt omi ¢ ° ° °
AddAt omi c8 ° ° °
AddAt om c16 ° ° °
AddDur ati onToAbsol ut e ° ° °
AddNanosecondsToAbsol ut e . ° °
Bi t AndAt omi ¢ ° ° °
Bi t AndAt oni c8 ° ° °
Bi t AndAt ommi c16 ° ° °
BitOrAtomc ° ° °
BitOr Atoni c8 ° ° °
BitOrAtonicl6 ° ° °
Bi t Xor At om ¢ ° ° °
Bi t Xor At omi c8 ° ° °
Bi t Xor At ommi c16 ° ° °
Bl ockCopy ° ° °
Bl ockMove ° ° °
Bl ockMoveDat a ° ° °
Bl ockMoveDat aUncached ° ° °
Bl ockMoveUncached ° ° °
continued
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Table 9-2 Services available to drivers (continued)
Software Hardware
interrupt interrupt Memory
Routine Task level level level allocation
Bl ockZero ° ° °
Bl ockZer oUncached ° ° °
Cal | Secondar yl nt er r upt Handl er 2 ° °
Cancel Ti ner ° ° °
Changel nt err upt Set Opti ons °
Checkpoint1 O ° °
Conpar eAndSwap ° ° °
Creat el nt errupt Set °
Cr eat eSof t war el nt er r upt ° °
CSt r Cat ° ° °
CStrCmp ° ° .
CSt r Copy ° ° °
CStrlLen ° ° °
CSt r NCat ° ° °
CSt r NCopy ° ° °
CStrToPStr ° ° °
Cur rent Execut i onLevel ° ° °
Current Taskl D °
Decr ement At omi ¢ ° ° °
Decr enent At omm c8 ° ° °
Decrement At oni c16 ° ° °
Del ayFor °
Del ayFor Har dwar e ° ° °
Del et eSof t war el nt er r upt ° °
continued
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Table 9-2 Services available to drivers (continued)
Software Hardware
interrupt interrupt Memory

Routine Task level level level allocation
Devi ceProbe °
Dur ati onToAbsol ut e ° ° °
Dur at i onToNanoseconds ° ° °
Fl ushPr ocessor Cache ° ° °
CGet Dat aCachelLi neSi ze ° ° °
Get | nt er rupt Functi ons °
Get | nt errupt Set Opti ons °
Get | CConmandl nf o ° °
CGet Logi cal PageSi ze ° ° °
Get Pagel nf or mati on °
CGet Ti meBasel nf o ° ° °
I ncrenent At om ¢ ° ° °
I ncrenment At oni c8 ° ° °
I ncr enent At o c16 ° ° °
InstalllnterruptFunctions °
| OCommandl sConpl et e ° °
MermAl | ocat ePhysi cal | yCont i guous ° °
MenDeal | ocat ePhysi cal | yCont i guous ° °
NanosecondsToAbsol ut e ° ° °
NanosecondsToDur at i on ° ° °
PBDequeue ° ° °
PBDequeueFi r st ° ° °
PBDequeuelast ° ° .
PBEnqueue ° ° °

continued
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Table 9-2 Services available to drivers (continued)
Software Hardware
interrupt interrupt Memory

Routine Task level level level allocation
PBEnqueuelast ° ° °
PBQueueCreat e °
PBQueueDel et e °
PBQueuel ni t °
Pool Al | ocat eResi dent °
Pool Deal | ocat e °
Pr epar eMenor yFor | O .
PSt r Cat ° ° .
PSt r Cnp ° ° °
PSt r Cnp ° ° °
PSt r Copy ° ° .
PStrLen ° ° °
PSt r NCat ° ° °
PSt r NCnp ° ° .
PSt r NCopy ° ° °
PStr ToCSt r ° ° °
QueueSecondar yl nt err upt Handl er ° ° °
Regi stryPropertyCet .
Regi st ryPropertyCet Si ze i
Regi stryPropertySet ' o
SendSof t war el nt err upt ° °
Set | nterruptTi mer ° ° °
Set Pr ocessor CacheMode °
SubAbsol ut eFr omAbsol ut e ° ° °
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Table 9-2 Services available to drivers (continued)
Software Hardware
interrupt interrupt Memory
Routine Task level level level allocation
SubDur at i onFr omAbsol ut e ° ° °
SubNanosecondsFr omAbsol ut e ° ° °
Synchr oni zel O ° ° °
SysDebug ° ° °
SysDebugStr ° ° °
Test Andd ear ° ° °
Test AndSet ° ° °
UpTi ne ° ° °

i May be called from a native driver’s DoDr i ver | Oroutine and from any subroutine called from DoDri ver | O
* The size of the property must not change.
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This chapter describes a number of services for PCI cards, collectively called the
Expansion Bus Manager, that are included in the firmware and system software in
the second generation of Power Macintosh computers. It is divided into the following
major sections:

= “Expansion ROM Contents” briefly summarizes the conformance of expansion ROMs
on Macintosh-compatible PCI cards with the PCI specification.

» “Nonvolatile RAM,” beginning on page 290, illustrates how nonvolatile RAM is
allocated in a typical Power Macintosh computer.

» “PCI Nonmemory Space Cycle Generation,” beginning on page 299, lists routines that
you can use to access memory in the various PCI address spaces.

» “Card Power Controls,” beginning on page 311, describes calls that Mac OS uses to
control PCI card power levels.

Expansion ROM Contents

The expansion ROM on a PCI card for Macintosh computers must conform to the format
and information content defined in Chapter 6 of the PCI specification. The following
notes apply to the required device identification fields when used with Macintosh
computers:

s The vendor ID must be the identification assigned by the PCI Special Interest Group.

= The device and revision IDs must be assigned by the vendor and need not be
registered with Apple.

s The header type and class codes must conform to those specified in the PCI Local Bus
Specification, Revision 2.0.

Nonvolatile RAM

290

Power Macintosh computers that support the PCI bus contain at least 4 KB of
nonvolatile RAM (NVRAM). The NVRAM chips can be flash ROM, or RAM
powered by the computer’s local battery, so that they retain data between system
startups. This section describes typical NVRAM configurations and discusses how
you can store device properties in NVRAM.
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Typical NVRAM Structure

A typical example of allocating 8 KB of NVRAM memory space in a Power Macintosh
computer is shown in Table 10-1.

Table 10-1 Typical NVRAM space allocations

Length

(bytes) Description

4096 Operating-system partition

768 Reserved by Apple for diagnostics

256 Reserved by Apple for parameter RAM

1024 Reserved by Apple for Name Registry properties
2048 Open Firmware partition

The allocations shown in Table 10-1 provide permanent configuration data storage, both
for the Macintosh system and for PCI expansion cards. The sections that follow describe
how this storage is typically used.

Operating-System Partition

The first 4 KB of NVRAM space in a typical configuration may be reserved for use by
operating systems other than Mac OS. The Macintosh firmware and system software
does nothing with this space except to initialize the first 2 bytes to show that the
available NVRAM size is 4 KB.

Note

Operating systems that use this space would need to provide their own
protocols for allocating fields and for defining, updating, and checking
data. In particular, they would need to follow rules for determining
whether fields in the NVRAM operating-system partition use big-endian
or little-endian addressing. O

Apple-Reserved Partitions

Apple typically reserves 2048 bytes of NVRAM space for use by Macintosh firmware
and system software, as shown in Table 10-1. Part of this allocation constitutes the
256 bytes of parameter RAM (PRAM) that all Macintosh computers have traditionally
provided for use by Mac OS.

Card firmware and application software can access some of the Macintosh PRAM
space by using the Macintosh Toolbox routines described in Inside Macintosh:
Operating System Utilities.
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Open Firmware Partition

The remaining 2048 bytes of NVRAM space might typically be used by the Open
Firmware startup process to support PCI expansion cards.

Thelittl e-endi an? variable, discussed in “Addressing Mode Determination” on
page 20, is stored in the Open Firmware NVRAM space.

Using NVRAM to Store Name Registry Properties

NVRAM can be used to store device properties permanently. However, such storage is
necessary only for devices used during Mac OS startup, because other devices can store
an unlimited amount of permanent information on disk in the Mac OS system
Preferences folder.

If the kRegPr oper t yVal uel sSavedToNVRAMmodifier of a property entry is set, the
contents of that property entry will be preserved in NVRAM. During Mac OS startup,
the Macintosh firmware will retrieve the entry value from NVRAM and place it in the
device tree. This modifier is described in “Data Structures and Constants” on page 196.

Properties stored in NVRAM are available to boot devices before the devices have been
installed. For example, properties stored in NVRAM can be used to configure a primary
display or to define the net address of a network boot device. In both cases, the device
driver can access user-changeable information before disk storage services are available.

To provide facilities for multiple boot devices, each node in the Name Registry can store
a single, small property in NVRAM,; the Name Registry uses the following format to
store them:

= device location (6 bytes), an absolute location within the PCI system hardware
universe. It corresponds to the slot ID in NuBus systems. The format of this value is
not public, and its value is not visible to drivers.

= property name (4 bytes), a 1-byte to 4-byte string that is a creator ID assigned by
Apple Developer Technical Support. Creator IDs are assigned on a first-come,
first-served basis and form unique labels for products such as applications and driver
files. You can use the C/F Registration Requests HyperCard stack to register a
creator ID. The stack sends an AppleLink message to Apple Developer Technical
Support, which registers your request and replies with a confirmation message. You
do not need to be an Apple partner or associate to make use of this service.

= property value (8 bytes maximum), a value that is stored by Regi st r yPr opert ySet
or Regi st ryPropertyCreat e (provided kRegPr oper t yVal uel sSavedToNVRAM
is set) and is retrieved by Regi st r yPropertyGet.

The Macintosh device location algorithm encodes only five levels of PCI-to-PCI bridges.
Device located more than five levels from the host bridge cannot store properties in
NVRAM.

Nonvolatile RAM
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Note

Using a creator ID (instead of a generic mnemonic) as the name of an
NVRAM property value offers protection against acquiring the wrong
value when a user configures a system and then moves a hardware
device to a different slot or bus. If all drivers define their NVRAM
property names with unique creator IDs, a driver can determine
whether an NVRAM value is owned by its device. O

Use the Name Registry routines described in Chapter 8 to access nodes saved to
NVRAM. The Macintosh firmware will return an error message if a driver or application
performs one of the following illegal actions:

» Tries to store two properties in NVRAM for the same node. The application should
enumerate its properties, fetch the property modifier, and remove incorrect
(unknown) properties or clear their NVRAM bits.

» Tries to store more than 8 bytes in an NVRAM property.
» Specifies a property name longer than 4 bytes (31 characters).

Because only a single property may be stored in NVRAM for each device, drivers will
need to protect themselves against accessing an old NVRAM property that may already
be in place. The recommended algorithm is as follows:

1. Iterate to find all properties for the device.

2. If a property has the NVRAM modifier bit set, then check the property name.
3. If the property name is correct, use the property value.

4. If the property name is incorrect, delete the property and use default settings.
5

. Exit and use the found property value. Use default settings if no property was set or
an incorrectly named property was deleted.

Listing 10-1 shows four sample routines that are useful when manipulating NVRAM:

» RetrieveDriver NVRAMPar anet er retrieves the single property stored in
Macintosh NVRAM and checks it.

= Get Dri ver NVRAVPr oper ty looks at a driver property in NVRAM. This routine can
be called outside an intialization context.

= Updat eDri ver NVRAVPr oper t y updates a driver property in NVRAM.
= CreateDriver NVRAMPr operty creates a driver property that is stored in NVRAM.
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Listing 10-1 Sample NVRAM manipulation code

#defi ne CopyOSTypeToCString(osTypePtr, resultString) do { \
Bl ockCopy(osTypePtr, resultString, sizeof (OSType)); \
resul tString[sizeof (OSType)] = O; \
} while (0)
/******************************************

*

*

*

*

Retri eveDri ver N\VRAMPar aneter retrieves the single property stored in nonvolatile
menory (NVRAM). By convention, this property is named using our registered
creator code. Because the PCl system stores properties indexed by physical slot
number, we may retrieve an incorrect property if the user nmoves cards around.

To protect against this, we check the property nane.

This function nust be called froman initialization context.

Ret urn st at us:

* noErr Success: the NVRAM property was retrieved.

* nr Not FoundErr Fai lure: there was no NVRAM property.

* parankrr Failure: there was an NVRAM property, but not ours.

* ot her Fai l ure: unexpected Nane Registry error.

*/

OSEr r

Ret ri eveDri ver N\VRAMPr opert y(
RegEntryl DPt r regEntryl DPtr, [* driver's Name Registry ID */
OSType driverCreatorlD, /* registered creator code */
U nt8 dri ver N\VRAMRecor d[ 8]

294

OSEr r st at us;
RegPropertylter cooki e;
RegPr oper t yNanmeBuf propertyNane,

RegPr opertyVal ueSi ze
RegPropertyMdifiers
Bool ean

char

/*

regPropertyVal ueSi ze;
propertyModifiers;

done;

creator NaneStri ng[si zeof (OSType) + 1];

* search our properties for one with the NVRAM nodi fi er set

*/

status = RegistryPropertylterateCreate(regEntryl DPtr, &cookie);
if (status == noErr) {

while (status ==
/*

* Get the next property and check its nodifier.

noErr) {

* NVRAM property (there can be only one for our entry ID).

*/

Nonvolatile RAM
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status = Regi stryPropertylterate(&cookie, propertyNanme, &done);
if (status == noErr && done == FALSE) {
status = Regi stryPropertyGet Mod(
regentryl DPtr,
propertyNane,
&propertyhodifiers

)
if (status == noErr
&& (propertyMdifiers & kRegPropertyVal uel sSavedToNVRAM) ! = 0)
br eak;
/*
* There was no NVRAM property. Return nrNot FoundErr by conventi on.
*/

if (status == noErr && done)
status = nr Not FoundErr;

}
Regi stryPropertylterateD spose(&cookie);
/*
* |f status == noErr, we have found an NVRAM property. Now,
* 1. If it is our creator code, we have found the property, so
* we retrieve the values and store themin the driver's globals.
* 2. If it was found with a different creator code, the user has
* noved our card to a slot that previously had a different card
* installed, so delete this property and return (noErr) to use
* the factory defaults.
* 3. If it was not found, the property was not set, so we exit
* (noErr); the caller will have preset the values to
* "factory defaults."
*/
if (status == noErr) {
/*
* Cases 1 or 2, check the property.
*/

CopyOSTypeToCSt ri ng( &dri ver Creator| D, creatorNameString);
if (CStrCnp(creatorNaneString, propertyNanme) == 0) { /* Match */
status = RegistryPropertyGCetSize(
regeEntryl DPtr,
pr opert yName,
& egPropertyVal ueSi ze
)
if (status == noErr
&& regPropertyVal ueSi ze == si zeof driver NVRAMRecord) ({
status = Regi stryPropertyCet (
regEntryl DPtr,
pr opert yName,
dri ver NVRAMRecor d,
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el se {
/*

&r egPropertyVal ueSi ze

)

* This is an NVRAM property, but
* property and return an error status so the caller uses
* "factory settings”

*/

status =

/*

* Since we're returning an error anyway,

Regi stryPropertyDel et e(

regeEntryl DPtr,
propertyName

* status code.

*/

status =

}

return (status);

paran€rr;

it

isn't ours. Delete the

we ignore the

/* * * *x *x * % *x *x * % * *x * * * *x *x * * *x *x * * * *x * * * *x * * * *x *x * * * *x * * *

*
*
*
*
*
*

*

*/

CSErr

Get the NVRAM property. Return an error if it
or is not marked "store in NVRAM" This nmay be called froma
noninitialization context.

Errors:

nr Not FoundEr r

nr Dat aTr uncat edEr r
par antrr

Get Dri ver NVRAMPr oper t y(

296

RegEnt ryl DPt r
OSType
Ul nt8

OSEr r

char

RegPr opertyVal ueSi ze
RegPr opertyModi fiers

Nonvolatile RAM

Not found in the registry
Wong size
Not marked "store in NVRAM

regEntryl DPtr,
driverCreatorl D,
dri ver N\VRAMRecor d[ 8]

st at us;

does not exi st,

is the wong size,

/* driver's Name Registry ID */

/* registered creator code

/*

mandat ed si ze

creator NaneStri ng[si zeof (OSType) + 1];

si ze;
nmodi fi ers;

*/
*/
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CopyOSTypeToCStri ng(&dri verCreatorl D, creatorNaneString);
status = Regi stryPropertyGet Si ze(

regentryl DPtr,

creat or NaneStri ng,

&si ze
)

if (status == noErr && size != sizeof driver NVRAMRecor d)

status = nrDataTruncat edErr;
if (status == noErr) {
status = Regi stryPropertyGet Mod(
regEntryl DPtr,
creator NaneString,
&modi fiers
)
}
if (status == noErr

&& (nodifiers & kRegPropertyVal uel sSavedToNVRAM) == 0)
status = parantrr;
if (status == noErr) {
status = Regi stryPropertyGet (
regEntryl DPtr,
creator NaneStri ng,
dri ver NVRAMRecor d,
&si ze

)
}

return (status);

}

/* *x * % % *x *x * % * *x * % * *x *x * * *x *x * % * *x * * * *x *x * * * *x * * * *x * * * *x *x

* Update the NVRAM property. Return an error if it was not created. This nmay be
* called fromPBStatus (or other noninitialization context).

*/

OSErr

Updat eDri ver NVRAMPr opert y(
RegEntryl DPt r regeEntryl DPtr, /* driver's Name Registry ID */
OSType driverCreatorlD, /* registered creator code */
U nt8 driver N\VRAMRecord[8] /* mandated size */

)

{
CSEr r st at us;
char creator NaneStri ng[si zeof (OSType) + 1];

CopyOSTypeToCString(&driverCreatorl D, creatorNanmeString);

/*

* Repl ace the current value of the property with its new value. In this
* exanple, we are replacing the entire value and, potentially, changing
* jts size. In production software, you may need to read an existing
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* property and nodify its contents. This shouldn't be too hard to do.
*/
status = Regi stryPropertySet ( /* update existing value */

regeEntryl DPtr,

creat or NameString,

dri ver N\VRAMRecor d,

si zeof driver NVRAMRecord

)

return (status);

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CSErr

* Create the NVRAM property. This nust be called fromthe driver
initialization function.

Creat eDri ver N\VRAMPr oper t y(

RegEntryl DPt r regEntryl DPtr, /* driver's Name Registry ID */
CSType driverCreatorlD, /* registered creator code */
unt8 driver N\VRAMRecord[ 8] /* mandated size */
OSEr r st at us;

char creator NaneStri ng[ si zeof (OSType) + 1];

RegPr opertyVal ueSi ze si ze;

RegPr opertyModifiers nodi fiers;

CopyOSTypeToCStri ng(&driverCreatorl D, creatorNaneString);

/*
* Does the property currently exist (with the correct size)?
*/

status = Regi stryPropertyGetSize( /

* returns noErr if the property exists */

298

regeEntryl DPtr,
creator NaneStri ng,
&si ze
)
if (status == noErr) {
/*
* Replace the current value of the property with its new value. In this
* exanple, we are replacing the entire value and, potentially, changing
* jts size. In production software, you may need to read an existing
* property and nodify its contents. This shouldn't be too hard to do.
*/
status = Regi stryPropertySet ( /* update existing value */
regEntryl DPtr,
creat or NaneString,

Nonvolatile RAM
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dri ver NVRAMRecor d,
si zeof driver NVRAMRecord

)
}
el se {
status = Regi stryPropertyCreat¢g( /* make a new property */
regEntryl DPtr,
creator NameStri ng,
dri ver N\VRAMRecor d,
si zeof driver NVRAMRecor d
)
/*

* |f status equals noErr, the property has been stored; set its
* nonvol atile RAM bit.

*/
if (status == noErr) {
status = Regi stryPropertyGet Mod(
regEntryl DPtr,
creator NaneStri ng,
&nmodi fiers
)
}
if (status == noErr) {
/*
* Set the NVRAM bit and update the nodifiers.
*/
nodi fiers | = kRegPropertyVal uel sSavedToNVRAM
status = Regi stryPropertySet Mod(
regEntryl DPtr,
creat or NaneStri ng,
nmodi fiers
)
}

return (status);

PCI Nonmemory Space Cycle Generation

"save to

“PCI Host Bridge Operation,” beginning on page 8, describes how the Macintosh
implementation of PCI supports ordinary memory access cycles. Because some PCI cards
may need to use other types of PCI cycles—I/O, configuration, interrupt acknowledge,
or special cycles—the Expansion Manager includes routines that create these cycle types.

These routines are described in the next sections.

PCI Nonmemory Space Cycle Generation
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All of the nonmemory access routines use the type RegEnt ryl DPt r to identify device
nodes in the device tree, as described in Chapter 8, “Macintosh Name Registry.” Drivers
should use the RegEnt r yl DPt r value passed to them when they were initialized. Using
the RegEnt ryl DPt r type lets the system software determine the target device’s location
in the device tree, select the appropriate PCI bus to access the device, and generate the
correct cycle on that bus.

I/O Space Cycle Generation

The PCI property assi gned- addr esses provides vector entries that represent the
physical addresses of devices on expansion cards. Apple has added another property—
AAPL, addr ess—that provides a vector of 32-bit logical address values, where the

nth value corresponds to the nth assi gned- addr esses vector entry. When accessing
device functions located in memory space, you should use the corresponding

AAPL, addr ess property as the device’s base. The same technique is recommended
when you are accessing high-performance device functions in IO space.

Using the AAPL, addr ess property, a driver can find the logical address of an1/O
resource. Accessing the logical address generates an IO cycle on the PCI bus. Using the
logical base address, a driver can generate a PCI1/O cycle in the same way it accesses a
PCI device in memory space. This provides the fastest possible interface to I/O space.
For sample code that illustrates this technique, see Listing 7-15 on page 146.

IMPORTANT

Between PCI I/O accesses, software must call the Synchr oni zel O
function (described on page 234) to ensure that the accesses affect the
PCI device in the correct order. a

Alternatively, you can use the Expansion Bus Manager routines described in this section.
They provide byte swapping, enforced in-order execution, and a node-based interface.
These extra services add overhead; therefore, for transfer-intensive accesses, such as
accessing FIFOs located in I/ O space, it is better to use the logical address from the
AAPL, addr ess property.

To access a register in memory or I/O space using an AAPL, addr ess property, do
the following:

1. Atinitialization, resolve the assi gned- addr esses and AAPL, addr ess properties.
2. Search the assigned-addresses vector for an address range in I/ O space.

3. Store the corresponding AAPL, addr ess vector entry in a variable such as

volatile U nt1l6 *gl ORegi st er Base;

4. To read the (16-bit) register at offset 0x04, you can then do

val ue = gl ORegi st er Base[ 0x04 / sizeof (U ntl1l6)];

As with memory accesses, you will need to byte swap the returned value to obtain a
Macintosh big-endian result. Byte swapping routines are described on page 311.

PCI Nonmemory Space Cycle Generation
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The rest of this section describes six routines that let you read and write data to specific
I/0O addresses, using the physical base address found in the assi gned- addr esses
property (not AAPL, addr ess).

ExpMgrIOReadByte

DESCRIPTION

You can use the ExpMyr | OReadByt e function to read the byte value at a specific
address in PCII/O space.

OSErr ExpMyrl OCReadByte (RegEntryl DPtr node,
Logi cal Addr ess i oAddr,
U nt8 *val uePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr | OReadByt e returns a
result code of devi ceTr eel nval i dNodeErr.

i oAddr The sum of the assi gned- addr esses base address of the device plus
the offset to the desired I/O address.

val uePtr The returned 8-bit value.

The ExpMygr | OReadByt e function reads the byte at the I/ O address for device node
node determined by address i oAddr.

RESULT CODES

noErr 0 No error

devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree
ExpMgrIOReadWord

You can use the ExpMyr | OReadWor d function to read the word value at a specific
address in PCII/O space.

CSErr ExpMyr | OReadWord (RegEntryl DPtr node,
Logi cal Addr ess i oAddr,
U ntl6 *val uebPtr);

node A node identifier that identifies a device node. If you specify a node

identifier that isn’t in the device tree, ExpMyr | OReadWor d returns a
result code of devi ceTr eel nval i dNodeErr.
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i oAddr The sum of the assi gned- addr esses base address of the device plus
the offset to the desired I/O address.

val uePtr  The returned 16-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

The ExpMgr | OReadWor d function reads the word at the I/O address for device node
node determined by address i oAddr.

noErr 0 No error
devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree

ExpMgrIlOReadLong

DESCRIPTION

RESULT CODES
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You can use the ExpMyr | OReadLong function to read the long word value at a specific
address in PCI1/O space.

OSErr ExpMyr | OReadlLong (RegEntryl DPtr node,
Logi cal Addr ess i oAddr,
U nt 32 *val uePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr | OReadLong returns a
result code of devi ceTr eel nval i dNodeErr.

i oAddr The sum of the assi gned- addr esses base address of the device plus
the offset to the desired I/O address.

val uePtr The returned 32-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

The ExpMgr | OReadLong function reads the long word starting at the I/O address for
device node node determined by address i 0Addr, returning its byte-swapped value in
val uePtr.

noErr 0 No error
devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree
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ExpMgrIOWriteByte

You can use the ExpMyr 1 OW i t eByt e function to write a byte to an address in PCI
I/0O space.

OSErr ExpMgri OWiteByte (RegEntryl DPtr node,
Logi cal Addr ess i oAddr,
U nt8 val ue);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr | ON i t eByt e returns a
result code of devi ceTr eel nval i dNodeErr.

i oAddr The sum of the assi gned- addr esses base address of the device plus
the offset to the desired I/O address.
val ue The 8-bit value.

DESCRIPTION

The ExpMgr | OW i t eByt e function writes the value of val ue to the I/O address for
device node node determined by address i oAddr.

RESULT CODES

noErr 0 No error

devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree
ExpMgrlOWriteWord

You can use the ExpMgr | ON i t eWbr d function to write a word to an address in PCI
I/0O space.

CSErr ExpMgri OWiteWrd (RegEntryl DPtr node,
Logi cal Addr ess i oAddr,
U nt16 val ue);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr | ON i t eWor d returns a
result code of devi ceTr eel nval i dNodeErr.

i oAddr The sum of the assi gned- addr esses base address of the device plus
the offset to the desired I/O address.
val ue The 16-bit value as it would appear on the PCI bus. The function

performs the necessary byte swapping.
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The ExpMgr | OW i t eWor d function writes the byte-swapped value of val ue to the I/O
address for device node node determined by address i oAddr.

RESULT CODES

noErr 0 No error

devi ceTr eel nval i dNodeErr -2538 Device node not in the device tree
ExpMgrIOWriteLong

DESCRIPTION

RESULT CODES
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You can use the ExpMyr | ON i t eLong function to write a long word to an address in
PCII/O space.

OCSErr ExpMyrl OWitelong (RegEntryl DPtr node,
Logi cal Addr ess i oAddr,
U nt 32 val ue);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMgr | ON i t eLong returns a
result code of devi ceTr eel nval i dNodeErr.

i oAddr The sum of the assi gned- addr esses base address of the device plus
the offset to the desired I/O address.
val ue The 32-bit value as it would appear on the PCI bus. The function

performs the necessary byte swapping.

The ExpMgr | OW i t eLong function writes the byte-swapped value of val ue to the I/O
address for device node node starting at address i oAddr.

noErr 0 No error
devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree

Configuration Space Cycle Generation

The Expansion Bus Manager contains six routines that let you read and write data to
specific addresses in the PCI configuration space for a specified device tree node.

All of the configuration space access routines use the type RegEnt ryl DPt r to identify
device nodes in the device tree, as described in Chapter 8, “Macintosh Name Registry.”
Using RegEnt ryl DPt r lets the system software and the bridge generate the correct PCI
configuration cycle for the target device.
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ExpMgrConfigReadByte

DESCRIPTION

You can use the ExpMyr Conf i gReadByt e function to read the byte value at a specific
address in PCI configuration space.

OSErr ExpMyr Conf i gReadByt e (RegEntryl DPtr node,
Logi cal Address confi gAddr,
U nt8 *val uePtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr Conf i gReadByt e returns a
result code of devi ceTr eel nval i dNodeErr.

confi gAddr The configuration address (a value between 0 and 255).
val uePtr The returned 8-bit value.

The ExpMgr Conf i gReadByt e function reads the byte at the address in PCI
configuration space for device node node determined by offset conf i gAddr, returning
its value in val uePtr.

RESULT CODES

noErr 0 No error

devi ceTr eel nval i dNodeErr -2538 Device node not in the device tree
ExpMgrConfigReadWord

You can use the ExpMyr Conf i gReadWor d function to read the word value at a specific
address in PCI configuration space.

CSErr ExpMyr Confi gReadWord (RegEntryl DPtr node,
Logi cal Addr ess confi gAddr,
U ntl6 *val uebPtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr Conf i gReadWér d returns a
result code of devi ceTr eel nval i dNodeErr.

confi gAddr The configuration address (a value between 0 and 255).

val uePtr The returned 16-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.
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The ExpMgr Conf i gReadWbr d function reads the word at the address in PCI
configuration space for device node node determined by offset conf i gAddr, returning
its byte-swapped value in val uePtr.

RESULT CODES

noErr 0 No error

devi ceTr eel nval i dNodeErr -2538 Device node not in the device tree
ExpMgrConfigReadLong

DESCRIPTION

RESULT CODES
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You can use the ExpMyr Conf i gReadLong function to read the long word value at a
specific address in PCI configuration space.

OSErr ExpMyr Confi gReadLong (RegEntryl DPtr node,
Logi cal Address confi gAddr,
U nt 32 *val uebtr);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr Conf i gReadLong returns a
result code of devi ceTr eel nval i dNodeErr.

confi gAddr The configuration address (a value between 0 and 255).

val uePtr The returned 32-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

The ExpMgr Conf i gReadLong function reads the long word starting at the address in
PCI configuration space for device node node determined by offset conf i gAddr,
returning its byte-swapped value in val uePt r.

noErr 0 No error
devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree
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ExpMgrConfigWriteByte

You can use the ExpMyr Conf i gW i t eByt e function to write a byte to an address in
PCI configuration space.

OSErr ExpMyr Confi gWiteByte (RegEntryl DPtr node,

node

confi gAddr
val ue

DESCRIPTION

Logi cal Address confi gAddr,
U nt8 val ue);

A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr Conf i gW i t eByt e returns
a result code of devi ceTr eel nval i dNodeErr.

The configuration address (a value between 0 and 255).
The 8-bit value.

The ExpMgr Conf i gW i t eByt e function writes the value of val ue to the address in
PCI configuration space for device node node determined by offset conf i gAddr.

RESULT CODES

noErr 0 No error

devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree
ExpMgrConfigWriteWord

You can use the ExpMyr Conf i gW i t eWor d function to write a word to an address in
PCI configuration space.

OSErr ExpMyr ConfigWiteWrd (RegEntryl DPtr node,

node

conf i gAddr
val ue

Logi cal Address confi gAddr,
U nt16 val ue);

A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr Conf i gW i t eWor d returns
a result code of devi ceTr eel nval i dNodeErr.

The configuration address (a value between 0 and 255).

The 16-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.
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The ExpMgr Conf i gW i t eWbr d function writes the byte-swapped value of val ue to
the address in PCI configuration space for device node node determined by offset
confi gAddr.

RESULT CODES

noErr 0 No error

devi ceTr eel nval i dNodeErr -2538 Device node not in the device tree
ExpMgrConfigWriteLong

DESCRIPTION

RESULT CODES
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You can use the ExpMyr Conf i gW i t eLong function to write a long word to an address
in PCI configuration space.

OSErr ExpMr ConfigWitelong (RegEntryl DPtr node,
Logi cal Address confi gAddr,
U nt 32 val ue);

node A node identifier that identifies a device node. If you specify a node
identifier that isn’t in the device tree, ExpMyr Conf i gW i t eLong returns
a result code of devi ceTr eel nval i dNodeErr.

confi gAddr The configuration address (a value between 0 and 255).

val ue The 32-bit value as it would appear on the PCI bus. The function
performs the necessary byte swapping.

The ExpMgr Conf i gW i t eLong function writes the byte-swapped value of val ue
to the address in PCI configuration space for device node node starting at offset
confi gAddr.

noErr 0 No error
devi ceTr eel nval i dNodeEr r -2538 Device node not in the device tree
PCI Nonmemory Space Cycle Generation
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Interrupt Acknowledge Cycle Generation

The routines described in this section generate interrupt acknowledge cycles on the PCI
bus. All interrupt acknowledge routines use the type RegEnt ryl DPt r to identify device
nodes in the device tree, as described in Chapter 8, “Macintosh Name Registry.” Using
RegEnt ryl DPt r lets the system software and the PCI bridge generate the correct PCI
interrupt acknowledge cycle for the target device.

Note

Mac OS does not use PCI interrupt acknowledge cycles. The
functionality is provided so that if a PCI device needs an interrupt
acknowledge cycle the driver has a way to create the required
cycle on the PCI bus. O

Interrupt acknowledge cycles for PCI are always read actions. The target node chosen for
the functions described in this section should be the single node in the system capable of
responding to interrupt acknowledge cycles.

ExpMgrInterruptAcknowledgeReadByte

You can use the ExpMyr | nt er r upt Acknowl edgeReadByt e function to read the byte
value resulting from a PCI interrupt acknowledge cycle.

CSEr r
ExpMyr | nt er r upt Acknowl edgeReadByte (RegEntrylDPtr entry,

U nt8 *val uebPtr);
entry Pointer to a Name Registry entry ID.

val uePtr Pointer to a buffer to hold the value read.

ExpMgrInterruptAcknowledgeReadWord

You can use the ExpMr | nt er r upt Acknowl edgeReadWr d function to read the word
value resulting from a PCI interrupt acknowledge cycle.

OSEr r
ExpMyr | nt er r upt Acknowl edgeReadWword (RegEntryl DPtr entry,

U nt16 *val uebtr);
entry Pointer to a Name Registry entry ID.

val uePtr Pointer to a buffer to hold the value read.
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ExpMgrInterruptAcknowledgeReadLong

You can use the ExpMyr | nt er r upt Acknowl edgeReadLong function to read the long
word value resulting from a PCI interrupt acknowledge cycle.

CSErr
ExpMyr | nt errupt Acknowl edgeReadLong (RegEntrylDPtr entry,

Ul nt 32 *val uePbtr);
entry Pointer to a Name Registry entry ID.

val uePtr Pointer to a buffer to hold the value read.

Special Cycle Generation

The routines described in this section generate special cycles on the PCI bus.

Some special cycle routines use the type RegEnt r yl DPt r to identify device nodes in
the device tree, as described in Chapter 8, “Macintosh Name Registry.” Using
RegEnt ryl DPt r lets the system software and the bridge generate the correct PCI
special cycle for the target device.

Note

Special cycles on the PCI bus are broadcast-type cycles. They are always
long word write actions. If a node interface is provided, the node chosen
for these functions should be behind the bridge that defines the PCI bus
in the system on which the special cycle occurs. O

ExpMgrSpecialCycleBroadcastLong
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You can use the ExpMyr Speci al Cycl eBr oadcast Long function to broadcast the long
word value in val ue to all PCI buses in the system.

OSErr ExpMyr Speci al Cycl eBroadcast Long (Ul nt 32 val ue);

val ue The value to be broadcast.

PCI Nonmemory Space Cycle Generation



CHAPTER 10

Expansion Bus Manager

ExpMgrSpecialCycleWriteLong

You can use the ExpMyr Speci al Cycl eW i t eLong function to write the long word
value in val ue to the PCI bus that contains the device node identified by the name entry
pointed to by ent ry.

OSErr ExpMyr Speci al Cycl eWitelLong (RegEntryl DPtr entry,
Ul nt 32 val ue);

entry Pointer to a Name Registry entry ID.

val ue The value to be written.

Byte Swapping Routines

The Macintosh system firmware provides two routines that help you swap bytes
between big-endian and little-endian data formats:

U nt16 Endi anSwapl6Bit (Ul nt16 datal6);
U nt 32 Endi anSwap32Bit (Ul nt32 data32);

dat al6 2-byte input.
dat a32 4-byte input.

Endi anSwap16Bi t and Endi anSwap32Bi t return byte swapped versions of their
input values, thereby converting big-endian data to little-endian or little-endian data to
big-endian.

Card Power Controls

If a PCI expansion card normally consumes more than 3 Aat5V or2 A at 3.3V, it should
be capable of entering a low-power mode. It is generally useful for all PCI cards to be
able to enter a low-power mode so they will conform to energy-saving system standards.
Family experts are usually responsible for managing the power consumption character-
istics of associated native drivers and may issue power commands or request power
information at any time.

A card’s driver may elect to ignore power switching commands issued by a family
expert by returning the appropriate response. It may also return an appropriate
indication to the family expert if a switch from high power to low power might interrupt
a current or pending operation.
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Guidelines

Observe the following power management guidelines for specific classes of drivers:

» As discussed in “Power Services” beginning on page 372, networking drivers should
conform to the Open Transport family expert’'s power management guidelines. The
expert handles all interactions with the Power Manager for the driver.

» As discussed in “Graphics Driver Routines” beginning on page 316, graphics drivers
should support the Get Sync and Set Sync status and control calls to implement the
VESA DPMS standard for power management. The Display Manager will handle all
interaction with the Power Manager on behalf of the driver.

= SCSI drivers and other classes of drivers for which the family expert interface is not
fully defined, or for which a family expert does not currently exist, may need to
interact with the Power Manager directly to support power management on
PCI-based Power Macintosh computers. However, the current Power Manager
interface is not guaranteed to be compatible with future Mac OS releases. Specific
issues in this area are discussed in “SCSI Device Power Management” beginning on
page 387.

Sample Code

Listing 10-2 shows sample code that retrieves power consumption information from a
PCI device.

Listing 10-2 Determining power consumption

/*
* | EEE 1275 defines the "power-consunption" property.
*/
#defi ne kDevi cePower Property " power - consunpti on"
/*

* Power values are encoded in a vector of "maximumin mcrowatts." Unspecified
* val uesshall be zero if other values are provided. Power consunption is 0 for
* missing values. |If the property is missing, the default value will be used.
*/
enum {

kUnspeci fi edSt andby,

kUnspeci fi edFul | Power,

kFi veVol t St andby,

kFi veVol t Ful | Power ,

kThr eeVol t St andby,

kThr eeVol t Ful | Power ,

kl OPower St andby,

k1 OPower Ful | Power ,

kReser vedSt andby,

kReser vedFul | Power
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/*
* The function uses this structure to equate registry entry values with
* DriverCestalt selectors.

*/
typedef struct Powerlnfo {
OSType driverGestaltSel ector;
short correctl ndex;
short f al | backl ndex;

} Power | nfo;
static const Powerlnfo gPowerlinfo[] = {

{ kDriverCestal t 5MaxH ghPower, kFiveVolt Ful | Power, kUnspeci fi edFul | Power },
{ kDriver Gest al t 5MaxLowPower , kFi veVol t St andby, kUnspeci fi edSt andby },
{ kDriverGestalt3MaxH ghPower, kThreeVoltFull Power, kUnspeci fi edFul | Power },
{ kDriver Gest al t 3MaxLowPower , kThr eeVol t St andby, kUnspeci fi edSt andby },
{ 0, 0, 0 }

b
/* * % *x *x % * *x *x * * * *x *x * * *x *x * * *x *x * * * *x * * * *x *x * * *x *x * * * *x * * *

* Retrieve the driver power consunption vector and search it for the desired power
* consunption value. Return the desired value, or a default value if the desired

* value is unavailable. This function does not allocate menory or return any errors.
*/

Ul nt 32
Get Devi cePower Consunpt i on(
RegEntryl DPtr regeEntryl DPtr, /
* driver's Name Registry ID */
OSType driverGestaltSelector, |/
* PBSt atus paraneter */
Ul nt 32 def aul t Power Consunpti on /
* default return val ue */
)
{
CSEr r st at us;
Ul nt 32 result;
short i;
short i ndex;
I t emCount nVal ues;
RegPr opertyVal ueSi ze si ze;
Ul nt 32 m cr oWat t s[ kReser vedFul | Power];
result = defaul t Power Consunpti on;

status = Regi stryPropertyGet Si ze(
regentryl DPtr,
kDevi cePower Property,
&si ze
)
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if (status == noErr && size <= sizeof mcrowatts) {

status = Regi stryPropertyCet (
regentryl DPtr,
kDevi cePower Property,
(RegPropertyValue *) mcroWtts,

&si ze
)
}
if (status == noErr) {
nVal ues = size / sizeof microWatts[O0];
for (i = 0; gPowerinfo[i].driverGestaltSelector != 0; i++) {
if (gPowerInfo[i].driverGestaltSelector == driverGCestaltSelector) {
i ndex = gPowerlInfo[i].correctlndex;
i f (index >= nVal ues)
i ndex = gPowerlInfo[i].fallbackl ndex;
if (index < nVal ues)
result = mcroWatts[index];
br eak;
}
}
}

return (result);
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This chapter discusses the control and status calls required to implement a native PCI
graphics or video display driver for Mac OS on the second generation of Power
Macintosh computers.

PCI display drivers have a category of kSer vi ceCat egor yNdr vDr i ver and a service
type of kNdr vTypel sVi deo. They export a driver description structure and use the
DoDr i ver | Oentry point. For specific information about generic native drivers, see
Chapter 7, “Writing Native Drivers.” You can also find general information about
Macintosh drivers in Designing Cards and Drivers for the Macintosh Family, third edition,
and Inside Macintosh: Devices. These books are listed in “Apple Publications” beginning
on page xxi. For information about Macintosh pixel formats, see Appendix C, “Graphic
Memory Formats.”

Note

The P1275 Working Group continues to update the graphics
extensions to IEEE Standard 1275. For latest information, you

can access the FTP site listed in “Institute of Electrical and Electronic
Engineers” on page xxiv. O

Apple has revised the way that Macintosh computers automatically sense monitor
characteristics. For more information see “Display Timing Modes,” beginning on
page 338, and Macintosh New Technical Notes HW-30, available from Apple
Developer Support.

Graphics Driver Description

A typical driver description structure for a PCI graphics card driver is shown in
Listing 7-1 on page 89.

IMPORTANT

For the Display Manager to load and install a driver, the run-time
requirements should be set to KDr i ver | sQpenedUponLoad and

kDri ver | sUnder Expert Cont r ol . The device name is used as the
name for installation in the unit table. Graphics drivers should report
kServi ceCat egor yNdr vDri ver as the OS run-time service category
and kNdr vTypel sVi deo as the type within the category. a

Graphics Driver Routines

316

In the past, graphics drivers and Mac OS relied on a card’s NuBus declaration ROM to
get information on the card’s capabilities. In the second generation of Power Macintosh
computers, the programming interface for graphics drivers has been revised to let
drivers provide the same information. Mac OS has also been revised to fetch this
information from drivers instead of from a card’s ROM.

This section details the control and status calls to which a graphics driver must respond.

Graphics Driver Description
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Control Calls

The following sections present the graphics driver control calls. Not all video or display
drivers need to respond to every one of these calls.

Reset (csCode = 0)

The Reset routine is obsolete for graphics drivers in the second generation of Power
Macintosh computers. The driver should return cont r ol Err.

KillIO (csCode =1)

The optional Ki | | | Oroutine stops any I/O requests currently being processed and
removes any pending I/O requests. If the card does not support asynchronous calls it
must return contr ol Err.

SetMode (csCode =2)

The required Set Mode routine sets the pixel depth of the screen.

OSErr = Control (theDevi ceRef Num cscSet Mode, &t heVDPagel nfo );

--> csMode Desired relative bit depth

- - csbhat a Unused

--> csPage Desired display page

<-- csBaseAddr Base address of video RAM for this csMbde

To improve the screen appearance during mode changes, devices with settable color
tables should set all entries of the Color Lookup table (CLUT) to 50 percent gray before
changing the mode. If the video card supports 16-bit or 32-bit pixel depths, the Set Mbde
routine should set an internal flag to indicate direct mode operations.

SetEntries (csCode = 3)

The Set Ent ri es control routine is required. If the video card is an indexed device, the
Set Ent ri es control routine should change the contents of the card’s CLUT.

CSErr =

PBCont r ol (t heDevi ceRef Num cscSetEntries, &t heVDSet EntryRecord);
--> csTabl e Pointer to Col or Spec array

--> csStart First entry in table

--> csCount Number of entries to set
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If the value of csSt art is 0 or positive, the routine must install csSt art entries
starting at that position. If it is -1, the routine must access the contents of the value field
in csTabl e to determine which entries are to be changed. Both csSt art and csCount
are 0 based—their values are 1 less than the desired amount. For a description of a CLUT
and the Col or Spec structure, see the Color QuickDraw section of Inside Macintosh:
Imaging With QuickDraw.

If the card does not have a CLUT (that is, if the csDevi ceType returned from

Cet Vi deoPar anet er s does not equal cl ut Type), the system should never issue a
Set Ent ri es control call. If it does, the Set Ent r i es control routine should return
cont r ol Er r. With direct devices, the G ayPage and Set Ganma routines are
responsible for initializing the hardware properly.

SetGamma (csCode = 4)
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The optional Set Ganmma control routine sets the gamma table in the driver that corrects
RGB color values.

OSErr = Control (theDevi ceRef Num cscSet Ganma, &t heVDGammaRecord );
--> csGrabl e Pointer to gamma table

The gamma table compensates for nonlinearities in a display’s color response by
providing either a function or a lookup value that associates each displayed color
with an absolute RGB value.

To reduce visible flashes resulting from color table changes, the Set Ganma routine
works in conjunction with the Set Ent ri es control routine on indexed devices. The
Set Ganma routine first loads new gamma correction data into the driver’s private
storage; the next Set Ent ri es control call applies the gamma correction as it
changes the CLUT. Set Gamma calls are always followed by Set Ent ri es control calls
on indexed devices.

For direct devices, the SetGamma routine first sets up the gamma correction data table.
Next, it synthesizes a black-to-white linear ramp color table. Finally, it applies the

new gamma correction to the color table and sets the data directly in the hardware.
Proper correction is particularly important to image-processing applications running
on direct devices.

Displays that do not use gamma table correction tend to look oversaturated and dark.
Although determining the correct values for a gamma table can be difficult without
special tools, the table’s contribution to image quality can be striking.

If NI L is passed for the csGTabl e value, the driver should build a linear ramp in the
gamma table to allow for an uncorrected display.

On a cathode ray tube, phosphors luminesce when they are struck by an electron beam.
Unfortunately, there is not a direct correspondence between the luminance of the
phosphors and the strength of the electron beam. To create a linear relationship, the
actual response is measured and the inverse of its deviation from linearity is applied as a
correction factor. Figure 11-1 illustrates this process.
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Figure 11-1 Luminosity and electron beam strength

Normal response
~~~~~~ Inverted response
- - - Resultant

Luminosity

y

Electron beam strength

Although this example is described in terms of electron beams and phosphors of a
cathode ray tube, similar relationships exist between diode current and LED brightness
in active matrix displays.

Gamma Table Implementation

The Power Macintosh gamma table structure is defined in the header file Qui ckDr aw. h.
Its definition is diagrammed in Figure 11-2.

Figure 11-2 Gamma table structure

struct GanmaTbl

{

short
short
short
short
short
short
short

gVer si on;

gType; ]

gFor nul aSi ze;
gChanCnt ;

gbat aCnt ;

gbat aW dt h;

gFor nul aDat a[ 1] ;

Fixed-size header

Formula data

Correction data

size = sizeof (GanmaThl)

size = gFormul aSi ze

size = gChanCnt * gDat aCnt
((gDatawdth + 7) DIV 8

b
typedef struct GanmaTbl GanmaTbl ;

The gamma table is a variable length data structure. As shown in Figure 11-2, the
structure GammaTbl sits at the front of a pool of memory that holds the data required to
apply gamma correction.

The last member of the fixed-length portion of the structure gFor nul aDat a is also the
entry point to the variable-length portion of the structure. This variable-length portion is
divided into two sets, formula data and correction data.
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Field descriptions

gVer si on The version of the GammaTbl data structure. 0 == gVer si on is the
only version of the GanmaTbl data structure currently defined.

gType Since gamma tables are created empirically, they can either attempt
to correct the response curve of a specific CLUT, a specific display,
or a specific combination of CLUT and display. 0 == gType
indicates that the curve is derived from a display, not a CLUT. In
this case, two different hardware modules can share the same
gamma table.

gFor mul aSi ze See gFor nul aDat a, below.

gChanCnt The number of tables of correction data. If there is more than one
channel of correction data, the channels are ordered red, green,
blue. If there is only one channel of correction data, the same
correction is applied to the red, green, and blue channels of the
hardware. The only valid values for gChanCnt are 1 and 3.

gDat aCnt The number of entries of correction information per channel.

gDat aW dt h How many significant bits of information are available in each
entry, packed to the next larger byte size.

gFormul aData  The entry point to the variable-length portion of the gamma table,
consisting of the formula data, if any, followed by the correction
data. If a gamma table is hardware-invariant (0 == gType), then the
formula data is never inspected. If a gamma table varies with the
hardware (in which case gType is the ID of the frame buffer), and
gFor mul aSi ze ! = 0, then gFor nul aDat a[ 0] is inspected to see
if it is the ID of the monitor currently connected. If the monitor IDs
match, the gamma table is considered valid; otherwise it is
considered to be the wrong table.

Correction Data

The Correction Data area of the gamma table contains the gamma correction data. If
more than one channel’s information is present, a block of information for each channel
appears in red, green, blue order. There is no field of the GarmaTbl structure that
directly maps to the correction data; instead, correction data is appended to the

gFor mul aDat a field. To understand how correction data is organized, consider the
QuickDraw representation of RGB color:

struct RGEBCol or

{
unsi gned short red; /1 magni tude of red channe
unsi gned short green; /! magni tude of green channe
unsi gned short bl ue; /1 magni tude of bl ue channe
1

t ypedef struct RGBCol or RGBCol or;

Effectively, the purpose of a gamma table is to map a red, green, or blue channel into
another channel. This mapping serves two purposes: to move from 16 bits of significance
to gDat aW dt h bits, and to apply luminance correction.
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The mapping is usually accomplished by taking the most significant 8 bits of a given
channel and using it as an index into that channel’s correction data. Two examples of
this, with 8 == gDat aW dt h, are illustrated in Figure 11-3.

Figure 11-3

Examples of gamma table correction

02ab (16-bit QD channel magnitude)

' ¢

v
v

(8-bit gamma corrected magnitude) 06

Array Index00 01 02 ...80 81 82...fd fe ff

Correction Data [00 03 06...9c 9d 9e ... fe ff ff]

(16-bit QD channel magnitude) f d38

l |

'
'

f e (8-bit gamma corrected magnitude)

Gamma Table Errors

Graphics drivers should return an error code if the following fields of GammaTbl do not
contain these values:

0 ==gVersion This is currently the only defined version of the gamma table
structure.
0 ==gType This indicates that the gamma table is not dependent on the frame

buffer hardware. Few existing gamma tables are frame buffer—
specific. This field formerly contained a NuBus construct, dr HW d,
which is no longer applicable.

1 ==gChanCnt || 3 ==gChanCnt
Only one or three channels of correction data are supported.

GrayPage (csCode = 5)

The required Gr ay Page routine fills the specified video page with a dithered gray
pattern in the current video mode. The page number is 0 based.

CSErr = Control (theDevi ceRef Num cscG ayPage, &t heVDPagelnfo );
- - csMode Unused

- - csDat a Unused

--> csPage Desired display page to gray

-- csBaseAddr Unused
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The purpose of the G ayPage routine is to eliminate visual artifacts on the screen during
mode changes. When the mode changes, the contents of the frame buffer immediately
acquire a new color meaning. To avoid annoying color flashes, two events must occur:

= Set Mode or Swi t chMbde sets the entire contents of the CLUT to 50 percent gray
before changing the mode, so that all possible indexes in either the old or new depth
appear the same.

» G ayPage fills the frame buffer with one of these 50 percent dither patterns:
OxAAAAAAAA represents 32 pixels at 1 bpp
0xCCCCCCCC represents 16 pixels at 2 bpp
0xFOFOFOFO represents 8 pixels at 4 bpp
0xFFOOFFOO represents 4 pixels at 8 bpp
0xFFFF0000 represents 2 pixels at 16 bpp
OXFFFFFFF represents 1 pixel at 32 bpp (invert to get the next pixel)

For direct devices, G ayPage also builds a three-channel linear gray color table,
gamma-corrects the table, and loads it into the color table hardware.

SetGray (csCode = 6)

322

The optional Set Gr ay routine is used with indexed devices to specify whether
subsequent Set Ent ri es calls fill a card’s CLUT with actual colors or with the
luminance-equivalent gray tones.

OCSErr = Control (theDevi ceRef Num cscSet Gray, &t heVDG ayRecord );
--> cshMode Enable or disable luminance mapping

For actual colors (luminance mapping disabled), Set G ay is passed a csMbde value
of 0; for gray tones (luminance mapping enabled), it is passed a csMbde value of 1.
Luminance equivalence should be determined by converting each RGB value into the
hue-saturation-brightness system and then selecting a gray value of equal brightness.
Mapping colors to luminance-equivalent gray tones lets a color monitor emulate a
monochrome monitor exactly.

If a driver is told to disable luminance mapping and the connected display is known to
be a monochrome device, the driver should set csMbde to 1 and keep luminance
mapping enabled.

A direct device should always save the csMbde value. Luminance mapping, however,
should never occur in control routines that modify the CLUT.
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SetInterrupt (csCode = 7)

The optional Set | nt er r upt routine controls the generation of VBL interrupts.

CSErr =

Control (theDevi ceRef Num cscSetlnterrupt, & heVDPagelnfo );
--> cshbde Enable or disable interrupts

-- csDat a Unused

-- csPage Unused

- - csBaseAddr Unused

To enable interrupts, pass a csMbde value of 0; to disable interrupts, pass a csMbde
value of 1.

DirectSetEntries (csCode = 8)

Di rect Set Ent ri es is optional. Normally, color table animation is not used on a direct
device, but there are some special circumstances under which an application may

want to change the color table hardware. The Di r ect Set Ent ri es routine provides
the direct device with indexed mode functionality identical to the regular Set Ent ri es
control routine.

OSErr = PBControl (theDevi ceRef Num cscDirectSetEntries,
&t heVDSet Ent r yRecor d) ;

--> csTabl e Pointer to Col or Spec array
--> csStart First entry in table
--> csCount Number of entries to set

The Di r ect Set Ent ri es routine has exactly the same functions and parameters as the
regular Set Ent r i es routine, but it works only on a direct device. If this call is issued to
an indexed device, it should return contr ol Err.

SetDefaultMode (csCode =9)

The Set Def aul t Mode routine is obsolete for graphics drivers in the second generation
of Power Macintosh computers. The driver should return cont r ol Er r. Graphics
drivers should instead use the SavePr ef er r edConf i gur at i on routine described on
page 325.
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SwitchMode (csCode = 10)

The Swi t chMbde routine is required.

OSErr = Control (t heDevi ceRef Num cscSwit chMode,
& heVDSwi t chl nf oRecord );

--> csMode Relative bit depth to switch to

--> csDat a Di spl ayModel Dto switch into

--> csPage Video page number to switch into

<-- csBaseAddr Base address of the new Di spl ayModel D

The VDSwi t chl nf oRec structure, described on page 352, indicates what depth mode to
switch to, the Di spl ayModel Dvalue for the new display mode, and the number of the
video page to switch to. The driver uses the csBaseAddr field of VDSwi t chl nf oRec to
return to the base address of the video page specified by csPage.

Note
Unlike NuBus declaration ROM-based drivers, the Swi t chMbde
routine should not modify the driver’s AuxDCEdCt | Sl ot | d field. O

SetSync (csCode = 11)
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The optional Set Sync routine complements Get Sync, described on page 331. It can be
used to implement the VESA Device Power Management Standard (DPMS) as well as to
enable a sync-on-green, sync-on-red, or sync-on-blue mode for a frame buffer.

enum {
kDi sabl eHori zont al SyncBit =
kDi sabl eVertical SyncBit = 1,
kDi sabl eConpositeSyncBit = 2,
kEnabl eSyncOnBl ue = 3,
kEnabl eSyncOnGreen = 4,
kEnabl eSyncOnRed = 5

0,

}

The following illustrates a typical use of Set Sync:
OSErr = Control (theDevi ceRef Num cscSet Sync, &t heVDSyncl nf oRec);

Following is the information that the status routine must return in the fields of the
VDSyncl nf oRec record (defined on page 331) passed by Set Sync:

- cshbde Bit map of the sync bits that need to be disabled or enabled.

N csFl ag A mask of the bits that are valid in the csMbde field. In this manner,
a 1in bit 2 of csFl ag indicates that bit 2 in the csMode field is
valid and the driver should set or clear the hardware bit accordingly.
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To preserve compatibility with the current Energy Saver control panel, the following
special case should be implemented. If the csFl ags parameter of a Set Sync routine is
0, the routine should be interpreted as if the csFl ags parameter were 0x3. This
interpretation is necessary because the Energy Saver control panel sends a csMbde
value of 0 and a csFl ags value of 0 in its parameter block when it wants the display
to enable all the horizontal, vertical, and composite sync lines. With the new definition,
this would have no effect; the result would be that the display would never come out
of sleep mode.

The Set Sync routine can be used to implement the VESA DPMS standard by disabling
the horizontal or vertical sync lines, or both. The VESA DPMS standard specifies four
software-controlled modes of operation: On, Standby, Suspend, and Off. Mode switches
are accomplished by controlling the horizontal and vertical sync signals. Table 11-1
illustrates the relationship between modes and signals.

Table 11-1 Implementing VESA DPMS modes with Set Sync

Horizontal Vertical Powqger
Mode sync sync Video savings Recovery period
On Pulses Pulses Active None n.a.
Standby No pulses Pulses Blanked Minimal Short or immediate
Suspend Pulses No pulses Blanked Significant Substantial
Off No pulses No pulses Blanked Maximum System dependent

In the case of a display using the only the composite sync line, only the On and Off
power saving modes are possible.

SavePreferredConfiguration (csCode = 16)

The required SavePr ef er r edConf i gur at i on routine complements the

Get Pr ef erredConf i gur at i on control routine described on page 333. It is used by
clients to save the preferred relative bit depth (depth mode) and display mode. This
means that a PCI card should save this information in NVRAM so that it persists across
system restarts. Note that NVRAM use is limited to 8 bytes. For more information about
NVRAM in the second generation of Power Macintosh computers, see “Typical NVRAM
Structure” beginning on page 291.

OSErr = Control (t heDevi ceRef Num cscSavePr ef erredConfi gurati on,
& heVDSwi t chl nf o) ;

The Monitors control panel can use this routine to set the preferred resolution and
update the resolution list displayed to the user. Following is the information that the
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control routine must return in the fields of the VDSWi t chl nf oRec record passed by
SavePr ef erredConfi gurati on:

--> cshbde Relative bit depth of preferred resolution
--> csDat a Di spl ayModel Dof preferred resolution
-- csPage Unused

-- csBaseAddr Unused

Note

The driver is not required to save any of the information across reboots.
However, it is strongly recommended that the relative bit depth and the
Di spl ayModel Dvalue be saved in NVRAM. O

SetHardwareCursor (csCode = 22)
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Set Har dwar eCur sor is a required routine for drivers that support hardware cursors.
QuickDraw uses the Set Har dwar eCur sor control call to set up the hardware cursor
and determine whether the hardware can support it. The driver must determine whether
it can support the given cursor and, if so, program the hardware cursor frame buffer (or
equivalent), set up the CLUT, and return noEr r. If the driver cannot support the cursor
it must return cont r ol Er r. The driver must remember whether this call was successful
for subsequent Get Har dwar eCur sor Dr awSt at e or Dr awHar dwar eCur sor calls, but
should not change the cursor’s x or y coordinates or its visible state.

OSErr = Control (theDeviceRef Num cscSet HardwareCursor,
&t heVDSet Har dwar eCur sor Rec) ;

> csCur sor Ref Reference to cursor data

The driver should call the VSL routine VSLPr epar eCur sor For Har dwar eCur sor with
csCur sor Ref and the appropriate hardware cursor descriptor. This routine, described
on page 346, will do all the neccessary conversion for the cursor passed incsCur sor Ref
to match the hardware described in the hardware cursor descriptor. If the cursor passed
in csCur sor Ref is compatable with the hardware cursor descriptor, the VSL call will
return t r ue; otherwise, it will return f al se. It will also pass back a cursor image at the
appropriate bit depth and pixel format for the hardware and a CTabPt r color table that
specifies the colors for the cursor.

The driver should be able to copy the cursor image passed back from

VSLPr epar eCur sor For Har dwar eCur sor directly into its hardware cursor
frame buffer (or equivalent) and program its CLUT, using the color table in a
fashion similar to the Set Ent ri es control call. As in the Set Ent ri es control
call, the driver must apply any gamma correction to the color table.

If a driver's hardware can support multiple hardware cursor formats, the driver can
make multiple calls to VSLPr epar eCur sor For Har dwar eCur sor with different
hardware cursor descriptors until the call succeeds or all hardware cursor formats
are exhausted.
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If the driver must access the cursor data structure passed in csCur sor Ref, it can
typecast it to a Cur sor | mageRec defined in Qui ckdr aw. h. However, the format of the
cursor passed in with csCur sor Ref is subject to change in future releases of Mac OS; it
is recommended that VSLPr epar eCur sor For Har dwar eCur sor be used because it
will be kept up to date with the format of csCur sor Ref .

DrawHardwareCursor (csCode = 23)

Dr awHar dwar eCur sor is a required routine for drivers that support hardware cursors.
It sets the cursor’s x and y coordinates and visible state. If the cursor was successfully set
by a previous call to Set Har dwar eCur sor, the driver must program the hardware with
the given x, y, and visible parameters and then return noEr r. If the cursor was not
successfully set by the last Set Har dwar eCur sor call, the driver must return

control Err.

OSErr = Control (theDeviceRef Num cscDrawHar dwareCursor,
&t heVDDr awHar dwar eCur sor Rec) ;

--> csCursor X X coordinate
> csCursoryY Y coordinate
--> csCursorVisible t r ue if the cursor must be visible

The client will have already accounted for the cursor’s hot spot, so the csCur sor Xand
csCur sor Y values are the x and y coordinates of the upper left corner of the cursor
image. Depending on the position of the hot spot, the upper left corner may be above or
to the left of the visible screen; thus, csCur sor X and csCur sor Y are signed values. The
driver is responsible for ensuring proper clipping if the cursor lies partially off the screen.

If csCur sor Vi si bl e is f al se, the driver must make the cursor invisible; otherwise,
the driver must make the cursor visible.

SetPowerState (csCode = 25)

The optional Set Power St at e routine lets the display hardware be placed in various
power states.

OSErr = Control (theDevi ceRef Num cscSet Power St at e,
& heVDPower St at eRec ) ;

--> power St at e Switch display hardware to this state
<-- power Fl ags Describes the status of the new state

The power St at e constants correlate with the VESA Device Power Management
Standards. The system pairs Set Power St at e and Set Sync calls. The display hardware
should only be placed in a low power state if the graphics controller can also place
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the connected display in a low power state. In other words, never place the display
hardware in a low power state that visibly disrupts video if the connected display would
remain active after a corresponding Set Sync call. The driver is responsible for restoring
its state when full power is restored.

Set the kPower St at eNeedsRef r eshBi t bit in power Fl ags if VRAM decays in the
new power St at e condition. When the driver transitions from a power St at e
condition in which VRAM decays to one in which VRAM is stable, the system will
refresh the VRAM.

Status Calls

The following sections present the graphics driver status calls. Not all video or display
drivers need to respond to every one of these calls.

GetMode (csCode =2)

The required Get Mode routine returns the current relative bit depth, page, and
base address.

OCSErr = Status(theDevi ceRef Num cscGet Mbde, &t heVDPagel nfo );

<-- cshbde Current relative bit depth
-- csDat a Unused
<-- csPage Current display page
<- - csBaseAddr Base address of video RAM for the current

Di spl ayMbdel Dand relative bit depth

GetEntries (csCode = 3)

The required Get Ent ri es routine returns the specified number of consecutive CLUT
entries, starting with the specified first entry.

CSErr =

PBSt at us(t heDevi ceRef Num cscGet Entries, &t heVDSet EntryRecord );
<-> csTabl e Pointer to ColorSpec array

--> csStart First entry in table

--> csCount Number of entries to set

If gamma correction is used, the values returned may not be the same as the values
orignally passed by the Set Ent ri es control call. If the value of csSt art is 0 or
positive, the routine must return csCount entries starting at that position. If the value
of csSt art is -1, the routine must access the contents of the Val ue fields in csTabl e
to determine which entries are to be returned. Both csSt art and csCount are 0 based;
their values are 1 less than the desired amount.
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Although direct devices do not have logical color tables, the Cet Ent r i es routine
should continue to return the current contents of the CLUT, just as it would for an
indexed device.

GetPages (csCode = 4)

The required Get Pages routine returns the total number of video pages available in the
current video card mode, not the current page number. This is a counting number and is

not 0 based.

CSErr =

St at us(t heDevi ceRef Num cscCet Pages, &t heVDPagelnfo );
-- csMbde Unused
-- csDat a Unused

<-- csPage Number of display pages available
-- csBaseAddr Unused

GetBaseAddress (csCode = 5)

The required Get BaseAddr ess routine returns the base address of a specified page in
the current mode.

OSErr = Status(theDevi ceRef Num cscCGet BaseAddr, &t heVDPagelnfo );

- - cshbde Unused

-- csDat a Unused

--> csPage Desired page

<-- csBaseAddr Base address of VRAM for the desired page

The Get BaseAddr ess routine lets video pages be written to even when they are
not displayed.

GetGray (csCode = 6)

The required Get G ay routine describes the behavior of subsequent Set Entri es
control calls to indexed devices.

OCSErr = Status(theDevi ceRef Num cscGet Gray, & heVDG ayRecord );
<-- cshMbde Luminance mapping enabled or disabled

The csMode parameter returns 0 if luminance mapping is disabled or 1 if it is enabled.
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GetInterrupt (csCode = 7)

The optional Get | nt er r upt status routine returns a value of 0 if VBL interrupts are
enabled and a value of 1 if VBL interrupts are disabled.

OSErr = Status(theDevi ceRef Num cscCGetlnterrupt, &t heVDPagelnfo );

<-- csMode Interrupts enabled or disabled
-- cshat a Unused
-- csPage Unused

- - csBaseAddr Unused

GetGamma (csCode = 8)

The Get Ganma routine returns a pointer to the current gamma table.

OSErr = Status(theDevi ceRef Num cscGet Gamma, &t heVDGammuaRecord );
<-- csGrabl e Pointer to gamma table

The calling application cannot preallocate memory because of the unknown size
requirements of the gamma data structure.

GetDefaultMode (csCode =9)

The Get Def aul t Mode control call is obsolete for PCI graphics drivers. The driver
should return st at usEr r. Graphics drivers in the second generation of Power
Macintosh computers use the Get Pr ef er r edConf i gur at i on routine described
on page 333.

GetCurrentMode (csCode = 10)

The required Get Cur r ent Mbde routine uses a VDSwi t chl nf oRec structure.PCI
graphics drivers return the current Di spl ayMbdel Dvalue in the csDat a field.

OSErr = Status (theRef Num cscCet Cur Mode, &t heVDSwit chl nfoRec );

<--  csMode Current relative bit depth

<-- csDat a Di spl ayMbdel D of current resolution
<-- csPage Current page

<-- csBaseAddr Base address of current page
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GetSync (csCode = 11)

The use of the optional Get Sync and Set Sync routines has been expanded to manage
the settings of all synchronization-related parameters of a frame buffer controller, not
just the horizontal and vertical syncs. Get Sync and Set Sync can be used to implement
the VESA DPMS as well as enable a sync-on-green mode for the frame buffer.

A VDSyncl nf oRec data structure has been defined for the Get Sync and Set Sync
routines:

struct VDSyncl nfoRec {
unsi gned char csMode;
unsi gned char csFl ags;

}

The csMode parameter specifies the state of the sync lines according to these bit
definitions:

enum {
kDi sabl eHori zont al SyncBit =
kDi sabl eVertical SyncBit = 1,
kDi sabl eConpositeSyncBit = 2,
kEnabl eSyncOnBl ue = 3,
kEnabl eSyncOnGreen = 4,
kEnabl eSyncOnRed = 5

Ol

b

To implement the DPMS standard, bits 0 and 1 of the csMbde field should have the
following values:

Bit 1 Bit 0 Status
0 0 Active

0 1 Standby
1 0 Idle

1 1 Off

Get Sync can be used in two ways: to get the current status of the hardware and to get
the capabilities of the frame buffer controller. These two different kinds of information
are discussed in the next sections.

Reporting the Frame Buffer Controller’s Capabilities

To find out what the frame buffer controller can do with its sync lines, the user of the
Cet Sync routine passes a value of OxFF in the csMbde flag. The driver zeroes out those
bits that represent a feature that is not supported by the frame buffer controller. The
available bit values are those for the csMbde parameter of VDSyncl nf oRec, listed

on page 331.
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For example, a driver that is capable of controlling the horizontal, vertical, and
composite syncs, and can enable sync on red, would return a value of 0x27:

csMbde = 0x0 |

( 1 << kDi sabl eHori zontal SyncBit) |
<< kDi sabl eVertical SyncBit) |
<< kDi sabl eConpositeSyncBit) |
<< kEnabl eSyncOnRed)

N N N
e

An additional bit is defined to represent those frame buffers that are not capable of
controlling the individual syncs separately but can control them as a group:

enum {
kNoSepar at eSyncControl Bit = 6
}

A driver that cannot control the syncs separately sets this bit to tell the client that the
horizontal, vertical, and composite syncs are not independently controllable and can
only be controlled as a group. Using the previous example, the driver reports a csMode
of 0x47:

cshWbde = 0x0 |

<< kDi sabl eHori zont al SyncBit) |
<< kDi sabl eVertical SyncBit) |
<< kDi sabl eConposi teSyncBit) |
<< kEnabl eSyncOnRed) |

<< kNoSepar at eSyncControl Bi t)

TN N N N N
N

Reporting the Current Sync Status

The other use of the Get Sync status routine is to get the current status of the sync lines.
The client passes 0x00 in the csMode field. The returned value represents the current
status of the sync lines. Bit 6 (KNoSepar at eSyncCont r ol Bi t ) has no meaning in

this case.

GetConnection (csCode =12)
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The required Get Connect i on routine gathers information about the attached display.

OSErr = Status (yourDeviceRef Num cscCet Connecti on,
&t heVDDi spl ayConnect | nf oRec) ;

<-- csDi spl ayType Display type of attached display

<-- csConnect TaggedType Type of tagging

<-- csConnect TaggedDat a Tagging data

<-- csConnect Fl ags Connection flags

<-- csDi spl ayConponent Return display component, if available
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See “Responding to GetConnectionInfo” beginning on page 339 for more information on
how to implement the Get Connect i on routine.

GetModeTiming (csCode = 13)

The Get ModeTi mi ng routine is required to report timing information for the desired
di spl ayModel D.

OSErr =
St at us(your Devi ceRef Num cscGet ModeTi mi ng, &t heVDTi m ngl nf oRec) ;

--> csTi m ngMode Desired Di spl ayMbdel D

<-- csTi m ngFor mat Format for timing info (kDecl ROM abl es)
<-- csTi m ngDat a Scan timing for desired Di spl ayModel D
<-- csTi m ngFl ags Report whether this scan timing is

optional or required

See “Display Timing Modes” beginning on page 338 for more details on the
Get MbdeTi m ng routine.

GetModeBaseAddress

The Get ModeBaseAddr ess call is obsolete in the second generation of Power
Macintosh computers. The driver should return st at usErr.

GetPreferredConfiguration (csCode = 16)

The required Get Pr ef err edConf i gur at i on routine complements
SavePr ef er redConf i gur at i on, described on page 325.

Get Pref erredConfi gur ati on returns the data that was set using
SavePr ef erredConfi gurati on.

OSErr = Status(theDevi ceRef Num cscGet PreferredConfiguration,
&t heVDSwi t chl nf o) ;

<-- cshbde Relative bit depth of preferred resolution
<-- csDat a Di spl ayModel D of preferred resolution
-- csPage Unused
-- csBaseAddr Unused
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GetNextResolution (csCode = 17)
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The required Get Next Resol ut i on routine reports all display resolutions that the
driver supports.

CSErr = Status
(t heDevi ceRef Num cscGet Next Resol uti on, &t heVDResol uti onl nfoRec);

-->  csPrevi ousDi spl ayMdel D ID of the previous display mode

<-- csDi spl ayModel D ID of the display mode following
csPrevi ousDi spl ayMbdel D.
<-- csHori zont al Pi xel s Number of pixels in a horizontal line
<-- csVertical Li nes Number of lines in a screen
<-- csRefreshRat e Vertical refresh rate of the screen
<- - csMaxDept hivbde Max relative bit depth for this Di spl ayMbdel D

Get Next Resol uti on passes a csPrevi ousDi spl ayMdel Dvalue and returns the
next supported display mode. The csDi spl ayMdel Dfield is updated and the
csHori zont al Pi xel s, csVerti cal Li nes, and csRef r eshRat e fields are set. The
csMaxDept hMode field is also set with the highest supported video bit depth. This
uses the same convention as in the past; kDept hMbdel is the first relative bit depth
supported, not necessarily 1 bit per pixel. For futher information about depth modes,
see the next section.

Observe these cautions:

The Di spl ayModel Dvalues used do not need to be the same as the ones Apple uses.
However, the Di spl ayMbdel Dvalue 0 and all values with the high bit set
(0x80000000 through OXxFFFFFFFF) are reserved by Apple.

To get the first resolution supported by a display, the caller will pass a value of
kDi spl ayModel DFi ndFi r st Resol ut i on in the csPr evi ousDi spl ayMbdel D
field of the VDResol ut i onl nf oRec structure.

To get the second resolution, the caller will pass the csDi spl ayMddel Dvalue of the
first resolution in the structure’s csPr evi ousDi spl ayModel Dfield.

When a call has the last supported resolution in the csPr evi ousDi spl ayMdel D
field, the driver should return a value of kDi spl ayMbdel DNoMor eResol uti ons in
the csDi spl ayModel Dfield. No error should be returned.

If an invalid value is passed in the csPr evi ousDi spl ayMdel Dfield, the driver
should return a par anEr r value without modifying the structure.

If the csPr evi ousDi spl ayModel Dfield is kDi spl ayModel DCur r ent, the driver
should return information about the current di spl ayModel D.

The constants just described are defined in the file Vi deo. h and are listed in “Data
Structures” beginning on page 351.
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GetVideoParameters (csCode = 18)

The required Get Vi deoPar anet er s routine returns video parameter information.

OSErr = Status (theDevi ceRef Num cscGet Vi deoPar aneters,
&t heVDVi deoPar anet er sRec) ;

--> csDispl ayMbdel D ID of the desired Di spl ayModel D

-->  csDept hMode Relative bit depth

<->  *csVPBl ockPtr Pointer to a VPBI ock

<-- csPageCount Number of pages supported for resolution
and relative bit depth

<-- csDevi ceType Direct, fixed, or CLUT

The Get Vi deoPar anet er s routine accepts csDi spl ayMddel D, csDept hivbde,
and a pointer to a VPBI ock structure, which it fills in with the data for the specified
csDi spl ayModel Dand csDept hMbde. It also returns the pageCount for that
particular bit depth, as well as the devi ceType.

Note

In PCI-based graphics drivers, the csVPBI ockPt r - >vpBase f set is
always 0. The base address of video RAM for the current page, is the
BaseAddr ess value returned by the Get Cur r ent Mode routine. O

GetGammalnfoList (csCode = 20)

The Get Gammal nf oLi st routine is optional. Clients wishing to find a graphics card’s
available gamma tables formerly accessed the Slot Manager data structures. PCI graphics
drivers must return this information directly.

In the future, gamma tables will be part of the display’s domain, not the graphics
driver’s domain. In the meantime, graphics drivers must still provide support for
them by responding to the Get Gammal nf oLi st and Ret ri eveGammaTabl e calls.
The Get Gammal nf oLi st routine iterates over the gamma tables supported by the
driver for the attached display.

CSErr = Status
(t heDevi ceRef Num cscGet Ganmal nf oLi st, &t heVDGamuli st Rec) ;

-->  csPrevi ousGanmmaTabl el D ID of the previous gamma table

<-- csGammaTabl el D ID of the gamma table following

csPrevi ousDi spl ayModel D
<-- csGanmaTabl eSi ze Size of the gamma table in bytes
<-- csGammaTabl eNane Gamma table name (C string)
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The csGammaTabl eNane parameter is a C string with a maximum of 31 characters. The
driver needs to copy the name from its storage to the storage passed in by the caller.

It can use CSt r Copy, described on page 279. The caller uses csGanmaTabl eSi ze to
allocate storage to read the entire structure, using the Ret ri eveGanmaTabl e routine.

Observe these cautions:

= A client will pass a csPr evi ousGammaTabl el Dof kGammaTabl el DFi ndFi r st
to get the first gamma table ID. The driver should return this value in the
csGammaTabl el Dfield.

» If the last gamma table ID is passed in the csPr evi ousGammaTabl el Dfield, the
driver should put a kGammaTabl el DNoMbr eTabl es in the csGammmaTabl el Dfield
and return noErr.

» If an invalid gamma table ID is passed in the csPr evi ousGammaTabl el Dfield, the
driver should return par ankr r and should not modify the data structure.

» Aclient can pass csPr evi ousGammaTabl el Dwith a value of
kGammaTabl el DSpeci fi c. This tells the driver that the csGammaTabl el D
contains the ID of the table that the client wants information about. This is a
way to bypass iteration through all the tables when the caller already knows
the GammaTabl el D.

» Although the Get Gammal nf oLi st call appears to perform its iteration operations
similarly to the Get Next Resol ut i on call, there is an important difference.
Cet Ganmal nf oLi st only returns information for gamma tables that are applicable
to the attached display; Get Next Resol ut i on returns the information regardless of
what display is connected.

RetrieveGammaTable (csCode = 21)

336

The optional Ret r i eveGanmmaTabl e routine copies the designated gamma table into
the designated location.

OSErr = Status (theDeviceRef Num cscRetri eveGammaTabl e,
&t heVDRet ri eveGammaRec) ;

--> csGammmTabl el D ID of gamma table to retrieve
<-> csGammuaTabl ePtr Location to copy table into

Ret ri eveGanmmaTabl e is used after a client has used the Get Ganmal nf oLi st routine
to iterate over the available gamma tables and subsequently decides to retrieve one. It is

the responsibility of the client to allocate and dispose of the memory pointed to by
csGanmaTabl ePtr.
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SupportsHardwareCursor (csCode = 22)

Graphics drivers that support hardware cursors must return t r ue in response to the
Suppor t sHar dwar eCur sor status call.

CSErr = Status (theDevi ceRef Num cscSupport sHar dwar eCur sor,
&t heVDSupport sHar dwar eCur sor Rec) ;

<-- csSupport sHar dwar eCur sor t r ue if hardware cursor is supported

GetHardwareCursorDrawState (csCode = 23)

Get Har dwar eCur sor Dr awSt at e is a required routine for drivers that support
hardware cursors.

CSErr = Status (theDevi ceRef Num cscGet Har dwar eCur sor Dr awSt at e,
&t heVDHar dwar eCur sor Dr awSt at eRec) ;

<-- csCursor X X coordinate from last Dr awHar dwar eCur sor call
<-- csCursorY Y coordinate from last Dr awHar dwar eCur sor call
<-- csCursorVisible t r ue if the cursor is visible

<-- csCur sor Set t r ue if cursor was successfully set by the last

Set Har dwar eCur sor call

The csCur sor Set parameter should be t r ue if the last Set Har dwar eCur sor control
call was successful and f al se otherwise. If csCur sor Set is true, the csCur sor X,
csCur sor Y, and csCur sor Vi si bl e values must match the parameters passed in to
the last Dr awHar dwar eCur sor control call.

After driver initialization the cursor’s visible state and set state should be f al se.
After a mode change the cursor should be made invisible but the set state should
remain unchanged.

GetPowerState (csCode = 25)

The optional Get Power St at e routine reports the display hardware’s current
power state.

OCSErr = Status (theDevi ceRef Num cscGet Power St at e,
&t heVDPower St at eRec ) ;

<-- power St at e Current power state of display hardware
<-- power Fl ags Status of current state

Set kPower St at eNeedsRef r eshBi t in power Fl ags if VRAM decays in the current
power state.
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Display Timing Modes
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Macintosh graphics drivers have always sensed the type of display attached to the
graphics card. They did this with three lines on the connector to perform a hardware
sense code algorithm. This algorithm is detailed in the Macintosh New Technical Note
HW-30, described in “Apple Publications” beginning on page xxi. Once the sense code
was determined, the graphics driver trimmed its list of available timing modes to those
that it calculated were possible.

Having the driver determine which timing modes are possible is very unflexible. New
displays have required new sense codes that old drivers do not recognize and new
technologies, such as the Display Data Channel (DDC) technology, provide additional
information that old drivers do not know how to interpret.

Thus, the graphics driver strategy for Mac OS is changing with the second generation of
Power Macintosh Computers. This new strategy emphasizes timing mode decisions
done through the Display Manager instead of the graphics driver. This approach has
these advantages:

= It gives display designers maximum flexibility to create displays that support
multiple timing modes.

= Itlets card desgners focus on hardware and be less concerned with the display that
is attached.

= It supports the Video Electronics Standards Association (VESA) DDC standard
(Level 2B), but does not force cards to interpret DDC content.

Display Manager Requirements

The Display Manager needs support from the graphics driver in order to implement
the trimming of the available timing modes. In the past, the driver has trimmed these
modes depending on the display that was sensed. Now the driver must perform the
following functions:

= Report as available (that is, do not trim) all timing modes that are supported by
the current graphics card hardware—for example, trim only those modes that
require different amounts or configurations of VRAM. When responding to
Cet Next Resol uti on calls, the driver must return all timing modes supported by
the current frame buffer. Do this for DDC displays, multiple scan displays, and
single-mode displays.

= If an unknown sense code is found, program the hardware as if a 13- or 14-inch
Monitor were sensed.

» If no display is sensed, return an error code from the | ni ti al i ze or Open routine.
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= When responding to Get ModeTi mi ng, report as not valid and not safe those timing
modes not validated by the sensing algorithm. Do this by clearing the nodeVal i d
and nodeSaf e flags.

= When responding to Get Connect i onl nf o, perform the extended sense algorithm
specified in the next section.

= Support DDC in the future.

Note

The reason for reporting invalid modes is that the Display Manager
interfaces with smart displays and allows those displays to adjust the
valid and safe flags monitor by monitor. The card has to know less about
the actual capabilities of the display, and the display manufacturer has
more flexibility about which modes will be active. O

Responding to GetConnectioninfo

The Get Connect i onl nf o call has been modified to support the new monitor sensing
scheme described in the previous section. Specifically, changes has been made to a
previously reserved field. This section describes the new functionality that graphics
drivers need to support to be compatible with the new timing mode trimming procedure.

New Field and Bit Definitions

The csConnect Tagged field, an unsigned short, in the previous definition has been
split into two fields, csConnect TaggedType and csConnect TaggedDat a:

struct VDD spl ayConnect | nf oRec {
unsi gned short csbDi spl ayType; /* type of display*/
unsi gned char csConnect TaggedType; /* type of taggi ng*/
unsi gned char csConnect TaggedData; /* taggi ng data*/

unsi gned |l ong csConnect Fl ags; /* tells about the
connecti on*/
unsi gned | ong csDi splayConponent; /* if the card has a direct
connection to the display,
it returns the display
conmponent here (future)*/
unsi gned | ong csConnect Reserved,; [* reserved*/

b

These two new fields are used to report monitor sensing information, as long as the bit
kTaggi ngl nf oNonSt andar d of the csConnect Fl ags field is not set (see next section).
If that bit is set, then the csConnect TaggedType and csConnect TaggedDat a fields
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are private and Mac OS will not interpret them. Following are the bit definitions for the
csConnect Fl ags field:

enum (
kAl | ModesVal i d =
kAl | ModesSaf e =
kReport sTaggi ng
kHasDi r ect Connecti on
kl sMonoDev =
kUncert ai nConnecti on
kTaggi ngl nf oNonSt andar d
kReport sDDCConnect i on
kHasDDCConnect i on =

/1 driver reports taggi ng

0 ~No ok~ wWDNPEO

b

Reporting csConnectTaggedType and csConnectTaggedData

Cet Connect i onl nf 0 is designed to be a real-time call, particularly when it is used for
tagging. When a driver receives this call, it should read the sense lines, obtaining the raw
sense code and the extended sense code.

IMPORTANT

The driver is required to do this everytime it gets this call.

It cannot just report the codes it sensed during initialization. a

When the kTaggi ngl nf oNonSt andar d bit of csConnect Fl ags is cleared to 0, then
csConnect TaggedType and csConnect Tagged data are used to report the raw sense
code and the extended sense code, respectively.

The following enumeration shows the constants used for csConnect TaggedType
when kTaggi ngl nf oNonSt andar d is 0:

t ypedef unsi gned char RawSenseCode;

enum {
kRSCZer o
kRSCOne
kRSCTwo
kRSCThr ee
kRSCFour
kRSCFi ve
kRSCSi x
kRSCSeven

1
~No o0k WON B O
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The RawSenseCode data type contains constants for the possible raw sense code values
when “standard” sense code hardware is implemented. For such sense code hardware,
the raw sense is obtained as follows:

» Instruct the frame buffer controller not to drive any of the monitor sense lines actively.

= Read the state of the monitor sense lines 2, 1, and 0. Line 2 is the MSB, 0 the LSB.

IMPORTANT
When the kTaggi ngl nf oNonSt andar d bit of csConnect Fl ags
is f al se, then the RawSenseCode constants are valid

csConnect TaggedType values in VDD spl ayConnect | nfo. a

The following enumeration shows the constants used for csConnect TaggedDat a
when kTaggi ngl nf oNonSt andar d is 0:

t ypedef unsi gned char ExtendedSenseCode;

enum {

kESCZer 0211 nch = 0x00,/* 21" RGB */

kESCOnePort rai t Mono = 0Ox14,/* portrait monochrome*/

kKESCTwo12l nch = 0x21,/* 12" RGB*/

KESCThr ee21l nchRadi us = 0x31,/* 21" RG&B (Radius)*/

KESCThr ee21l nchMbnoRadi us = 0x34,/* 21" nonochrone (Radius)*/

kKESCThr ee21l nchiMono = 0x35,/* 21" nonochronme*/

kESCFour NTSC = Ox0A,/* NTSC */

kESCFi vePortrait = Ox1E,/* Portrait RGB*/

kESCSi xMsB1 = 0x03,/* Multiscan band-1 (12"
thru 16")*/

kESCSi x V5B2 = Ox0B,/* Miltiscan band-2 (13"
thru 19")*/

kKESCSi xV5B3 = 0x23,/* Multiscan band-3 (13"
thru 21")*/

KESCSi xSt andar d = Ox2B,/* 13" or 14" RGB or 12"
nmonochr one*/

kESCSevenPAL = 0x00,/* PAL */

kESCSevenNTSC = 0Ox14,/* NTSC */

kESCSevenVGA = Ox17,/* VGA */

kESCSevenl6l nch = 0x2D,/* 16" RGB (Gol dFi sh)*/

kKESCSevenPALAI t er nat e = 0x30,/* PAL (alternate) */

kESCSeven19l nch = Ox3A,/* Third-party 19"*/

kESCSevenNoDi spl ay = Ox3F /* No display connected */

b

The Ext endedSenseCode data type contains enumerated constants for the values that
are possible when the extended sense algorithm is applied to hardware that implements
the “standard” sense code algorithm.
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For such sense code hardware, the algorithm is as follows, where sense line A
corresponds to 2, B to 1, and C to 0:

= Drive sense line A low and read the values of B and C.
= Drive sense line B low and read the values of A and C.
= Drive sense line C low and read the values of A and B.

In this way, a 6-bit number of the form BC/AC/AB is generated.

IMPORTANT
When the kTaggi ngl nf oNonSt andar d bit of csConnect Fl ags
is f al se, then these constants are valid csConnect TaggedDat a
values in VDDi spl ayConnect I nfo. a

Table 11-2 shows examples of csConnect TaggedType and csConnect TaggedDat a
values for certain monitors.

Table 11-2 Sample csConnect TaggedType and csConnect TaggedDat a values

Display csConnect TaggedType csConnect TaggedDat a
21" Apple RGB 0 0x00
20" Apple Multiscan 6 0x23
14" Apple RGB 6 0x2B

Connection Information Flags

The following values have been added to the connection information flags to supply
required information to the Display Manager:

= kReport sDDCConnect i on =7 means that the card supports the DDC and would
report a connection if a DDC display were connected.

= kHasDDCConnect i on =8 means the card has a DDC connection to the display.

= kTaggi ngl nf oNonSt andar d = 5 means that the information reported in
csConnect TaggedType and csConnect TaggedDat a fields does not correspond to
the Apple sense codes.

The flag kHasDi r ect Connect has been renamed kHasDi r ect Connect i on.

Timing Information

The file Vi deo. h contains constants for Apple-defined timings. A driver returns the
timing for a given display mode by Get Ti m ngl nf 0. The csTi m ngDat a field of the
VDTi m ngl nf oRec contains the timing constant for the display mode. The Display
Manager and smart monitors use it to adjust the valid and safe flags. The

VDTi mi ngl nf oRec structure is described on page 352.

Display Timing Modes



CHAPTER 11

Graphics Drivers

Timing information should reflect the actual timing driving the display. For example,
even if a card creates a large graphics device with hardware pan and zoom for a 13-inch
RGB display, it should still return t i m ngAppl e13.

Some Apple displays (such as that for the Macintosh Quadra 840Av) support display
modes such as 640x480 on a 16-inch display. The display is being driven at 16-inch
timing, but the graphics device is built smaller. The timing information for that display
mode should still be t i mi ngAppl el16.

Reporting Display Resolution Values

In the NuBus environment, the driver’s primary initialization routine trims the
supported display resolutions (functional sResources) to those that are available on

the display that is sensed. This makes it difficult to support new displays, as possible
supported resolutions might have been deleted by the card’s primary initialization
routine. The Display Manager now takes care of verifying that a particular resolution is
supported by the current display, using Get ModeConnect i on and Get Ti m ngl nf o.

The following sections detail what the different routines should do to implement the
reporting of all possible display resolutions. See the previous section, “Display Timing
Modes” beginning on page 338, for background information on timing modes.

Implementing the GetNextResolution Call

A driver should leave all modes (resolutions) supported by the current video card
hardware (for example, trim the modes that correspond to different amounts of VRAM).
The driver should do this for all displays, even single-mode displays. This will help to
decouple the graphics driver from knowing the capabilities of new displays.

Implementing the GetModeConnection Call

The Display Manager uses Get ModeConnect i on to ascertain the capabilities of a
connected display. For this call, the driver should not attempt to determine whether the
various modes are valid or safe. This means thekAl | ModesVal i d and kAl | ModesSaf e
bits of the csConnect Fl ags field should be set to 0. By setting these bit fields to 0, the
driver forces the Display Manger to make a Get ModeTi mi ng status call for each timing
mode instead of assuming that they all have the same state.

Implementing the GetModeTiming Call

Cet ModeTi mi ng is used by the Display Manager to gather scan timing information.

If the driver does not believe the display is capable of being driven with the desired
resolution, it marks the kMbdeVal i d and kMbdeSaf e bits of the csTi mi ngFl ags field
f al se. This indicates to the Display Manager that the driver doesn’t think the display
can handle the resolution but will let the Display Manager make the final decision,
possibly by asking another software module for more information.
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Programming the Hardware

A graphics driver should program the hardware to a valid and safe resolution, according
to the sensed display. It should still report data as detailed in the previous sections. The
driver could also program the hardware to its previous resolution (before the last system
restart), assuming that this information is valid for the current display.

Supporting the Hardware Cursor

PCI-based Power Macintosh computers implement a hardware cursor capability that
graphics drivers may support. The status and control calls to which such drivers must
respond are the following:

» Support sHar dwar eCur sor status call (csCode = 22), described on page 337

» Cet Har dwar eCur sor Dr awSt at e status call (csCode = 23), described on page 337
» Set Har dwar eCur sor control call (csCode = 22), described on page 326

» DrawHar dwar eCur sor control call (csCode = 23), described on page 327

Only drivers that provide a hardware cursor need to respond to these calls.

A utility routine, VSLPr epar eCur sor For Har dwar eCur sor, helps drivers convert
QuickDraw’s internal cursor representation into their hardware cursor’s format. This
routine is described in “Hardware Cursor Utility” beginning on page 346.

Video Services Library

344

The Macintosh Video Services Library (VSL) provides video interrupt services for
vertical blanking, horizontal blanking, and other tasks. It also contains a utility that can
be used by graphics drivers that respond to hardware cursor calls as described in
“Supporting the Hardware Cursor” beginning on page 344.

Interrupt Services

This section describes functions in the VSL that help video drivers signal the Macintosh
software to service display interrupts associated with the display attached to the
frame bulffer.

A driver can create as many interrupt services as it supports. The model described here
supports different types of video interrupts, such as horizontal blanking and frame
interrupts. It opens the door for specialized interrupts for specific applications (such as
broadcast). For each queue it supports, the driver is responsible for calling

VSLDol nt er r upt Ser vi ce when the associated interrupt happens.
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VSLNewlInterruptService

DESCRIPTION

OSErr VSLNewi nterrupt Service (RegEntryl DPtr servi ceOmner,
I nterrupt Servi ceType servi ceType,
Interrupt Serviceld* servicelD);

servi ceOmner RegEnt ryl DPt r passed to the driver at install time.
servi ceType Type of interrupt to be created.
servicel D Returned to specify the service for further calls to the VSL.
t ypedef unsigned | ong I nterrupt Servicel d;
t ypedef ResType I nt errupt Servi ceType;
enum {
kVBLService = "vbl '; /1 vertical blanking
kHBLService = 'hbl '; /1 horizontal blanking
kFraneService = 'framl; // interlace node

}s

VSLNewl nt er r upt Ser vi ce creates a new interrupt for a graphics device. The service
owner is the RegEnt ryl DPt r value passed to the driver at install time. This is used to
identify the owner. The service type is a r esType value indicating the type of interrupt
to be created. At this time only one interrupt of a given type can be created by a driver.
The ser vi cel Dvalue is returned by VSL and is used to specify the service for any
further calls to VSL.

VSLNew nt er r upt Ser vi ce can be called only at driver install, open, and close times—
times when memory management calls are safe.

VSLDolnterruptService

DESCRIPTION

OSErr VSLDol nterrupt Servi ce( InterruptServiceld servicelD );

servicel D Value returned by VSLNew nt er r upt Ser vi ce.

VSLDol nt er r upt Ser vi ce executes tasks associated with an interrupt service. When a
graphics driver gets an interrupt, it determines which service corresponds to that
interrupt and calls VSLDol nt er r upt Ser vi ce with the ser vi cel Dvalue for that
service. VSLDol nt er r upt Ser vi ce executes any tasks associated with the service.
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VSLDisposelnterruptService

DESCRIPTION

OSErr VSLDi sposel nterruptService( InterruptServiceld servicelD);

servicel D Value returned by VSLNewl nt er r upt Ser vi ce.

VSLDi sposel nt er r upt Ser vi ce disposes of an interrupt service. When a graphics
driver is closing for good, so that the card interrupt will no longer be serviced, it should
call VSLDi sposel nt er r upt Ser vi ce. The VSL will take over servicing any tasks still
in the service.

VSLDi sposel nt errupt Ser vi ce can only be called at driver install, open, and close
times—times when memory management calls are safe.

Hardware Cursor Utility

Drivers that support hardware cursors are passed a reference to a cursor stored in
QuickDraw’s internal representation. This cursor format must be converted into the
hardware cursor’s format. This conversion could include translating bit depths,
interpreting the cursor mask, and matching colors.

To facilitate support for hardware cursors, the VSL provides a utility routine that
performs the cursor conversion. By setting up a record that describes the hardware
cursor’s format, a driver can call this routine to do the conversion for it.

VSLPrepareCursorForHardwareCursor

DESCRIPTION

346

Bool ean VSLPrepar eCur sor For Har dwar eCur sor

(voi d *cur sor Ref ,
Har dwar eCur sor Descri ptorPtr har dwar eDescri ptor,
Har dwar eCur sor | nf oPt r hwCur sor | nf o) ;
cur sor Ref Reference to the cursor passed in by QuickDraw.

har dwar eDescri pt or Hardware cursor format.
hwCur sor | nf o Passed back to the driver to program the hardware cursor.

If the cur sor Ref passed to the driver is capable of being rendered by the hardware
cursor, VSLPr epar eCur sor For Har dwar eCur sor returns t r ue; otherwise, it returns
f al se. Cases where the routine returns f al se include a cursor needing more colors
than the hardware can supply, a cursor that is too big, and a cursor requiring special
pixel types that the hardware doesn’t support, such as inverted pixels.
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The driver uses the following structure to describe its hardware cursor:

enum {
kTr anspar ent Encodi ng = 0,
kl nverti ngEncodi ng
b
enum {
kTranspar ent Encodi ngShi ft = (kTransparent Encodi ng << 1),
kTr anspar ent EncodedPi xel = (0x01 << kTransparent Encodi ngShi ft),
kl nverti ngEncodi ngShi ft = (klnvertingEncodi ng << 1),
kl nverti ngEncodedPi xel = (0x01 << klnvertingEncodi ngsShift),
b
enum {
kHar dwar eCur sor Descri pt or Maj or Ver si on = 0x0001,
kHar dwar eCur sor Descri pt or M nor Ver si on = 0x0000
b
struct Har dwar eCur sorDescri ptorRec {
Ul nt 16 maj or Ver si on;
U nt 16 m nor Ver si on;
Ul nt 32 hei ght ;
Ul nt 32 wi dt h;
Ul nt 32 bi t Dept h;
Ul nt 32 maskBi t Dept h;
Ul nt 32 nuntol ors;
Ul nt 32 *col or Encodi ngs;
Ul nt 32 fl ags;
Ul nt 32 support edSpeci al Encodi ngs;
Ul nt 32 speci al Encodi ngs[ 16] ;
b

t ypedef struct HardwareCursorDescri ptorRec
Har dwar eCur sor Descri pt or Rec, *Har dwar eCur sor Descri ptorPtr;

The maj or Ver si on and mi nor Ver si on fields describe the version of the descriptor
record. The driver must set these to kHar dwar eCur sor Descr i pt or Maj or Ver si on
and kHar dwar eCur sor Descri pt or M nor Ver si on. Doing so will provide
compatibility with the conversion routine if the descriptor is changed in future releases
of the VSL.

The hei ght and wi dt h fields specify the maximum cursor height and width, in pixels,
supported by the hardware.

The bi t Dept h field specifies the bit depth of the hardware cursor.
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The maskBi t Dept h field is currently unused but reserved for future use. The driver
must set this field to 0.

The nuntCol or s field specifies the number of colors supported by the hardware.

The col or Encodi ngs field points to an array that specifies the hardware pixel
encodings that map to the colors in the hardware cursor color table. The first entry in this
array specifies the hardware cursor pixel value that corresponds to the first entry in the
hardware cursor’s color table; the second entry in this array specifies the pixel value for
the second entry in the hardware’s color table, and so on.

The f | ags field is used for extra information about the hardware. Currently, all flag bits
are reserved and must be set to 0.

The suppor t edSpeci al Encodi ngs field specifies the type of special pixels supported
by the hardware cursor and how they’re implemented.

The special pixel types supported by the descriptor are transparent pixels and inverting
pixels. Transparent pixels are invisible, and the frame buffer pixel underneath a
transparent hardware cursor pixel is seen. Inverting hardware cursor pixels invert the
frame buffer pixel underneath.

The speci al Encodi ngs field is an array that specifies the pixel values for special
encodings. Use the constants kTr anspar ent Encodi ng and kl nverti ngEncodi ng to
index into the array.

The following hardware descriptor specifies a typical two-color hardware cursor:

U nt 32 cursorCol or Encodi ngs[] =
{

0, 1
i

Har dwar eCur sor Descri pt or Rec  har dwar eCur sor Descri ptor =

{

kHar dwar eCur sor Descri pt or Maj or Versi on,// maj or versi on nunber
kHar dwar eCur sor Descri pt or M nor Versi on,// m nor version nunber

32, /1 hei ght

32, /1 width

2, /1 pixel depth

0, /1 mask depth

2, /1 nunber of cursor colors
&cur sor Col or Encodi ngs, /1 col or pixel encodings

0, /1 flags
kTranspar ent EncodedPi xel | // supports transparent pixels
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kl nverti ngEncodedPi xel , /1 supports inverting pixels
2, /1l transparent pixel encoding
3, /1 inverting pixel encoding

o, o0 00 0,0 0, 0, O, O, O O, O, O, 0, O // wunused encodings
}

The foregoing describes a 2-bit-per-pixel hardware cursor that can be up to 32 by 32
pixels in size and supports transparent and inverting pixels. A cursor pixel value of 0
will display the first color in the cursor’s color map, and a pixel value of 1 will display
the second color. A cursor pixel value of 2 will display the color of the screen pixel
underneath the cursor. A cursor pixel value of 3 will display the inverse of the color of
the screen pixel underneath the cursor.

The following hardware descriptor describes a three-color hardware cursor:

U nt 32 cursor Col or Encodi ngs[] =

Har dwar eCur sor Descri pt or Rec  har dwar eCur sor Descri ptor =

{

kHar dwar eCur sor Descri pt or Maj or Versi on,// major version nunber
kHar dwar eCur sor Descri pt or M nor Versi on,// m nor version nunber

32, /1 hei ght

32, /1 width

2, /1 pixel depth

0, /1 mask depth

3, /1 nunmber of cursor colors
&cur sor Col or Encodi ngs, /1 color pixel encodings

0, /1 flags

kTr anspar ent EncodedPi xel , // supports transparent pixels
0, /1 transparent pixel encoding

o, o0 00 0,0 O, 0, 0,0 00 00 O O O, O, O, O// wunused encodi ngs
b

The foregoing describes a 2-bit-per-pixel hardware cursor that can be up to 32 by 32
pixels in size and supports transparent pixels. A cursor pixel value of 1 displays the first
color in the cursor’s color map, a pixel value of 2 displays the second color, and a pixel
value of 3 displays the third color. A cursor pixel value of 0 displays the color of the
screen pixel underneath the cursor. If the cursor requires inverting pixels (for example,
the I-beam text edit cursor), a call to VSLPr epar eCur sor For Har dwar eCur sor will
return f al se and the driver should let the cursor be implemented in software.
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The VSLPr epar eCur sor For Har dwar eCur sor call will return the information that the
driver needs to program the hardware cursor in the following data structure:

enum {
kHar dwar eCur sor | nf oMaj or Ver si on = 0x0001,
kHar dwar eCur sor | nf oM nor Ver si on = 0x0000
1
struct Har dwar eCursor | nfoRec {
Ul nt16 maj or Ver si on;
ul nt 16 m nor Ver si on;
Ul nt 32 cur sor Hei ght ;
Ul nt 32 cur sor W dt h;
CTabPtr col or Map;
Ptr har dwar eCur sor ;
Ul nt 32 reserved[ 6] ;

b

typedef struct HardwareCursorl nfoRec HardwareCursorl nfoRec,
*Har dwar eCur sor | nf oPtr;

The maj or Ver si on and ni nor Ver si on fields describe what version of the info record
is being used. The driver must set these to kHar dwar eCur sor | nf oMaj or Ver si on
and kHar dwar eCur sor | nf oM nor Ver si on. Doing so will provide compatibility with
the conversion routine if the descriptor is changed in future releases of the VSL.

The cur sor Hei ght and cur sor W dt h fields specify the height and width of the cursor
passed in from QuickDraw.

The col or Map field is the table of colors that the cursor uses. A table big enough

to hold all of the colors supported by the hardware cursor must be passed to the
VSLPr epar eCur sor For Har dwar eCur sor call, which will fill this table with the
appropriate colors. These colors are taken from the color table in the gDevi ce record
for the driver’s display. The driver must perform any required gamma correction

on this color table.

The har dwar eCur sor field points to the buffer containing the converted image for

the hardware cursor. A buffer big enough to hold the largest cursor supported by the
hardware must be passed to the VSLPr epar eCur sor For Har dwar eCur sor call, which
will fill this buffer with the appropriate pixel values. The conversion call will not
neccessarily fill the entire buffer if the cursor passed from QuickDraw is smaller than the
largest cursor supported by the hardware. The har dwar eCur sor buffer image’s row
bytes will equal cur sor W dt h times the pixel depth of the hardware cursor. The driver
must set the extra pixels to be transparent.

The r eser ved field is an array of reserved values, and the driver must set these to 0.
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Data Structures

Mac OS uses the data structures listed in this section to communicate with graphics
drivers. The interface file Vi deo. h contains the latest information about these structures.

struct VPBl ock {

| ong vpBaseO f set ; [*always O for Slot Myr independent drivers*/
short vpRowByt es; /*wi dt h of each row of video nenory*/

Rect pBounds; /*BoundsRect for the video display */

short vpVer si on; / *Pi xel Map versi on nunber*/

short vpPackType;

| ong vpPackSi ze;

| ong vpHRes; /*horiz res of the device (pixels per inch)*/
| ong vpVRes; /*vert res of the device (pixels per inch)*/
short vpPi xel Type; /*defines the pixel type*/

short vpPi xel Si ze; /*nunber of bits in pixel*/

short vpCnpCount ; /*nunber of conponents in pixel*/

short vpCnpSi ze; /*nunber of bits per conponent*/

| ong vpPl aneByt es; /*of fset fromone plane to the next*/

In PClI-based graphics drivers, the vpBaseO f set is always 0. The base address of
video RAM for the current page, is the BaseAddr ess value returned by the
Get Cur r ent Mbde routine.

struct VDEntryRecord {

Ptr csTabl e; /*pointer to color table entry*/
s
struct VDGrayRecord ({
Bool ean csMode; /*same as GDDevType val ue (0=col or, 1=nono)*/
SInt8 filler;
b
struct VDSet EntryRecord {
Col or Spec *csTabl e; /[*pointer to an array of color specs*/
short csStart; [*which spec in array to start with, or -1*/
short csCount ; [ *number of color spec entries to set*/
s
struct VDGamuaRecord {
Ptr csGrabl e; [*pointer to gamrma tabl e*/
3
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struct VDSw t chl nfoRec {

U nt16 csMode; /*relative bit depth*/
Ul nt 32 csDat a; [ *di spl ay node | D*/
U nt16 csPage; /*page to switch in*/
Ptr csBaseAddr ; / *base address of page (return val ue)*/
Ul nt 32 csReserved,; /[*reserved (set to 0) */

1

struct VDTi m ngl nfoRec {
Ul nt 32 csTi m nghbde; /* timing node (a la InitGevice) */
Ul nt 32 csTi mi ngReserved; /* reserved */
Ul nt 32 csTi m ngFor mat ; /* what format is the tinmng info */
Ul nt 32 csTi m ngDat a; /* data supplied by driver */
Ul nt 32 csTi m ngFl ags; /* information*/

i

struct VDD spl ayConnect | nfoRec {
untl6 csDi spl ayType; /* type of display connected */
unt8 csConnect TaggedType; /* type of tagging */
unt8 csConnect TaggedDat a; /* tagging data */
Ul nt 32 csConnect Fl ags; /* info about the connection */
Ul nt 32 csDi spl ayConponent ; /* if the card has a direct connection

to the display it returns the
di spl ay conponent here (future) */

Ul nt 32 csConnect Reser ved; /* reserved */

struct VDPagel nfo {

short csMode;
| ong cshat a;
short csPage;
Ptr csBaseAddr ;

b

struct VDResol utionl nfoRec {

Di spl ayMbdel D

Di spl ayModel D
unsi gned | ong

unsi gned | ong
Fi xed

Dept hivbde
unsi gned | ong

csPrevi ousDi spl ayModel D, /* 1D of the previous resol ution
in a chain*/

csDi spl ayModel D /* 1D of the next resolution*/

csHori zont al Pi xel s; [* # of pixels in a horizonta
line at the nmax depth*/

csVerti cal Li nes; /* # of lines in a screen at the
max dept h*/

csRefreshRat e; /* vertical refresh rate, Hz*/

csiaxDept hibde; /* 0x80-based max bit depth*/

csResol uti onFl ags; [* flag bits*/
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unsi gned |l ong csReserved; /* reserved*/
b

typedef struct VDResol utionl nfoRec VDResol utionl nf oRec;

/* csResolutionFlags bit flags for VDResol utionlnfoRec*/
enum {
kResol uti onHasMul ti pl eDept hSi zes = 0
/* this node has different csHorizontal Pixels, csVertical Li nes at
di fferent depths (usually slightly larger at |ower depths)*/

b
struct VDVi deoPar anet er sl nf oRec {
Di spl ayMbdel D csDi spl ayMdel D, /[* 1D of the resolution
we want info on */
Dept hivbde csDept hode; /* relative bit depth for
the resol ution */
VPBI ockPt r csVPBI ockPtr; /* pointer to video paraneter block */
Ul nt 32 csPageCount ; /* nunmber of pages supported by the
resol ution */
Vi deoDevi ceType csDevi ceType; /* direct, fixed, or CLUT */
Ul nt 32 csReserved; /* reserved */
b
struct VDGet Ganmmali st Rec {
GanmaTabl el D csPrevi ousGanmaTabl el D; /* 1D of previous gamma table */
GammaTabl el D csGammaTabl el D; /* 1D of gamma table follow ng
csPrevi ousDi spl ayMdel D */
Ul nt 32 csGanmaTabl eSi ze; /* size of gacmma table in bytes */
char csGammaTabl eNane[ 32] ; /[* gamma table nane (C string) */
3
struct VDRetrieveGammaRec {
GanmaTabl el D csGanmaTabl el D; [* ID of ganma table to retrieve */
GamaThl *csGammaTabl ePtr; /* location to copy desired gamma to */
b
struct VDSupport sHar dwar eCur sor Rec {
Bool ean csSupport sHar dwar eCur sor ; /[* true if HWcursor supported */
SInt8 filler;
1
struct VDSet Har dwar eCur sor Rec {
voi d *csCur sor Ref;
1
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struct VDDr awHar dwar eCur sor Rec {

Sl nt 32 csCursorX;

Sl nt 32 csCursor;

Sl nt 32 csCursor Visibl e;
}s
struct VDSyncl nfoRec {

unt8 csMode;

unt8 csFl ags;

b

struct VDConvol utionl nfoRec {
Di spl ayMbdel D csDi spl ayModel D

Dept hivbde csDept hivbde;
Ul nt 32 csPage;

Ul nt 32 csFl ags;

Ul nt 32 csReserved;

s

struct VDPower St at eRec {
unsi gned |l ong power State;
unsi gned | ong powerFl ags;
unsi gned | ong power Reservedl;
unsi gned |l ong power Reserved?2;

s

typedef Ul nt32 Di spl ayModel D;
typedef Ul nt32 Vi deoDevi ceType;
typedef Ul nt 32 GammaTabl el D,

/* | D of resolution we want

/* Relative bit depth

/* Power Mbde constants for VDPower StateRec. power State. */

kAvVPower OF f ,
kAVPower St andby,
kAVPower Suspend,
kAVPower On

1

enum {

/* Power Mbde constants for VDPower StateRec. power Fl ags. */

kPower St at eNeedsRefreshBi t = 0,

kPower St at eNeedsRef reshMask= (1L << 0)

s
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/* bit definitions for the get/set sync call*/
enum {

kDi sabl eHori zont al SyncBi t =0,
kDi sabl eVerti cal SyncBit = 1,
kDi sabl eConposi t eSyncBi t = 2,
kEnabl eSyncOnBl ue = 3,
kEnabl eSyncOnGr een = 4,
kEnabl eSyncOnRed = 5,
kNoSepar at eSyncContr ol Bi t = 6,
kHor i zont al SyncMask = 0x01,
kVerti cal SyncMask = 0x02,
kConposi t eSyncMask = 0x04,
kDPMSSync Mask = 0x7,
kSyncOnBl ueMask = 0x08,
kSyncOnG eenMask = 0x10,
kSyncOnRedMask = 0x20,
kSyncOnMask = 0x38
s
/* Bit definitions for the get/set convolution call*/
enum {
kConvol ved = 0,
kLi veVi deoPassThru =1,
kConvol vedMask = 0x01,
kLi veVi deoPassThruiMask = 0x02

H

/* c¢sTi m ngFormat val ues in VDTi minglnfo */
[* timing info follows Decl ROM format */

enum {
kDecl ROM abl es = 'decl"

b

enum {
timnglnvalid = 0, /* unknown tim ng; user must confirnt/
ti m ngAppl e_512x384_60hz = 130, /* 512x384 (60 Hz) Rubik tim ng*/
tim ngAppl e_560x384_60hz = 135, /* 560x384 (60 Hz) Rubi k-560 tim ng*/
ti m ngAppl e_640x480_67hz = 140, /* 640x480 (67 Hz) HR tim ng*/
ti m ngAppl e_640x400_67hz = 145, /* 640x400 (67 Hz) HR-400 tim ng*/
ti m ngVESA _640x480_60hz = 150, /* 640x480 (60 Hz) VGA tim ng*/
ti m ngAppl e_640x870_75hz = 160, /* 640x870 (75 Hz) FPD ti m ng*/
ti m ngAppl e_640x818 75hz = 165, /* 640x818 (75 Hz) FPD-818 timi ng*/
tim ngAppl e_832x624_75hz = 170, /* 832x624 (75 Hz) Gol dFish tim ng*/
ti m ngVESA_800x600_56hz = 180, /* 800x600 (56 Hz) SVGA tim ng*/
tim ngVESA_800x600_60hz = 182, /* 800x600 (60 Hz) SVGA tim ng*/
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ti m ngVESA _800x600_72hz = 184, /* 800x600 (72 Hz) SVGA tim ng*/

ti m ngVESA_800x600_75hz = 186, /* 800x600 (75 Hz) SVGA tim ng*/

ti m ngVESA 1024x768_60hz = 190, /* 1024x768 (60 Hz) VESA 1K-60Hz*/

ti m ngVESA _1024x768_70hz = 200, /* 1024x768 (70 Hz) VESA 1K-70Hz*/

ti m ngAppl e_1024x768_75hz = 210, /* 1024x768 (75 Hz) Apple 19" RGB*/

ti m ngAppl e_1152x870_75hz = 220, /* 1152x870 (75 Hz) Apple 21" RGB*/

ti m ngAppl eNTSC_ST = 230, /* 512x384 (60 Hz, interlaced,
nonconvol ved) */

ti m ngAppl eNTSC_FF = 232, /* 640x480 (60 Hz, interlaced,
nonconvol ved) */

ti m ngAppl eNTSC_STconv = 234, /* 512x384 (60 Hz, interlaced,
nonconvol ved) */

ti m ngAppl eNTSC_FFconv = 236, /* 640x480 (60 Hz, interlaced,
nonconvol ved) */

ti m ngAppl ePAL_ST = 238, /* 640x480 (60 Hz, interlaced,
nonconvol ved) */

ti m ngAppl ePAL_FF = 240, /* 768x576 (60 Hz, interlaced,
nonconvol ved) */

ti m ngAppl ePAL_STconv = 242, /* 640x480 (60 Hz, interlaced,
nonconvol ved) */

ti m ngAppl ePAL_FFconv = 244, [* 768x576 (60 Hz, interlaced,
nonconvol ved) */

ti m ngVESA 1280x960_75hz = 250, /* 1280x960 (75 Hz)*/

ti m ngVESA 1280x1024_60hz = 260, /* 1280x1024 (60 Hz)*/

tim ngVESA _1280x1024_75hz = 262, /* 1280x1024 (75 Hz)*/

ti m ngVESA_1600x1200_60hz = 280, /* 1600x1200 (60 Hz) VESA proposed*/

ti m ngVESA 1600x1200_65hz = 282, /* 1600x1200 (65 Hz) VESA proposed*/

ti m ngVESA 1600x1200_70hz = 284, /* 1600x1200 (70 Hz) VESA proposed*/

ti m ngVESA_1600x1200_75hz = 286, /* 1600x1200 (75 Hz) VESA proposed*/

ti m ngVESA 1600x1200_80hz = 288 /[/* 1600x1200 (80 Hz) VESA proposed

(pixel clock is 216 Mhz dot cl ock)*/

/* csConnect Fl ags val ues in VDD spl ayConnectInfo */

enum {
kAl | ModesVal i d =
kAl | ModesSaf e =
kReport sTaggi ng =
kHasDi r ect Connecti on =
kl sMonoDev =
kUncert ai nConnecti on =
kTaggi ngl nf oNonSt andar d
kReport sDDCConnect i on =
kHasDDCConnect i on =
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/* csDispl ayType val ues in VDD spl ayConnectlnfo */

enum {
kUnknownConnect =1,
kPanel Connect = 2, /* for use with fixed-in-place LCD panels */
kPanel TFTConnect = 2, /* alias for kPanel Connect */
kFi xedMbdeCRTConnect = 3, /* for use with fixed-node
(i.e. very limted range) displays */
kMul ti ModeCRT1Connect = 4, /* 320x200 maybe, 12" maybe, 13" (default),
16" certain, 19" maybe, 21" maybe */
kMul ti ModeCRT2Connect = 5, /* 320x200 naybe, 12" maybe, 13" certain
16" (default), 19" certain, 21" naybe */
kMul t i ModeCRT3Connect = 6, /* 320x200 maybe, 12" maybe, 13" certain
16" certain, 19" default, 21" certain */
kMwul ti ModeCRT4Connect = 7, /* expansion to | arge multinode
(not yet used) */
kModel essConnect = 8, /* expansi on to nodel ess nodel
(not yet used) */
kFul | PageConnect =9, /* 640x818 (to get 8bpp in 512K case)
and 640x870 (these two only) */
kVGAConnect = 10, /* 640x480 VGA default--
guestion everything else */
kNTSCConnect = 11, /* NTSC ST (default), FF, STconv, FFconv */
kPALConnect = 12, /* PAL ST (default), FF, STconv, FFconv */
kHRConnect = 13, /* 640x400 (to get 8bpp in 256K case)
and 640x480 (these two only) */
kPanel FSTNConnect = 14 [* for use with fixed-in-place LCD FSTN
(aka "Supertwi st") panels */
s
[* c¢sTi mngFl ags val ues in VDTi m ngl nfoRec */
enum {
kMbdeVal i d =0, /* says that this node should NOT be trinmed */
kModeSaf e =1, /* this node does not need confirmation */
kModeDef aul t = 2, [* default node for this type connection */
kMode ShowNow = 3, [/* this node should al ways be shown (even

though it may require a confirm */
kMbdeNot Resi ze =4, [* should not be used to resize the display,
e.g. node selects different connector on card */
/* has nore pixels than are actually displayed */

11
ol

kModeRequi r esPan
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t ypedef unsi gned short DepthMode;
enum {

kDept hMbodel = 128
kDept hMode2 = 129,
kDept hMbde3 = 130
kDept hModed4 = 131
kDept hMode5 = 132,
kDept hMbde6 = 133

t ypedef unsi gned char RawSenseCode;

enum {

b

typedef unsigned char

kRSCZer o =
kRSCOne =
kRSCTwo =
kRSCThr ee =
kRSCFour =
kRSCFi ve =
kRSCSi x =
kRSCSeven =

enum {

358

KESCZer 0211 nch
kESCOnePortrait Mono
kESCTwo12Il nch
KESCThr ee21l nchRadi us

kESCThr ee21l nchivbnoRadi us

kESCThr ee21l nchibno
kESCFour NTSC

KESCFi vePortrait
kESCSi xVsB1
kESCSi x MsB2
kESCSi x MsB3
kESCSi xSt andar d
kESCSevenPAL
kESCSevenNTSC
kESCSevenVGA
kKESCSevenl16l nch
kESCSevenPALAl ter nat e
KESCSevenl9l nch
KESCSevenNoDi spl ay

Data Structures

~No ogh~wdNPE O

0x00,
0x14,

= 0x21,

0x31,
0x34,
0x35,

= Ox0A

Ox1E,

= 0x03,

0xO0B,

= 0x23,

0x2B,
0x00,
0x14,
0x17,

= 0x2D,

0x30,

= Ox3A,

Ox3F

Ext endedSenseCode

/* 21" RGB */

/[* portrait Monochrone */
[* 12" RGB */

/* 21" RGB (Radi us) */

[* 21" nmonochronme (Radius) */
[* 21" rnonochrome */
/* NTSC */

/* Portrait RCB */

/* Multiscan band-1 (13" thru 16")
/* Multiscan band-2 (13" thru 19")
/* Multiscan band-3 (13" thru 21")
[* 13"/14" RGB or 12" Monochrome

/* PAL */

/* NTSC */

/* VGA */

/[* 16" RGB (Col dFi sh) */

/* PAL (alternate) */

[* Third-party 19” */

/* No display connected */

*/
*/
*/
*/
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enum {
kDi spl ayModel DCurrent = 0xO, /'l reference the current D splayMddel D
kDi spl ayModel Dinvalid = Oxffffffff, // a bogus D splayMddelD in all cases
kDi spl ayModel DFi ndFi rst Resolution = Oxfffffffe, // used in
/1 GetNextResolution to
/1 reset iterator
kDi spl ayModel DNoMor eResol utions = Oxfffffffd /1 used in
/1 GetNextResolution to
/1 indicate end of I|ist

}

enum {
kGammaTabl el DFi ndFirst = Oxfffffffe, /1 get the first ganma table ID
kGammaTabl el DNoMbreTabl es = Oxfffffffd,// used to indicate end of |ist
kGammaTabl el DSpeci fic = 0x0 /1 return the info for the given table ID

}
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This chapter describes what must be done to create STREAMS drivers for the Apple
Open Transport networking hardware. It also describes the minimal functionality that

must be supported by any driver that works with the Open Transport implementations
of AppleTalk and TCP/IP. In this chapter, STREAMS drivers are also called port drivers.

Open Transport uses the STREAMS model for implementing protocols and drivers to
provide flexibility for mixing and matching protocols. This approach also allows a wide
range of third-party STREAMS modules and drivers to be easily ported to the Open
Transport environment.

Part of the flexibility of the STREAMS environment comes from its being a messaging
interface with only a few well-defined messages. The most common types of messages
are M_DATA (for sending raw data), M_PROTO(for sending normal commands), and
M_PCPROTO (for sending high-priority commands). Since STREAMS does not define the
content of M_PROTOor M_PCPROTOmessages, it is necessary for modules to agree on a
message format if they are to communicate. Apple uses the Transport Provider Interface
(TPI) message format for most protocol modules and the Data Link Provider Interface
(DLPI) for STREAMS port drivers.

This document assumes familiarity with the STREAMS environment and with the set of
STREAMS messages defined by the DLPI specification (Data Link Provider Interface
Specification by Unix International, OSI Workgroup).

Dynamic Loading

362

Open Transport supports two methods of dynamically loading STREAMS modules. A
STREAMS module may be written as an Apple Shared Library Manager (ASLM) shared
library or as a Code Fragment Manager (CFM) code fragment. STREAMS modules
written for 68000-family processors must use the ASLM. The CFM is the preferred
mechanism for PowerPC modules, but the ASLM may also be used, especially if the
module loads C++ classes dynamically.

In this chapter, whenever a STREAMS module or driver is described as exporting a
function it means that it exports the function using the named export method of the
appropriate DLL. For the ASLM, this means using the ext er n keyword in front of the
name of the function in the export file. For the CFM, this means using the —export
switch when linking a shared library.

IMPORTANT

Port drivers for the second generation of Power Macintosh computers
must be written to conform to the new native driver architecture, using
the CFM only. Open Transport will get all of the information it needs
from the Macintosh Name Registry, described in Chapter 8. a

Dynamic Loading
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Finding the Driver

For Open Transport to be able to use a port driver, it needs to know that the driver exists.
This is accomplished by having a port scanner register the port driver with Open
Transport. On Power Macintosh computers with the native driver architecture, Open
Transport provides this scanner, and driver writers only need to know how to set up the
driver so that it can be found. With other computers, the driver writer may need to
provide the port scanner.

Native Port Drivers

Open Transport provides the expert for drivers written for PCI-based Power Macintosh
computers with the native driver architecture. For your driver to be automatically
located and installed by the Open Transport expert, you must first define and export a
Driver Descri pti on structure as part of your driver so that your driver is added to
the Name Registry. This structure is described in “Driver Description Structure”
beginning on page 88.

For Open Transport, the fields of the Dri ver Descri pt i on structure must be set
as follows:

dri ver DescSi gnat ure
Must contain the value kTheDescri pti onSi gnat ure.

dri ver DescVersi on
Must contain the value kl ni ti al Dri ver Descri pt or.

driver Type. nanel nfoStr
Fill in with the name of the driver. It must be exactly the same name
as the module name pointed to by the st r eant ab structure of the
driver (in the gi _m nf o->mi _i dnane field). The driver name may
not end in a digit.

driver Type. ver si on
Fill in with the version number of the driver (not the
version number of the device, which is stored in the
dri ver DescVer si on. revi si onl Dfield).

Driver GSRunti nel nfo. driver Runti ne
This field must have the bit kdr i ver | sUnder Expert Cont r ol set.

Driver OSRunt i nel nf o. dri ver Nane
This field must contain one of the device names found in
OpenTpt Li nks. h. These include kEnet Nare, kTokenRi ngNare,
kFDDI Nane, and so on. Remember that this field is a Pascal string,
and the equates are for C strings, so you must use code such as "\ p"
kEnet Nane to get the desired effect.

Driver GSRunti nel nfo. dri ver DescReser ved[ 8]
These are reserved fields and should be initialized to 0.
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Driver CSServi ce. servi ce[ x] . servi ceCat egory
At least one of your service categories must be filled in with the
category kSer vi ceCat egor yopent r ansport .

Dri ver OSSer vi ce. servi ce[ X] . servi ceType
The service type field is a bit field that tells Open Transport about
your device. It has this form:

xxxxdddd dddddddd cccccccc XXxXXXXTD

where the d bits indicate the device type for Open Transport, the ¢
bits indicate Ethernet framing options (the driver’s capability bits), the
lower 2 bits (TD) state whether the driver is TPI or DLPI, and all other
bits are 0 (shown by x). The macro

OTPCl Servi ceType(devType, capabilityBits, i sTPI,i sDLPI)

should be used to create this field. The list of device types available is
found in the header file OpenTpt Li nks. h.

Dri ver CSServi ce. servi ce[ x] . servi ceVer si on
This field specifies the version of the Open Transport programming
interface that your driver supports. It is in the standard NunVer si on
format (the format of a 4-byte ' ver s' resource). Currently, this field
should be set to the constant KOTDr i ver API Ver si on.
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Once your driver is registered with Open Transport, it is ready for Open Transport to
install in a stream. This section describes the installation and loading processes.

Driver Initialization

Any necessary driver initialization should be done by the port scanner before registering
the driver. This insures that a device that is not usable does not get registered. For
systems using the native driver architecture, Open Transport's port scanner will call

Val i dat eHar dwar e before registering your port.

OTResul t Val i dat eHardware (RegEntryl DPtr)

The parameter passed to the Val i dat eHar dwar e function depends on the port scanner
being used. If the driver is able to change the power level of the device, it must use the
Val i dat eHar dwar e function, setting the device to either low power or no power.

Open Transport requires that Val i dat eHar dwar e be exported. When this function is
called, it should validate that the hardware is correct for the driver and is in good
working order. If the function returns KENCENTET r, then the hardware is probably not
the hardware for the driver and Open Transport will continue scanning for another
driver. This is especially important for cards that do not have Open Firmware ROMs,
because multiple vendors’ drivers may end up with the same name and appear to be
usable with each other’s hardware.
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For information about Mac OS services available to support Val i dat eHar dwar e, see
“Driver Initialization and Resource Verification” beginning on page 145.

Val i dat eHar dwar e should return one of the following values:

kOTNoEr r or The hardware is OK. The device will be registered, and the driver
may be unloaded from memory.

kOTPCI NoEr r or St ayLoaded

The hardware is OK, the device will be registered, and the driver
will not be unloaded from memory.

KENXI CEr r The hardware is correct for the driver but is not OK. The
port will not be registered, and the driver will be unloaded
from memory.

KENCENTET r The hardware is probably not correct for the driver. The port will
not be registered, and the driver will be unloaded. Open
Transport will continue scanning for other drivers that might
work with the hardware.

number < 0 Any appropriate error code (such as KENOVENET r ). The port will
not be registered, and the driver will be unloaded.

If the Val i dat eHar dwar e function is not exported, Open Transport will proceed as if
the function returned kOTNoEr r or .

Driver Loading

When a service requires the use of your driver, Open Transport will automatically load it
and install it into the STREAMS module tables. In order to do this, your module must
export a function named either Get OTI nst al | | nf 0 or Get OTxxxxxl nstal | I nfo
(where xxxxx is the name of the module or driver).

install _info* GetOllnstalllnfo(void);

This function returns the installation information that Open Transport needs to install
the driver into the STREAMS tables, using the following data structure:

structure install _info
{
structure streamtab*install _str;
Ul nt 32 install _flags;
Ul nt 32 install _sqlvl;
char* i nstal | _buddy;
voi d* ref | oad
Ul nt 32 ref count;
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Field descriptions
install _str This is a pointer to the driver’s streamtab structure.

install_flags This contains flags to inform Open Transport of your driver’s
STREAMS module type. Thei nst al | _f | ags should be set
to kOTModI sDri ver | kOTModl sPort Dri ver for STREAMS
port drivers.

install _sql vl  This flag is set to the type of reentrancy your driver can handle.
Possible values are the following;:

SQLVL_QUEUE The driver can be entered once from the
upper queue and once from the lower
queue at the same time.

SQLVL_QUEUEPAI R The driver can be entered from either the
upper queue or the lower queue, but not at
the same time.

SQLVL_MODULE The driver can be entered only once per
port, regardless of which instance of the
module is entered.

SQLVL_GLOBAL Among all modules that use
SQLVL_GLOBAL only one will be entered
at a time.

i nstal | _buddy This field is currently not support by Open Transport. It should be

set to NULL.

ref | oad This field keeps a load reference to the driver. It should be
initialized to 0 and then never touched.

ref count This field monitors when a driver is first loaded and last unloaded.

It should be initialized to 0 and then never touched.

Whenever Open Transport loads your module or driver, and the r ef _count field of the

i nstal | _i nf o structure is 0, Open Transport will call an optional initialization function
exported by the module. This function must be named either | ni t St r eanMbdul e or

I ni t xxxxxSt r eamVodul e (where xxxxx is the name of the module or driver).

Bool ean I nitStreamvbdul e (voi d* systenDependent);

If I ni t St reamvbdul e returns f al se to Open Transport, then the loading of the
module will be aborted and an ENXI Oerror will be returned to the client. Otherwise, the
module will be loaded and installed into a stream.

The syst enDependent parameter is a pointer to the cooki e value used when
registering the port. For drivers loaded using the System registry, its value is
RegEntryl DPtr.

If the PCI device supports changing power levels, the | ni t St r eanvbdul e function
should set the power level for normal operation.

Whenever Open Transport removes the last instance of a module or driver from the
system, it calls an optional termination function exported by the module. This function
must be named either Ter nmi nat eSt r eamVbdul e or Ter mi nat exxxxxSt r eanmvbdul e
(where xxxxx is the name of the module or driver).

voi d Term nat eStreanivbdul e (voi d);
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If the PCI device supports changing power levels, the Ter i nat eSt r eanivbdul e
function should set the power level to low power or no power, as appropriate.

Of course, modules and drivers may also use the initialization and termination features
of their DLL technology. Both CFM and ASLM allow initialization and termination
routines. However, only a call to | ni t St r eamVbdul e implies that the module is about
to be loaded into a stream. Open Transport often loads a module just to call the

Get OTl nst al | | nf o0 information.

All memory allocations that do not use the Open Transport allocation routines

(OTAl | ocMemand OTFr eeMem) or any interrupt-safe allocators supplied by the
interrupt subsystem must be performed from within the initialization and termination
routines—that is, Pool Al | ocat eResi dent and Pool Deal | ocat e may be called only
from them.

Once your port driver has been loaded, all communication with it will be through
STREAMS messages and the entry points in the st r eant ab.

Note

Native drivers usually require a DoDr i ver | Oexport. Drivers that only
support Open Transport do not need this export, and all references to it
in the driver documentation may be safely ignored. O

Driver Operation

Once your driver is installed in a stream and opened, it is ready for action. From that
point on, the driver will respond to messages according to the interface specifications
(TPI or DLPI) that it supports.

Drivers have one additional requirement they must observe. If they are running as

a result of a primary interrupt, they must call the OTEnt er | nt er r upt function
before making any Open Transport calls. They must call OTLeavel nt er r upt before
exiting their current interrupt level, after they have made their final call to any Open
Transport routines.

It is strongly suggested that the appropriate Open Transport functions be used for
timing services and secondary interrupt services, so they will be most compatible with
future versions of Mac OS. Open Transport is also compatible with current non-PCI
Macintosh platforms.

The Open Transport secondary interrupt services do not have the same restrictions as
some other services, because any memory allocations needed are handled early. This
prevents these functions from failing at inconvenient times.
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Interrupt-Safe Functions

Open Transport provides many STREAMS services for module and driver writers, but
not all of these services may be used at interrupt time.

The following STREAMS functions may be safely called at interrupt time:

al I ocb adj nmsg copyb copynsg dupb
dupmsg esbal | oc freeb freensg i nkb
negdsi ze nmsgpul | up pul | upnsg r mbv testb
unl i nkb dat ansg OTHERQ RD VR
bzero bcopy bcnp put g

IMPORTANT

The put q function may be used only to put a packet onto its lower
(read) queue. No other put operation is allows at interrupt time.

In particular, the canput function and its variants, as well as the
queue enabling and put functions, cannot be called at primary
interrupt time. a

The following Open Transport functions may be safely called at interrupt time:

OTCr eat eDef er r edTask OrDest r oyDef err edTask
OrSchedul eDef err edTask OrGet d ockTi nel nSecs
OTCGet Ti neSt anmp OTSubt ract Ti meSt anps

OITi neSt anpl nM | | i seconds OTTi neSt anpl nM cr oseconds

OTEl apsedM | | i seconds OTEl apsedM cr oseconds
cnm_err OTAl | ocMsg OTAl | ocMem
OTFreeMem m _tiner_alloc m _tinmer _free
m _tiner m _tinmer_cance

In addition, all functions described in “Atomic Services” beginning on page 370 may be
called at interrupt time.

Secondary Interrupt Services

The functions described in this section are associated with Open Transport’s secondary
interrupt services.

typedef void (*OTProcessProcPtr) (void* contextlnfo);

This typedef defines the deferred task callback function.

368 Driver Operation



CHAPTER 12

Network Drivers

| ong OTCreat eDef erredTask (OTProcessProcPtr proc
voi d *cont ext | nfo);

This function creates a cookie (the returned | ong value) that can be used at a later time
to schedule the function pr oc. At the time that pr oc is invoked, it will be passed the
same cont ext | nf o parameter that was passed to the OTCr eat eDef er r edTask
procedure.

voi d OTSchedul eDef erredTask(| ong dt Cooki e);

This function is used to schedule the deferred procedure corresponding to the dt Cooki e
value. It may be called multiple times before the deferred procedure actually being
executed, but the deferred procedure will only be run once. Once the deferred procedure
has run, subsequent calls to OTSchedul eDef er r edTask will cause it to be scheduled
to run again.

voi d OTDestroyDef erredTask(l ong dt Cooki e);

This function is used to destroy any resources associated with the deferred procedure; it
should be called when the procedure is no longer needed.

Timer Services

Open Transport supplies robust timer services that are synchronized with the STREAMS
environment and are supported by using special STREAMS messages. The function
m _timer_al | oc creates one of these special STREAMS messages:

nmblk_t* m _tinmer_alloc(queue_t* targetQueue, size t size);

Calling this function creates a STREAMS timer message of the requested size that is
targeted to the specified STREAMS queue. Upper queues must be used as the targets of
timer messages because timer messages enter target queues as M_PCSI Gmessages,
which can never legitimately arrive from an upper queue but might legitimately arrive
from a lower queue.

void m _timer(nmblk_t* tinmerMsg, unsigned [ong nilli Seconds);

This function schedules the t i mer Msg (created using mi _ti mer _al | oc) to be placed
on the target STREAMS queue at a specified future time.

Note

To reset a timer, you need only call mi _t i mer with the new time.
There isnoneed to callmi _ti mer_cancel . O
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void m _tinmer_cancel (nbk_t* tinmerMsg);

This function cancels an outstanding timer message. The t i mer Msg message is not
destroyed but will no longer be delivered to the target queue. It may be rescheduled
by using m _ti mer at a later time.

void m _tinmer_free (mblk _t* tinmerMsg);

This function cancels and frees the specified timer message (m _t i mer _cancel does
not free the message). Never call f r eeb or f r eensg for a timer message.

Bool ean m _tiner_valid (nmblk_t* tinmerMsgq);

Timer messages enter the target queue as M_PCSI Gmessages. Whenever a queue that
can receive a timer message receives an M_PCS| Gmessage, it should call

m _timer_val i d, passing the M PCSI Gmessage as a parameter. If the function returns
t r ue, then the timer message is valid and should be processed. If the function returns

f al se, then the timer message was either deleted or canceled. In this case, ignore the
message and don't free it.

WARNING
The m _ti mer _val i d function may not be called at interrupt time. a

nblk t* m _tiner_qgswitch
(mbl k_t* tinmerMsg, queue_t* q, nblk t* newTli ner Msg);

This function is called to change the target queue of a timer message. The caller must be
in a context that blocks delivery of the timer message to the target queue’s put or service
routine during the call. For example, the caller must already be in a put or service
routine and won't be processing a timer message reentrantly.

The t i mer Msg parameter is the timer message that is to be moved to the new queue.
The g parameter is the new target queue for the timer message. The newTi mer Msg
parameter is a copy of the timer message that is pointed to by t i mer Msg. The routine
returns a pointer to the timer message that lives on—either t i mer Msg or newTi mer Msg.
The other message is freed. If no new message is provided (newTi mer Msg is nul | ), but
a message is required to do the switch successfully, a nul | pointer is returned. Both

ti mer Msg and newTi mer Msg are copies of the same message. On return, these pointers
must be treated as invalid pointers and only the function return pointer can be
considered valid.

Atomic Services

Open Transport supplies atomic services that help reduce the need for drivers to disable
and enable interrupts.

Note

Don’t confuse these services with the DSL
atomic services described in Chapter 9. O
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IMPORTANT

Many atomic services have strict alignment requirements. Be sure to

heed the following warnings. The OTAl | ocMemand all STREAMS

message blocks are guaranteed to be aligned to 32-bit boundaries. On

STREAMS message blocks, this applies to the actual start of the

message, not the b_r pt r field itself, which may not be aligned at all. In

16-bit operations, if the 16 bits cross a 32-bit boundary the atomic

function will not work properly. In 32-bit functions, it is important that

the variable being operated on be aligned on a 32-bit boundary. a

The first set of services atomically sets, clears, or tests a single bit in a byte. The first
parameter is a pointer to a single byte, and the second is a bit number from 0 to 7. The
functions return the previous value of the bit. Bit 0 corresponds to a mask of 0x01, and
bit 7 corresponds to a mask of 0x80.

Bool ean OTAtomi cSetBit (U nt8* theByte, size_t theBitNo);
Bool ean OTAtonicClearBit (U nt8* theByte, size t theBitNo);
Bool ean OTAtonicTestBit (U nt8* theByte, size_ t theBitNo);
Bool ean OTAcqui reLock (U nt8* theByte);
voi d Ord ear Lock (Ul nt8* theByte);

OTAcqui reLock is a faster equivalent of OTAt ori cSet Bi t (t heByte, 0).Itreturns
t r ue if the lock could be acquired (that is, if the bit was flipped from off to on).
OTd ear Lock is a macro that just zeroes the byte.

The second set of services atomically add to a 32-, 16-, or 8-bit variable. By using a
negative number, they can subtract. The return value is the new value of the variable
as it is when the operation is completed.

SInt 32 OTAt omi cAdd32 (SInt32, SlInt32* var ToBeAddedTo);
Sl nt 16 OTAtomi cAdd16 (SInt16, SIntl6* var ToBeAddedTo);
SInt8 OTAtonmi cAdd8 (SInt8, SInt8* varToBeAddedTo);

The third service is a general compare and swap. It determines if the value at wher e still
contains the value oVal ; if so, it substitutes the value nVal . If the compare and swap
succeeds, the function returns t r ue, otherwise f al se.

Bool ean OTComnpar eAndSwap32

(Unt32 oVal, U nt32* nVval, U nt32** where);
Bool ean OrConpar eAndSwapl6

(U ntl6 oval, U nt16* nVal, U ntl1l6** where);
Bool ean OTComnpar eAndSwap8

(Unt8 oval, Unt8* nval, U nt8** where);

The fourth set of services is an atomic last in, first out (LIFO) list. OTLI FOEnqueue and
OTLI FODequeue are self-explanatory. OTLI FOSt eal Li st lets you remove all of the
elements from the LIFO list atomically, so that the elements in the list can be iterated at
your leisure by traditional means. OTLI FORever selLi st is for those who find that LIFO
lists are next to useless in networking. Once the OTLI FOSt eal Li st function has been

Driver Operation 371



372

CHAPTER 12

Network Drivers

executed, the result can be passed to OTLI FORever selLi st , which can be used to flip
the list into a first in, first out (FIFO) configuration. The OTLi nk and the OTLI FO
parameters must both be aligned on 32-bit boundaries. Note that OTLI FORever selLi st
is not atomic.

struct OTLi nk

{
voi d* f Next ;
i
struct OTLI FO
{
voi d* f Li nk;
1
voi d OrLlI FOEnqueue (OTLIFO* |ist, OILi nk* toAdd);
OTLi nk* OTLI FCDequeue (OTLIFO+ list);
OTLi nk* OTLI FOst eal Li st (OTLI FO* list);
OrLi nk* OTReverseLi st (OTLi nk* firstlnList);

The last set of services performs enqueueing and dequeueing from a LIFO list. It is used
internally in the STREAMS implementation; it is exported so you can use it if it proves
useful. If you look at the Open Transport LIFO implementation, it assumes that the
structures being linked have their links pointing at the next link, and so on. Unfortunately,
STREAMS messages (msgb structures) are not linked this way internally (the b_cont
field does not point to the b_cont field of the next message block but instead points to
the actual message block itself). These two functions let you create a LIFO list where the
head pointer of the list points to the actual object, but the next pointer in the object is at
some arbitrary offset. It is important that the links and the list itself be aligned on 32-bit
boundaries for these functions to work properly.

voi d* OTEnqueue

(void** list, void* newLi stHead, size t offsetOfNextPtr);
voi d* OTDequeue

(void** theList, size t offsetOFNextPtr);

Power Services

For those devices that can change their power usage, the STREAMS module must export
the entry point OTSet Power Level . This lets the system set the device’s power level
before its driver is installed into a stream.

voi d OTSet Power Level (Ul nt 32 power Sel ector);

Driver Operation



CHAPTER 12

Network Drivers

In addition, devices that can change their power usage should support the
| _OrSet Power Level IOCTL call. However, | _OTSet Power Level is used only
if the driver is already installed into a stream.

Following are the four-byte selectors that can be passed to | _OTSet Power Level , with
their return values:

" pm3'’ Returns the card’s maximum power consumption in microwatts from the
3.3 V supply while in low power mode.

' pmb5’ Returns the card’s maximum power consumption in microwatts from the
5V supply while in low power mode.

' pnx3' Returns the card’s maximum power consumption in microwatts from the
3.3 V supply while in high power mode.

' pnx5' Returns the card’s maximum power consumption in microwatts from the
5V supply while in high power mode.

'psta’ Returns a value of 1 if the card is in high power mode.

' psup’ Returns a value of 1 if the card supports power control, 0 if it does not.

' pt og' Returns a value of 1 if the card supports switch between high and low

power after initialization, 0 if it does not.

" sphi’ Sets the card to high power mode. Returns a value of 0 if completed
successfully, OSEr r if not.

"spl o Sets the card to low power mode. Returns a value of 0 if completed
successfully, OSEr r if not.

CSMA /CD Driver

The Open Transport CSMA /CD driver is a STREAMS driver that presents a DLPI to its
clients. It is based on Revision 2.0.0 of the DLPI Specification, and is a Style 1 provider,
supporting the connectionless mode primitives. Developers who wish to write CSMA /
CD drivers that will interoperate with the Open Transport AppleTalk and TCP /IP
implementations should use the information given in this section to guide their
implementation.

Supported DLPI Primitives

The following DLPI primitives are supported by the Open Transport CSMA /CD driver.
The ones marked with a t are not required by either the Appletalk or TCP/IP stacks:

DL_BI ND_ACK
DL_BI ND_REQ

DL_DI SABLEMULTI _REQ
DL_ENABLEMULTI _REQ

DL_ERROR_ACK
DL_I NFO_ACK
DL_I NFO_REQ
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DL_OK_ACK
DL_PHYS_ADDR_ACK
DL_PHYS_ADDR_REQ
DL_SUBS_BI ND_ACK
DL_SUBS_BI ND_REQ
DL_TEST_CON+
DL_TEST | ND+
DL_TEST REQt
DL_TEST RES+t
DL_UNBI ND_REQ
DL_UNI TDATA_| ND
DL_UNI TDATA REQ
DL_XI D CONt

DL_XI D I ND+

DL_XI D_REQ+

DL_XI D RES+

Future versions of the driver will also support these additional primitives:
DL_GET_STATI STI CS_ACK t

DL_GET_STATI STI CS_REQt

DL_PROM SCOFF_REQt

DL_PROM SCON_REQt

Extensions to the DLPI

In addition to supporting the DLPI primitives listed above, the Open Transport CSMA /
CD driver includes extensions to support Fast Path mode (described in “Fast Path
Mode” on page 380). This includes the handling of M_| OCTL messages with a type of
DL_I OC_HDR_I NFOand special handling of M_DATA messages. It also defines several
special M_| OCTL messages that enable the reception of raw packets and inform the
CSMA /CD driver what kind of framing the client expects.

Packet Formats

The Open Transport CSMA /CD driver recognizes three packet formats. They are
Ethernet, 802.2, and Novell “Raw 802.3,” a version of IPX. The details of the packet
format are largely hidden from the client by the driver.

The type of packets the driver will handle is specified at bind time.

In all three packet formats, the first 6 bytes are the destination hardware address, and the
next 6 bytes are the source hardware address. The first 6 bytes are followed by a protocol-
dependent section, followed by the packet data.

The packet formats that the DSMA /CD driver can handle are diagrammed in Figure 12-1.
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Figure 12-1 Packet formats recognized by the CSMA/CD driver
Ethernet 802.2 IPX
Destination Destination Destination
hardware hardware hardware
address address address
Source Source Source
hardware hardware hardware
address address address
Protocol Packet Packet
type length length
DSAP
Data
SSAP Data
Control
[ ]
[ ]
. SNAP
(optional)
Data
L]
L]
L]
Note

The 802.2 standard is described in Logical Link
Control, ANSI/TEEE Standard 802.2-1985. O

Ethernet Packets

In Ethernet packets, the protocol-dependent section consists of a 2-byte protocol type
field. This field has a value in the range 1501 to 65535 (0x5DD to OXFFFF).
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802.2 Packets

In 802.2 packets, the protocol-dependent section consists of a 2-byte length word, a
1-byte destination service access point (DSAP), a 1-byte source service access point
(SSAP), a control byte, and an optional 5-byte subnet access protocol (SNAP) field.
Thus this section of the packet can be either 5 or 10 bytes long.

Note

The 802.3 specification guarantees that the value of the 2-byte length
word will always be less than 1501; therefore it is always possible to
differentiate between Ethernet and 802.2 packets by examining the
value of this field. O

IPX Packets

IPX payloads may be carried in any one of three frames. In addition to Ethernet and
802.2, an IPX packet may be framed in what Novell calls a “Raw 802.3” packet. In

this case, the protocol-dependent section consists only of a 2-byte length word. To
distinguish these packets from 802.2 packets, Novell specifies that the first 2 bytes of the
data section are always set to OxFF.

Address Formats

376

Addresses used by the Open Transport CSMA /CD driver consist of two parts—a
hardware address and a protocol-dependent field. The hardware address is a 6-byte
Ethernet address. A hardware address of all 1s is the broadcast address. If a hardware
address is not all 1s but the low bit of the first (leftmost) byte is set, then the address is a
multicast address. The protocol address consists of a 2-byte value called a data link
service access point (DLSAP), which corresponds to the DLSAP defined in the DLPI
specification. It is optionally followed by a 5- byte SNAP. The protocol address, when
present, is appended to the hardware address.

Ethernet

In Ethernet, the DLSAP corresponds to the protocol type field.

802.2

In 802.2 packets, the DLSAP corresponds to either

s The SSAP (ina DL_BI ND_REQ DL_BI ND_ACK, or in the source address field of a
DL_UNI TDATA_| ND primitive) or

» The DSAP (in a DL_UNI TDATA REQor in the destination address field of a
DL_UNI TDATA_| ND primitive)

If the DLSAP is 0xAA, then it must be followed by a 5-byte SNAP.
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IPX
In IPX packets, the DLSAP is always 0x00FF.

The information passed in a bind request is a function of the type of packets to be
handled by this stream—Ethernet, 802.2, or IPX. In all three cases, the dl _max_coni nd
field should be set to 0 and the dI _ser vi ce_node field must be set to the constant
DL_CLDLS.

Note

The DLPI specification leaves open the possibility that several streams
on the same hardware port could be bound to a single DLSAP. This
feature is explicitly supported by the Open Transport CSMA /CD driver.
If a packet arrives addressed to two or more streams simultaneously,
each stream receives a copy of the packet. O

Ethernet

To bind to an Ethernet protocol, the client sends a DL_BI ND_REQwith the dl _sap field
set to the protocol type. This is a value in the range 1501 to —65535 (0x5DD to OxFFFF).
The dl _xi dt st _f | g field is ignored.

802.2

To bind to an 802.2 address, the client sends a DL_BI ND_REQwith the dl _sap field set
to the SSAP. This is an even value in the range 0 to 254 (0x0 to OxFE). Thedl _xi dtst _fl g
field may optionally have either or both of the DL_AUTO_XlI Dor DL_AUTO _TEST bits set.

If the SSAP is OxAA, then the client should follow the acknowledgment of the bind with
a DL_SUBS_BI ND_REQwith a 5-byte SNAP. The dl _subs_bi nd_cl ass field should
be set to DL_H ERARCHI CAL_BI ND. The message for enabling a SNAP is shown in
Figure 12-2.

Figure 12-2 Message for enabling a SNAP

DL_SUBS_BI ND_REQ dl _primtive
4 dl _subs_bi nd_of f set
2 dl _subs_bi nd_I engt h
DL_HI ERARCHI CAL_BI ND | dl _subs_bi nd_cl ass

SNAP
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Note

Attempting to perform a hierarchical subs_bi nd operation to any
service access point (SAP) value other than OxAA will cause an error. O

After successfully binding to an 802.2 SAP, the client may enable a group SAP by
sending a DL_SUBS_BI ND_REQwith a 2-byte DLSAP containing the group SAP. Valid
group SAPs are odd numbers in the range 1 to 253 (0x1 to OxFD). In this case, the

dl _subs_bi nd_cl ass field should be set to DL_PEER_BI ND. Note that SAP 255 (0xFF)
is the global (broadcast) SAP and is always enabled. The message for enabling a group
SAP is shown in Figure 12-3.

Figure 12-3 Message for enabling a group SAP

378

DL_SUBS_BI ND_REQ dl _primtive
4 dl _subs_bi nd_of f set
2 dl _subs_bind_I ength
DL_PEER BI ND dl _subs_bind_cl ass
— DLSAP

Note

For a description of group and global SAPs,
see ANSI/IEEE Standard 802.2-1985. O

As a special case, a client may request that it receive all 802.2 packets that come in.
It does so by sending a DL_SUBS_BI ND_REQwith a 2-byte DLSAP set to 0. The
dl _subs_bi nd_cl ass field should be set to DL_PEER _BI ND.

Note

When sending packets to DLSAP OxFF, it is ambiguous whether the
packet is destined for an 802.2 global SAP or an IPX SAP. The ambiguity
is resolved by declaring that only an IPX endpoint can send to another
IPX endpoint and an IPX endpoint cannot send to a global SAP. O

IPX

To bind to an IPX protocol, the client sends a DL_BI ND_REQwith the dI _sap field set to
255 (0XFF). The dl _xi dt st _f | g field is ignored.

Binding
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Multicasts

A multicast address may be enabled on a driver with the DL_ENABMULTI _REQmessage.
The value must be a valid multicast address as defined in “Address Formats” beginning
on page 376.

Similarly, a multicast address may be disabled on a driver with theDL_DI SABMILTI _REQ
message. The value must be a valid multicast address that was enabled on that particular
stream with a prior DL_ENABMULTI _REQ

Sending Packets

Packets are sent with the DL_UNI TDATA_REQmessage. If the destination has the same
protocol address as the sender, it is only necessary to supply the hardware address of the
destination; otherwise the full address must be used. Note that only a stream bound to
the IPX SAP can send to another IPX stream.

To support Fast Path mode, the Open Transport CSMA /CD driver treats M_DATA
messages as fully formed (“Raw”) packets, including all addresses and headers. The
only modification made before sending the packet to the hardware is to check for a 0 in
the 802.2 length field. If 0 is found, the length field is set to the appropriate value.
Support of this feature is optional; see “Fast Path Mode” on page 380 for further
information.

Receiving Packets

Incoming packets are passed to the client in DL_UNI TDATA | ND messages. The

dl _group_addr ess field is set to 0 if the packet was addressed to a standard Ethernet
address. It is set to keaMul ti cast if the packet was addressed to a multicast address
and to keaBr oadcast if the packet was addressed to a broadcast address, where
kaeMil ti cast and kaeBr oadcast are constants (currently 1 and 2, respectively).

The data portion of the message consists of everything following the protocol-
dependent section.
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Raw Packets

Occasionally, a client may wish to send or receive “Raw” packets—packets with the link
and protocol headers attached. To send raw packets, the client merely sends them as
M _DATAmessages, as described in “Fast Path Mode” on page 380.

A client that wishes to receive raw packets may send an M_| OCTL message with the

i oc_cmd field set to kOTSet Rawivbde and its chained data block containing a Ul nt 32
value. The value can be either kOTRawRcvOn or KOTRawRcvf f , to turn on or off the
reception of raw packets. If the driver supports the delivery of raw packets, it responds
with an M_| OCACK message; otherwise, with an M_| OCNAK message.

Raw packets received will have the kaeRawPacket Bi t set in the dl _gr oup_addr ess
field of the corresponding dl _uni tdata_i nd_t.

Test and XID Packets

The driver includes support for 802.2 test and XID packets.

If the client requested automatic handling of test or XID packets by setting the
DL_AUTO TEST or DL_AUTO XI Dbits in the d _xi dt est _f | ag field of the bind
request when binding to an 802.2 DLSAP, then the driver will respond to incoming test
or XID packets without notifying the client. If automatic handling has been requested,
the client may not send test or XID packets.

If the client did not request automatic handling of test or XID packets, then incoming
test or XID packets will be passed up to the client as DL_TEST_I NDor DL_XI D_I ND
messages. The client should respond to them with DL_TEST_RES or DL_XI D_RES
messages.

If automatic handling has not been requested, the client may send test or XID packets
with a DL_TEST_REQor DL_XI D_REQmessage. Any responses are passed back to the
clientas DL_TEST_CONor DL_XI D_CONmessages.

Attempts by non-802.2 streams to send DL_TEST_REQ DL_XI D_REQ DL_TEST_RES, or
DL_XI D_RES messages are ignored.

Fast Path Mode

380

Fast Path is an optional optimization wherein the driver supplies the client with a
precomputed packet header for a given destination. The client caches the header and
copies it directly into packets addressed to that destination before passing them to the
driver. The client first requests a header by sending the driver an M_| OCTL message with
its i oc_cn field set to DL_I OC_HDR_| NFOand its chained data block containing the

Raw Packets
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dl _uni tdat a_req_t structure that the client would normally use to send packets to
that particular destination. If the driver does not support fast path, it simply responds
with an N_I OCNAK message. STREAMS drivers respond with NAK to any | OCTL they
can’t handle.

If the driver supports fast path, it responds with an M | OCACK message with the chained
data block containing the precomputed header. In the case of 802.2 packets, the length
field of the precomputed header is set to 0. The client prepends the header to outgoing
packets and passes them to the driver as M_DATAmessages. The driver then sends the
packet as is, filling in the 802.2 length field if necessary.

Note

The data block returned in the M_| OCACK should not be modified by the
client, and it should always be copied with copyb rather than dupb,
since the driver may modify it before sending the packet. O

Framing and DL_INFO_REQ

To support the TCP/IP stack available with Open Transport, CSMA /CD drivers must
support both Ethernet and 802.2 framing (including full SAP/SNAP binding). Because
the DLPI specification does not let a driver support multiple kinds of framing, it is
ambiguous in specifying how to fill out the dI _mac_t ype field of adl _i nfo_ack_t.
Open Transport has specified that the default value of this field should be

DL_ETHER Clients may send an M_| OCTL message with the i oc_cnd field set to
kOTSet Fr am ngType and its chained data block containing a Ul nt 32 value with

a single bit set. If this value is the constant KOTFr am ng8022, then subsequent

DL_I NFO_REQrequests should set the dl _mac_t ype field to DL_CSMACD. If the value is
not that constant, then subsequent DL_| NFO_REQrequests should set the dl _mac_t ype
field to DL_ETHER

IMPORTANT

The only thing the foregoing M | OCTL message affects is the contents of
the DL_I NFO_ACK. The framing that is actually used by the driver is
specified in the bind. a

TokenRing and FDDI Drivers

Open Transport TokenRing and Fiber Distributed Data Interface (FDDI) drivers are
identical to the CSMA /CD driver with only 802.2 packets and addressing supported. A
hardware multicast in TokenRing is a hardware address with the 2 high-order bits of the
leftmost byte set to 1.

Framing and DL_INFO_REQ 381
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This chapter discusses the requirements for writing native driver code to support SCSI
devices on PCI cards in the second generation of Power Macintosh computers.

Macintosh SCSI devices are now supported by SCSI Manager 4.3, an enhanced version of
the original Macintosh SCSI Manager. The new capabilities of SCSI Manager 4.3 include

» support for asynchronous SCSII/O
» support for optional SCSI features such as disconnect and reconnect

» a hardware-independent programming interface that minimizes the SCSI-specific
tasks a device driver must perform

The hardware-indendence features of SCSI Manager 4.3 mean that the equivalent of SCSI
driver code is now a software entity called a SCSI Interface Module (SIM). This chapter
discusses some of the requirements for writing and loading SIMs in PCI-based Power
Macintosh computers.

Inside Macintosh: Devices, described in “Apple Publications” on page xxi, contains a full
discussion of SCSI Manager 4.3. You should read the material in Inside Macintosh first.
This chapter covers only the changes from that information for SCSI devices based on
PCI cards.

The SCSI Expert

The SCSI expert is supplied by Apple in the firmware of the second generation of Power
Macintosh computers. For a discussion of experts, see “Terminology” beginning on
page 61.

The SCSI expert is simpler than some other experts and places fewer demands on Open
Firmware and the native driver model. A PCI card that wants to register a SIM with the
SCSI Manager must place information in the device tree that includes its nanme and r eg
properties. To be recognized by SCSI Manager 4.3 as a SCSI device, the device must have
adevi ce_t ype property of ' scsi ' . This is important because it is the primary
identifier that causes the SCSI expert to load the SIM. The devi ce_t ype property is
generated by the Mac OS startup code and is based on the PCI configuration space
parameter cl ass- code, which must have a value of " mass st orage" (01). With the
Driver OSServi ce. servi ce[ x] . servi ceCat egor y value of " bl ok", the

devi ce_t ype property completely identifies the SIM code to the SCSI expert.

SIMs for Current Versions of Mac OS

384

With current versions of Mac OS, you can write a native SIM by using the Mixed Mode
Manager and passing universal procedure pointers to the transport (XPT) layer when
registering the SIM. Native SIMs should also use Cal | Uni ver sal Pr oc when calling
XPT routines.

The SCSI Expert



CHAPTER 13

SCSI Drivers

PCI native SIMs are implemented similarly to other native drivers. The SIM installs

a driver in the device tree with adri ver, AAPL, MacCS, Power PC property. Like other
native drivers, SIMs export a driver description structure. The SCSI expert identifies a
SIM by examining the service categories supported in the driver descriptor. SIMs have
aservi ceCat egory of type kSer vi ceCat egor yScsi SI M A driver supporting this
service category should export a function named LoadS| Mwith the following interface:

OSErr LoadSIM (RegEntryl DPtr entry);

The SCSI expert will prepare the code fragment and call this function after the SCSI
transport layer is initialized. In response, the SIM should initialize itself the same way

a NuBus SIM would by calling SCSI Regi st er Bus, as described in Inside Macintosh:
Devices. Any nonzero result returned from LoadSl Mwill cause the code fragment

to be unloaded. Note that this is a Pr ocPt r -based interface, so you must pass

Uni ver sal ProcPt r structures for all entrypoints. Those passed back by the XPT will
also be Uni ver sal ProcPtr structures so native code should use Cal | Uni ver sal Proc
when calling XPT layer procedures from the SI M ni t Recor d.

An typical PCI-based SIM descriptor is shown in Listing 13-1.

Listing 13-1 SIM descriptor

DriverDescription TheDriverDescription =
{
/1l signature information
kTheDescri ptionSi gnat ur e,
klnitial DriverDescri ptor,
/1 type info
"\ pFor Rent ",
1,0,0,0, /! nmajor, mnor, stage, rev
/1 OS runtinme info
kDri ver | sUnder Expert Control,
"\'p. \YSCsSI SIM
0,0,0,0,0,0,0,0, /'l reserve 8 | ongs
/1 OS service info
1, /1 nunber of service categories
kServi ceCat egoryScsi SIM
0,
1,0,0,0 /! nmajor, mnor, stage, rev

b

For the Startup Disk control panel to be able to select a boot device from a SIM correctly,
the SCSI Busl nqui ry fields scsi HBAsI| ot Nunber and scsi SI MsRsr cl Dmust
uniquely identify the SIM from other SIMs and PCI cards. Each SIM should identify
itself when registering with the system by placing a RegEnt r y| Dvalue in the

SI M ni t | nf o parameter block. The XPT layer will calculate unique values for the
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SCSI Busl nqui ry fields and supply them to the SI M ni t routine. From then on
the SIM must return these values from SCSI Bus| nqui r y. Three new fields—

si nBl ot Nunber, si nBRsr cl D, and si mRegEnt r y—have been defined in the
SI M ni t | nf 0 parameter block to hold these values. The new parameter block is
defined as follows:

U nt8 *Sl MstaticPtr;

| ong staticSi ze;

SI M ni t UPP SIMnit;

SI MAct i onUPP SI MAct i on;

SCSI | nt er r upt UPP SIM | SR;

SCsSl I nt er r upt UPP SI M nt errupt Pol | ;

S| MAct i onUPP Newd dCal | ;

ul nt 16 i OPBSI ze;

Bool ean ol dCal | Capabl e;

unt8 si m nf oUnused1,;

| ong si m nt ernal Use;

SCSI UPP XPT_I SR,

SCSI UPP Ent eri ngSI M

SCSI UPP Exi ti ngSI M

SCSI MakeCal | backUPP  MakeCal | back;

U nt16 busl D;

unt8 si Bl ot Nunber ; /1 out put
unt8 si mBRsr cl D /1 out put
RegEnt ryl DPt r si mRegEnt ry; /1 input

Future Compatibility

386

The current SCSI Manager 4.3 interface is not guaranteed to be compatible with future
Mac OS releases. At this time the SIM architecture is not fully defined and may be subject
to change. However, it is possible to write a fully native SIM by passing universal
procedure pointers to the XPT layer for the SIM’s entry points and by using

Cal | Uni ver sal Pr oc in native code to call the XPT’s entry points. This approach is
outlined in “SIMs for Current Versions of Mac OS” beginning on page 384. Universal
procedure pointers are described in Inside Macintosh: PowerPC System Software, listed

in “Apple Publications” on page xxi.

It is also possible to reduce the effort required to become compatible with future releases
of Mac OS by following the rules set forth for other drivers in Chapter 7, “Writing Native
Drivers.” Primarily, you should limit communication with Mac OS to the calls
documented in Chapter 9, “Driver Services Library.”

Future Compatibility
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SCSI Device Power Management

Supporting power management in a SCSI driver unavoidably violates some of the
guidelines set forth in “Card Power Controls” beginning on page 311. This section
discusses some of the issues and potential solutions.

At a minimum, SCSI storage device drivers should support driver gestalt as defined in
“Driver Gestalt” beginning on page 106. They should respond positively to the ' | pwr’
gestalt selector. Supporting driver gestalt mandates that the driver support csCode=70
for getting and setting the low power state (for spindle motor control, in most cases). The
currently defined power modes are Active, Standby, Idle, and Sleep.

If a driver does not have to support multiple platforms (such as both Power Macintosh
and PowerBook computers) and chooses to rely on the Power Manager’s internal
timing semaphores, it should implement the following processes:

s Install code in the Power Manager’s HD Spindown, Sleep, and State
Notification queues.

» Make an Updat eSyst emAct i vi ty call to notify the Power Manager of activity
on the driver’s associated device.

When these processes are implemented, drivers registered with the Power Manager will
not be ordered to enter a low power mode until all devices have been idle for a period of
time set by the user. However, no individual device control will be available and more
work will be required to make the driver compatible with future releases of Mac OS.

To be compatible with both Power Macintosh and PowerBook computers, or to simply
provide a more elegant solution to the user, the driver should maintain an internal timer
specifically for the device it administers. If multiple devices are managed by a single
driver, multiple timers should be managed as well. To provide this level of support, the
following must be implemented:

= Make an Updat eSyst emAct i vi ty call to notify the Power Manager of activity on
the driver’s associated device. This is required by the Power Manager to track idle
time for system sleep correctly.

= Install code in the Power Manager State Notification queue requesting notification of
spindown enable and disable changes, changes to the user-defined timeout period,
and changes to the hard disk power state.

» Keep an internal timer in the driver and provide some method to update the timer
and invoke low power modes when appropriate. A VBL or Time Manager task may
be used.

Drivers should not install code into the HD Spindown queue in this implementation.
However, if the driver supports the main internal storage device on a PowerBook
computer and requires device preparation before power is removed, Sleep and Wake
and HD Spindown queue elements should be implemented.

SCSI Device Power Management 387
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With either Power Macintosh or PowerBook platforms, any access to a driver’s device or
any driver request that requires the device to be at full power should cause the driver to
wake the device before servicing that request. A control call to resume full power must
be supported, but such a call is not required to wake the device.

Note

Gestalt checks for the presence of the Power Manager should be made to
decide whether to implement a low power solution upon a driver open
or acknowledge request and to determine what kind of support is
appropriate. O

The current Power Manager implementation supports a mixed environment where some
clients are dependent on the Power Manager’s internal timing semaphore and others are
self-sufficient. Drives supported by driver-based timers will spin down on a drive-by-
drive basis. The internal timer will still trigger a spindown of those drives that rely on
the Power Manager’s timing facilities. It would be wise in either implementation to
respond intelligently to requests to enter a power mode that is already present.

SCSI Device Power Management



Appendixes

The following appendixes contain information that supplements the information in the
previous chapters:

Appendix A, “Development Tools,” describes the developer’s kit that Apple supplies
for designing PCI cards and related software compatible with Power Macintosh
computers.

Appendix B, “Big-Endian and Little-Endian Addressing,” discusses the theory and
problems of handling mixed-endian formats.

Appendix C, “Graphic Memory Formats,” describes the ways that graphic
information and video frames are stored in PCI-based Power Macintosh computers.

Appendix D, “PCI Header Files,” describes the PCI header files and lists all the
routines and data structures documented in this book.

Appendix E, “Abbreviations,” lists the abbreviations and acronyms used in this book.
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Development Tools

This appendix describes the developer’s kit that Apple provides for designers of PCI
expansion cards and drivers compatible with the second generation of Power Macintosh
computers.

The PCI Card Device Driver Kit contains documentation, tools, and sample code that can
help you with these tasks:

» designing PCI expansion cards and hardware components for use with Power
Macintosh computers

» writing the Open Firmware code for Macintosh-compatible PCI cards

» writing device drivers, system extensions, and application software to be used with
Macintosh-compatible PCI cards

For details and availability of the kit, contact AppleLink address DEVSUPPORT.

Contents of the Device Driver Kit

The Device Driver Kit contains documentation, tools, and sample code. Parts of the kit
are specific to the Macintosh implementation of the PCI and Open Firmware standards;
Apple supplies these materials with the kit. Other parts are available from Apple or
third parties.

Parts Supplied With the Kit

The PCI Card Device Driver Kit contains Designing PCI Cards and Drivers for Power
Macintosh Computers and a Macintosh-compatible CD-ROM disk. The disk contains
software development tools and text files of sample code designed to run on a Power
Macintosh computer. The contents of the disk can be used with the Macintosh
Programmer’s Workshop (MPW) or with Metrowerks Code Warrior. The sample code
files can also be read by TeachText and other Macintosh word processors.

Tools

The software tools supplied with the Device Driver Kit include
s the CForth93 Forth compiler

= atool (implemented as a CForth93 dictionary) that tokenizes Forth code and builds a
PCI card configuration ROM image

= the Power Macintosh Debugger 2.0

= miscellaneous utilities

Contents of the Device Driver Kit 391
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Code Files

The code files on the disk contain the C header files and libraries required to develop
native drivers for the second generation of Power Macintosh computers. Some of the
contents of these files are listed in Appendix D, “PCI Header Files.”

The developer kit code files also contain the C and Forth sources for a number of sample
drivers for Macintosh PCI devices, plus other useful code examples.

Parts Not Included in the Kit

The tools and code samples that Apple supplies with the PCI Card Device Driver Kit can
be used with the Macintosh Programmer’s Workshop (MPW). Since most Macintosh
developers already have MPW, it is not included in the kit. You can obtain MPW from
APDA at the address listed on page xxii.

Similarly, the Apple books Designing Cards and Drivers for the Macintosh Family, third
edition, and Inside Macintosh: Devices explain the general software requirements for
drivers compatible with Macintosh computers. These books are useful to any programmer
writing a driver for a Macintosh-compatible PCI device.

Essential parts of the PCI Card Device Driver Kit for Power Macintosh Computers not
supplied by Apple include the following documents:

s PCI Local Bus Specification, Revision 2.0, by the PCI Special Interest Group

» PCI Bus Binding to IEEE 1275-1994, available by contactingthe IEEE at the Internet
address given in the note on page xxiv.

» 1275-1994 Standard for Boot (Initialization, Configuration) Firmware by the IEEE
» ANSI/IEEE X3.215-199x Programming Languages—Forth, by ANSI
= Writing FCode Programs for PCI, by FirmWorks

These documents are an integral part of the kit; it is difficult to design Macintosh-
compatible PCI cards without their help. For information about obtaining them, see
“Supplementary Documents” beginning on page xxi.

Contents of the Device Driver Kit
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Addressing

PCI-based Power Macintosh computers are mixed-endian because they support both
big-endian and little-endian data formats. This appendix presents solutions to some of
the problems that the computers encounter because they support both formats.

Although the natural addressing mode of the PowerPC microprocessor is big-endian,
PCI-based Power Macintosh computers support little-endian addressing for
several reasons:

= because the PCI bus is little-endian
= so that they are compatible with expansion cards that store data in little-endian format

= so that they can run operating systems (such as Windows NT) that require the
underlying hardware to operate as if it were little-endian

This appendix first discusses the theory of big-endian and little-endian addressing and
then examines how PClI-based Power Macintosh computers deal with the resulting
problems and issues.

Note

The terms big-endian and little-endian come from Jonathan Swift’s
eighteenth-century satire Gulliver’s Travels. The subjects of the empire of
Blefuscu were divided into two factions: those who ate eggs starting
from the big end and those who ate eggs starting from the little end. O

Endian Theory

To give a concrete example around which to discuss endian format issues, consider
writing code for a system that contains a DBDMA-like controller. The DMA code
includes a descriptor format whose C definition might be

struct {
byte G /1 "command" byte
byte F; /1 "flags"”
hal f L; /1 "length" (count)
word A /1 "address"
dword X; [l "field64d"
} DMA_Descri ptor;

where the byt e, hal f, wor d, and dwor d data types are 8-bit, 16-bit, 32-bit, and 64-bit
scalar types, respectively.
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A compiler would assign offsets to the fields of the descriptor as follows:

C 0
F 1
L 2
A 4
X 8

Consider the diagram in Figure B-1, which presents the layout of the descriptor in a
format that is neither big-endian nor little-endian. In Figure B-1, the numbers represent
byte offsets to the descriptor’s fields.

Figure B-1 Neutral descriptor layout

In Figure B-1 the byte offsets are associated with the “beginning” of each field. As
discussed in the next sections, the primary difference between big-endian and little-
endian addressing has to do with what is defined as the “beginning” of a field.

Big-Endian Addressing

Figure B-2 shows what happens when the diagram in Figure B-1 is rotated
counterclockwise.
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Note

In Figure B-2 and Figure B-3, the organization of memory is shown with
the more significant bytes to the left and the less significant bytes to the
right. This is consistent with standard numerical notation and most
computer system documentation. Likewise, all bit-field and byte-field

designations reference the most significant bit or byte number of the
field first. O

Figure B-2 Big-endian descriptor layout

The diagram in Figure B-2 shows how a big-endian processor or memory system would
organize the sample descriptor. In a big-endian system, physical memory is organized
with the address of each byte increasing from most significant to least significant.

Endian order makes no difference for single-byte values. However, with multibyte
values, the endian order determines the order in which bytes are addressed. As noted
above, multibyte fields are interpreted with more significant bytes to the left and less
significant bytes to the right. This means that the address of the most significant byte of
the address field A is 4, while byte 7 corresponds to the least significant byte of A.

Bit ordering in a strictly big-endian architecture should naturally follow the ordering of
bytes; that is, the most significant bit should be bit 0. This is true of PowerPC addressing.
All bit numbering in this appendix follows the byte order, so the first bit designated in
big-endian addressing (the most significant bit) has the lowest bit number.

Little-Endian Addressing

Figure B-3 shows what happens when the diagram in Figure B-1 on page 394 is rotated
clockwise.

Figure B-3 Little-endian descriptor layout

This diagram in Figure B-3 shows how a little-endian system would organize the
descriptor. Notice which bytes constitute the “beginning” of each field. Instead of
referring to the most significant byte of a field, the offsets refer to the least significant
byte of each field. Hence, in this example, byte 4 refers to the least significant byte of
the A field, while byte 7 refers to the most significant byte.
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Bit numbering in a little-endian architecture naturally follows that of byte ordering; that
is, bit 0 represents the least significant bit of a field. Thus, in little-endian bit field
designations, the first bit shown (the most significant) has the highest bit number.

Scalar Accesses

If all accesses to a data structure were done with read and write actions that transferred
a whole field at a time, a program could not determine whether it was executing on

a big-endian or little-endian system. For example, a word-sized access to field A in
Figure B-1 on page 394 would always get the correct value.

Suppose that the code shown in Listing B-1 is used to initialize the descriptor shown in
Figure B-1. The field values chosen in Listing B-1 are encoded: the first nybble gives the
size of the field, and the other nybbles represent the byte offsets of each byte, assuming
big-endian ordering.

Listing B-1 Field value initializer

DVA Descri ptor abDescr;

aDescr. C = 0x10;

aDescr. F = 0x11;

aDescr.L = 0x2223;

aDescr. A = 0x44454647,
aDescr. X = 0x88898A8B8C8DBESF;

In Figure B-1, all accesses to field aDescr . L would yield identical results on either a
big-endian or little-endian system, so it would normally be impossible to tell whether the
system was big-endian or little-endian. However, certain code can detect the order of
byte significance relative to the address of the fields initialized by the code shown in
Listing B-1 and can thus tell whether the system addresses data in big-endian or
little-endian mode. An example is shown in Listing B-2.

Listing B-2 Endian mode determination code
uni on {
half H;
byte B[2];
} hal f Tri ck;
hal f Tri ck ht;

ht. H = aDescr. L;
if( ht.B[0] == 0x22 )
printf( "I'mon a big-endian systent );
el se
printf( "I"'mon a little-endian systent );
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Address Invariance and Byte Swapping

Address invariance (also called byte address consistency) guarantees that individual bytes
are mapped across a data bridge according to their address (or byte lane number); the
address of a byte is kept the same on both sides of the bridge.

For example, the little-endian NuBus maintains address invariance when passing data
between the big-endian Macintosh II computer and an expansion card. To keep track of
data movement, bytes are channeled into byte lanes. Thus, byte lane 0 of the Macintosh
processor bus is mapped to byte lane 0 of NuBus, and so on. But when a 32-bit word
passes to NuBus, the bytes are changed in significance by a process called byte swapping.
The expansion card undoes the byte swap on its side of NuBus, so that data in memory
on a card is organized exactly the same way it is on the Macintosh side. The diagram in
Figure B-4 shows how data is mapped from the Macintosh II system across NuBus onto
an expansion card.

Figure B-4 Byte swapping in NuBus

0 1 2 3 0x40414243

3 2 1 0 0x43424140

0 1 2 3 0x40414243

Note

Byte-swapping is like parity. An even number of byte
swaps produces the original ordering. O

Mixed-Endian Systems

To use the PCI bus and achieve compatibility with a wide range of expansion card
designs, PCI-based Power Macintosh computers are forced to be mixed-endian. This
section discusses some of the issues that result from mixed-endian system design.
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Transmitting Addresses

In PCI-based Power Macintosh computers, addresses never require byte swapping. They
are written and read as whole quantities and are passed directly across PCI bridges
without byte swapping. However, some transformations may be required when
transporting addresses across a bridge—for example, to encode byte lanes and transfer
sizes. Addresses may also be altered by logical operations, as described in “Address
Swizzling” beginning on page 399.

Byte-Swapping Issues

Byte swapping of data is a natural consequence of address invariance. It occurs when
data in one endian format is read by a system that uses the other endian format. For
example, suppose the DMA descriptor values initialized by the code shown in Listing
B-1 on page 396 are generated by a little-endian system and saved to disk. The data is
then read from the disk by a big-endian system.

Assume that the data is written to disk in byte-address order, and that the disk memory
is formatted in an 8-byte wide configuration. The little-endian disk memory image
would look like Figure B-5.

Figure B-5 Little-endian memory image
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When read by a big-endian system in byte-address order, the data would be stored in
memory as shown in Figure B-6.

Figure B-6 Big-endian memory image
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Notice that the byte offsets of each field are still correct. However, the data within each
field has been swapped. If field aDescr . Awas read with a little-endian word loading
process, the data in memory would be 0x47464544, even though the original data was

written as 0x44454647.
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Byte Swapping and Frame Buffers

Another example of byte swapping is what happens to multibyte pixels in a frame
buffer. Macintosh software is compatible with several multibyte pixel formats, of which
16-bit pixels provide a good example of the effects of byte swapping. The Macintosh
16-bit RGB format interprets a half word as consisting of a 1-bit alpha value followed by
three 5-bit red, green, and blue color components. The diagram in Figure B-7 shows how
these pixels are packed into a word in big-endian memory.

Figure B-7 Big-endian RGB 16-bit pixel format

Pn Pn+1

a| R G B a| R G B

When this data is moved across the little-endian PCI bus, data swapping makes the data
appear as shown in Figure B-8.

Figure B-8 Little-endian RGB 16-bit pixel format

Pns+1 Pn
G B |al R |G| G B al R |G

Notice two effects of the byte swapping process:

= The relative location of the pixels is correct for the little-endian PCI; this is a direct
consequence of maintaining address invariance.

s The data within the pixels has been partly rearranged. For example, the green
component has been split into two pieces because it spans a byte boundary.

Address Swizzling

It is possible to make it appear that memory is organized in little-endian format, even
though it is maintained by a microprocessor that is inherently big-endian, such as the
PowerPC processor. This effect is desirable, for example, when Windows NT runs on

a PCI-based Power Macintosh computer, because Windows NT requires memory to
appear to be little-endian. It can be achieved by changing addresses without altering the
layout of data in memory, a technique called address swizzling.
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For example, refer to the DMA descriptor values initialized by the code shown in
Listing B-1 on page 396. Little-endian software expects the descriptor to be arranged
in memory as shown in Figure B-9.

Figure B-9 Little-endian descriptor in memory

44 45 46 47|22 23|11|10

88 89 8A 8B 8C 8D 8E 8F

A big-endian processor can maintain the memory image shown in Figure B-9 by
addressing it with big-endian byte lane assignments, as shown in Figure B-10. If a
little-endian processor were maintaining the same image, it would assign byte lanes as
shown in Figure B-5 on page 398.

Figure B-10 Little-endian descriptor with big-endian addresses
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Within fields, the byte ordering of the data image shown in Figure B-10 is correct, but the
data addresses have been swizzled. For example, the field aDescr . Cthat is stored in
byte lane 0 in the little-endian format shown in Figure B-5 on page 398 is now stored in
byte lane 7 in Figure B-10.

Address swizzling is one technique by which the PowerPC processor provides little-
endian addressing support. It is described more fully in “Little-Endian Processing
Mode” beginning on page 401.

PowerPC Little-Endian Support

PowerPC microprocessors, which normally address data in big-endian format, provide
two separate mechanisms to support little-endian and mixed-endian systems:

= byte-reversed load and store instructions
= little-endian processing mode

These mechanisms are discussed in this section.
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Byte-Reversed Load and Store Instructions

The PowerPC instruction set includes a class of load and store instructions that perform
byte swapping based on the size of the data transferred. For example, the load word byte
reversed indexed (I wor x) instruction swaps a 4-byte value. The primary purpose of
instructions such as | wbr X is to allow efficient access to data in little-endian format,
without additional byte-swapping.

For an example, refer to the big-endian DMA descriptor value shown in Figure B-6. If a
program uses a PowerPC | wbr x instruction to access field aDescr . A it reads the value
0x44454647, which is the correct data in little-endian format.

Byte-reversed load and store instructions require more code than other load and store
instructions, because they exist only in indexed form without update forms. Either
addresses of fields within data structures must be explicitly calculated, or field offsets
must be loaded into a register. Also, there is currently no C compiler mechanism
available to generate these instructions.

Little-Endian Processing Mode

The PowerPC microprocessor supports a little-endian processing mode, in which
addresses are swizzled when they are used to access memory. The swizzle applies an
XOR operation to the low-order 3 bits of an address with a constant that depends upon
the size of the data being loaded or stored. Word load and store actions use a value of
0b100, halves use 0b110, and bytes use 0b111. The resulting addresses are used to make
memory references to a big-endian memory system.

Note

The PowerPC’s effective address is not modified, only the interpretation
used to access memory. For example, the update forms of load and store
instructions alter the base register with the same value, regardless of the
current endian mode. Thus, the address swizzle is completely
transparent to software. O

Notice that the address swizzle in little-endian processing mode changes only the lower
3 bits. The number of address bits swizzled depends upon the maximum scalar data type
that can be accessed by the system; it does not depend upon the width of the processor’s
data path. In the case of PowerPC processor, the longest scalar is a double word—hence,
swizzling 3 bits suffices to transform any address.

By swizzling the offsets in the big-endian DMA descriptor value shown in Figure B-10
on page 400, little-endian processing mode produces a new set of offsets. For example,
the processor applies the calculation 0b000 XOR 0b100 to the 0 offset for the word field
aDescr . A producing the offset 0b100, or 4. Software can read the correct value of
0x44454647 at that offset. The result is that the whole descriptor appears to have the
structure shown in Figure B-11.
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Figure B-11 Descriptor swizzled by little-endian processing mode
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Note

PowerPC little-endian mode does not support misaligned data accesses.
Access to misaligned data must be done by code sequences or
subroutines. As is the case with byte-reversed load and store
instructions, there is currently no compiler support for handling
misaligned data. O
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Graphic Memory Formats

This appendix describes the various formats in which pixel information is stored in
frame buffers in PCI-based Power Macintosh computers. It also includes information
about transforming pixel information to convert it from big-endian to little-endian
format and vice versa. For information about data formats, see Appendix B, “Big-Endian
and Little-Endian Addressing.”

The drawings in this appendix that illustrate pixel formats are presented in three parts:

s The top diagram (denoted by BIG) shows the pixel’s big-endian format, with the byte
lanes numbered in big-endian order.

» The middle diagram (denoted by GIB) shows the pixel value as it appears on the PCI
bus, byte swapped to fulfill the PCI bridge’s address invariance. This diagram shows
the little-endian PCI byte lane numbering.

s The bottom diagram (denoted by LITTLE) shows the little-endian format, with the
byte lanes numbered in little-endian order.

Note
All pixel formats shown in this appendix conform to the PCI Multimedia
Design Guide, listed in “Other Publications” beginning on page xxiii. O

RGB Pixel Formats

The following sections describe the red-green-blue (RGB) pixel formats that are directly
supported by QuickDraw in Mac OS. Where the formats are affected by endian
formatting, the BIG, GIB and LITTLE formats are shown.

1, 2, 4, and 8 Bits Per Pixel

With pixel formats 1 byte long or less, no pixel transformation is required, because the
bridge’s address-invariant byte swapping does not affect data below the byte level.
However, it is important to recognize that PCI-based Power Macintosh computers
assume that pixels are packed into bytes in left-to-right order. For example, in 1-bit mode
the most significant bit of a byte is the leftmost visible pixel on the screen. This is
consistent with existing VGA pixel formats.
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Figure C-1 shows 1-bit-per-pixel mode. The 2-bit, 4-bit, and 8-bit cases are similar.

Figure C-1 1-bit-per-pixel formats

Po P7 P24 P31
BIG
I 0 I 1 I 2 I 3 I
P24 P31 Po P7
GIB
3 2 1 0 I
P24 P31 Po P7
LITTLE
I 3 I 2 I 1 I 0 I

16 Bits Per Pixel

16-bit pixel encoding includes a 1-bit alpha value and three 5-bit red, green, and blue
color components, as shown in Figure C-2.

Figure C-2 16-bits-per-pixel formats

Po P1
a R G B a R G B BIG
I I 1 I 2 I 3 I

P1 Po

G B Jaj R |G| G B a| R |G GIB

| 3 | 2 | 1 | 0 |

P1 Po
a R G B a R G B LITTLE
I 3 I 2 I 1 I 0 I
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24 and 32 Bits Per Pixel

The format of 24- and 32-bit pixels is shown in Figure C-3. In 24-bit mode, the data value
of the alpha byte is undefined; however, space is always reserved for it. The 24-bit and
32-bit pixels are always contained within 32-bit words.

Figure C-3 24- and 32-bits-per-pixel formats
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A R G B BIG
I I 1 I 2 I 3 I
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B G R A GIB
| 3 | 2 | 1 | 0 |
Po
A R G B LITTLE
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YUYV Pixel Formats

YUV pixel formats are typically generated by video input hardware from video camer
as, videocassette recorders, and so on; they are not normally generated by software.
Although there are various YUV formats possible, determined by the ratio and size of
luminance samples (Y) and chroma (U and V) values, PCI-based Power Macintosh
computers support only the 4-2-2 format. This format includes two 8-bit Y samples for
each pair of 8-bit U and V samples. While 2 pixels (even-odd pairs) are packed into a
32-bit word, each pixel can be thought of as being composed of a luminance component
(Y) and a chroma component (U or V) packed into 16-bit values.

The transformations of YUV pixels across a PCI bridge from BIG to GIB format are
similar to those of 16-bit pixels. Figure C-4 shows the YUV 4-2-2 pixel formats. As is
the case with 16-bit pixels, the pixels in YUV GIB format are in the correct positions
but the bytes within each pixel have been swapped.
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Figure C-4 YUV pixel formats

Po P1
Ye Ue Yo Ve BIG
I 0 I 1 I 2 I 3 I
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Ve Yo Ue Ye GIB
I 3 I 2 I 1 I 0 I
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I 3 I 2 I 1 I 0 I

Definitions of Pixel Formats in C

Another way to describe the pixel formats in PCI-based Power Macintosh computers is
by C struct definitions. The bit packing and bit ordering of packed bit struct fields in C
match the endian formats of the target architecture.

Big-endian C compilers pack bits from left to right, while little-endian C compilers pack
the bits from right to left. Hence different structs must be used to describe a given pixel
format, depending upon whether the target code is big-endian or little-endian.

Listing C-1 shows how the pixel formats described in this appendix can be defined in C
for big-endian and little-endian bit ordering.

Listing C-1 C structs for pixel formats
typedef struct { /* big-endian pixel formats */
u_int al pha: 1;
u_int red: 5;
u_int green:5;
u_int bl ue: 5;

} RGB_15_al pha;
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t ypedef struct {

u_int al pha: 8;
u_int red: 8;
u_int green: 8;
u_int bl ue: 8;

} RGB_24 al pha;

typedef struct {

u_int bl ue: 5;
u_int green: 5;
u_int red:5;
u_int al pha: 1;

} RGB_15_al pha;

typedef struct {

u_int bl ue: 8;
u_int green: 8;
u_int red: 8;
u_int al pha: 8;

} RGB 24 al pha;

C structs for pixel formats

/* little-endian pixe

formats */
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PCI Header Files

Apple supplies a large number of C-language header files of interest to Macintosh
developers. They include interfaces to both Mac OS system software and ROM-based
Macintosh startup firmware.

Among these header files are those you need to compile drivers and other PClI-related
software for the second generation of Power Macintosh computers. Table D-1 lists them
and gives references to the sections of this book where each file’s content is discussed.

Table D-1 Header files for Macintosh PCI development

File name Book reference

Devi ces. h Chapter 7, “Writing Native Drivers”
DriverServices. h Chapter 9, “Driver Services Library”
DriverGCestalt.h “Driver Gestalt” beginning on page 106
Interrupts.h “Interrupt Management” beginning on page 240
Kernel . h Chapter 9, “Driver Services Library”

NarmreRegi stry. h Chapter 8, “Macintosh Name Registry”

PCl . h Chapter 10, “Expansion Bus Manager”

Vi deo. h Chapter 11, “Graphics Drivers”

Table D-2 lists the functions and data structures that the header files listed in Table D-1
support. For each one it gives the name of the supporting file and the page number in
this book where the function or data structure is documented.

Table D-2 PCl-related functions and data structures

Function or data structure Header file Page
Absol ut eDel t aToDur ati on DriverServices. h 272

Absol ut eDel t aToNanoseconds Driver Services. h 272

Absol ut eTi me Driver Services. h 270

Absol ut eToDur ati on Driver Services. h 271

Absol ut eToNanoseconds Driver Services. h 271
AddAbsol ut eToAbsol ut e Driver Services. h 271

continued
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Table D-2

PCl-related functions and data structures (continued)

Function or data structure
AddAt om ¢

AddDur at i onToAbsol ut e
AddNanosecondsToAbsol ut e
Bi t AndAt omi ¢

BitOrAtom ¢

Bi t Xor At om ¢

Bl ockCopy

Cal | Secondar yl nt er r upt Handl er 2
Cancel Ti ner

CDDevi ceChar acteristics
Changel nt er rupt Set Opt i ons
Checkpoint1 O

Conpar eAndSwap

Cr eat el nt err upt Set

Cr eat eSof t war el nt er r upt
CSt r Cat

CStr Cmp

CSt r Copy

CStrLen

CSt r NCat

CSt r NCmp

CSt r NCopy

CStrToPStr

Current Executi onLevel
Current Taskl D

Decrement At om ¢

Del ayFor

Del ayFor Har dwar e

Del et eSof t war el nt er r upt
Devi ceProbe

DriverDescription

Header file
Dri ver Servi

Driver Servi
Driver Servi
Driver Servi
Driver Servi
Driver Servi
Driver Servi
Kernel . h

Ker nel . h

DriverGestalt.h

I nterrupts.
Kernel . h

Dri ver Servi
Interrupts.
Kernel . h

Dri ver Ser vi
Dri ver Ser vi
Dri ver Servi
Dri ver Ser vi
Dri ver Servi
Dri ver Servi

Dri ver Servi

Driver Servi
Kernel . h
Kernel . h
Driver Servi
Kernel . h
Kernel . h
Kernel . h

Dri ver Servi

Devi ces. h

ces.

ces.

ces.

ces.

ces.

ces.

ces.

h

ces.

h

ces.

ces.

ces.

ces.

ces.

ces.

ces.

ces.

ces.

ces.

> - oS oS TS TS T

> oS oS oS TS oS TS T

Page

276
272
271
276
276
276
238
265
275
116
257
228
276
255
261
280
280
279
281
280
281
279
281
215
260
276
274
274
262
148

88
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Table D-2 PCl-related functions and data structures (continued)

Function or data structure
DriverFinallnfo

Dri ver Gest al t Boot Response

Dri ver Gest al t DevTResponse
DriverGestal tlntfResponse
DriverCestaltlsOn

DriverCestaltOf

DriverCestal t On

Driver Cestal t Param

Dri ver Gest al t SyncResponse

Dri ver Gest al t WdeResponse
Driverlnitlnfo

Driver OSRunti ne

Driver OSServi ce

Driver Servicelnfo

Driver Type

Dur at i onToAbsol ut e

Dur at i onToNanoseconds

ExpMgr Conf i gReadByt e

ExpMgr Conf i gReadLong

ExpMgr Conf i gReadWor d

ExpMgr Confi gWiteByte

ExpMgr Confi gWit eLong

ExpMgr Confi gW it eWord

ExpMyr | nt er r upt Acknowl edgeReadByt e
ExpMr | nt er r upt Acknowl edgeReadLong
ExpMyr | nt er r upt Acknowl edgeReadWor d
ExpMgr | OReadByt e

ExpMgr | OReadLong

ExpMgr | OReadWor d

ExpMgr1 ONi t eByt e

ExpMgr1 ON it eLong

Header file
Devi ces. h

DriverGestalt.h
DriverGestalt.h
DriverGestalt.h
Devi ces. h

Devi ces. h

Devi ces. h
DriverCestalt.h
DriverGestalt.h
DriverGestalt.h
Devi ces. h

Devi ces. h

Devi ces. h

Devi ces. h

Devi ces. h
DriverServices. h
DriverServices. h
PCl . h

PCl .
PCl .
PCl .
PCl .
PCl .
PCl .
PCl .
PCl .
PCl .
PCl .
PCl .
PCl .
PCl .

> - - -S S-S o o oS oS oS oS S T

Page

95
112
112
112
107
107
107
110
111
113

94

90

91

92

90
271
271
305
306
305
307
308
307
309
310
309
301
302
301
303
304
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Table D-2 PCl-related functions and data structures (continued)

Function or data structure
ExpMgr1 ON it eVord

ExpMgr Speci al Cycl eBr oadcast Long
ExpMgr Speci al Cycl eWitelLong

Fi ndDri ver Candi dat es

Fi ndDri ver sFor Devi ce

Fl ushPr ocessor Cache

Get Dat aCacheli neSi ze
Get Dri ver Di skFragnent
Get Dri ver For Devi ce
GetDriverlnformation
Get Dri ver Menor yFr agnment
Get | nt er rupt Functi ons
Get | nt er rupt Set Opt i ons
Get | OConmandl nf o

CGet Logi cal PageSi ze

Get Pagel nf or mat i on

Get Ti meBasel nfo

Hi gher Dri ver Ver si on

Hi ghest Uni t Nunber

I ncrenent At om ¢

Instal | Driver For Devi ce
Instal |l DriverFronDi sk
Instal |l DriverFronFile

I nstallDriver Fronfragnent
Install DriverFronmvenory
InstalllnterruptFunctions
I nterrupt D sabl er

I nt errupt Enabl er

I nt errupt Handl er

I nt errupt Set Menber

| OCommandl sConpl et e

Header file
PCl . h

PCl . h
PCl . h
Devi ces. h

Devi ces. h

DriverServices. h

DriverServices. h

Devi ces. h
Devi ces. h
Devi ces. h
Devi ces. h
Interrupts.
I nterrupts.
Dri ver Servi
Dri ver Servi
Kernel . h
Dri ver Servi
Devi ces. h
Devi ces. h
Dri ver Servi
Devi ces. h
Devi ces. h
Devi ces. h
Devi ces. h
Devi ces. h
I nterrupts.
Interrupts.
Interrupts.
Interrupts.

Interrupts.

DriverServices. h

h
h

ces.

ces.

ces.

ces.

> - TS =

Page

303
310
311
122
125
234
230
121
126
136
120
259
256
97
230
231
268
135
138
276
134
130
132
129
133
258
254
254
252
251
84
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Table D-2 PCl-related functions and data structures (continued)

Function or data structure Header file Page
| OPreparati onTabl e Kernel . h 220
LookupDri vers Devi ces. h 138
MenAl | ocat ePhysi cal | yCont i guous Driver Services. h 236
MenDeal | ocat ePhysi cal | yCont i guous Driver Services. h 238
NanosecondsToAbsol ut e DriverServices. h 271
NanosecondsToDur ati on DriverServices. h 271
Openl nst al | edDri ver Devi ces. h 131
Pagel nf or mati on Kernel . h 231
PBDequeue Driver Services. h 278
PBDequeueFi r st Driver Services. h 278
PBDequeuelast Driver Services. h 278
PBEnqueue Driver Services. h 278
PBEnqueuelast Driver Services. h 278
PBQueueCreat e DriverServices. h 278
PBQueueDel et e DriverServices. h 278
PBQueuel ni t DriverServices. h 278
Pool Al | ocat eResi dent DriverServices. h 236
Pool Deal | ocat e DriverServices. h 237
Pr epar eMenor yFor 1 O Kernel . h 224
PSt r Cat DriverServices. h 280
PSt r Cnp Driver Services. h 280
PSt r Copy DriverServices. h 279
PStrLen DriverServices. h 281
PSt r NCat DriverServices. h 280
PSt r NCmp Driver Services. h 281
PSt r NCopy DriverServices. h 279
PStr ToCSt r DriverServices. h 281
QueueSecondar yl nt er r upt Handl er Ker nel . h 264
RegEnt ryl D NaneRegi stry. h 170
RegEntrylter NaneRegi stry. h 174
Regi stryCStrEntryCreate NaneRegi stry. h 173

continied
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Table D-2

PCl-related functions and data structures (continued)

Function or data structure

Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi
Regi

stryCStrEntryLookup
stryCStrEnt ryToNane
stryCStrEntryToPat h
stryEntryDel ete

st ryEnt ryGet Mod
stryEntryl DConpar e
stryEnt ryl DCopy
stryEntryl DDi spose
stryEntryl DInit
stryEntrylterate
stryEntrylterateCreate
stryEntrylterateDi spose
stryEntryl terateSet

st ryEnt ryMod

stryEnt ryPropertyMd
stryEntrySear ch

st ryEnt r ySet Mod
stryEntryToPat hSi ze
stryPropertyCreate
stryPropertyDel ete
stryPropertyGet

st ryPropertyGet Mod
stryPropertyGet Si ze
stryPropertylterate
stryPropertylterateCreate
stryPropertylterateDi spose
stryPropertySet

st ryPropertySet Mod

RegPropertylter

RenpveDri ver

RenaneDri ver

Header file

NameRegi stry.
NameRegi stry.
NameRegi stry.
NaneRegi stry.
NaneRegi stry.
NameRegi stry.
NaneRegi stry.
NameRegi stry.
NaneRegi stry.
NaneRegi stry.
NameRegi stry.
NameRegi stry.
NameRegi stry.
NaneRegi stry.
NameRegi stry.
NaneRegi stry.
NaneRegi stry.
NameRegi stry.
NameRegi stry.
NameRegi stry.
NaneRegi stry.
NameRegi stry.
NameRegi stry.
NameRegi stry.
NameRegi stry.
NameRegi stry.
NaneRegi stry.
NameRegi stry.
NaneRegi stry.

Devi ces. h

Devi ces. h

> - - - - o o - o o o9 - o9 o9 o9 o9 o9 o9 o9 o9 o9 o o o o o oS o o

Page

180
183
182
174
199
171
172
172
170
176
175
180
175
197
198
178
200
182
185
186
191
201
190
188
187
189
192
201
187
136
152
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Table D-2 PCl-related functions and data structures (continued)

Function or data structure
Repl aceDri ver Wt hFr agnment

ScanDri ver Candi dat es
SendSof t war el nt er r upt

Set Dri ver C osur eMenory

Set I nterrupt Ti mer

Set Pr ocessor CacheMode
SubAbsol ut eFr omAbsol ut e
SubDur at i onFr omAbsol ut e
SubNanosecondsFr omAbsol ut e
Synchr oni zel O

SysDebug

SysDebugStr

Test AndCl ear

Test AndSet

UpTi ne

VDDi spl ayConnect | nf oRec
VDSyncl nf oRec

Veri fyFragment AsDri ver
VSLDi sposel nt errupt Servi ce
VSLDol nt er rupt Ser vi ce
VSLNew nt er r upt Servi ce

VSLPr epar eCur sor For Har dwar eCur sor

Header file
Devi ces. h

Devi ces. h
Kernel . h
Devi ces. h
Kernel . h
Kernel . h
Driver Servi
Driver Servi
Driver Servi
Driver Servi
Kernel . h
Kernel . h
Driver Servi
Driver Servi
Driver Servi
Vi deo. h

Vi deo. h
Devi ces. h
Vi deo. h

Vi deo. h
Vi deo. h
Vi deo. h

ces.

ces.

ces.

ces.

ces.

ces.

ces.

> D TS =

Page
151

124
261
126
273
233
271
272
272
234
282
282
277
277
271
339
331
128
346
345
345
346
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Abbreviations

Abbreviations for units of measure used in this book include

A amperes MHz megahertz
cm centimeters mm millimeters
dB decibels ms milliseconds
GB gigabytes mV millivolts

Hz Hertz ns nanoseconds
KB kilobytes pF picofarads
Kbit kilobits sec. seconds

kHz kilohertz \Y volts

kQ kilohms W watts

mA milliamperes uF microfarads
MB megabytes Us microseconds
Mbit megabits Q ohms

Other abbreviations used in this book include

ADC analog-to-digital converter

ANSI American National Standards Institute
AOCE Apple Open Collaborative Environment
API application programming interface
ASCII American Standard Code for Information Interchange
ASIC application-specific integrated circuit
ASLM Apple Shared Library Manager

AV audio/video

BIOS basic I/O system

CD-ROM compact disc ROM

CFM Code Fragment Manager

CLUT color lookup table

CPU central processing unit

DAC digital-to-analog converter

DAV digital audio/video

DCE device control entry

DDC Display Data Channel

DEVSEL device select

continued
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DLL
DLPI
DLSAP
DMA
DPMS
DSAP
DSL
FDDI
FIFO
FPI
FTP
HES
IC

ID
IDE
IDR
IEEE
IER
IIC
1/0
IOPB
IPX
ISA
ISR
IST
LIFO
LSB
LUN
MPEG
MPW
MSB
n.a.
NC
NTSC
NVRAM
PAL
PCI

Driver Loader Library

Data Link Provider Interface

data link service access point

direct memory access

Device Power Management Standard
destination service access point
Driver Services Library

Fiber Distributed Data Interface

first in, first out

family programming interface

file transfer protocol

hierarchical file system

integrated circuit

identifier

Integrated Drive Electronics
interrupt disabler routine

Institute of Electrical and Electronics Engineers
interrupt enabler routine

inter-IC control (also called I2C)
input/output

I/O parameter block

Internet Packet Exchange
Instrument Society of America
interrupt service routine

interrupt source tree

last in, first out

least significant byte

logical unit number

Motion Picture Expert Group
Macintosh Programmer’s Workshop
most significant byte

not applicable

no connection

National Television System Committee
nonvolatile RAM

Phased Alternate Lines

Peripheral Component Interconnect

continued
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Abbreviations

PCMCIA
PEF
PLL
PRAM
RAM
RGB
RISC
ROM
SAP
SCSI
SECAM
SGR
SIG
SIM
SNAP
SNR
SPI
SSAP
TCP/1P
TPI
VBL
VCR
VESA
VGA
VIA
VRAM
VSL
XID
XPT

Personal Computer Memory Card International Association

Preferred Execution Format
phase-locked loop

parameter RAM

random-access memory
red-green-blue

reduced instruction set computing
read-only memory

service access point

Small Computer System Interface
Systeme Electronique Couleur avec Mémoire
Select Graphic Rendition

special interest group

SCSI Interface Module

subnet access protocol
signal-to-noise ratio

system programming interface

source service access point

Transmission Control Protocol /Internet Protocol

Transport Provider Interface

vertical blanking

videocassette recorder

Video Electronics Standards Association
video graphics adapter

versatile interface adapter

video RAM

Video Services Library

exchange identifier

transport
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Glossary

address invariance A feature of a data bridge
(such as a PCI bridge) by which the address of
any byte transferred across the bridge remains
the same on both sides of the bridge.

address-invariant byte swapping A technique
for changing data between big-endian and
little-endian formats that preserves address
invariance.

address space The domain of addresses in
memory that can be directly referenced by the
processor at any given moment.

address swizzling A technique for producing
address invariance in mixed-endian systems
by making small changes in the addresses of
multibyte fields without altering the field
formats—that is, without byte swapping.

APDA Apple’s worldwide direct distribution
channel for Apple and third-party development
tools and documentation products.

aperture A logical view of the data in a frame
buffer, organized in a specific way and mapped
to a separate area of memory. For example, a
frame buffer may have a big-endian aperture
and a little-endian aperture, providing instant
access to the buffer in either addressing mode.

Apple AV technologies A set of advanced I/O
features for Macintosh computers that includes
versatile telecommunications, video I/O, and
16-bit stereo sound I/O.

Apple GeoPort interface A serial I/O interface
through which Macintosh computers can
communicate with a variety of ISDN and other
telephone transmission facilities by using
external pods.

application programming interface (API) A set
of services in Mac OS that supports application
software. See system programming interface.

autoconfiguration A method of integrating
peripheral devices into a computer system that
includes mechanisms for configuring devices
during system startup and requires that vendors
include expansion ROMs on plug-in cards.

AV technologies See Apple AV technologies.

big-endian Used to describe data formatting in
which each field is addressed by referring to its
most significant byte. See also little-endian.

boot driver A device driver that is used during
the Open Firmware startup process. It must be
written in FCode and is usually loaded from the
expansion ROM on a PCI card.

bridge See PCI bridge.

byte lane An 8-bit channel of a data bridge that
passes individual bytes of data.

byte swapping A technique of changing the
order of byte lanes as they pass through a data
bridge (such as a PCI bridge) that produces
address invariance in a mixed-endian system.

CFM See Code Fragment Manager.

Code Fragment Manager (CFM) A part of
Mac OS that loads pieces of code into RAM
and prepares them for execution.

coherency See memory coherency.

color depth The number of bits required to
encode the color of each pixel in a display.

completion routine A routine provided by a
Device Manager client that lets the Device
Manager notify the client that an I/O process
has finished.

concurrent drivers Drivers that can process
more than one request at a time.

configuration The process of modifying the
software of a computer so it can communicate
with various hardware components.
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cookie A parameter in programming that is
used only to transfer a value from one routine
to another.

Data Link Provider Interface (DLPI) The
standard interface Apple uses for Open
Transport drivers.

device environment A software environment
with which a device operates, such as the Open

Firmware startup process or an operating system.

Device Manager Part of Mac OS that installs
device drivers and communicates with them.

device node In a device tree, a node that serves
one hardware device.

device tree A software structure, generated
during the Open Firmware startup process, that
assigns nodes to all PCI devices available to the
system. Mac OS extracts information from the
device tree to construct the device parts of the
Macintosh Name Registry.

direct memory access (DMA) A means of
transferring data rapidly into or out of RAM
without passing it through the microprocessor.

disk-based driver A driver located in the
Macintosh file system in the Extensions folder.

digital audio/video (DAV) interface A
connector in certain Power Macintosh models
that lets expansion cards communicate directly

with the system’s audio and video signal streams.

Display Manager A part of Mac OS that
provides a uniform family programming
interface for display devices.

DLPI See Data Link Provider Interface.

driver The code that controls a physical device
such as a PCI card device.

driver closure A driver and all its associated
libraries, for which memory may be held
or released.

driver gestalt call A status call to a device
driver that returns information such as the
driver’s revision level or the device’s power
consumption.

Driver Loader Library (DLL) A CFM shared
library extension to the Device Manager, which
installs and removes drivers.
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Driver Services Library (DSL) A CFM shared
library that supplies all the system programming
interfaces required by native drivers.

dynamic random-access memory (DRAM)
Random-access memory in which each storage
address must be periodically accessed
(“refreshed”) to maintain its value.

Expansion Bus Manager The part of the
Macintosh startup firmware that provides access
to I/O memory and manages the storage of
certain information in nonvolatile RAM.

expansion ROM A ROM on a PCI accessory
card that supplies the computer with information
about the card and any associated peripheral
devices during the configuration process. Also
called a declaration ROM or a configuration ROM.

expert The code that connects a family of
devices to the native I/O framework.

family A collection of devices that provide the
same kind of functionality, such as the set of
Open Transport devices.

family administrator Code that sends
configuration information to a family of devices.

family expert An expert that uses the Name
Registry to find device entries of its family
service type.

family library A set of routines that a family
expert uses to support PCI devices of its family
service type.

family programming interface (FPI) A set of
system services that mediate between family
experts and the devices within a family.

Fast Path An optional optimization of Open
Transport wherein the driver supplies the client
with a precomputed packet header for a given
destination.

FCode A tokenized version of the Forth program-
ming language, used in PCI card expansion
ROMs. The elements of FCode are all 1 or

2 bytes long.

FCode tokenizer A utility program that
translates lines of Forth source code into FCode.
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frame buffer Memory that stores one or more
frames of video information until they are
displayed on a screen.

gestalt node A node at the root of the device
tree that contains information about the
Macintosh system.

GeoPort See Apple GeoPort interface.

hard decoding The practice by which an
expansion card defines PCI address spaces,
instead of letting the Macintosh system assign
relocatable base addresses.

hardware interrupt A physical device’s method
for requesting attention from a computer.

hardware interrupt level The execution context
provided to a device driver’s primary interrupt
handler.

IEEE Institute of Electrical and Electronics
Engineers.

input/output (I/O) Parts of a computer system
that transfer data to or from peripheral devices.

installation Of an interrupt, the process of
associating an interrupt source with an interrupt
handler.

interrupt dispatching The process of invoking
an interrupt handler in response to an interrupt.

interrupt handler Code that performs tasks
required by a hardware interrupt.

interrupt registration The process of attaching
an interrupt handler to the interrupt source tree.

interrupt set One level in an interrupt tree.

interrupt source A physical device that is able
to interrupt the process flow of the computer.

interrupt source tree (IST) A data structure
associated with a hardware interrupt source that
contains the interrupt handling routines that the
Macintosh system may execute.

little-endian Used to describe data formatting
in which each field is addressed by referring to
its least significant byte. See also big-endian.

low-level expert An expert that places informa-
tion about low-level code into the Name Registry.

Macintosh Programmer’s Workshop (MPW) A
complete software development environment
that runs on Macintosh computers.

Mac OS Apple’s operating system software for
Macintosh and Macintosh-compatible computers.
Previously called Macintosh system software.

memory coherency The property of a range
or kind of memory by which all parts of the
computing system access the same values.
Memory coherency ensures that data being
moved into or out of memory does not appear
to have different values when accessed by the
processor and PCI bridges.

mixed-endian The ability of a computer
system, such as Power Macintosh, to support
both big-endian and little-endian data formats.

modifier Information associated with a name or
property that is hardware or implementation
specific, such as whether or not the name or
property is saved to nonvolatile RAM.

name entry An element of the Name Registry.
Name entries are connected hierarchically to
other name entries and have properties.

Name Registry A high-level Mac OS system
service that stores the names of software objects
and the relations among the names. The Name
Registry extracts device information from the
device tree and makes it available to Macintosh
run-time drivers.

native driver A driver that is written in
PowerPC code and that uses the native I/O
framework in the second generation of Power
Macintosh computers.

native driver package A CFM code fragment
that contains the driver software for a family
of devices.

native I/O framework The set of services
and SPIs in Mac OS that support native run-
time drivers.

noninterrupt level See task level.

nonvolatile RAM (NVRAM) Memory, in either
flash ROM or battery-powered RAM, that retains
data between system startups.
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Open Firmware driver A driver for a PCI
device that is used during the Open Firmware
startup process, before an operating system has
taken control of the computer.

Open Firmware startup process The startup
process by which PCI-compatible Macintosh
computers with PowerPC processors recognize
and configure peripheral devices connected to
the PCI local bus. It conforms to an IEEE
standard.

Open Transport A device family that handles
Apple network devices such as LocalTalk and
Ethernet.

pass-through memory cycle A PCIdata
transfer cycle in which the PCI bridge passes the
original PowerPC word address to the PCI bus.

PCI Abbreviation for Peripheral Component
Interconnect.

PCI bridge An ASIC chip that communicates
between the computer’s microprocessor and a
PClI local bus.

PCIlocal bus A bus architecture for connecting
ASICs and plug-in expansion cards to a
computer’s main processor and memory. It is
defined by the PCI specification.

PCI specification PCI Local Bus Specification,
Revision 2.0, a document issued and maintained
by the PCI Special Interest Group.

physical device A piece of computer hardware
that performs an I/O function and is controlled
by a driver.

pixel A single dot on a screen display.
port driver A driver for Open Transport.

PowerPC A family of RISC microprocessors.
PowerPC 601, 603, and 604 microprocessors are
currently used in Macintosh PCI-based
computers.

primary interrupt handler The part of an
interrupt handler that responds directly to a
hardware interrupt. It usually satisfies the source
of the interrupt and queues a secondary
interrupt handler to perform the bulk of the
interrupt servicing.
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primary interrupt level The execution context
in which a device’s primary interrupt handler
runs. In this context hardware interrupts of the
same or lower priority are disabled.

property A piece of descriptive information
associated with a node in the device tree or with
a name entry in the Name Registry.

property list The collection of properties
associated with a device.

reduced instruction set computing (RISC) A
technology of microprocessor design in which all
machine instructions are uniformly formatted
and are processed through the same steps.

RISC See reduced instruction set computing.

ROM-based driver A driver located in the
expansion ROM of a PCI card.

run-time driver A device driver that is used by
an operating system after the Open Firmware
startup process has finished. It may be supplied
by the operating system or contained in the
expansion ROM on a PCI card. In the second
generation of Power Macintosh, all run-time
drivers are native drivers.

scanning The process of matching a device
with its corresponding driver.

scatter-gather buffer A buffer that stores data
in several discontiguous ranges of memory.

scatter-gather list The set of physical address
ranges corresponding to a logical address range.

SCSI Interface Module (SIM) The equivalent
of a driver for devices compatible with SCSI
Manager 4.3.

secondary interrupt handler An interrupt
handler that is queued for execution after the
primary interrupt handler has responded to the
interrupt. Secondary interrupt handlers can be
interrupted and execute serially when the system
is not otherwise busy.

secondary interrupt level The execution
context provided to a device driver’s secondary
interrupt handler. In this context hardware
interrupts are enabled and additional interrupts
may occur.
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SIM See SCSI Interface Module.
SPI See system programming interface.

startup firmware Code in the Macintosh ROM
that implements the Open Firmware startup
process.

system programming interface (SPI) A set of
services in the Macintosh system software that
supports hardware-related code such as drivers.
See application programming interface.

task level The execution environment for
applications and other programs that do not
service interrupts. Also called noninterrupt level.

time base The model-dependent rate on which
real-time timing operations are based in Power
Macintosh computers.

vertical blanking task A task that the
Macintosh system executes during a display
device’s vertical retrace intervals.

virtual device I/O code that provides a
capability that is not hardware specific—for
example, a RAM disk.

YUV A data format for each pixel of a color
display in which color is encoded by values
calculated from the pixel’s native red, green, and
blue components.
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A C

abbreviations 417 Cache Line Size register 39, 43

absolute time 270 Cal | Secondar yl nt er r upt Handl er 2 function 265

addressing modes 17 'CDEV' resources 162, 60
conversion of 19 Checkpoi nt | Ofunction 228
determination of 20 Class Code register 39, 43

address space 9 class codes in expansion ROM 290
below 1 MB 7,13 client interface to boot drivers 48
for nonvolatile RAM 291 Code Fragment Manager 64, 78, 81
reserved 48 Color Lookup Table 52

American National Standards Institute xxiii color table (in terminal emulator) 51

APDA xxii—xxiii Command register 38, 43

apertures 22 conpat i bl e property 143

Apple AV Technologies 14 completion routine 104

Apple Desktop Bus 82 concurrent drivers 70, 82-85

Apple GeoPort interface 14 configuration cycles on PCI buses 10

Application Programming Interface 61 configuration of PCI buses 36

assi gned- addr esses property 146 control routine 102

asynchronous device driver 104 copying data 73

asynchronous driver calls 74 Cr eat el nt errupt Set function 255

asynchronous I/O requests 105
atomic operations 276
autoconfiguration 30

D
data fields 18
B Data Link Provider Interface 362, 374
data transfer cycles 24-26
base registers (PCI) 39 DAV interface xxii, 14
big-endian addressing 17-19, 24 dcbz instruction 239, 240
BIOS code type 30 dCt | St or age field 101
BIST register 39, 44 debugging 282
Bl ockCopy function 238 Deferred Task Manager 156
Bl ockCopy routine 240 dept h display device property 52
Bl ockMbveDat a routine 239 desk accessories 82
Bl ockMoveDat aUncached routine 239 device configuration 156
Bl ockMbve extensions 238-239 device control entry 81
Bl ockMove routine 239 device driver 32, 48
Bl ockMoveUncached routine 239 asynchronous routines 104
Bl ockZer o routine 239 control routine 102
Bl ockZer oUncached routine 239 converting 68K to native 72
boot drivers 31-34 definition of 60
requirements for 48-49 differences between 68K and native 80
boot firmware 30 initialization of 145, 149
Bridge Control register 46 installing 105
burst transactions 11 Ki || I Orequests 103
byte swapping 18, 24 prime routine 101

private memory for 64
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device driver (continued)

replacement of 150

sample of 55

status routine 103

writing 87
device environments 31
device family 61, 66
Device ID register 37, 42
Device Manager 70, 80, 152
device nodes 164
Devi cePr obe function 148
device tree 31-35, 164
DEVSEL timing 8
digital audio/video interface 14
disk-based drivers 61, 67
display devices 12, 36

automatic sensing of xxii
display driver 316
Display Manager xxii, 66, 150
DoDr i ver | Ofunction 79, 88, 93
Dri ver Confi gur e selectors 113
DriverDescri pti on data structure 70, 88, 363
DriverDescri pti on data symbol 79
dri ver Gestal t function 106
Driver Loader Library 118
Dri ver OSRunt i me data structure 90
Dri ver OSSer vi ce data structure 91
driver-ref property 194
driver routines

close 101

control 102

open 101

prime 101

status 102
Dri ver Servi cel nf o data structure 92
Driver Services Library 71, 214, 240
Dri ver Type data structure 90

E

experts 61, 162

family 61

low-level 62
ExpMyr Conf i gReadByt e function 305
ExpMyr Conf i gReadLongWor d function 306
ExpMgr Conf i gReadWor d function 305
ExpMgr Conf i gWi t eByt e function 307
ExpMgr Conf i gWit eLongWor d function 308
ExpMyr Conf i gW it eWor d function 307
ExpMyr | OReadByt e function 301
ExpMyr | OReadLongWor d function 302
ExpMyr | OReadWor d function 301
ExpMgr | ON i t eByt e function 303
ExpMgr | ON i t eLongWor d function 304
ExpMyr | OW i t eWor d function 303

F

family administrator 61
Family Programming Interface 62, 69
Fast Path network mode 380
fax communication 14
FCode 31, 35
loader for 31
tokenizer for 31
Fi ndDr i ver Candi dat es function 122
Fi ndDri ver sFor Devi ce function 125
FirmWorks xxiii
Forth language 31
frame buffers 12, 25
apertures for 22
and pixel format 20

G

802.2 network standard 375
error returns from system calls 72
Ethernet driver 373
Exception Manager 153
execution context of drivers 67, 85-86
Expansion Bus Manager 290
expansion cards 4, 12

installation of 32

mechanical specifications for 12
expansion ROM 7, 30, 48

base register 40, 46

contents of 32, 290
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generic driver framework 70

GeoPort interface 14

gestalt 106

Gestalt Manager 153

Cet ADr i ve control call 114

Get Dri ver Di skFragnent function 121
Cet Dri ver For Devi ce function 126
Get Dri ver I nf or mati on function 136
Get Dri ver Menor yFr agnent function 120
Get | nt er rupt Funct i ons function 259
Cet | OCommandl nf o function 97

Cet OTl nst al | | nf o function 365

Cet Partitionl nf o status call 115

Get PartitionStatus status call 114
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H

K

hard decoding 13

hardware cursor 346

hardware interface to boot drivers 48
hardware interrupt level execution 67, 214, 241
hardware interrupts 240

header for driver 81

header type in expansion ROM 290
Header Type register 39, 44

hei ght display device property 52

Hi gher Dri ver Ver si on function 135
Hi ghest Uni t Number function 138
human interface guidelines xxii

I, J

keyboards 36
Ki | I I Orequests 81,103

L

IEEE Standard 1275 xxiv, 30

'INIT' resources 60

initialization procedures 35
InitializeHardwar e function 364

I ni t St reanmvbdul e function 366

Inside Macintosh xxi
InstallDriverFronmDevi ce function 134
Instal | Driver FronDi sk function 130
Instal | Driver Frontil e function 132
Instal | Driver Fronfragnent function 129
Install Driver From\venory function 133
Institute of Electrical and Electronic Engineers xxiv
Intel processors 19, 30

interrupt acknowledge cycles on PCI buses 10
interrupt dispatching 240, 244

I nt errupt Enabl er function 254
interrupt handler 104, 156, 240, 257
Interrupt Line register 41, 46

I nt errupt Menber Nunber function 252
Interrupt Pin register 41, 46

interrupts 34, 240-268

interrupt set 242

I nt er r upt Sour ceSt at e function 254
Interrupt Source Tree 241, 249

I/O Base register 44

I OCommandConpl et e function 83-84

I/0O cycles on PCI buses 9, 301

| ODone function 81

I/O framework 60

I/0O Limit register 44

i 0Tr ap parameter field 81

ISAbus 8

ISO standard 6429-1983 49

Latency Timer register 39, 43

|'i nebyt es display device property 52
little-endi an? global variable 20
little-endian addressing 17-19, 24
LOCK# PCI bus signal 7

LookupDri vers function 138

M

Macintosh Operating System 291
MacOS 7.5 33

Macintosh startup firmware 30

Macintosh Toolbox 72

mass storage devices 36

Max_Lat register 41

memory allocations 16

Memory Base register 45

Memory Limit register 45

memory management 155

Min_Gnt register 41

Mixed Mode Manager 153

modifiers 163, 196201

monitors xxii

multicast networking 379

N

name properties 161

Name Registry 62, 154, 160-163
examples of using 204-211
role of 64-66

native device drivers 78

native driver package 71, 87

"'ndrv' driver type 69, 88

nodes 164

noninterrupt level execution 214

nonvolatile RAM (NVRAM) 13, 20, 290

Notification Manager 153

NuBus xix, 5
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O

OpenBoot firmware architecture 30

Open Firmware startup process 26, 30
user interface for 36, 53

Openl nstal | edDri ver function 131

Open Transport 66, 362

operating systems 291

CSSt at us data type 72

'OTAN' service category 66

OTCr eat eDef er r edTask function 369

OTDest r oyDef er r edTask function 369

Orschedul eDef er r edTask function 369

P

parameter block queue manipulation 278
parameter RAM 291
PCI bridge 4, 8
PClI local bus xix
benefits of 4
compared to NuBus 5
configuring 36
cycles on 10, 17
features of 4
Macintosh implementation of 5-10
performance of 11
response to system errors 11
PCI Special Interest Group xxiv
PCI specification 4
PCI-to-PCI bridge 8, 16, 41
pixel format 21-22
Pool Al'l ocat eResi dent function 236
Pool Deal | ocat e function 237
port drivers 362
power consumption of PCI cards 7, 311
power levels 115, 311
Power Macintosh computers xix, xxii
documentation for xxii
memory allocations 16
and PCI cards 4
system architecture of 6
Power Manager 153
PowerPC microprocessor 19, 153
Prefetchable Memory Base register 45
Prefetchable Memory Limit register 45
Primary Bus Number register 44
primary interrupt handler 240
prime routine 101
Pr ohi bi t Mount i ng control call 114
properties of PCI devices 49, 62, 141
creating 184
retrieving 190
standard 193
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property list 31
property nodes 164
protocol modules 60

Q

QueueSecondar yl nt er r upt Handl er function 264

R

Regi st erPartiti on control call 114
registers, PCI configuration 37

Regi stryCsStr Ent ryCr eat e function 173
Regi st ryCstr Ent r yLookup function 180
Regi st ryCSt r Ent r yToNane function 183
Regi st ryCStr Ent r yToPat h function 182
Regi st ryEnt r yDel et e function 174

Regi st ryEnt r yGet Mod function 199

Regi stryEnt ryl DConpar e function 171

Regi st ryEnt ryl DCopy function 172

Regi stryEntryl DD spose function 172

Regi stryEntryl DI ni t function 170

Regi stryEntrylterateCreat e function 175
Regi stryEntryl t er at eDi spose function 180
Regi stryEntrylterat e function 176

Regi stryEntryl terateSet function 175
Regi st ryEnt r yMod function 197

Regi st ryEnt r yPropert yMod function 198
Regi st ryEntrySear ch function 178

Regi st ryEnt r ySet Mod function 200

Regi stryEntryToPat hSi ze function 182
Regi st ryPropertyCreat e function 185

Regi st ryPropertyDel et e function 186

Regi st ryPropertyGet function 191

Regi st ryPropert yGet Mod function 201

Regi stryPropertyGet Si ze function 190
Regi stryPropertylterateCreat e function 187
Regi stryPropertylterateD spose function 189
Regi stryPropertylterate function 188
Regi st ryPropertySet function 192

Regi st ryPropertySet Mod function 201
RenmoveDri ver function 136

RenaneDri ver function 152

Repl aceDri ver Wt hFragnent function 151
Resource Manager 153, 157

Revision ID register 38, 43

ROM-based drivers 62, 67

run-time drivers 35
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S

U

ScanDr i ver Candi dat es function 124
scanning code 62

SCSI device driver 384

SCSI Manager 4.3 150

Secondary Bus Number register 44
secondary interrupt handler 240, 263
Secondar yl nt er r upt Handl er Pr oc2 function 263
secondary interrupt level 67, 214, 242
Secondary Latency Timer register 44
Secondary Status register 45

Segment Loader 154

Select Graphic Rendition escape sequences 49-51
semaphores 8

Set Dri ver Cl osur eMenory function 126
shared data 74

Shutdown Manager 154

68000 processors 19, 61

Slot Manager 154

sound I/O 14

special cycles on PCI buses 10

speech recognition and synthesis 14
Startup Disk control panel 113

startup firmware 30

startup sequence 34-36, 141-142

Status register 43

Status register (PCI) 38, 43

status routine 103

STREAMS environment 362

string manipulation 279

Subordinate Bus Number register 44
Subsystem ID register 40

Subsystem Vendor ID register 40

Sun Microsystems 30

SunSoft Press xxiv

support packages for drivers 34
synchronous driver calls 74

System Programming Interface 62-63, 75

T

task level execution 67

terminal emulation in graphics cards 49
Ter m nat eSt r eanVbdul e function 366
Time Manager 155

timing services 268, 369

unit table 127
reserved entries 105
user interface for Open Firmware 53

\%

vendor ID 290

Vendor ID register 37, 42

Veri f yFragment AsDri ver function 128
Vertical Retrace Manager 154

video cards 22, 25

video I/O 14, 316

virtual devices 62, 165

\W

wi dt h display device property 52

X

XID network packets 380

Y,Z

YUV video signal form 14
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