
Apple II, IIe and IIc: Mini-Assembler

This article last reviewed: 21 September 1984

This note covers use of the Apple II, IIe and IIc mini-assembler only, not the
II+. This is not a course in assembly language programming. For a reference
on programming the 6502 microprocessor, refer to the Synertek Programming
manual or any of the tutorials available. This note assumes the user has a
working knowledge of 6502 programming and mnemonics.

The Apple II mini-assembler is a programming aid aimed at reducing the amount
of time required to convert a handwritten program to object code. The
mini-assembler is basically a look-up table for opcodes. With it, you can
type mnemonics with their absolute addresses, and the assembler will convert
it to the correct object code and store it in memory.

Typing "F666G" will puts you in mini-assembler mode. While in this mode, any
line typed in will be interpreted as an assembly language instruction,
assembled, and stored in binary form unless the first character on the command
line is a "$".

If the first character of a command line is a "$", the remainder of the line
will be interpreted as a normal monitor command, executed, and control
returned to the mini-assembler. To get out of the mini-assembler, press
RESET.

If the first character on the line is blank, the assembled instruction will be
stored starting at the address immediately following the previously assembled
instruction. If the first character is not a blank nor a "$", the line is
assumed to contain an assembly language instruction preceded by the
instruction address (a hex number followed by a ":"). In either case, the
instruction will be retyped over the line just entered in dis-assembler format
to provide a visual check of what has been assembled.

The counter that keeps track of where the next instruction will be stored is
the pseudo PC (Program Counter) and it can be changed by many monitor commands
(eg. 'L', 'T', . . .). Therefore, it is advisable to use the explicit
instruction address mode after every monitor command and, of course, when the
mini-assembler is first entered.

Errors (unrecognized mnemonic, illegal format, etc.) are signalled by a "beep"
and a caret ("^") will be printed beneath the last character read from the
input line by the mini-assembler.

Tech Info Library

The mnemonics and formats accepted by the mini-assembler are the same as those
listed by the 6502 Programmers Manual, with the following exceptions and
differences:

1. All imbedded blanks are ignored, except inside addresses.

2. All addresses entered are assumed to be in hex (rather than decimal or
 symbolic). A preceding "$" (indicating hex rather than decimal or symbolic)
 is therefore optional, except that it should not precede the instruction
 address).

3. Instructions that operate on the accumulator have a blank operand field
 instead of "A".

4. When entering a branch instruction, the argument of the branch mnemonic
 should be the address of the target of the branch. If the destination
 address is not known at the time the instruction is entered, simply enter an
 address that is in the neighborhood, and later re-enter the branch
 instruction with the correct target address. NOTE: If a branch target is
 specified that is out of range, the mini-assembler will flag the address as
 being in error.

5. The operand field of an instruction can only be followed by a comment
 field, which starts with a semicolon (";"). Obviously, the mini-assembler
 ignores the field and in fact will type over it when the line is typed over
 in disassembler format.

6. Any page zero references will generate page zero instruction formats if
 such a mode exists. There is no way to force a page zero address to be two
 bytes, even if the address has leading zeroes.

In general, to specify an addressing type, simply enter it as it would be
listed in the disassembly. For information on the disassembler, see page 49
of the Apple II Reference Manual.
<None>

Keywords: <None>

==

This information is from the Apple Technical Information Library.

19960215 11:05:19.00

4Tech Info Library Article Number:

