
HW 31 - Sleep Queue Tasks 1 of 7

Hardware

New Technical Notes

Developer Support

ð
®Macintosh

HW 31 - Sleep Queue Tasks
Hardware

Written by: Colleen K. Delgadillo May 1993

This Technical Note demonstrates how one can write an application to display a dialog box
before a portable Macintosh goes to sleep.

Introduction

Many Developers have asked about the sleep queue code that is documented in the Power
Manager chapter of Inside Macintosh Volume VI. Many have troubles writing an application
that adds an entry to the sleep queue and displays a dialog or alert box when their routine
receives a sleep demand. It all looks quite simple, but after trying it myself I was able to see
that it is simpler said than done.

The Power Manager chapter in Inside Macintosh Volume VI clearly states that “if you are
writing an application that might be affected by the sleep state of the computer, you can place in
the sleep queue a routine that handles whatever preparations are necessary to protect your
program when the PowerBook enters the sleep state.” It also goes on to say that

“You can, for example, display an alert box to inform the user of potential
problems, or you can even display a dialog box that requires the user to specify
the action to be performed.”

What the chapter fails to tell you is that there are special tricks that need to be done to display an
alert box or dialog box from within an application.

This Technical Note describes the troubles that one may run into when attempting to use a sleep
queue routine to display an alert or dialog box when a sleep demand occurs. This note also
explains just what one needs to do to get around such difficult situations.

How Do I Add an Entry to the Sleep Queue?

The Power Manager chapter in Inside Macintosh volume VI provides the assembly code needed
to add an entry to the sleep queue.

Macintosh Technical Notes

2 of 7 HW 31 - Sleep Queue Tasks

Hardware

What Happens When the Macintosh Is Put to Sleep?

The Macintosh is usually put to sleep from within the Finder, when the user chooses Sleep
from the Special menu. At this time the Power Manager walks the sleep queue and calls every
subroutine that it finds there. When your subroutine gets called:

• The current A5 world is (usually) the Finder’s. This means that you cannot access your
applications globals from your sleep routine (unless you follow the guidelines further
described in this note).

• The current resource chain is also the Finder’s so you can not access your applications
resources either (unless you follow the guidelines further described in this note).

The Power Manager Calls My Subroutine From the Sleep Queue
but My Dialog Box Never Gets Drawn. Why?

To draw your dialog box, you need to restore your A5 world so you can use your application’s
data and jump table. To do this, you will need to save a copy of your application’s A5 to a
memory location your subroutine can find later. A good time to do this is when you install your
sleep queue routine. The following code demonstrates how to do this:

MyA5ref PROC EXPORT ; store our A5 in memory
DS.L 1 ; location referenced by

; myA5ref
ENDP

StoreA5Ref PROC EXPORT
IMPORT MyA5Ref
LEA MyA5ref,a0 ; point to our storage area
MOVE.L 4(sp),d0
MOVE.L d0,(a0) ; save a copy of our A5 there
RTS
ENDP

DoSleep PROC EXPORT
IMPORT MyA5Ref,sleepdmd

LEA MyA5ref,A0 ; point to our storage area.
MOVE.L (a0),-(sp) ; push our saved A5 onto the

; stack
JSR sleepdmd ; call our C routine
ADDQ #4,sp ;We need to clear the stack

; since
RTS ;C routines clear the stack on

; entry
. ENDP ;Pascal routines clear the

; stack on exit.

After this is done you will need to save the current A5 and restore A5 in your sleep subroutine
as follows:

Developer Support Center May 1993

HW 31 - Sleep Queue Tasks 3 of 7

Hardware

void SLEEPDMD(long theA5) {

short item = 0;
long oldA5;
DialogPtr myDialog;

oldA5 = SetCurrentA5();
SetA5(theA5);

// Do whatever you need to do here to show your dialog box.
// The one thing to remember is that if adding a dialog box in
// your sleepQroutine, you should always make it a dialog box
// that times out. If the user is not present to answer the
// alert box or dialog box, control is never returned to the
// Power Manager, and the portable does not go to sleep. This is a
// great way to permanently burn in unwanted images in your screen!
 :
 :
// SetA5(oldA5);

I used the following code to make sure that my dialog box timed out. You may have your own
special technique for timing out your dialog box, but nevertheless you must ensure that the
dialog box will time out in case the user is not present to answer the dialog box.

void TimeoutDialog(short dialogID, long duration)
{
 short itemHit = 0;
 long startTicks = 0;
 DialogPtr dialog = nil;

 dialog = GetNewDialog(dialogID, nil, (WindowPtr) -1);
 ShowWindow(dialog);
 startTicks = TickCount();
 while(((TickCount - startTicks) < duration) && (itemHit !=
 kOKButtonItemID))
 {
 ModalDialog(nil, &itemHit);
 }
 DisposeDialog(dialog);
}

The Sleep Queue Calls My Subroutine but It Cannot Find My
Dialog Box.

In the same way that the Finder’s world is unable to find your application’s globals (because
they reside in your application’s A5 world), the Finder is also unable to access your dialog
box’s resource. When the user chooses Sleep from the menu, the Finder tries to access the
application’s dialog resource. The Finder knows nothing about the application’s resource list,
nor does it have access to it. It can only look to its own resource list to see if the dialog box can
be found. To resolve this situation we will need to use the same trick we used above. We need
to save our dialog box’s resource so that it will be readily available when we call for it.

You might be tempted to create a DLOG/DITL pair, then call GetNewDialog at application
startup time and save your dialogPtr away for later use by the sleep routine. However, this will
not work because the dialog box will be created in your application’s window layer, so when
you try to show the window later, it will appear behind the frontmost application (usually the
Finder) when the portable is put to sleep.

Macintosh Technical Notes

4 of 7 HW 31 - Sleep Queue Tasks

Hardware

One way around this is to create the dialog box from scratch using NewDialog at sleep time.
This ensures that the dialog box is created and drawn in the frontmost window layer when the
PowerBook tries to go to sleep. You do not need to create the dialog box completely from
scratch. You can read the items in from a resource at application startup time, save the handle
away, then pass this item handle to NewDialog. Then all you have to specify is the dialog
box’s rectangle.

This means that you will need to save your application’s A5, the handle to the dialog box’s
DITL, and the pointer to the dialog box itself. This will ensure that you will be properly
pointing your application’s window layer and that your dialog box will be the frontmost
window when it appears.

Therefore, in your initialize routine your code will look as follows:

void Initialize()
{

InitGraf((Ptr) &qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(nil);
InitCursor();

gDitlHandle = Get1Resource('DITL', 130);
// error checking here
STOREA5REF(gMyDialog, gDitlHandle, SetCurrentA5());

:
:

/* install our assembler routine in the sleep process queue */
myRec.sleepQLink = 0;
myRec.sleepQType = slpQType;
myRec.sleepQProc = (ProcPtr) &sleepQroutine;
myRec.sleepQFlags = 0;

SleepQInstall(&myRec);
:
:

} /* Initialize*/

And your assembly code will look as follows:

; Here's where we make storage for our dialog ptr, handle to our DITL and
; your A5.
MyA5ref PROC EXPORT

DS.L 1 ; storage for DialogPtr
DS.L 1 ; storage for handle to DITL
DS.L 1 ; storage for our saved A5

 ENDP

; void StoreA5Ref(DialogPtr theDialog, Handle ditlHandle, Ptr
; SetCurrentA5());

StoreA5Ref PROC EXPORT
IMPORT MyA5Ref

 LEA MyA5ref,a0

Developer Support Center May 1993

HW 31 - Sleep Queue Tasks 5 of 7

Hardware

 MOVE.L $4(sp),d0 ; grab our DialogPtr global
 MOVE.L d0,(a0) ; store it
 MOVE.L $8(sp),d0 ; grab our ditlHandle global
 MOVE.L d0,4(a0) ; store it
 MOVE.L $C(sp),d0 ; grab our saved A5
 MOVE.L d0,8(a0) ; store it

RTS
ENDP

; void StoreDialog(DialogPtr theDialog);

StoreDialog PROC EXPORT
IMPORT MyA5Ref

LEA MyA5ref,a0
MOVE.L $4(sp),d0 ; grab our DialogPtr global
MOVE.L d0,(a0) ; store it
RTS
ENDP

; DialogPtr GetDialog();

GetDialog PROC EXPORT
IMPORT MyA5Ref

 LEA MyA5ref,a0
 MOVE.L (a0),d0 ; return our DialogPtr

; global
RTS
ENDP

; void DoSleep()
; Pushes our A5 and dialogPtr onto the stack, then calls our
; sleep routine.

DoSleep PROC EXPORT
IMPORT MyA5Ref,sleepdmd

LEA MyA5ref,A0
MOVE.L (a0),-(sp) ; push our saved DialogPtr
MOVE.L $4(a0), -(sp) ; push our saved ditlHandle
MOVE.L $8(a0),-(sp) ; push our saved A5
JSR sleepdmd ; call our C routine
ADD #$C,sp ; C routines clear the stack

; on entry.
RTS ; Pascal routines clear the
ENDP ; stack on exit.

;Our sleepQroutine (from the Power Manager Chapter of Inside Macintosh VI)
; looks as follows:

sleepQroutine PROC EXPORT

StackFrame RECORD {A6Link},DECR
ParamBegin EQU *
ParamSize EQU ParamBegin-*
RetAddr DS.L 1
A6Link DS.L 1
LocalSize EQU *

ENDR

Macintosh Technical Notes

6 of 7 HW 31 - Sleep Queue Tasks

Hardware

IMPORT sleepdmd,WAKEUPDMD
IMPORT REVOKERQST
IMPORT DoSleep
WITH StackFrame

LINK A6,#LocalSize
CMPI.L #1,D0 ; Is it a sleep request?
BNE.S @1
MOVE.L #0,D0 ; We clear the register to

; zero to allow for sleep.
BRA.S Exit

@1 CMPI.L #2,D0
BNE.S @2
BSR DoSleep ; Here you are supposed to do

; whatever is needed
; to prepare for sleep. ie: alert user.

BRA.S Exit

@2 CMPI.L #3,D0 ; Are we being told to wake up?
BNE.S @3
JSR WAKEUPDMD ; Here you are to do whatever is

; needed to prepare for the operating
; state and return control to the
; Power Manager.

BRA.S Exit

@3 CMPI.L #4,D0 ; Is a network sleep request
; being cancelled?

BNE.S Exit
JSR REVOKERQST

Exit UNLK A6
MOVEA.L (SP)+, A0
ADDA.L #ParamSize, SP
JMP (A0)

END

Our sleep subroutine will therefore look as follows:

void SLEEPDMD(long theA5, Handle myDitl, DialogPtr myDialog) {

short item = 0;
long oldA5;
Rect wRect;

oldA5 = SetCurrentA5();
SetA5(theA5);

//Need to build a dialog box from scratch using our previously saved DITL.
if (myDialog == nil) {
 SetRect(&wRect, 50, 50, 400, 200);
 myDialog = NewDialog(nil, &wRect, "", false, dBoxProc,
 (WindowPtr) -1L, false, nil, myDitl);
 STOREDIALOG(myDialog);
}

Developer Support Center May 1993

HW 31 - Sleep Queue Tasks 7 of 7

Hardware

ShowWindow(myDialog);
SelectWindow(myDialog);
SetPort(myDialog);
while (item != 1) {

ModalDialog(NULL, &item);
}
HideWindow(myDialog);
SetA5(oldA5);

}/*sleepdmd*/

Conclusion

This note goes over a few special tricks that the Power Manager chapter in Inside Macintosh
Volume VI failed to cover. The Power Manager chapter states that an application could be
written to add a routine in the sleep queue to put up a dialog or alert box before the system goes
to sleep. It does not discuss any of the barriers that one may face when attempting to do this.
The above tricks will allow you to use your application to display a dialog box before the
system goes to sleep.

Further Reference:

• Technical Note PT 35 - Stand-Alone Code, ad nauseum
• develop Issue #12: Another Take on Globals in Standalone Code
• Inside Macintosh, Volume VI, Power Manager chapter
• Inside Macintosh, Volume II, Segment Loader
• “Tell me if you are sleepy” code sample available on Developer CD Series

Special Thanks to Joe Zuffoletto and C. K. Haun help for their with this Technical
Note.

	Introduction
	How Do I Add an Entry to the Sleep Queue?
	What Happens When the Macintosh Is Put to Sleep?
	The Power Manager Calls My Subroutine From the Sleep Queue but My Dialog Box Never Gets Drawn. Why?
	The Sleep Queue Calls My Subroutine but It Cannot Find My Dialog Box.
	Conclusion

